(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2023-09-07
(45)【発行日】2023-09-15
(54)【発明の名称】視界支援画像生成装置および画像変換プログラム
(51)【国際特許分類】
G06T 3/00 20060101AFI20230908BHJP
G06T 1/00 20060101ALI20230908BHJP
H04N 7/18 20060101ALI20230908BHJP
B60R 1/26 20220101ALI20230908BHJP
【FI】
G06T3/00 770
G06T1/00 330A
H04N7/18 J
B60R1/26 200
(21)【出願番号】P 2019069443
(22)【出願日】2019-03-29
【審査請求日】2022-01-12
(73)【特許権者】
【識別番号】314012076
【氏名又は名称】パナソニックIPマネジメント株式会社
(74)【代理人】
【識別番号】100138771
【氏名又は名称】吉田 将明
(72)【発明者】
【氏名】道口 将由
(72)【発明者】
【氏名】岡部 吉正
【審査官】岡本 俊威
(56)【参考文献】
【文献】特開2010-095086(JP,A)
【文献】特開2009-081664(JP,A)
【文献】特開2016-107985(JP,A)
【文献】特開2018-182646(JP,A)
【文献】米国特許出願公開第2016/0137126(US,A1)
(58)【調査した分野】(Int.Cl.,DB名)
G06T 1/00 - 5/50
H04N 7/18
B60R 1/00 - 1/31
(57)【特許請求の範囲】
【請求項1】
車両の視界支援画像を生成する視界支援画像生成装置であって、
車両からの画像を撮像するカメラと、
処理部を備え、
前記カメラが撮像した撮像画像を、前記処理部が画像変換することで、前記視界支援画像を生成し、
前記画像変換は、前記撮像画像内に含まれる深消失点を中心として、前記撮像画像の横方向における圧縮率が、前記撮像画像の縦方向における圧縮率よりも高くなるように、前記撮像画像を圧縮するものであ
り、
前記画像変換は、縦長楕円レンズモデルを用いた圧縮である、
視界支援画像生成装置。
【請求項2】
請求項
1に記載の視界支援画像生成装置であって、
前記画像変換は、前記深消失点からの距離が遠いほどに圧縮率が増加する、
視界支援画像生成装置。
【請求項3】
請求項1
または請求項2に記載の視界支援画像生成装置であって、
前記視界支援画像を表示する表示部を更に備える、
視界支援画像生成装置。
【請求項4】
車両の視界支援画像を生成するための画像変換プログラムであって、
装置が有する処理部に、
真円レンズの実像高と、真円レンズモデルの理想像高との対応関係を示すデータに基づいて、前記実像高と、幾何学形状レンズモデルの理想像高との対応関係を算出するステップと、
前記実像高と、前記幾何学形状レンズモデルの理想像高との対応関係に基づいて
、画像に含まれる各画素の圧縮率を算出するステップと、
前記各画素の圧縮率に基づいて、
前記画像を圧縮するステップと、
を実行させ、
前記幾何学形状は、前記幾何学形状の中心から横方向に向かう長さが、前記幾何学形状の中心から縦方向に向かう長さよりも短
く、
前記圧縮は、縦長楕円レンズモデルを用いた圧縮である、
画像変換プログラム。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、車両の乗員に対して表示する視界支援画像を生成する装置、および画像変換プログラムに関する。
【背景技術】
【0002】
車両のドアミラーにつき、横方向(車両のドライバーから見た左右方向の、自車両から離れる方向)の死角を減らす為に、光学ミラーであるアスフェリカルミラーを用いるものがある。
図1は、既存技術である光学アスフェリカルミラーの模式図であり、ドアミラーMが通常のミラー部M1とアスフェリカル部M2を備える。アスフェリカル部M2は、曲率を変化させ、前記横方向についてより広範囲の像が映るようにしている。
【0003】
ドアミラーMに撮像用のカメラをさらに備えたCMS(カメラモニタリングシステム)においても、上記の光学ミラーであるアスフェリカルミラーを模した原理により、前記横方向に画角を広げている。すなわち、カメラが撮像した画像における、上記ドアミラーMのアスフェリカル部M2に相当する領域に、前記横方向に圧縮をかけ、当該圧縮後の画像を表示器に表示している。
【0004】
特許文献1には、車両の後側方の撮像画像を、横方向に変化する倍率で拡大又は圧縮してなる画像を表示器に表示させる場合に、自車両の前後方向に延在するはずの白線等の走行領域区分線が表示器に表示される画像中で曲がって表示されるのを防止するために、設定された横方向拡縮倍率で撮像画像の各部を横方向にスケール修正する横スケール修正処理と、横スケールが修正された画像中で曲がって表示される走行領域区分線の画像が直線状に延在するように設定された縦方向拡縮倍率でさらに部分的に縦方向にスケール修正する縦スケール修正処理を実行することが開示されている。
【先行技術文献】
【特許文献】
【0005】
【発明の概要】
【発明が解決しようとする課題】
【0006】
ところで、車両の乗員、特にドライバー(以下、ドライバー等と表記する)の視点で考えると、当該ドライバー等は、車載モニタ等に表示された表示画像を見ることになる。この表示画像の元となる画像は、ドアミラー等に備えられたカメラによって撮像されたものである。この表示画像は違和感の少ない状態で表示されるのが好ましい。
【0007】
また、ドアミラーは車両の外(以下、外界と表記する)の状況を把握するためのものであるから、外界の適切な状況把握ができる表示画像であることも望まれる。
【0008】
本開示は上記の観点から、違和感が少なく、また、外界の適切な状況把握ができる表示画像を提供することを目的とする。
【課題を解決するための手段】
【0009】
車両の視界支援画像を生成する視界支援画像生成装置が、車両からの画像を撮像するカメラと、処理部を備え、前記カメラが撮像した撮像画像を、前記処理部が画像変換することで、前記視界支援画像を生成し、前記画像変換は、前記撮像画像内に含まれる深消失点を中心として、前記撮像画像の横方向における圧縮率が、前記撮像画像の縦方向における圧縮率よりも高くなるように、前記撮像画像を圧縮するものである。前記構成により、生成した視界支援画像が、違和感が少なく、かつ、外界の適切な状況把握ができるものになる。
【発明の効果】
【0010】
違和感が少なく、外界の適切な状況把握ができる表示画像を提供することができる。
【図面の簡単な説明】
【0011】
【
図1】既存技術である光学アスフェリカルミラーの模式図。
【
図2】本開示の視界支援画像生成装置1による画像生成の原理を示す模式図であり、(a)レンズモデルの一例を示す図、(b)撮像画像(入力画像)を示す図、(c)表示画像(出力画像)を示す図。
【
図3】本開示の視界支援画像生成装置1の実施例を示す構成図。
【
図4】処理部11が行う画像処理の一例を示すフロー図。
【
図6】入力画像I
inから出力画像I
outを生成した際の、従来技術による場合と、本開示の視界支援画像生成装置1による場合との比較図。
【
図7】入力画像I
inから出力画像I
outを生成した際の、従来技術による場合と、本開示の視界支援画像生成装置1による場合との第2の比較図。
【
図8】入力画像I
inから出力画像I
outを生成した際の、従来技術による場合と、本開示の視界支援画像生成装置1による場合との第3の比較図。
【発明を実施するための形態】
【0012】
以下、車両は右ハンドルの自動車であり、ドライバーの死角になりやすい右側のドアミラーに設けたカメラによって撮像した撮像画像を用いて、車内に設けた表示装置に表示画像を表示する、という前提で、適宜図面を参照しながら詳細に説明する。ただし、特許請求の範囲に記載の主題をこの前提のみに限定することは意図されていない。例えば、車両以外の移動体や、車両が有するハンドルの位置(左ハンドル、右ハンドル、ハンドルがそもそも存在しない自動運転)や、カメラを取り付ける位置(左ドアミラー、右ドアミラー、その他)等の、種々の変形があり得る。
【0013】
添付図面及び以下の説明は、当業者が本開示を十分に理解するために提供されるのであって、これらにより特許請求の範囲に記載の主題を限定することは意図されていない。
【0014】
図2は、本開示の視界支援画像生成装置1(
図3に基づき後述)による画像生成の原理を示す模式図であり、(a)レンズモデルの一例を示す図、(b)撮像画像(入力画像)を示す図、(c)表示画像(出力画像)を示す図である。
【0015】
本開示の視界支援画像生成装置1においては、撮像画像内に含まれる深消失点を中心として、撮像画像の横方向における圧縮率が、撮像画像の縦方向における圧縮率よりも高くなるように、前記撮像画像を圧縮できるような幾何学形状レンズモデルを用いる。幾何学形状レンズモデルとして、本実施形態においては、
図2(a)に示した縦長楕円レンズモデルEを用いる。
【0016】
この縦長楕円レンズモデルEにおける長軸(縦軸)の長さをb、短軸(横軸)の長さをcとすると、b>cである。そして、後述するが、この縦長楕円レンズモデルEを用いると、画像の圧縮率は横方向から縦方向に線形に変化することになる。これを言い換えると、横方向を偏角0度、縦方向を偏角90度とした場合、偏角が0度から90度へと増加するにつれて、圧縮率は線形に減少する。また、これも後述するが、楕円の中心からの距離が遠いほどに、圧縮率が増加するものとなる。
【0017】
図2(b)は、入力画像I
inを示す図であり、本実施形態においては、自車両100の右ドアミラーに取り付けられたカメラが撮像した撮像画像に相当する。
【0018】
入力画像Iinの中には、その左側に、自車両100の車体が映り込んでいる。また、説明の為の一例にすぎないが、入力画像Iinの中には、物体OBJ1~OBJ4が映りこんでいる。この例においては、物体OBJ1~OBJ4はそれぞれ、自車両100の隣のレーンを走行中の、自車両100とは異なる車両である。
【0019】
図2(c)は、出力画像I
outを示す図であり、本実施形態においては、自車両100の内部に取り付けられたモニタによって、右ハンドルを握るドライバーへ向けて表示される表示画像に相当する。
【0020】
図2(c)から分かるように、出力画像I
outにも、自車両100の車体と、物体OBJ1~OBJ4とが映り込んでいる。ここで、入力画像I
in(
図2(b))と出力画像I
out(
図2(c))とを比較すると、出力画像I
outに映りこんでいる物体OBJ1~OBJ4は、横方向の圧縮率の方が、縦方向の圧縮率よりも高くなっている。すなわち、横方向に画角が広がる。なお、このような出力画像I
outが、違和感が少なく、また、外界の適切な状況把握ができる表示画像である事については、後述する。
【0021】
図3は、本開示の視界支援画像生成装置1の実施例を示す構成図である。本開示の視界支援画像生成装置1は、処理部11とカメラ12とを備える。なお、これら以外の構成要素を備えていてもよい。図示しているように、視界支援画像生成装置1が不揮発性メモリ14等を更に備えるようにすることもできる。
【0022】
処理部11は、視界支援画像生成装置1における情報処理を行う構成要素である。処理部11は画像処理を行い、装置内の他の構成要素や装置外部から入力された指令や信号の処理を行い、逆に、装置内の他の構成要素や装置外部へと指令や信号を送信してよい。
【0023】
カメラ12は、車両からの画像を撮像して上述の入力画像Iinを取得するための手段である。本実施形態においては、カメラ12は車両の後側方を撮像するための、ドアミラーに取り付けられたカメラであるが、これには限定されない。例えば、車両の前方や後方を撮像するカメラ等であってもよい。
【0024】
表示装置13は、視界支援画像生成装置1によって生成された表示画像を表示することができる装置である。典型的には、表示装置13は自車両100内に設けられたモニタ等であるが、これには限定されない。ドライバー等は、この表示装置13に表示された表示画像を見ることとなる。
図3においては、表示装置13は視界支援画像生成装置1とは別体となっている。しかし、表示装置13を視界支援画像生成装置1の中に含めてもよい。
【0025】
不揮発性メモリ14は、処理部11が行う画像処理に用いるプログラムや、各種パラメータ情報、真円レンズモデル(後述)に基づく変換テーブル等を記憶していてよい。
【0026】
なお、視界支援画像生成装置1に含まれる構成要素は、さらに一体化されていてもよく、逆に複数のサブコンポーネントへとさらに分割されていてもよい。
【0027】
図4は、処理部11が行う画像処理の一例を示すフロー図である。
【0028】
図4は、入力画像I
inに基づいて出力画像I
out生成する画像変換処理に用いられる、変換テーブルを作成する為の処理の一例を示している。前提条件として、本例においては、
図2(a)に示した縦長楕円レンズモデルEを用いる。また、
図5に基づき後述するように、本例においては、レンズ歪みの除去も併せて行うこととする。
【0029】
ステップS01において、処理部11が、入力画像Iinを取り込む。取り込まれた画像は、図示を省略するメモリ等に保持されてよい。
【0030】
ステップS02では、処理部11が、処理すべき次の画素が残っているか否かを判断している。次の画素がある場合(図中のyes)は、ステップS03へと進む。次の画素が残っていない場合(図中のno)は、入力画像Iinの全てについて処理が終了した状況を示しており、変換テーブル作成処理は終了となる。
【0031】
ステップS03において、処理部11が、処理対象となる次の画素を選択する。選択された画素の座標を、便宜的に座標Pとする。
【0032】
ステップS04において、処理部11が、中央座標Oと座標Pとの間の距離Doを算出する。ここで、中央座標Oは、入力画像I
in内に含まれる深消失点を意味している。例えば
図2(b)を用いて例示すると、自動車が走行している路面には白線Wが複数引かれている。これら複数の白線Wの延長線上に、それらの延長線が1点に交わる点がある。この交点が、深消失点である。
図2(b)においては、画像内部、左上側に深消失点(中央座標О)がある。
【0033】
ステップS05において、処理部11が、距離Doを真円レンズモデルの変換テーブルで変換し、変換後の距離Do’を決定する。このステップS05については、
図5も併せて参照しつつ、下記でさらに詳述する。
【0034】
図5に、真円レンズモデルの説明図を示している。
図5に示されるレンズ50は、ピンホールカメラ等で用いられる一般的な真円状のレンズである。なお、
図5は、真円レンズを正面ではなく横から見た状態を示している。
【0035】
光学系の評価面51上での像位置を、光軸からの距離で表した値を像高と呼ぶが、像高には理想像高53と実像高52の2種類がある。理想像高53は理想的な像高である。しかし、通常の光学系の像高は、レンズ歪み等の影響を受けるため、理想像高53とはならない。一方、実像高52は、評価面で実際に結像している位置を指す像高である。なお、前記ステップS04で算出した中央座標Oと座標Pとの間の距離Doは、実像高52に相当する。
【0036】
そして、各座標における実像高52と、各座標における理想像高53とを組み合わせて、1つの変換テーブルとする。
図5に示した例において、レンズ50は真円レンズである。したがって、
図5に示してある実像高52と、真円レンズの理想像高53とを組み合わせた変換テーブルは、真円レンズモデルの変換テーブルとなる。真円レンズモデルの変換テーブルを用いれば、レンズ歪みの影響を受けた実像高52を、レンズ歪みの除去された(真円レンズモデルの)理想像高53へと変換することができる。
【0037】
上述のような真円レンズモデルの変換テーブルは、例えば不揮発性メモリ14等に保存されていてよい。そして処理部11が、上記ステップS05において、この真円レンズモデルの変換テーブルを用いて、実像高52である距離Doから、真円レンズモデルの理想像高53に相当する変換後の距離Do’を決定する。
【0038】
ステップS06において、処理部11が、真円レンズモデルによる、像高変化割合aを算出する。なお、a=(Do’/Do)-1である。
【0039】
像高変化割合aは、真円レンズモデルの理想像高53である距離Do’を、実像高52である距離Doで除算し、そこから1を引いた値である。例えば、理想像高53である距離Do’=120、実像高52である距離Do=100である場合、像高変化割合a=(120/100)-1=0.2となる。これは、実像高52に対して(真円レンズモデルの)理想像高53が20%変化(この場合は増加)していることを意味する。
【0040】
ここで、本開示における視界支援画像生成装置1は、既に述べたように、縦長楕円レンズモデルE(
図2(a))を用いる。そのため、ステップS06で計算した像高変化割合aに、縦長楕円の要素を混入させる必要がある。そこで、後続のステップS07以降において、以下のような処理を行う。
【0041】
ステップS07において、処理部11が、座標Oから座標Pへと延びる直線と、長軸bおよび短軸cで定義される縦長楕円関数Eとの交点P1の座標を計算する。次のステップS08において、処理部11が、座標Oと座標P1との間の距離D1を算出する。
【0042】
なお、長軸bおよび短軸cの長さは、適宜決定することができる。本例においては縦長楕円レンズモデルEを用いているので、長軸bが縦方向(Y軸方向)に延び、短軸cが横方向(X軸方向)に延びる。c<bである。
【0043】
ここで、理解をより容易とするために、具体例を2つ示す。
【0044】
まず、第1の具体例を示す。座標Pが、座標Оを原点とした場合のX軸上に存在していたとする。つまり、座標P=(m,0)であったとする。mは任意の正の実数である。この時、座標Oから座標Pへと延びる直線と、上記縦長楕円関数Eとの交点P1の座標は(c/2,0)であるので、D1=c/2である。
【0045】
第2の具体例を示す。座標Pが、座標Оを原点とした場合のY軸上に存在していたとする。つまり、座標P=(0,n)であったとする。nは任意の正の実数である。この時、座標Oから座標Pへと延びる直線と、上記縦長楕円関数Eとの交点P1の座標は(0,b/2)であるので、D1=b/2である。
【0046】
ここで、上述の2つの具体例同士を比較すると、c<bであるから、c/2<b/2となる。すなわち、第1の具体例よりも、第2の具体例の方が、距離D1の値が大きい。
【0047】
続くステップS09において、処理部11が、座標Pについての圧縮係数Ap=(a/D1)+1を算出する。上述のように、aは像高変化割合、D1は座標Oから座標P1までの距離である。ここでD1が逆数として用いられているので、上記2つの具体例の間で、値の大小関係は逆転する。すなわち、第2の具体例におけるAp=(2a/b)+1よりも、第1の具体例におけるAp=(2a/c)+1の方が、圧縮係数Apの値が大きい。この圧縮係数Apは、圧縮率に相当する。
【0048】
つまり、横方向にある座標P=(m,0)である第1の具体例の方が、縦方向にある座標P=(0,n)である第2の具体例よりも、圧縮係数Apの値が大きい。これは、座標O(深消失点)を中心として、横方向の圧縮率が、縦方向の圧縮率よりも高いことを示している。
【0049】
続くステップS10において、処理部11は、座標Pについての圧縮係数Apを、縦長楕円レンズモデルの理想像高53として、縦長楕円レンズモデルEの変換テーブルに書き入れる。つまり、実像高52と、縦長楕円レンズモデルEの理想像高53とを組み合わせて記録する。ここまでの説明から分かるように、縦長楕円レンズモデルEの変換テーブルは、上述の真円レンズモデルの変換テーブルを変形したものとなる。
【0050】
そして、処理はステップS02へと戻る。つまり、上述のステップS01で処理部11が取り込んだ入力画像Iinに含まれる、すべての画素(座標P)に対して、実像高52と、縦長楕円レンズモデルEの理想像高53との組み合わせを記録して、これを縦長楕円レンズモデルEの変換テーブルとする。
【0051】
以上のようにして、真円レンズモデルの変換テーブルを変形して、縦長楕円レンズモデルEの変換テーブルを作成することができる。
【0052】
そして、入力画像Iinに対して、縦長楕円レンズモデルEの変換テーブルを適用することにより、出力画像Ioutを生成することができる。より詳しくは、入力画像Iinにおける座標Oから座標Pまでの線分を、Ap倍圧縮する(距離Doを、距離Do/Apへと変える)。この圧縮は、座標O(深消失点)を中心とした横方向の圧縮率が、縦方向の圧縮率よりも高いものである。
【0053】
なお、縦長楕円レンズモデルEの長軸bおよび短軸cの長さは、適宜変更が可能である。つまり、本開示の視界支援画像生成装置1は、座標O(深消失点)を中心とした横方向の圧縮率と、縦方向の圧縮率とを、別個独立に調整することができる。
【0054】
図6は、入力画像I
inから出力画像I
outを生成した際の、従来技術による場合と、本開示の視界支援画像生成装置1による場合との比較図である。
図6(a)は入力画像I
inである。この入力画像I
inに対し従来技術を用いて生成した出力画像I
outが
図6(b)である。同じ入力画像I
inに対し、本開示の視界支援画像生成装置1を用いて生成した出力画像I
outが
図6(c)である。
【0055】
図6(a)に示す入力画像I
inの中には、その左側に、自車両100の車体が映り込んでいる。また、説明の為の一例ではあるが、入力画像I
inの中には、物体OBJ1~OBJ4が映り込んでいる。この例においては、物体OBJ1~OBJ4は、自車両の隣のレーンを走行中の、自車両100とは異なる車両である。
【0056】
図6(b)に示す、従来技術により生成された出力画像I
outは、入力画像I
inに映り込んだレーン上の白線Wを直線化するために、横方向の拡縮を行った後に、縦方向の拡縮をさらに行って生成されている。つまり、横方向と縦方向の、2段階の拡縮を行っている。これは、後述の
図7(b)および
図8(b)についても同様である。
【0057】
図6(b)に示した出力画像I
outをみると、車両であるOBJ1、OBJ2の形状が、入力画像I
inとは大きく異なっている。これらは横方向に大きく潰れ、原形を認識し難いものとなっている。また、横方向の距離感も大きく変動しており、OBJ1からOBJ2までの車間距離が、極端に短縮化している。これをドライバー等の視点で見た場合、そこに何かしらの物体が存在していること自体は知覚できるものの、その物体がはたして何であるかが判別困難になることがある。また、OBJ1とOBJ2との間の車間距離は、本来は充分にあけられている(
図6(a))。しかし、
図6(b)では互いに衝突しそうであるように見える。
【0058】
一方、
図6(c)に示す、本開示の視界支援画像生成装置1によって生成された出力画像I
outの場合は、立体の形状変化が緩和される。また、横方向の距離感の変化も緩やかである。よって、ドライバー等の視点では、隣のレーンを移動する物体OBJ1~OBJ4の形を認識しやすい。また、距離感の急激な変動によって混乱することもない。
【0059】
図7は、入力画像I
inから出力画像I
outを生成した際の、従来技術による場合と、本開示の視界支援画像生成装置1による場合との第2の比較図である。
図7(a)は入力画像I
inである。この入力画像I
inに対し従来技術を用いて生成した出力画像I
outが
図7(b)である。同じ入力画像I
inに対し、本開示の視界支援画像生成装置1を用いて生成した出力画像I
outが
図7(c)である。
【0060】
図7においては、自車両100の進行方向に対して直交する直線L1、L2を、補助線として付加した。直線L1が、自車両100の近傍における線、直線L2が、自車両100の遠方における線である。
【0061】
図7(a)に示す入力画像I
inにおいては、2つの直線L1とL2は平行になっている。
【0062】
図7(b)に示す、従来技術により生成された出力画像I
outを見ると、2つの直線L1とL2は、その傾きが大きく異なっている。この傾きの相違は、ドライバー等の視点では、画像の歪みや違和感として認識される。また、画像内に映り込んだ複数台の車両は、2つの直線L1、L2と直交する方向に進行している。つまり、出力画像I
outが動画であった場合、この動画内に映り込んだ車両は、実際には直進しているはずであるが、画像の右側へと進むにつれ、カーブしながら進行しているように映る。これもまた、ドライバー等に違和感を覚えさせる。
【0063】
一方、
図7(c)に示す、本開示の視界支援画像生成装置1によって生成された出力画像I
outであれば、2つの直線L1とL2との間の傾きの違いが、従来よりも緩やかになる。よって、ドライバー等にとっての違和感が少ない。また、出力画像I
outが動画であった場合、当該動画に映り込んでいる車両の進行がより自然に見えるので、やはり違和感が少ない。
【0064】
図8は、入力画像I
inから出力画像I
outを生成した際の、従来技術による場合と、本開示の視界支援画像生成装置1による場合との第3の比較図である。
図8(a)は入力画像I
inである。この入力画像I
inに対し従来技術を用いて生成した出力画像I
outが
図8(b)である。同じ入力画像I
inに対し、本開示の視界支援画像生成装置1を用いて生成した出力画像I
outが
図8(c)である。
【0065】
図8においては、車両であるOBJ2のフロントバンパー付近に説明用の矢印L3を入れている。この矢印L3は、画像に映り込む物体が備えている、自車両100の進行方向に直交する直線を示している。
【0066】
図8(b)に示す、従来技術により生成された出力画像I
outを見ると、矢印L3が湾曲していることが見て取れる。つまりドライバー等の視点では、物体OBJ2を構成する、直線状に形成されている部材(フロントバンパー等)が、湾曲して見えることになる。これもまた、ドライバー等に違和感を覚えさせる。
【0067】
一方、
図8(c)に示す、本開示の視界支援画像生成装置1によって生成された出力画像I
outであれば、上述の湾曲も緩和され、直線状に形成されている部材(フロントバンパー等)が、直線に近い形状としてドライバー等の目に映る。すなわち、ドライバー等にとって違和感が少ない。
【0068】
以上、例示したように、本開示の視界支援画像生成装置1によって生成された出力画像Ioutは、違和感の少ない画像となる。
【0069】
これに加えて、本開示の視界支援画像生成装置1によって生成される出力画像I
outは、撮像画像内に含まれる深消失点を中心として、撮像画像の横方向における圧縮率が、撮像画像の縦方向における圧縮率よりも高くなるように、前記撮像画像を圧縮するものである(
図1~
図5参照)。よって、画角を横方向に拡大するという、光学アスフェリカルミラーが有する利点も、依然として享受することができる。
【0070】
すなわち、本開示の視界支援画像生成装置1は、違和感が少なく、また、外界の適切な状況把握ができる出力画像Ioutを生成することができる。
【0071】
なお、下記にて、補足事項をいくつか説明する。
【0072】
図4に基づき説明したフロー図は、真円レンズモデルの変換テーブルに基づいて縦長楕円レンズモデルEの変換テーブルを作成し、縦長楕円レンズモデルEの変換テーブルを用いて出力画像I
outを生成する例であった。この縦長楕円レンズモデルEの変換テーブルを不揮発性メモリ14等に保存しておけば、入力画像I
inが入力される都度、新たに変換テーブルを生成する必要が無くなる。つまり、入力画像I
inに対して、既に保存されている縦長楕円レンズモデルEの変換テーブルを参照して、出力画像I
outを生成することができるようになる。逆に、入力画像I
inが入力される都度、上記のように圧縮係数A
pを動的に計算した上で、出力画像I
outを生成してもよい。
【0073】
また、上記の実施形態においては、ステップS01~S10に係る処理を、処理部11が行っている。この処理に係るプログラムが不揮発性メモリ14等に保存され、処理部11がこのプログラムを読み出して画像処理を行ってよい。一方、上述の処理を、ソフトウェア処理ではなく、ハードウェア処理によって行ってもよい。例えば、専用の回路等によって当該処理を行ってよい。
【0074】
次に、圧縮率についての補足説明を行う。
図4のステップS09につき、具体例を2つ示した。すなわち、圧縮率(圧縮係数A
p)について、横方向(第1の具体例)と縦方向(第2の具体例)との2方向を比較した。しかし、その中間である斜め方向の圧縮率もある。上述のように、縦長楕円レンズモデルEの変換テーブルは、上述の真円レンズモデルの変換テーブルを変形したものある。真円を縦長楕円に変換しているので、圧縮率(圧縮係数A
p)は横方向から縦方向に、線形に変化することになる(
図2(a)参照)。これを言い換えると、横方向を偏角0度、縦方向を偏角90度とした場合、偏角が増加するにつれて、圧縮率(圧縮係数A
p)は線形に減少する。
【0075】
また、真円レンズモデルとして、中心からの距離が遠いほどに圧縮率が増加するレンズモデルを用いることができる。そのような真円レンズモデルに基づいて作成した縦長楕円レンズモデルEもまた、中心(深消失点)からの距離が遠いほどに圧縮率が増加するものとなる。
【0076】
上記構成において、前記画像変換は、前記撮像画像内に含まれる深消失点を中心として、前記撮像画像の横方向から前記撮像画像の縦方向へと偏角が変わるにつれて、圧縮率が線形に変化するものであってよい。線形変化であれば、偏角に応じて圧縮率が徐々に変動するので、生成された視界支援画像も自然なものとなる。
【0077】
上記構成において、前記画像変換は、前記深消失点からの距離が遠いほどに圧縮率が増加するものであってよい。この構成により、深消失点の周辺部は低圧縮として画像の情報量を保ちつつ、画角を自然に広げることが可能となる。
【0078】
上記構成において、前記画像変換は縦長楕円レンズモデルを用いた圧縮であってよい。縦長楕円モデルであれば、通常用いられる真円レンズモデルと形状が近く、画像変換後の表示画像における違和感が少ない。また、真円を規定するパラメータは半径rの1つのみであったのに対して、縦長楕円であれば長軸b、短軸cの2つのパラメータにすることができる。この2つのパラメータを適宜調節することで、従来では生じていた表示画像の違和感を少なくしつつ、画像の縦方向および横方向の圧縮率を柔軟に変動させることができる。
【0079】
上記構成において、視界支援画像生成装置1は、前記視界支援画像を表示する表示部を更に備えてよい。かかる表示部に視界支援画像を表示することにより、ドライバー等が、横方向に視野の広がった自然な視覚支援画像を見ることができる。
【0080】
また、本開示は、車両の視界支援画像を生成するための画像変換プログラムにも関する。前記画像変換プログラムは、装置が有する処理部に、画像の実像高と、真円レンズモデルの理想像高との対応関係を示すデータに基づいて、前記画像の実像高と、幾何学形状レンズモデルの理想像高との対応関係を算出するステップと、前記画像の実像高と、前記幾何学形状レンズモデルの理想像高との対応関係に基づいて、前記画像に含まれる各画素の圧縮率を算出するステップと、前記各画素の圧縮率に基づいて、前記画像を圧縮するステップとを実行させ、前記幾何学形状は、前記幾何学形状の中心から横方向に向かう長さが、前記幾何学形状の中心から縦方向に向かう長さよりも短いものであってよい。前記構成により、車両のドアミラー等に設けたカメラが撮像した入力画像から、ドライバー等にとって違和感が少なく、また、外界の適切な状況把握ができる視界支援画像を提供することができる。
【0081】
上記構成において、前記幾何学形状は、前記幾何学形状の中心からの距離が、前記幾何学形状の横方向から縦方向へと偏角が変わるにつれて、線形に変化するものであってよい。線形変化であれば、偏角に応じて圧縮率が徐々に変動するので、当該プログラムを用いて生成された画像も、ドライバー等にとって自然なものとなる。
【0082】
上記構成において、前記幾何学形状は縦長楕円であってよい。縦長楕円モデルであれば、通常用いられる真円レンズモデルと形状が近く、画像変換後の視界支援画像における違和感が少ない。また、真円を規定するパラメータは半径rの1つのみであったのに対して、縦長楕円であれば長軸b、短軸cの2つのパラメータにすることができる。この2つのパラメータを適宜調節することで、従来では生じていた表示画像の違和感を少なくしつつ、画像の縦方向および横方向の圧縮率を柔軟に変動させることができる。
【0083】
以上、図面を参照しながら各種の実施形態について説明したが、本発明はかかる例に限定されないことは言うまでもない。当業者であれば、特許請求の範囲に記載された範疇内において、各種の変更例又は修正例に想到し得ることは明らかであり、それらについても当然に本発明の技術的範囲に属するものと了解される。また、発明の趣旨を逸脱しない範囲において、上記実施形態における各構成要素を任意に組み合わせてもよい。
【符号の説明】
【0084】
1 視界支援画像生成装置
11 処理部
12 カメラ
13 表示装置
14 不揮発性メモリ
50 レンズ
51 評価面
52 実像高
53 理想像高
100 自車両
Iin 入力画像
Iout 出力画像
E 縦長楕円レンズモデル
M ドアミラー
M1 ミラー部
M2 アスフェリカル部
OBJ1~OBJ4 物体