(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2023-09-11
(45)【発行日】2023-09-20
(54)【発明の名称】質量分析装置
(51)【国際特許分類】
H01J 49/42 20060101AFI20230912BHJP
H01J 49/14 20060101ALI20230912BHJP
G01N 27/62 20210101ALN20230912BHJP
【FI】
H01J49/42 150
H01J49/14 700
G01N27/62 G
(21)【出願番号】P 2022543230
(86)(22)【出願日】2020-08-20
(86)【国際出願番号】 JP2020031514
(87)【国際公開番号】W WO2022038754
(87)【国際公開日】2022-02-24
【審査請求日】2022-10-25
(73)【特許権者】
【識別番号】000001993
【氏名又は名称】株式会社島津製作所
(74)【代理人】
【識別番号】110001069
【氏名又は名称】弁理士法人京都国際特許事務所
(72)【発明者】
【氏名】西口 克
(72)【発明者】
【氏名】下村 学
【審査官】大門 清
(56)【参考文献】
【文献】特開2000-48763(JP,A)
【文献】特開2003-022778(JP,A)
【文献】特開2018-120804(JP,A)
【文献】特開2007-194094(JP,A)
【文献】特開2002-25497(JP,A)
【文献】国際公開第2019/155530(WO,A1)
【文献】国際公開第2007/102225(WO,A1)
【文献】米国特許出願公開第2013/0299691(US,A1)
【文献】米国特許第9721777(US,B1)
(58)【調査した分野】(Int.Cl.,DB名)
H01J 49/42
H01J 49/14
G01N 27/62
H01J 27/20
H01J 37/08
(57)【特許請求の範囲】
【請求項1】
試料ガスに含まれる試料成分をイオン化するイオン源を具備する質量分析装置であって、前記イオン源は、
イオン射出口と、該イオン射出口から射出されるイオン流の中心軸であるイオン光軸を挟んで対向して配置される電子導入口及び電子排出口と、を有し、その内部に外部とは略区画された空間を形成するイオン化室と、
前記イオン化室の内部で前記イオン光軸上に配置され、該イオン化室内で生成されたイオンを前記イオン射出口を通して外部へと押し出す電場を形成するリペラー電極と、
前記電子導入口の外側に、前記イオン光軸と同方向に延伸するように配置されたフィラメントと、
前記電子排出口の外側に配置されたトラップ電極と、
前記フィラメントから前記イオン化室の内部を通過して前記トラップ電極へと向かう熱電子の軌道を制御するために磁場を形成する磁場形成部と、
を備え、前記電子導入口の前記イオン射出口側の端部と該イオン射出口が形成されている前記イオン化室の壁部内面との間の前記イオン光軸に沿った方向の第1の距離、及び、前記電子導入口の前記リペラー電極側の端部と該リペラー電極との間の前記イオン光軸に沿った方向の第2の距離、の両方又はそのいずれか一方が、熱電子に付与されるエネルギーと、前記磁場形成部により形成される磁場の強さと、を用いて推定される熱電子の回転半径よりも大きくなるように定められている質量分析装置。
【請求項2】
試料ガスに含まれる試料成分をイオン化するイオン源を具備する質量分析装置であって、前記イオン源は、
イオン射出口と、該イオン射出口から射出されるイオン流の中心軸であるイオン光軸を挟んで対向して配置される電子導入口及び電子排出口と、を有し、その内部に外部とは略区画された空間を形成するイオン化室と、
前記イオン化室の内部で前記イオン光軸上に配置され、該イオン化室内で生成されたイオンを前記イオン射出口を通して外部へと押し出す電場を形成するリペラー電極と、
前記電子導入口の外側に、前記イオン光軸と同方向に延伸するように配置されたフィラメントと、
前記電子排出口の外側に配置されたトラップ電極と、
前記フィラメントから前記イオン化室の内部を通過して前記トラップ電極へと向かう熱電子の軌道を制御するために磁場を形成する磁場形成部と、
を備え、前記電子導入口の前記イオン射出口側の端部と該イオン射出口が形成されている前記イオン化室の壁部内面との間の前記イオン光軸に沿った方向の第1の距離、及び、前記電子導入口の前記リペラー電極側の端部と該リペラー電極との間の前記イオン光軸に沿った方向の第2の距離、の両方又はそのいずれか一方が、1.2mm以上に定められている質量分析装置。
【請求項3】
前記第1の距離及び前記第2の距離はいずれも1.5mm以上である、請求項2に記載の質量分析装置。
【請求項4】
前記第1の距離及び前記第2の距離はいずれも2mm以上である、請求項3に記載の質量分析装置。
【請求項5】
前記第1の距離及び前記第2の距離はいずれも3mm以下である、請求項4に記載の質量分析装置。
【請求項6】
前記イオン源は電子イオン化法によるイオン化を行うものである、請求項1に記載の質量分析装置。
【請求項7】
前記イオン源は電子イオン化法によるイオン化を行うものである、請求項2に記載の質量分析装置。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は質量分析装置に関し、更に詳しくは、電子イオン化(EI=Electron Ionization)法、化学イオン化(CI=Chemical Ionization)法、又は、負化学イオン化(NCI=Negative Chemical Ionization)法によるイオン源を用いた質量分析装置に関する。
【背景技術】
【0002】
ガスクロマトグラフ質量分析装置(GC-MS)における質量分析装置では、試料ガス中の化合物をイオン化するために、EI法、CI法、又は、NCI法などのイオン化法が主として利用されている。真空チャンバー内に配置されたイオン化室内に導入された試料ガス中の化合物は、上記のような適宜のイオン化法によりイオン化される。そして、生成されたイオンは四重極マスフィルターなどの質量分離部へと輸送され、質量電荷比(厳密には斜体字の「m/z」であるが、本明細書では慣用に従って「質量電荷比」という)に応じて分離され検出される。
【0003】
図4は従来の一般的なEIイオン源の概略構成図であり、(A)は概略縦端面図、(B)は概略上面図である(特許文献1等参照)。説明の便宜上、空間内に互いに直交するX、Y、Zの3軸を定義する。
【0004】
このイオン源は、導電性部材から成る箱状のイオン化室10を含み、イオン化室10の内部には平板状のリペラー電極14が配置されている。イオン化室10の上壁面には電子導入口102が、下壁面には電子排出口103が形成されており、電子導入口102の外側にはフィラメント11が、電子排出口103の外側には対向フィラメント(実質的にはトラップ電極)12が配置されている。また、フィラメント11と対向フィラメント12の外側には、それらを挟むように一対の収束用磁石13が配置されている。イオン化室10の前壁面(リペラー電極14が配置されている壁面と反対側の壁面)には、イオン射出口101が形成され、その外側には引出し電極を含むイオンレンズ2が配置されている。また、イオン化室10の側壁面には試料ガス導入管15が接続されている。
【0005】
イオン化の際にフィラメント11は通電されることで発熱し熱電子を生成する。フィラメント11と対向フィラメント12との間には所定の電位差の直流電圧が印加され、その電位差によって、生成された熱電子は加速されて対向フィラメント12まで移動する。これにより、イオン化室10内に全体としてY軸方向に進行する熱電子流16が形成される。試料ガス導入管15を経てイオン化室10内に供給された試料ガス中の試料成分(化合物)は、熱電子に接触してイオン化される。収束用磁石13は磁束線の向きがY軸方向である磁場を形成し、その磁場によって熱電子流16のX軸及びZ軸方向の広がりが抑制される。
【0006】
リペラー電極14には試料由来のイオンと同極性の直流電圧V1が印加される。これによって、イオン化室10においてリペラー電極14とイオン射出口101との間には、イオンをリペラー電極14から遠ざける方向に押す力を有する押出し電場が形成される。この電場の作用により、イオン化室10内の中央付近で生成されたイオンはイオン射出口101の方向に押される。また、イオンレンズ2の引出し電極に印加される電圧によって形成される引出し電場は、イオン射出口101を通してイオン化室10の内部に入り込む。上記押出し電場とこの引出し電場との両方の作用により、イオンはイオン化室10からX軸方向に引き出される。
【0007】
図4に示した構成では、フィラメント11及び対向フィラメント12は直線状に細長い形状であり、図示するようにZ軸方向に延伸するように配置されている。即ち、イオンの引出し方向であるX軸と直交するようにフィラメント11及び対向フィラメント12は配置されている。ここでは、こうした配置を直交フィラメント配置構造ということとする。一般的には、この直交フィラメント配置構造が広く採用されている。
【0008】
一方、
図5は
図4(B)と同様のイオン源の概略上面図であるが、この
図5に示すように、イオンの引出し方向であるX軸と平行にフィラメント11及び対向フィラメント12を配置する構成も知られている(特許文献2など参照)。ここでは、こうした配置を平行フィラメント配置構造ということとする。
【0009】
平行フィラメント配置構造は直交フィラメント配置構造と比較して、イオン化室10からのイオンの引出し効率を上げるのに有利である。そのため、質量分析に供するイオンの量を増やすことができ、検出感度の向上に有利である。しかしながら、平行フィラメント配置構造は直交フィラメント配置構造と比較して、イオン強度のドリフトが大きい、イオン強度の再現性が悪いなど、測定の安定性に欠けるという問題がある。この点、直交フィラメント配置構造は平行フィラメント配置構造に比べると感度が低くなるものの、感度と安測定定性とのバランスに優れる。これが、直交フィラメント配置構造が広く採用されている大きな理由である。
【先行技術文献】
【特許文献】
【0010】
【文献】特開2016-157523号公報
【文献】特開2000-48763号公報
【発明の概要】
【発明が解決しようとする課題】
【0011】
上述したように、平行フィラメント配置構造は直交フィラメント配置構造と比較して高感度化に有利であるものの測定安定性に劣る。この点を改善することができれば、EIイオン源等を搭載する質量分析装置の感度を向上させることができ、ガスクロマトグラフ質量分析等においてごく微量である化合物の同定や定量が可能となる。
【0012】
本発明は上記課題を解決するために成されたものであり、その目的とするところは、高感度と高安定性とを共に実現することができるEIイオン源、CIイオン源等を備える質量分析装置を提供することにある。
【課題を解決するための手段】
【0013】
上記課題を解決するために成された本発明に係る質量分析装置の一態様は、試料ガスに含まれる試料成分をイオン化するイオン源を具備する質量分析装置であって、前記イオン源は、
イオン射出口と、該イオン射出口から射出されるイオン流の中心軸であるイオン光軸を挟んで対向して配置される電子導入口及び電子排出口と、を有し、その内部に外部とは略区画された空間を形成するイオン化室と、
前記イオン化室の内部で前記イオン光軸上に配置され、該イオン化室内で生成されたイオンを前記イオン射出口を通して外部へと押し出す電場を形成するリペラー電極と、
前記電子導入口の外側に、前記イオン光軸と同方向に延伸するように配置されたフィラメントと、
前記電子排出口の外側に配置されたトラップ電極と、
前記フィラメントから前記イオン化室の内部を通過して前記トラップ電極へと向かう熱電子の軌道を制御するために磁場を形成する磁場形成部と、
を備え、前記電子導入口の前記イオン射出口側の端部と該イオン射出口が形成されている前記イオン化室の壁部内面との間の前記イオン光軸に沿った方向の第1の距離、及び、前記電子導入口の前記リペラー電極側の端部と該リペラー電極との間の前記イオン光軸に沿った方向の第2の距離、の両方又はそのいずれか一方が、熱電子に付与されるエネルギーと、前記磁場形成部により形成される磁場の強さと、を用いて推定される熱電子の回転半径よりも大きくなるように定められているものである。
【0014】
また、上記課題を解決するために成された本発明に係る質量分析装置の他の態様は、試料ガスに含まれる試料成分をイオン化するイオン源を具備する質量分析装置であって、前記イオン源は、
イオン射出口と、該イオン射出口から射出されるイオン流の中心軸であるイオン光軸を挟んで対向して配置される電子導入口及び電子排出口と、を有し、その内部に外部とは略区画された空間を形成するイオン化室と、
前記イオン化室の内部で前記イオン光軸上に配置され、該イオン化室内で生成されたイオンを前記イオン射出口を通して外部へと押し出す電場を形成するリペラー電極と、
前記電子導入口の外側に、前記イオン光軸と同方向に延伸するように配置されたフィラメントと、
前記電子排出口の外側に配置されたトラップ電極と、
前記フィラメントから前記イオン化室の内部を通過して前記トラップ電極へと向かう熱電子の軌道を制御するために磁場を形成する磁場形成部と、
を備え、前記電子導入口の前記イオン射出口側の端部と該イオン射出口が形成されている前記イオン化室の壁部内面との間の前記イオン光軸に沿った方向の第1の距離、及び、前記電子導入口の前記リペラー電極側の端部と該リペラー電極との間の前記イオン光軸に沿った方向の第2の距離、の両方又はそのいずれか一方が、1.2mm以上に定められているものである。
【発明の効果】
【0015】
本発明に係る質量分析装置におけるイオン源は、イオン化に熱電子を利用するイオン源であり、具体的には、EI法、CI法、又はNCI法によるイオン源である。
【0016】
本発明に係る質量分析装置において、フィラメントから放出された熱電子は電子導入口を経てイオン化室の内部へと入り、イオン化室の内部空間を通り抜け、電子排出口を経てトラップ電極に至る。熱電子がイオン化室の内部空間を通り抜ける際に、磁場形成部により形成される磁場の作用によって、熱電子は螺旋状に旋回しながら進行する。上記態様の質量分析装置では、上述したように螺旋状に旋回しながら進行する熱電子が、イオン射出口が形成されているイオン化室の壁部内面やリペラー電極に接触しにくくなる。また、熱電子が存在しない或いはその密度が低い領域では、イオンも生成されにくいため、イオンもイオン射出口が形成されているイオン化室の壁部内面やリペラー電極に接触しにくい。
【0017】
本発明者の検討によれば、平行フィラメント配置構造のEIイオン源において測定安定性が低い大きな要因は、イオン化室壁面やリペラー電極の汚れに起因するイオン化室内部の電場の乱れであると推測される。そうした汚れの主たる原因は熱電子やイオンの付着である。本発明に係る質量分析装置の上記態様によれば、イオン射出口が形成されているイオン化室の壁部内面やリペラー電極に熱電子やイオンが接触しにくくなる。そのため、イオン化室の壁部内面やリペラー電極の汚れを軽減することができ、それによって測定安定性を高めることができる。即ち、平行フィラメント配置構造における感度の高さを活かしつつ測定安定性も向上させることができ、高感度と高い測定安定性とを両立することができる。
【0018】
なお、イオン化室内からイオン射出口を通して外部へ引き出されるイオンの挙動に対し、リペラー電極による押出し電場の影響が支配的である場合には上記第1の距離が重要であり、逆に、イオン射出口付近の電場(引出し電場)が支配的である場合には上記第2の距離が重要である。したがって、第1、第2いずれの距離が装置の性能(安定性)により大きな影響を与えるのかは装置の構成により異なるものの、第1の距離又は第2の距離の少なくともいずれか一方を上述したように設定することで、従来装置に比べて装置の安定性を確実に向上させることができる。
【図面の簡単な説明】
【0019】
【
図1】本発明の一実施形態である質量分析装置におけるEIイオン源の概略縦端面図(A)及び概略上面図(B)。
【
図2】本実施形態の質量分析装置の概略全体構成図。
【
図3】本実施形態の質量分析装置におけるEIイオン源と従来のEIイオン源との構造上の差異の説明図。
【
図4】従来の一般的な質量分析装置における、直交フィラメント配置構造であるEIイオン源の概略縦端面図(A)及び概略上面図(B)。
【
図5】従来の一般的な質量分析装置における、平行フィラメント配置構造であるEIイオン源の概略上面図。
【発明を実施するための形態】
【0020】
本発明の一実施形態である質量分析装置について、添付図面を参照して説明する。
図2は、本実施形態の質量分析装置の概略全体構成図である。
図1は、本実施形態の質量分析装置におけるEIイオン源の概略縦端面図(A)及び概略上面図(B)である。本実施形態の質量分析装置はシングル四重極型質量分析装置である。
【0021】
図2に示すように、本実施形態の質量分析装置は、図示しない真空ポンプにより真空排気されるチャンバー5の内部に、EIイオン源1、イオンレンズ2、質量分離器としての四重極マスフィルター3、及び、イオン検出器4、を備える。
【0022】
EIイオン源1は、
図5と同様の、平行フィラメント配置構造のイオン源である。このEIイオン源1は、外形が略直方体形状であり金属等の導電性材料から成るイオン化室10と、イオン化室10の内部に配置されているリペラー電極14と、イオン化室10に形成されている電子導入口(開口のサイズ:2×4mm)102の外側に配置されているフィラメント11と、電子導入口102と対向して形成されている電子排出口(開口のサイズ:2×4mm)103の外側に配置されているトラップ電極としての対向フィラメント12と、フィラメント11及び対向フィラメント12を挟むように配置されている一対の収束用磁石13と、を含む。イオン化室10の側壁面には試料ガス導入管15が接続されている。また、イオン化室10は接地され、その直流電位が0Vに維持される。なお、
図1及び
図2において各構成要素の大きさや複数の構成要素の間の間隔などは、実際の寸法を反映したものではない。また、EIイオン源1において、イオン化室10を除き、各構成要素は、
図4及び
図5に示した従来のEIイオン源で使用されているものとすることができる。
【0023】
本実施形態の質量分析装置における質量分析動作について概略的に説明する。
例えばガスクロマトグラフ(図示せず)のカラムにおいて時間的に分離された試料成分を含む試料ガスは、試料ガス導入管15を経てイオン化室10内に導入される。フィラメント11には図示しない電源から電流が供給され、それによってフィラメント11は加熱されて熱電子が生成される。フィラメント11と対向フィラメント12との電位差によって熱電子にはエネルギーが付与され、熱電子は対向フィラメント12に向って進行する。即ち、フィラメント11から対向フィラメント12へと向かう熱電子流16が形成される。この熱電子流16は概ねY軸方向に平行である。なお、一般的に、熱電子に付与されるエネルギーは標準的に70eVである。
【0024】
試料ガス中の試料成分は熱電子に接触してイオン化される。リペラー電極14には所定の直流電圧+V1が印加されており、それにより形成される電場は、上述のように生成されたイオン(正イオン)を概ねX軸方向、つまりはイオン射出口101へ向かう方向に押す作用を有する。イオンレンズ2の中のEIイオン源1に最も近い引出し電極には、イオンとは逆極性の直流電圧が印加され、それにより生成される引出し電場はイオン射出口101を通してイオン化室10の内部に及ぶ。この電場はイオンを引き寄せる作用を有する。これによって、イオン化室10内で生成されたイオンはイオン射出口101を通して外部へと引き出され、イオンレンズ2に導入される。このイオン流の中心軸がイオン光軸Cである。
【0025】
イオンレンズ2においてイオンはイオン光軸C付近に一旦収束され、さらに加速されて四重極マスフィルター3へと送られる。四重極マスフィルター3を構成する4本のロッド電極には直流電圧に高周波電圧(RF電圧)を加えた所定の電圧が印加され、その電圧に応じた特定の質量電荷比を有するイオンのみが四重極マスフィルター3を選択的に通り抜ける。イオン検出器4は到達したイオンの量に応じた検出信号を生成し出力する。したがって、例えば、四重極マスフィルター3を通過するイオンの質量電荷比が所定の範囲で変化するように印加電圧を制御することで、所定の質量電荷比範囲におけるイオン強度を示すマススペクトルデータを取得することができる。
【0026】
EIイオン源1においてイオン化室10の上壁部に形成されている電子導入口102、及び下壁部に形成されている電子排出口103の大きさは、
図1(B)に示すように、フィラメント11(及び対向フィラメント12)の外形よりも一回り大きく、X軸方向に細長い形状である。フィラメント11から発した熱電子のうちY軸に対して所定の角度以内の角度を有して電子導入口102に到達する熱電子が電子導入口102を通過する。そのため、収束用磁石13により形成される磁場が存在しないとすると、電子導入口102を通過した熱電子はX軸方向及びZ軸方向に広がってしまう。収束用磁石13により形成される磁場は熱電子の広がりを抑える作用を有しており、磁場中の磁束線の方向は概ねY軸に平行な方向であるため、熱電子は
図1、
図2中に示すように、螺旋状に旋回しながらY軸方向に進行する。これによって、試料成分分子と熱電子との接触の機会が増加し、イオン化の効率が向上する。
【0027】
一方で、この熱電子がイオン化室10の壁面内側に接触したりリペラー電極14に接触したりして付着すると、それらの汚れの原因となる。また、試料成分由来のイオンは熱電子が存在する領域で生成されるから、熱電子がイオン化室10の壁部内面やリペラー電極14の至近に存在すると、生成されたイオンもイオン化室10の壁部内面やリペラー電極14に接触し易い。これも汚れの原因となる。イオン化室10の壁部内面やリペラー電極14が汚れると、それらによりイオン化室10の内部に形成される電場に乱れが生じ、イオン化室10内からのイオンの引出し効率が低下したりイオンの引出しが不安定になったりする。そして結果的に、四重極マスフィルター3に送られるイオンの量が減少し、検出感度の低下に繋がる。そこで、本実施形態の質量分析装置のEIイオン源1では、イオン化室10内に入射した熱電子がイオン化室10の壁部内面やリペラー電極14に接触しにくいように構造上の工夫が施されている。
【0028】
図3は、本実施形態におけるEIイオン源と従来のEIイオン源との構造上の差異を説明するための概略図である。
図3において符号11A及び12Aで示すのは、
図4で説明した直交フィラメント配置構造におけるフィラメント及び対向フィラメントの位置である。この場合、フィラメント及び対向フィラメントはY軸方向に延伸するように配置される。符号105Aで示すのは、直交フィラメント配置構造におけるイオン化室10の前壁部の位置であり、符号14Aで示すのは、直交フィラメント配置構造におけるリペラー電極の位置である。直交フィラメント配置構造では、フィラメント11Aから発した熱電子が螺旋状に旋回して外側に膨出した場合でも、イオン化室10の前壁部105A内側やリペラー電極14Aに接触することは殆どない。
【0029】
これに対し、検出感度を向上させるために直交フィラメント配置構造から平行フィラメント配置構造に変更する場合には、フィラメント11及び対向フィラメント12の向きX軸方向に延伸するように変えるとともに、電子導入口102及び電子排出口103もZ軸方向に延伸するように変更することになる。これが
図5に示した構造である。しかしながら、フィラメント11の配置と電子導入口102の形状とをX軸方向に延伸するように変更したことで、電子導入口102のイオン射出口101側の端部とイオン化室10の前壁部105A内面との間のX軸方向の距離(第1距離)、及び、電子導入口102のリペラー電極14側の端部とリペラー電極14A表面との間のX軸方向の距離(第2距離)、とが短くなってしまう。これにより、フィラメント11Aから発した熱電子が螺旋状に旋回して外側に膨出すると、イオン化室10の前壁部105A内側やリペラー電極14Aに接触し易くなる。
【0030】
そこで、本実施形態の質量分析装置では、平行フィラメント配置構造に変更したあとでも、第1距離及び第2距離が共に直交フィラメント配置構造のときと同程度になるように、イオン化室10の前壁部105を前方側に(X軸の正の方向に)広げるとともに、リペラー電極14の位置をX軸の負の方向に後退させている。もちろん、そのためにイオン化室10の後壁部も後方側に広げている。本実施形態の質量分析装置では、第1距離及び第2距離はいずれもDである。このDの値は例えば次のように決めることができる。
【0031】
熱電子流16のX軸方向(イオン引出し方向)の広がりに主に影響するのは、熱電子が旋回する際の回転半径である。この回転半径に関係する要素は、電子導入口102のサイズなどの幾何学的構造と、主としてフィラメント11と対向フィラメント12との間の電位差に依存する熱電子のエネルギーと、収束用磁石13により形成される磁場の強さと、である。幾何学的構造は構造的に決まっており、また、熱電子のエネルギーは電圧制御の制御条件で決まる。そのため、収束用磁石13により形成される磁場に垂直な方向(つまりはX-Z平面上)の速度成分と磁束密度とが判明すれば、ローレンツ力に基いて、熱電子の回転半径を推定することができ、イオン化室10の内部での熱電子流16の広がりの程度を見積もることができる。
【0032】
磁場に垂直な方向の熱電子の速度成分は、熱電子がフィラメント11の表面から放出され、加速されながら電子導入口102を通過する際の角度に依存する。この熱電子の運動は、収束用磁石13の近傍における強い磁場の影響下での運動であり、大きな角度を持つ熱電子も旋回しながらイオン化室10内に入射する可能性がある。そのため、ここでは典型的な例として、磁束線つまりはY軸に対して角度θ=π/4で入射する熱電子を想定する。この熱電子の加速電圧をV、質量をmeとすると、イオン化室10の中心付近(イオン光軸C付近)において磁場に垂直な方向の速度成分νvは、次の(1)式で表される。
νv=√(2eV/me)sinθ=√(eV/me) …(1)
【0033】
磁束密度がBである磁場の中での電子の回転半径reは、次の(2)式で表される。
re=(meνv)/eB=√{(meV)/(eB2 )} …(2)
EIイオン源で一般的に利用される収束用磁石13の例として、イオン化室10の略中心付近の磁束密度が最も弱い部位において、B=0.02T程度である場合を想定する。また、電子のエネルギーは、EIイオン源における標準的なイオン化エネルギーである70eVであるとする。この条件の下で、(1)、(2)式から、熱電子の回転半径reはre=1mm程度であると計算される。したがって、上記の第1距離及び第2距離の最小値の目安を1mmと定めることができる。
【0034】
但し、これは、フィラメント11から発して対向フィラメント12に至る熱電子が全体として、つまりは旋回の中心軸を考えたときにY軸方向に進行することを想定しているが、実際には、その進行方向が外側に膨らむことも考えられる。このため、少なくとも安全係数を1.2とし、第1距離及び第2距離を1.2mm以上と定めることができる。また、収束用磁石13の磁場強度のばらつきや、イオン化室10内への熱電子の入射角度が上記値よりも或る程度大きい値となることも想定することが望ましい。そのため、安全係数をさらに大きい1.5とし、第1距離及び第2距離を1.5mm以上とすることもできる。さらにまた、電子のエネルギーをユーザーが自由に設定することが可能である場合には、そのエネルギーが70eV以上となる場合も考える必要がある。そのような場合には、安全係数をさらに大きい2とし、第1距離及び第2距離を2mm以上とすることもできる。
【0035】
一方、第1距離及び第2距離を大きくするほど、熱電子やイオンの衝突に起因する汚染を軽減し測定の安定性を高めることができるものの、イオン化室10内部でのイオン発生位置とイオン射出口101とが離れるため、イオンを効率的にイオン化室10から引き出すことが難しくなる。引出し電極に印加する電圧やリペラー電極14への印加電圧を従来の一般的なEIイオン源並にしながら、直交フィラメント配置構造よりも高い感度を実現することを考えると、第1距離及び第2距離は3mm程度以下にするとよい。このように、第1距離及び第2距離、つまり上記Dの値は、検出感度と測定安定性の両面から総合的に決める必要がある。もちろん、第1距離と第2距離とは等しくなくてもよく、例えば一方が2mm、他方が1.5mmでもよい。
【0036】
なお、
図1(B)に示すように、本実施形態の質量分析装置のEIイオン源1において、イオン化室10の側壁部内面と電子導入口102の端部との間の距離は、通常、上記距離D以上確保されている。したがって、熱電子やイオンはイオン化室10の側壁部内面にも衝突しにくくなっている。
以上のように、本実施形態の質量分析装置では、EIイオン源1においてイオンを効率良くイオン化室10から引き出すことで検出感度を向上させながら、熱電子と試料成分由来のイオンによるイオン化室10内壁やリペラー電極14の汚染を低減することができ、それによって測定安定性や測定再現性を向上させることができる。
【0037】
上記実施形態の質量分析装置では、第1距離及び第2距離の両方を予め規定したD以上にしているが、第1又は第2のいずれか一方の距離をD以上とすることもできる。即ち、イオン化室10内からイオン射出口101を通して外部へ引き出されるイオンの挙動に対し、リペラー電極14による押出し電場の影響が支配的である場合、熱電子との接触により生成されるイオンの密度はイオン射出口101側に片寄る傾向にある。そのため、イオン射出口101側の距離つまり第1距離のほうが相対的に重要である。一方、イオンの挙動に対しイオン射出口101付近の電場(引出し電場)が支配的である場合、熱電子との接触により生成されるイオンの密度はイオン射出口101から見て奥側(リペラー電極14に近い側)に広がる傾向にある。そのため、第2距離のほうが相対的に重要である。したがって、装置の構成によっては、第1距離と第2距離の両方ではなく、そのいずれか一方を上述したようにD以上に設定することで、従来装置に比べて装置の安定性を確実に向上させることが可能である。
【0038】
なお、上述した構造のイオン源はEIイオン源だけでなく、熱電子を利用した他のイオン化法によるイオン源、具体的には、CIイオン源やNCIイオン源にも適用することができる。
【0039】
また、上記実施形態は本発明の一例であって、本発明の趣旨の範囲で適宜修正、変更、追加を行っても本願特許請求の範囲に包含されることは明らかである。
【0040】
[種々の態様]
上述した例示的な実施形態が以下の態様の具体例であることは、当業者には明らかである。
【0041】
(第1項)本発明に係る質量分析装置の一態様は、試料ガスに含まれる試料成分をイオン化するイオン源を具備する質量分析装置であって、前記イオン源は、
イオン射出口と、該イオン射出口から射出されるイオン流の中心軸であるイオン光軸を挟んで対向して配置される電子導入口及び電子排出口と、を有し、その内部に外部とは略区画された空間を形成するイオン化室と、
前記イオン化室の内部で前記イオン光軸上に配置され、該イオン化室内で生成されたイオンを前記イオン射出口を通して外部へと押し出す電場を形成するリペラー電極と、
前記電子導入口の外側に、前記イオン光軸と同方向に延伸するように配置されたフィラメントと、
前記電子排出口の外側に配置されたトラップ電極と、
前記フィラメントから前記イオン化室の内部を通過して前記トラップ電極へと向かう熱電子の軌道を制御するために磁場を形成する磁場形成部と、
を備え、前記電子導入口の前記イオン射出口側の端部と該イオン射出口が形成されている前記イオン化室の壁部内面との間の前記イオン光軸に沿った方向の第1の距離、及び、前記電子導入口の前記リペラー電極側の端部と該リペラー電極との間の前記イオン光軸に沿った方向の第2の距離、の両方又はそのいずれか一方が、熱電子に付与されるエネルギーと、前記磁場形成部により形成される磁場の強さと、を用いて推定される熱電子の回転半径よりも大きくなるように定められているものである。
【0042】
(第2項)本発明に係る質量分析装置の他の態様は、試料ガスに含まれる試料成分をイオン化するイオン源を具備する質量分析装置であって、前記イオン源は、
イオン射出口と、該イオン射出口から射出されるイオン流の中心軸であるイオン光軸を挟んで対向して配置される電子導入口及び電子排出口と、を有し、その内部に外部とは略区画された空間を形成するイオン化室と、
前記イオン化室の内部で前記イオン光軸上に配置され、該イオン化室内で生成されたイオンを前記イオン射出口を通して外部へと押し出す電場を形成するリペラー電極と、
前記電子導入口の外側に、前記イオン光軸と同方向に延伸するように配置されたフィラメントと、
前記電子排出口の外側に配置されたトラップ電極と、
前記フィラメントから前記イオン化室の内部を通過して前記トラップ電極へと向かう熱電子の軌道を制御するために磁場を形成する磁場形成部と、
を備え、前記電子導入口の前記イオン射出口側の端部と該イオン射出口が形成されている前記イオン化室の壁部内面との間の前記イオン光軸に沿った方向の第1の距離、及び、前記電子導入口の前記リペラー電極側の端部と該リペラー電極との間の前記イオン光軸に沿った方向の第2の距離、の両方又はそのいずれか一方が、1.2mm以上に定められているものである。
【0043】
第1項又は第2項に記載の質量分析装置によれば、イオン射出口が形成されているイオン化室の壁部内面やリペラー電極に熱電子やイオンが接触しにくくなる。そのため、イオン化室の壁部内面やリペラー電極の汚れを軽減することができ、それによってイオン化室内に形成される電場を安定化し、測定の安定性を高めることができる。即ち、平行フィラメント配置構造での検出感度の高さを活かしつつ測定の安定性も高めることができ、高感度と高い測定安定性との両方を実現することができる。
【0044】
(第3項)第1項又は第2項に記載の質量分析装置において、前記第1の距離及び前記第2の距離はいずれも1.5mm以上であるものとすることができる。
【0045】
(第4項)また第3項に記載の質量分析装置において、前記第1の距離及び前記第2の距離はいずれも2mm以上であるものとすることができる。
【0046】
第3項及び第4項に記載の質量分析装置によれば、例えば磁場形成部により形成される磁場の強さのばらつきや電子に付与されるエネルギーの変化などがあった場合でも、イオン射出口が形成されているイオン化室の壁部内面やリペラー電極に熱電子やイオンが接触することを抑制することができる。それにより、高感度と高い測定安定性とをより一層確実に実現することができる。
【0047】
(第5項)また第2項~第4項のいずれか1項に記載の質量分析装置において、前記第1の距離及び前記第2の距離はいずれも3mm以下であるものとすることができる。即ち、第1の距離及び第2の距離は、1.2~3mm、1.5~3mm、又は、2~3mmのいずれかの範囲にすることができる。
【0048】
第5項に記載の質量分析装置によれば、イオン化室内で生成されたイオンに対し引出し電場を十分に作用させ、該イオンを効率良くイオン化室の外側に引き出して、次段の例えば質量分離器などへ導入することができる。それにより、測定安定性を高めながら、確実に高感度を達成することができる。
【0049】
(第6項)第1項~第5項のいずれか1項に記載の質量分析装置において、前記イオン源は電子イオン化法によるイオン化を行うものとすることができる。
【0050】
第6項に記載の質量分析装置によれば、試料ガス中の成分を効率良くイオン化し、さらにはその一部を開裂させることでフラグメントイオンを生成し、それらイオンを質量分析した結果を得ることができる。
【符号の説明】
【0051】
1…EIイオン源
10…イオン化室
101…イオン射出口
102…電子導入口
103…電子排出口
105…前壁部
11…フィラメント
12…対向フィラメント
13…収束用磁石
14…リペラー電極
15…試料ガス導入管
16…熱電子流
2…イオンレンズ
3…四重極マスフィルター
4…イオン検出器
5…チャンバー
C…イオン光軸