IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ インテル コーポレイションの特許一覧

特許73479543GPP(3rd Generation Partnership Project)ネットワークにおけるモバイルゲートウェイのスケーリング
<>
  • 特許-3GPP(3rd  Generation  Partnership  Project)ネットワークにおけるモバイルゲートウェイのスケーリング 図1A
  • 特許-3GPP(3rd  Generation  Partnership  Project)ネットワークにおけるモバイルゲートウェイのスケーリング 図1B
  • 特許-3GPP(3rd  Generation  Partnership  Project)ネットワークにおけるモバイルゲートウェイのスケーリング 図1C
  • 特許-3GPP(3rd  Generation  Partnership  Project)ネットワークにおけるモバイルゲートウェイのスケーリング 図2
  • 特許-3GPP(3rd  Generation  Partnership  Project)ネットワークにおけるモバイルゲートウェイのスケーリング 図3
  • 特許-3GPP(3rd  Generation  Partnership  Project)ネットワークにおけるモバイルゲートウェイのスケーリング 図4
  • 特許-3GPP(3rd  Generation  Partnership  Project)ネットワークにおけるモバイルゲートウェイのスケーリング 図5
  • 特許-3GPP(3rd  Generation  Partnership  Project)ネットワークにおけるモバイルゲートウェイのスケーリング 図6
  • 特許-3GPP(3rd  Generation  Partnership  Project)ネットワークにおけるモバイルゲートウェイのスケーリング 図7
  • 特許-3GPP(3rd  Generation  Partnership  Project)ネットワークにおけるモバイルゲートウェイのスケーリング 図8
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2023-09-11
(45)【発行日】2023-09-20
(54)【発明の名称】3GPP(3rd Generation Partnership Project)ネットワークにおけるモバイルゲートウェイのスケーリング
(51)【国際特許分類】
   H04L 12/22 20060101AFI20230912BHJP
【FI】
H04L12/22
【請求項の数】 10
【外国語出願】
(21)【出願番号】P 2019076146
(22)【出願日】2019-04-12
(65)【公開番号】P2019201402
(43)【公開日】2019-11-21
【審査請求日】2022-04-07
(31)【優先権主張番号】15/981,658
(32)【優先日】2018-05-16
(33)【優先権主張国・地域又は機関】US
(73)【特許権者】
【識別番号】593096712
【氏名又は名称】インテル コーポレイション
(74)【代理人】
【識別番号】100107766
【弁理士】
【氏名又は名称】伊東 忠重
(74)【代理人】
【識別番号】100070150
【弁理士】
【氏名又は名称】伊東 忠彦
(74)【代理人】
【識別番号】100091214
【弁理士】
【氏名又は名称】大貫 進介
(72)【発明者】
【氏名】ジェイコブ アルデン クーパー
(72)【発明者】
【氏名】カーラ ジーン サウアー
(72)【発明者】
【氏名】サイクリシュナ エドゥプガンティ
(72)【発明者】
【氏名】クリスチャン マチョッコ
【審査官】宮島 郁美
(56)【参考文献】
【文献】米国特許出願公開第2017/0142613(US,A1)
【文献】欧州特許出願公開第02843885(EP,A1)
【文献】米国特許第08635326(US,B1)
【文献】中国特許出願公開第101616364(CN,A)
【文献】特開2007-181079(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
H04L12/00-13/18,41/00-49/9057,61/00-65/80,69/00-69/40
(57)【特許請求の範囲】
【請求項1】
ゲートウェイプロビジョニングエンジンを実行する機器であって、
ゲートウェイを初期化する手段と、
前記ゲートウェイにトンネルエンドポイント識別子(TEID)の範囲を割り当てる手段であって、前記TEIDの範囲は前記ゲートウェイに関連付けられる、手段と、
前記TEIDの範囲をルータに通信する手段であって、前記TEIDの範囲の中の各TEIDは、前記ルータにより前記ゲートウェイにパケットをルーティングするために使用される、手段と、
初期メッセージパケットをユーザ機器から受信する手段であって、前記初期メッセージパケットはセッションの部分である、手段と、
前記初期メッセージパケットに基づき、前記セッションを前記ゲートウェイに割り当て、前記ゲートウェイは前記TEIDの範囲からの特定のTEIDを前記セッションに割り当てる、手段と、
前記特定のTEIDを前記ユーザ機器に通信する手段であって、前記特定のTEID及び前記セッションに割り当てられたインターネットプロトコル識別子は、eNodeBが、モビリティ管理エンティティと前記ゲートウェイプロビジョニングエンジンを迂回して、前記ゲートウェイに前記ユーザ機器からのパケットを直接通信するために用いられる、手段と、 を含む機器。
【請求項2】
前記初期メッセージパケットは、ゼロに等しいTEIDを含む、請求項に記載の機器。
【請求項3】
前記ゲートウェイはサービシングゲートウェイ(servicing gateway、S-GW)又はパケットデータネットワークゲートウェイ(packet data network gateway、P-GW)である、請求項1又は2に記載の機器。
【請求項4】
前記ゲートウェイは、スケーリング可能な数の異種ゲートウェイを含むゲートウェイクラスタの部分である、請求項1又は2に記載の機器。
【請求項5】
前記ゲートウェイが初期化されることを決定するためにロードバランサが使用される、請求項1乃至のいずれか一項に記載の機器。
【請求項6】
前記ゲートウェイは3GPP(3rd Generation Partnership Project)ネットワークの部分である、請求項1乃至のいずれか一項に記載の機器。
【請求項7】
データセンタ内のサーバであって、
メモリと、
ゲートウェイプロビジョニングエンジンと、
少なくとも1つのプロセッサと、
を含み、前記ゲートウェイプロビジョニングエンジンは、前記少なくとも1つのプロセッサに、
ゲートウェイを初期化させ、
前記ゲートウェイに関連付けられたトンネルエンドポイント識別子(TEID)の範囲を割り当てさせ、
前記TEIDの範囲を前記ゲートウェイに通信させ、
前記TEIDの範囲をルータに通信させ、前記TEIDの範囲の中の各TEIDは、パケットを前記ゲートウェイにルーティングし及びモビリティ管理エンティティを迂回するために使用され
初期メッセージパケットをユーザ機器から受信させ、前記初期メッセージパケットはセッションの部分であり、
前記初期メッセージパケットに基づき、前記セッションを前記ゲートウェイに割り当てさせ、前記ゲートウェイは前記TEIDの範囲からの特定のTEIDを前記セッションに割り当て、
前記特定のTEIDを前記ユーザ機器に通信させ、前記特定のTEID及び前記セッションに割り当てられたインターネットプロトコル識別子は、eNodeBが、モビリティ管理エンティティと前記ゲートウェイプロビジョニングエンジンを迂回して、前記ゲートウェイに前記ユーザ機器からのパケットを直接通信するために用いられる、
よう構成される、サーバ。
【請求項8】
前記ゲートウェイプロビジョニングエンジンは、前記少なくとも1つのプロセッサに、
初期メッセージパケットを受信させ、前記初期メッセージパケットはセッションの部分であり、
前記初期メッセージパケットを前記ゲートウェイに通信させ、前記ゲートウェイは前記TEIDの範囲からの特定TEIDを前記セッションに割り当てる、
よう構成される、請求項に記載のサーバ。
【請求項9】
ゲートウェイプロビジョニングエンジンが実行する方法であって、
ユーザ機器から初期メッセージパケットを受信するステップであって、前記初期メッセージパケットはセッションの部分である、ステップと、
新しいゲートウェイが前記セッションのために生成されることを決定するステップと、
前記セッションのためにトンネルエンドポイント識別子(TEID)を割り当てるステップであって、前記TEIDは前記ゲートウェイに関連付けられる、ステップと、
前記TEIDをルータに通信するステップであって、前記TEIDは前記セッションに関連するパケットを前記ゲートウェイにルーティングするために使用される、ステップと、
前記TEIDを前記ユーザ機器に通信するステップであって、前記TEID及び前記セッションに割り当てられたインターネットプロトコル識別子は、eNodeBが、モビリティ管理エンティティと前記ゲートウェイプロビジョニングエンジンを迂回して、前記ゲートウェイに前記ユーザ機器からのパケットを直接通信するために用いられる、ステップと、
を含む方法。
【請求項10】
3GPPネットワークにおいてモバイルゲートウェイをスケーリングするシステムであって、前記システムは、
メモリと、
1又は複数のプロセッサと、
ユーザ機器から初期メッセージパケットを受信する手段であって、前記初期メッセージパケットはセッションの部分である、手段と、
新しいゲートウェイが前記セッションのために生成されることを決定する手段と、
トンネルエンドポイント識別子(TEID)を前記セッションのために割り当てる手段であって、前記TEIDは前記ゲートウェイに関連付けられる、手段と、
前記TEIDをルータに通信する手段であって、前記TEIDは、前記セッションに関連するパケットを前記ゲートウェイにルーティングし及びモビリティ管理エンティティを迂回するために使用される、手段と、
前記TEIDを前記ユーザ機器に通信する手段であって、前記TEID及び前記セッションに割り当てられたインターネットプロトコル識別子は、eNodeBが、前記モビリティ管理エンティティと前記システムを迂回して、前記ゲートウェイに前記ユーザ機器からのパケットを直接通信するために用いられる、手段と、
を含むシステム。
【発明の詳細な説明】
【技術分野】
【0001】
本開示は、概して、コンピューティング及び/又はネットワーキングの分野に関し、より詳細には、3GPP(3rd Generation Partnership Project)ネットワークにおけるモバイルゲートウェイのスケーリングに関する。
【背景技術】
【0002】
3GPP(3rd Generation Partnership Project)は電子通信協会のグループ間の協力である。3GPP標準は、無線アクセスネットワーク(radio access network、RAN)、電子通信協会サービス及びシステムの態様、並びにコアネットワーク及び端末を包含する。3GPP標準は、大多数の電子通信ネットワークを満足させ、UMTS(Universal Mobile Telecommunications System)/3G、LTE(Long-Term Evolution)/4G、及びNR(New Radio)/5Gの背後にある標準本体である。
【図面の簡単な説明】
【0003】
本開示並びにその特徴及び利点のより完全な理解を提供するため、添付の図と共に以下の説明を参照する。図中、同様の参照符号は同様の部分を表す。
【0004】
図1A】本開示の一実施形態による、3GPPネットワークにおけるモバイルゲートウェイのスケーリングを可能にするシステムの簡略ブロック図である。
【0005】
図1B】本開示の一実施形態による、3GPPネットワークにおけるモバイルゲートウェイのスケーリングを可能にするシステムの簡略ブロック図である。
【0006】
図1C】本開示の一実施形態による、3GPPネットワークにおけるモバイルゲートウェイのスケーリングを可能にするシステムの簡略ブロック図である。
【0007】
図2】本開示の一実施形態による、3GPPネットワークにおけるモバイルゲートウェイのスケーリングを可能にするシステムの一部の簡略ブロック図である。
【0008】
図3】本開示の一実施形態による、3GPPネットワークにおけるモバイルゲートウェイのスケーリングを可能にするシステムの例示的詳細を説明する表の簡略ブロック図である。
【0009】
図4】本開示の一実施形態による、3GPPネットワークにおけるモバイルゲートウェイのスケーリングを可能にするシステムの例示的詳細を説明する表の簡略ブロック図である。
【0010】
図5】本開示の一実施形態による、3GPPネットワークにおけるモバイルゲートウェイのスケーリングを可能にする例示的詳細の簡略タイミング図である。
【0011】
図6】本開示の一実施形態による、3GPPネットワークにおけるモバイルゲートウェイのスケーリングを可能にする例示的詳細の簡略タイミング図である。
【0012】
図7】本開示の一実施形態によるシステムに関連付けられ得る可能な動作を示す簡略フローチャートである。
【0013】
図8】本開示の一実施形態によるシステムに関連付けられ得る可能な動作を示す簡略フローチャートである。
【0014】
図面の図は必ずしも縮尺通りではなく、それらの寸法は本開示の範囲から逸脱することなく大幅に変更され得る。
【発明を実施するための形態】
【0015】
以下の詳細な説明は、3GPPネットワークにおけるモバイルゲートウェイのスケーリングに関する機器、方法、及びシステムの例示的な実施形態を説明する。例えば構造、機能、及び/又は特性のような特徴は、便宜上、1つの実施形態を参照して記載され、種々の実施形態は記載された特徴のうちの任意の適切な1又は複数と共に実装されて良い。
【0016】
以下の説明では、説明のための実装の種々の態様は、当業者の業務内容を他の当業者に伝達するために当業者により通常用いられる用語を用いて記載される。しかしながら、ここに開示される実施形態が記載の態様の一部のみを用いて実施できることが当業者に明らかである。説明を目的として、説明のための実装の完全な理解を提供するために、特定の数値、材料、及び構成が説明される。しかしながら、当業者は、ここに開示される実施形態がそのような特定の詳細にかかわらず実施できることを理解するだろう。他の例では、説明のための実装を不明瞭にしないために、よく知られている特徴は省略される。
【0017】
以下の詳細な説明では、その一部を形成する添付の図面が参照される。図中、同様の参照符号は同様の部分を示す。添付の図面は実施されうる実施形態を説明のために示す。他の実施形態が利用されてもよく、構造的又は論理的変化が本開示の範囲から逸脱することなく行われてもよいことが理解されるべきである。したがって、以下の詳細な説明は限定的意味として取られるべきではない。本開示の目的のために、表現「A及び/又はB」は、(A)、(B)、又は(A及びB)を意味する。本開示の目的のために、表現「A、B及び/又はC」は、(A)、(B)、(C)、(A及びB)、(A及びC)、(B及びC)又は(A、B及びC)を意味する。
【0018】
図1Aは、本開示の一実施形態による、3GPPネットワークにおけるモバイルゲートウェイのスケーリングを可能にするシステム100aの簡略ブロック図である。システム100aは、1又は複数のユーザ機器(UE)102a~102f、1又は複数のE-UTRAN NodeB(eNodeB)104~104c、1又は複数のモビリティ管理エンティティ(MME)106a~106c、セッションルータ108、ゲートウェイプロビジョニングエンジン110、S1uルータ112、複数のゲートウェイ114a~114d、及びSGiルータ116を含み得る。一例では、ゲートウェイプロビジョニングエンジン110は、セッションルータ108を含み得る。セッションルータ108は、トンネルエンドポイント識別子(tunnel endpoint identifier:TEID)テーブル122aを含み得る。さらに、S1uルータ112は、TEIDテーブル122bを含み得る。一例では、テーブル122aはS11関連TEIDを含み、TEIDテーブル122bはS1u関連TEIDを含み得る。SGiルータ116は、インターネットプロトコル(IP)テーブル124を含み得る。ゲートウェイプロビジョニングエンジン110、S1uルータ112、複数のゲートウェイ114a~114d、及びSGiルータ116は、第1ネットワーク118を用いて互いに通信できる。一例では、第1ネットワーク118はデータセンタの一部である。SGiルータ116は、第2ネットワーク120とも通信できる。第2ネットワーク120は、インターネット又は第1ネットワーク118と異なる何らかの他のネットワークのような開放型ネットワークであり得る。
【0019】
一例では、セッションルータ108はS11ルータであり、LTEネットワークにおいてMME(例えばMME106a)とゲートウェイ(例えばゲートウェイ114a)との間のインタフェースとして構成されて良い。セッションルータ108は、パケットに関連付けられたTEID及び/又はIPアドレスに基づき、特定ゲートウェイへパケットを転送するよう構成され得る。S1uルータ112は、eNodeB(例えばeNodeB104a)とゲートウェイ(例えばゲートウェイ114a)との間のLTEユーザプレーン・プロトコルデータユニット(PDU)の非保証データ配信を提供でき、eNodeBとゲートウェイ(例えばサービシングゲートウェイ(S-GW))との間のユーザデータの配信を担う。
【0020】
図1Bを参照すると、図1Bは、本開示の一実施形態による、システム100bのブロック図である。図1Bに示すように、セッションルータ108は、ゲートウェイプロビジョニングエンジン110と別個であり、MME102a~102cはセッションルータ108と通信できる。セッションルータ108、ゲートウェイプロビジョニングエンジン110、S1uルータ112、ゲートウェイ114a~114d、及びSGiルータ116は、第1ネットワーク118を用いて通信して良い。
【0021】
図1Cを参照すると、図1Cは、本開示の一実施形態による、システム100cのブロック図である。図1Cに示すように、複数のゲートウェイ114a~114dは、ゲートウェイクラスタ126の一部であって良い。さらに、セッションルータ108はTEIDルータであって良い。ゲートウェイクラスタ126は、スケーラブルな数の異種ゲートウェイを含む。該ゲートウェイの各々のインスタンスは、確立されたセッションのサブセットで、3GPP仕様により定められるようなゲートウェイ機能を実行する。各ゲートウェイインスタンスは、1種類のトラフィックだけ(例えば、IoTトラフィック、音声トラフィック、ビデオトラフィック、等)を扱うよう構成され及び最適化され得る。
【0022】
セッションルータ108、ゲートウェイプロビジョニングエンジン110、S1uルータ112、ゲートウェイ114a~114d、及びSGiルータ116は、データセンタの一部であり得る。複数のゲートウェイ114a~114dの各々は、S-GW、パケットデータネットワークゲートウェイ(P-GW)、S-GWとP-GWとの組み合わせ、SGSN(serving general packet radio service support node)、UPF(user plane function)ノード、SME(user plane function)ノ―ド、等であって良い。特定ゲートウェイ(例えばゲ―トウェイ114a)がS-GWである、又はS-GW機能を含む場合、特定ゲートウェイはユーザデータパケットを転送でき、同時にハンドオーバ(例えば、eNodeB間ハンドオーバ)中にユーザプレーンに対してモビリティアンカーとしても動作し、並びに、LTEと他の3GPP技術との間のモビリティのためのアンカーであり得る。特定ゲートウェイ(例えばゲートウェイ114b)がP-GWである又はP-GW機能を含む場合、特定ゲートウェイは、UE(例えばUE102a)に関連するトラフィックの出口及び入口点になることにより、該UEから外部パケットデータネットワークへの接続を提供できる。UEは、複数のパケットデータネットワーク(PDN)にアクセスするために、1より多くのP-GWとの同時接続を有して良い。さらに、特定ゲートウェイは、ポリシ施行、パケットフィルタリング、課金サポート、合法的傍受、パケットスクリーニング、等を実行するよう構成され得る。さらに、特定ゲートウェイは、3GPPと、WiMAX、3GPP2、CDMA(Code Division Multiple Access)、1xRTT又はX1(1 Times (又はSingle-Carrier) Radio Transmission Technology)、EvDO(Evolution-Data Optimized)のような非3GPP技術と、の間のモビリティのためのアンカーとして動作するよう構成され得る。
【0023】
システム100a、100b、及び/又は100cは、3GPPネットワークの部分であって良い。UE102a~102fの各々は、モバイル装置、パーソナルデジタルアシスタント、スマートフォン、タブレット、ウェアラブル技術、ラップトップコンピュータ、モノのインターネット(IoT)装置、デスクトップコンピュータ、又は他の類似する装置を含み得る。MME106a~106bの各々は、各UEとセッションルータ108との間の通信(例えば無線通信)を実現するよう構成される、基地送信局、セルサイト、基地局、等の部分であり得る。UEが新しいセッションを開始すると、ゲートウェイプロビジョニングエンジン110は、該セッションを扱うために、使用/輻輳情報、サービス要件、ラウンドロビン、等に基づき、ゲートウェイインスタンスを選択するよう構成され得る。ゲートウェイインスタンスから生じるイグレスパケットは、UEの例外なく該UEへ転送される。
【0024】
他の実施形態が利用されて良く、構造的変化が本開示の範囲から逸脱することなく行われて良いことが理解されるべきである。任意の適切な配置及び構成が本開示の教示から逸脱することなく提供され得るシステム100a~100cにより、十分な柔軟性が提供される。例えば、システム100a~100cは、モバイルコアトラフィックと共に使用するよう記載されるが、システム100a~100cは、タスクスケジューリング、又はフローが確立され異種インドポイントに渡り分散される他の種類のトラフィック(例えばデータセンタトラフィック)のトラフィックルーティングのような一般的編成のためにも使用され得る。システム100a~100cは、多くのデータセンタ及び/又は他の使用例に一般化され得る。
【0025】
本願明細書で使用されるように、用語「とき」は、イベントの時間的特性を示すために使用されて良い。例えば、語句「イベント’B’が生じるとき、イベント’A’が生じる」は、イベントBの発生前、最中、又は後にイベントAが生じ得るが、イベントBの発生に関連しないことを意味すると解釈されるべきである。例えば、イベントBの発生に応答して又はイベントBが生じた、生じている、又は将来生じると示す信号に応答してイベントAが生じる場合、イベントBが生じると、イベントAが生じる、本願明細書において「ある実施形態」又は「一実施形態」等のような表現は、実施形態と関連して記載される特定の機能、構造又は特徴が少なくとも1つの実施形態に含まれることを意味する。「ある実施形態では」又は「一実施形態では」という表現の出現は、必ずしも全て同じ実施形態を参照しない。
【0026】
システム100a~100cの特定の例示的技術を説明する目的で、ネットワーク環境をトラバースし得る通信を理解することが重要である。以下の基礎的情報は、本開示を正しく説明する基礎として考えることができる。
【0027】
3GPPは、電子通信協会のグループ間の協力である。3GPPの初期範囲は、次世代GSM(global system for mobile communications)に基づくグローバルに適用可能な第3世代(3G)移動体電話システム仕様を確立することであった。この範囲は、後に、GPRS(General Packet Radio Service)、EDGE(GSM Evolution)、お酔いbUMTS(Universal Mobile Telecommunications Service)を含む、GSM並びに関連2G及び2.5G標準の展開及び保守を含むよう広げられた。3GPPの範囲は、HSPA(High Speed Packet Access)、LTE関連4G標準(LTE Advanced及びLTE Advanced Proを含む)、次世代及び関連5G標準、及びアクセス独立に展開される進化型IMS(IP Multimedia Subsystem)を含む、関連する3G標準を含むよう更に広げられた。3GPP標準は、RAN、サービス及びシステムの態様、並びにコアネットワーク及び端末を包含する。3GPP標準は、大部分の電子通信ネットワークに応じ、GMSの3GアップグレードであるUMTSの背後にある標準本体である。
【0028】
ネットワーク要素が、ハードウェアソリューションから、ソフトウェアソリューションの柔軟性及び性能能力を利用するよう移行するにつれ、モバイルコアネットワークノードはしばしば効率的に対処することができなくなる。現在のソリューションは、リソースが特定機能のために限られた容量に結合される点で柔軟ではない。幾つかのゲートウェイソリューションは、大規模スケーリングが可能である場合があるが、現在のソリューションは限られ、多くの場合、有意な追加パーシング又は(多くの場合に独自仕様の)プロトコル冗長性を追加し、別個のシグナリングトラフィックフローを完全に最適化しない。例えば、幾つかの従前のソリューションは、SDN制御部を、それらの意図する使用と整合しない方法で使用することを試み、該制御部の低速経路を通過するトラフィックを有する。さらに、既存のソリューションは、多くの場合、複雑な外部負荷平衡メカニズムを必要とし、種々のボトルネックに起因する限られた毎秒トランザクション数を含む、拡張性について多くの障害が存在する。追加インスタンス及びハードウェアを追加するときでも、既存ソリューションは、依然として、停止時間又はアップグレードの場合にセッションマイグレーションを伴う問題に直面する。3GPPネットワークにおいてモバイルゲートウェイの拡張性を可能にするシステムが必要とされる。
【0029】
3GPPネットワークにおけるモバイルゲートウェイのスケーリングを可能にするシステムは、上述の問題(及び他の問題)を解決できる。システム100a~100cは、SDN(software defined network)及びNFV(network functions virtualization)の能力を効率的に利用することにより、3GPPコアネットワーク内のモバイルゲートウェイをスケーリングするよう構成され得る。より具体的には、システム100a~100cは、特定トラフィッククラスの負荷に基づき追加ゲートウェイインスタンスを動的に生成させ又は破棄させることにより、スケーラビリティの必要性を解決するよう構成され得る。スケーラビリティは、パケットがシステムを通じて流れるルートを簡略化することにより可能にできる。この目的のために、システム100a~100cは、シグナリング及びユーザデータトラフィックの両方がTEIDのような識別子又はIPルーティングにより適正なゲートウェイインスタンスへ転送可能なように構成され得る。
【0030】
さらに、システム100a~100cは、スケーラブルな数の異種ゲートウェイインスタンス(例えば、ゲートウェイ108a~108d)を含み得る。各ゲートウェイインスタンスは、確立されたセッションのサブセットでゲートウェイ機能を実行する。特定の例では、各ゲートウェイインスタンスは、(IoTトラフィック又は音声トラフィックのような)1種類のトラフィックのみを扱うよう構成され得る。追加ゲートウェイインスタンスは、特定トラフィッククラスの負荷に基づき、動的に追加又は削除され得る。
【0031】
一例では、近隣エンティティはセッションルータ108、ゲートウェイプロビジョニングエンジン110、及び複数のゲートウェイ114a~114dを、単一インスタンスとして見る。したがって、ゲートウェイピア(例えば、MME、eNB、IMS、外部パケットデータネットワーク(例えば、第2ネットワーク120)等)の観点から、システム100a~100cは、現在のゲートウェイと何ら変わりなく動作するように見える。これは、確立されたS1u、SGi、及びS11インタフェースに沿って要求される任意のIPSec暗号化が、暗号化の管理を担うそれぞれのルータ(例えば、S1uルータ112、SGiルータ116、等)に加えられる(land upon)という結果をもたらす。システム100a~100c内のセキュリティが要求される場合、例えば分散又はリースデータセンタ展開において、ピアツーピア暗号化がセッションルータ108と複数のゲートウェイ114a~114dとの間で利用され得る。
【0032】
一例では、システム100a~100cは、機能の独立スケーリング、具体的にはユーザプレーンパケット処理及び標準化プロトコルのみを使用する信号処理の明確な分離を可能にするよう構成され得る。これは、最小状態のTEIDに基づくセッションルータ(例えば、セッションルータ108)、負荷平衡及び制御動的ゲートウェイ(例えば、ゲートウェイ114a~114d)スケーリングを扱うための分散型のSDNに基づくオーケストレータ(例えば、図2に示すゲートウェイプロビジョニングエンジン110又はSDN制御部132)、及び異なるクラスのトラフィックを処理するための異種セルラコア処理ゲートウェイ、の組み合わせを通じて行われ得る。これは、現在のシステムと比べて比較的高速なトラフィック処理を提供でき、セルラゲートウェイインスタンスの動的スケーラビリティを実現するのを助けることができる。一例では、システム100a~100cは、制御ユーザプレーン分離(control user plane separation:CUPS)を有するオーケストレータを使用し得る。
【0033】
3GPP仕様により定められるように、モバイルネットワークコアは、S11及びS5/S8インタフェースに沿うシグナリングのためにGTPv2(GPRS Tunneling for control plane)プロトコルを使用する。これらのインタフェースは、ゲートウェイ(例えば、S-GW及びP-GWの両者)により公開される。GTPv2メッセージは、これらのシグナリングイベントのためのコンテキストを提供するために及びシグナリングイベントのユーザ接続へのマッピングを可能にするために、TEIDを含む。既存システムの通常動作では、シグナリングトラフィックはIP毎にその宛先へルーティングされる。システム100a~100cは、TEIDルータを利用して、シグナリングトラフィックを効率的に区分するよう構成され得る。
【0034】
セッションルータ108は、TEIDの範囲について動作するシグナリングインタフェースに対してTEIDクラスタルータとして構成され得る。一例では、セッションルータ108は、個々のフローを格納せず、ゲートウェイインスタンス(例えばゲートウェイ108a~108dのうちの1又は複数)に関連付けられたTEID範囲の表(例えば、TEIDテーブル122)を含む。既存セッションでは、TEIDは非ゼロであり、イングレスGTPv2cメッセージはそれらのTEID毎に転送される。TEIDルータは、メッセージを、論理シグナリングインタフェースに沿って適正なゲートウェイインスタンスへ、TEIDに基づき転送する。この場合、セッションルータ108は、単純な転送を実行でき、メッセージに対して3GPP使用を超える追加処理は行われない。新しいセッションでは、TEIDはゼロ(低速パス/例外)であり、セッションルータ108は、パケットをゲートウェイプロビジョニングエンジン110に通信できる。ゲートウェイプロビジョニングエンジン110は、メッセージを扱うべきゲートウェイインスタンスを(使用/輻輳情報、サービス、又はラウンドロビンのいずれかに基づき)選択する。ゲートウェイインスタンスから生じるイグレスパケットは、ルータにより例外なくエンドポイントへ転送される。
【0035】
ゲートウェイ114a~114dの各々は、特定クラスのトラフィックを処理するよう構成される異種セルラコア処理ゲートウェイインスタンスであり得る。ゲートウェイ114a~114dはセルラコアゲートウェイとして記載されるが、システム100a~100cは、プロトコルに依存してTEID以外の異なるフィールドに基づくルーティングを伴う(データセンタバックエンドサービスのような)他の種類の実行サービスに適応され得る。ゲートウェイ114a~114dインスタンスと3GPP仕様で定められるゲートウェイインスタンスとの間の主な相違点は、TEID及びIPプロビジョニングである。ゲートウェイ114a~114dの各々が開示されるとき、TEID及びIPの互いに素な部分集合が、ゲートウェイプロビジョニングエンジン110により、ゲートウェイ114a~114dの各々に使用のためにプロビジョニングされる。これは、ゲートウェイがプロビジョニングされたAPN(access point name)により関連付けられた任意の32ビットTEID値又はIPを使用できるので、既存の設計と異なる。スケーリングは、TEID値毎にトラフィックをルーティングすることにより又は標準的なIPに基づくルールにより、自然に達成される。
【0036】
システム100a~100cは、シグナリング及びユーザデータパケット処理の独立スケーリングを可能にするよう構成され得る。SDN制御部を使用する幾つかの提案のモバイルコア・ソルトウェアベース・ゲートウェイは、SDN制御部を配置して、自身が常にシグナリングトラフィックの高速(共通)パス内に存在し、SDN制御部にシグナリングトラフィックをパースするよう要求する。これは、確立されたセッションでさえも、MMEからの全てのパケットがSDNを通過しなければならないことを意味する。これは、SDN制御部が単にルールをスイッチに押しつけてスイッチが特定パケットのためのルールを有しないときにパケットを見ているだけのSDN制御部の伝統的な使用から大きく脱線する。1つの現在のソリューションは、TEIDルーティング及びサービスプロビジョニングのために追加オーバヘッドを追加する追加外部ロードバランサを使用する。さらに、このアーキテクチャは、MMEがP-GW及びS-GWと共にネットワークスライスとして折り畳まれるべきであると決定づける。他の既存のモバイルコアソフトウェア/SDNベースソリューションは、SDN制御部をMMEとS-GWとの間に配置し、TEIDルーティングを使用しない。
【0037】
幾つかの新興の傾向は、モバイルコアに影響を与える可能性を有し、商品サーバにおけるパケット処理の仮想化を含む。結果として、ゲートウェイを実装する個々のサーバは、負荷平衡の要求される専用ハードウェア及び多数のエンティティが増加するより遙かに少ない容量しか有しない。さらに、シグナリング及びデータトラフィックの観点でモバイルゲートウェイの負荷数が増加するにつれ、追加ゲートウェイが必要になる。システム100a~100cは、S-GWプールサイズが効率的に縮小されるとき、MMEにより要求される負荷平衡を削減するよう構成され得る。また、システム100a~100cは、ワンタイムプロビジョニング及びルーティング方式を実装するよう構成され得る。
【0038】
さらに、システム100a~100cは、S1-flexと関連して利用されて良い。アクセスネットワークをコンテンツネットワークにリンクするS1インタフェースの重要な特長は、「S1-flex」として知られる。S1-flex構成では、各eNBは、プール領域内の全てのEPC(evolved packet core)ノードに接続される。これは、複数のコンテンツネットワークノード(例えば、MME/S-GW)が共通の地理的領域にサービスでき、メッシュネットワークにより該領域内のeNodeBの集合に接続される概念である。eNodeBは、したがって、複数のMME/S-GWによりサービスされ得る。共通領域にサービスルMME/S-GWノードの集合は、MME/S-GWプールと呼ばれ、このようなMME/S-GWプールによりカバーされる領域はプール領域と呼ばれる。この概念は、セル又は1つのeNodeBにより制御される複数のセル内のUEが、複数のコンテンツネットワークノード間で共有されることを可能にし、それにより、負荷共有の可能性を提供し、さらにコンテンツネットワークノードの単一の障害点を削除する。UEコンテキストは、通常、UEがプール領域内に位置する限り、同一MMEにより保持される。
【0039】
図1A~1Cの要素は、ネットワーク(例えば、第1ネットワーク118等)通信のための可変経路を提供する任意の適切な接続(有線又は無線)を用いて1又は複数のインタフェースを通じて互いに結合されて良い。さらに、図1A~1Cの要素のうちの任意の1又は複数は、特定の構成の必要に基づき、結合され又はアーキテクチャから除去されて良い。システム100a~100cは、ネットワーク内でのパケットの送信又は受信のためにTCP/IP(transmission control protocol/Internet protocol)通信の可能な構成を含んで良い。システム100a~100cは、また、適切な場合及び特定の必要性に基づき、UDP/IP(user datagram protocol/IP)又は任意の他の適切なプロトコルと関連して動作して良い。
【0040】
図1A~1Cのインフラストラクチャを参照すると、例示的な実施形態によるシステム100a~100cが示される。概して、システム100a~100cは、任意の種類又はトポロジのネットワークで実装されて良い。第1ネットワーク118は、システム100を通じて伝搬する情報のパケットを受信し及び送信する相互接続通信パスの一連のポイント又はノードを表す。第1ネットワーク118は、ノード間の通信インタフェースを提供し、任意のLAN(local area network)、VLAN、WAN(wide area network)、WLAN(wireless local area network)、MAN(metropolitan area network)、イントラネット、エクストラネット、VPN(virtual private network)、及びネットワーク環境内で通信を実現する任意の他の適切なアーキテクチャ又はシステム、又は有線及び/又は無線通信を含むそれらの任意の適切な結合として構成されて良い。
【0041】
システム100a~100cでは、パケット、フレーム、信号、データ、等を含むネットワークトラフィックは、任意の適切な通信メッセージングプロトコルに従い送信され及び受信され得る。適切な通信メッセージングプロトコルは、OSI(Open Systems Interconnection)モデルのような多階層型方式、又はそれらの任意の派生物又は変形(例えば、非限定的例としてTCP/IP及びUDP/IP)を含み得る。さらに、セルラネットワークを介する無線信号通信も、システム100a~100cにおいて提供されて良い。適切なインタフェース及びインフラストラクチャは、セルラネットワークとの通信を可能にするために提供されて良い。
【0042】
本願明細書で使用される用語「パケット」は、パケット交換ネットワーク上でソースノードと宛先ノードとの間でルーティングされ得るデータの単位を表す。パケットは、ソースネットワークアドレス及び宛先ネットワークアドレスを含む。これらのネットワークアドレスは、TCP/IPメッセージングプロトコルにおけるIPアドレスであり得る。本願明細書において使用される用語「データ」は、任意の種類の2進数、数値、音声、ビデオ、文字、若しくはスクリプトデータ、又は任意の種類のソース若しくはオブジェクトコード、又は、電子装置及び/又はネットワーク内のあるポイントから別のポイントに通信され得る任意の適切な形式の任意の他の適切な情報を表す。
【0043】
例示的な実装では、eNB104a~104c、MME106a~106c、セッションルータ108、ゲートウェイプロビジョニングエンジン110、S1uルータ112、複数のゲートウェイ114a~114d、及びSGiルータ116は、ネットワーク機器、サーバ、ルータ、スイッチ、ゲートウェイ、ブリッジ、ロードバランサ、プロセッサ、モジュール、又はネットワーク環境内で情報を交換するよう動作する任意の他の適切な装置、コンポーネント、要素、又はオブジェクトを包含するよう意味付けられる。eNB104a~104c、MME106a~106c、セッションルータ108、ゲートウェイプロビジョニングエンジン110、S1uルータ112、複数のゲ―トウェイ114a~114d、及びSGiルータ116は、それらの動作を実現する任意の適切なハードウェア、ソフトウェア、コンポ―ネント、モジュール、又はオブジェクト、並びにネットワーク環境内でデータ又は情報を受信し、送信し、及び/又はその他の場合に通信する適切なインタフェースを含み得る。これは、効果的なデータ又は情報の交換を可能にする適切なアルゴリズム及び通信プロトコルを包含し得る。eNB104a~104c、MME106a~106c、セッションルータ108、ゲートウェイプロビジョニングエンジン110,S1uルータ112、複数のルータ114a~114d、及びSGiルータ116は、仮想的であり又は仮想要素を含んで良い。
【0044】
システム100に関連する内部構造に関して、eNB104a~104c、MME106a~106c、セッションルータ108、ゲートウェイプロビジョニングエンジン110,S1uルータ112、複数のルータ114a~114d、及びSGiルータ116の各々は、本願明細書で概略を説明する動作で使用されるべき情報を格納するメモリ要素を含み得る。eNB104a~104c、MME106a~106c、セッションルータ108、ゲートウェイプロビジョニングエンジン110,S1uルータ112、複数のルータ114a~114d、及びSGiルータ116の各々は、適切な場合及び特定の必要性に基づき、情報を任意の適切なメモリ要素(RAM(random access memory)、ROM(read only memory)、EPROM(erasable programmable ROM)、EEPROM(electronically erasable PROM)、ASIC(application specific integrated circuit)等)、ソフトウェア、ハードウェア、ファームウェア、又は任意の他の適切なコンポーネント、装置、要素若しくはオブジェクト内に保持して良い。本願明細書で議論されるメモリアイテムうちの任意のものは、広義の用語「メモリ要素」に包含されると考えられるべきである。さらに、システム100a~100c内で使用され、追跡され、送信され、又は受信される情報は、任意のデータベース、レジスタ、キュー、テーブル、キャッシュ、制御リスト、又は他の記憶構造の中で提供され、これらの全ては任意の適切な時間枠で参照され得る。任意のこのような記憶オプショも、本願明細書で使用される広義の用語「メモリ要素」に包含され得る。
【0045】
特定の例示的な実装では、ここで概説した機能は、1又は複数の有形媒体内にエンコードされたロジック(例えば、ASIC、DSP(digital signal processor)命令、プロセッサにより実行されるソフトウェア(場合によってはオブジェクトコード及びソースコードを含む)、又は他の同様の機械等に設けられる埋め込み型ロジック)により実施され得る。これらの例の一部では、メモリ要素は、ここに記載した動作のために使用されるデータを格納できる。これは、本願明細書に記載した活動を実行するために実行されるソフトウェア、ロジック、コード又はプロセッサ命令を格納可能なメモリ要素を含む。
【0046】
例示的な実装では、eNB104a~104c、MME106a~106c、セッションルータ108、ゲートウェイプロビジョニングエンジン110、S1uルータ112、複数のゲートウェイ114a~114d、及びSGiルータ116のようなシステム100a~100cの要素は、本願明細書に概説する動作を達成するために又は促進するために、ソフトウェアモジュール(例えば、ゲートウェイプロビジョニングエンジン110、セッションルータ108オーケストレーションマネジャ130、SDN制御部132、ロードバランサ134、等)を含んで良い。これらのモジュールは、特定の構成及び/又はプロビジョニングの必要性に基づき得る任意の適切な方法で適切に結合されて良い。例示的な実施形態では、このような動作は、意図した機能を達成するために、ハードウェアにより実行され、これらの要素の外部で実施され、又は何らかの他のネットワーク装置に含まれて良い。さらに、モジュールは、ソフトウェア、ハードウェア、ファームウェア、又はそれらの任意の組み合わせで実装され得る。これらの要素は、本願明細書に概説したような動作を達成するために他のネットワーク要素と協働可能なソフトウェア(又はレシプロケーティングソフトウェア)も含んで良い。
【0047】
さらに、eNB104a~104c、MME106a~106c、セッションルータ108、ゲートウェイプロビジョニングエンジン110,S1uルータ112、複数のルータ114a~114d、及びSGiルータ116の各々は、本願明細書で議論した活動を実行するためにソフトウェア又はアルゴリズムを実行可能なプロセッサ(又はプロセッサのコア)を含んで良い。プロセッサは、本願明細書に詳述した動作を達成するためにデータに関連付けられた任意の種類の命令を実行できる。一例では、プロセッサは、要素又はアーティクル(例えばデータ)を、ある状態若しくは物から別の状態若しくは物に変換し得る。別の例では、本願明細書に概説した動作は、固定ロジック若しくはプログラマブルロジック(例えば、プロセッサにより実行されるソフトウェア/コンピュータ命令)で実装されて良い。また、本願明細書で特定された要素は、特定種類のプログラマブルプロセッサ、プログラマブルデジタルロジック(例えば、FPGA(field programmable gate array)、EPROM(erasable programmable read only memory)、EEPROM(electrically erasable programmable read only memory)、又はデジタルロジック、ソフトウェア、コード、電子的命令を有するASIC)、又はこれらの任意の適切な組合せであり得る。本願明細書に記載した可能な処理要素、モジュール及び機械のうちのいずれも、広義の用語「プロセッサ」に包含されると考えられるべきである。
【0048】
図2を参照すると、図2は、本開示の一実施形態による、システム100(つまり、システム100a、100b、及び/又は100c)のシステムの一部のブロック図である。図2に示すように、ゲートウェイプロビジョニングエンジン110は、セッションルータ108、オーケストレーションマネジャ130、SDN制御部132、ロードバランサ134、プロセッサ136、及びメモリ138を含み得る。メモリ138は、TEIDテーブル122a及び122b、並びにIPテーブル124を含み得る。
【0049】
UE(例えばUE102a)がシステム100に最初に接続すると、新しいセッションの新しいセッションパケットは、セッションルータ108に通信され得る。3GPPプロトコルでは、新しいセッションパケットのTEIDはゼロ(低速パス/例外)である。エンドポイントは、TEIDが特定コンテキストのために送信ノ―ドにより使用されると決定する。S11インタフェースの場合には、セッションが確立される前に、ゲートウェイは、既にTEIDをセッションに割り当てている。したがって、MMEが新しいセッションのセッション生成要求をゲートウェイへ送信するとき、MMEは、ゼロに等しいTEID(「TEID=0」)を使用し、このメッセージがいかなる確立されたセッションコンテキストも参照しないことを示す。未だ生成されていないセッションに対するTEID=0の使用は、GTPv2cに関する3GPP TS(TechnicalSpecification)29.274の一部である。
【0050】
セッションルータ108が新しいセッションパケットを受信すると、パケットはSDN制御部132へ転送され得る。SDN制御部132は、全ての入来(TEID=0)トラフィックの知識を有し得る。SDN制御部132は、セッション要求メッセージを生成し、ロードバランサ134を用いて、(ゲートウェイから転送されたフィードバックに基づき)ネットワーク負荷、負荷プロファイル、及びゲートウェイ輻輳に関する情報の集中化された有利な地点を提供するよう構成され得、分析が決定づけるようにSDN制御部132がセッションを動的に管理し及びゲートウェイをスケーリングすることを可能にする。例えば、ロードバランサ134は、負荷平衡を決定し、TEID及びIPルーティングルールをプッシュするような追加機能を処理し、(統計のような)永続的な状態を格納し、及びゲートウェイからのトラフィックフィードバックに基づきゲートウェイインスタンスを管理する(生成する及び破棄する)ために使用され得る。ゲートウェイプロビジョニングエンジン110は集中型位置にあるので(ゲートウェイプロビジョニングエンジン110は図5に示すように少なくとも部分的に分散されて良いが)、ゲートウェイプロビジョニングエンジン110は、ゲートウェイインスタンスのスケーリングに関する比較的素早い決定を行い、トラフィックプロファイルに動的に適応することができる。さらに、SDN制御部132は、シグナリングトラフィックのためにセッションルータ108を管理し、フロールールをゲートウェイクラスタにおいてユーザデータパケットをサービスするルータ(例えばS1uルータ112、SGiルータ116、等)にインストールするよう、既存ソリューションには存在しないことの多いSDNのより伝統的使用のために、構成され得る。
【0051】
一例では、ゲートウェイプロビジョニングエンジン110は、ゲートウェイインスタンスのグループを制御し及びスケーリングするよう構成され得る。例えば、ゲートウェイインスタンスは、システムトラフィックに基づきシステムに追加され又はシステムから除去され得る。ゲートウェイインスタンスの起動の際に(例えば、システムが、ゲートウェイをスケーリングし及び追加する必要があると決定すると)、オーケストレーションマネジャ130は、管理者により指定されたように(例えば、Open Flowプロトコル又はネットワークスイッチ又はルータの転送プレーンへのアクセスを与える何らかの他の同様のプロトコルを用いて)ルーティングルールをルータ(例えば、S1uルータ112、SGiルータ116、等)にプッシュするよう構成され得る。ルーティングルールは、特定ゲートウェイにより扱われるべき、TEID及びIPの範囲を含み得る。一例では、TEIDに基づくルールは、ベンダ拡張により定められ得る。ゲートウェイプロビジョニングエンジン110は、負荷統計(例えば、基本的説明的情報、性能カウンタ統計、ログファイルエントリ、等)を要求し/受信することにより、(Docker Swarm、Kubernetes、又は何らかの他の同様の技術により)ゲートウェイインスタンスのクラスタも管理し得る。ゲートウェイプロビジョニングエンジン110は、(可変能力を有する)新しいゲートウェイインスタンスを発生させ、ゲートウェイインスタンス間でマイグレーションイベントを開始し、及びゲートウェイインスタンスを動的に無効にするよう構成され得る。
【0052】
ロードバランサ134は、セッションルータからの例外を扱うよう構成され得る。例えば、これらの例外は、ゼロのTEID値(セッション生成要求を示し得る)を有するGTPv2メッセージを含み得る。さらに、ロードバランサ134は、ファイル/DBから静的にインストールされた固定ルールに基づき又はオペレータインタフェースにより若しくはトラフィックフィードバックに応答して動的にゲートウェイインスタンスを選択し得る。SDN制御部132は、キープアライブメッセージのためにGTPv2 ECHO Request/Responseも扱うことができる。
【0053】
図3を参照すると、図3は、本開示の一実施形態による、システム100で使用されるTEIDテーブル122のブロック図である。図3に示すように、TEIDテーブル122は、TEID列140及びゲートウェイ列142を含み得る。TEID列140は、TEID識別子の範囲(例えば、100~200、500~600、等)を含み得る。ゲートウェイ列142は、TEID列140の中の対応するTEIDに関連付けられたゲートウェイを識別する識別子を含み得る。新しいセッションが開始すると、ゲートウェイプロビジョニングエンジン110は、ロードバランサ134及びSDN制御部132を使用して、新しいセッションに関連付けられるべき特定ゲートウェイインスタンスを決定するよう構成され得る。特定ゲートウェイインスタンスが決定されると、特定ゲートウェイは、特定ゲートウェイに関連付けられたTEIDの範囲から、セッションのためにTEIDを割り当てる。ゲートウェイプロビジョニングエンジン110は、TEIDテーブル122をセッションルータ108に通信し得る。パケットがセッションルータ108に到着すると、セッションルータ108は、パケットに関連付けられたTEIDを決定し、TEIDテーブル122を用いてパケットを適正なゲートウェイインスタンスに通信し得る。
【0054】
図4を参照すると、図4は、本開示の一実施形態による、システム100で使用されるIPテーブル124のブロック図である。図4に示すように、IPテーブル124は、IP144及びゲートウェイ列146を含み得る。IP列144は、IP識別子の範囲(例えば、16.0.0.0~16.0.0.254、等)を含み得る。IP範囲は、UEにより使用される又はUEに関連付けられるべき各ゲートウェイにプロビジョニングされる。各UEは(通常)ゲートウェイに割り当てられたIP範囲の中の単一のIPのみを有する。ゲートウェイ列146は、IP列144の中の対応するIP識別子に関連付けられたゲートウェイを識別する識別子を含み得る。トラフィックがSGiルータ116に到着すると、各パケットについて、SGiルータ116は、パケット内の宛先(UE)IPを決定し、該IPについてUE IPの範囲(144)を含むIPテーブル124を検索し得る。ルックアップの結果は、一致するUE IP範囲のトラフィックを処理するよう最初にプロビジョニングされたゲートウェイである。
【0055】
図5を参照すると、図5は、一実施形態による、3GPPネットワークにおけるモバイルゲートウェイをスケーリングする例示的な詳細を示すタイミング図である。一例では、ゲートウェイ108aは、ゲートウェイプロビジョニングエンジン110により初期化され得る。ゲートウェイ108aは、肯定応答をゲートウェイプロビジョニングエンジン110へ返送し得る。初期化中、ゲートウェイプロビジョニングエンジン110は、ゲートウェイ108aを、ゲートウェイ108aによる使用のためのユニークな値又は範囲によりプロビジョニングし得る。より具体的には、ゲートウェイプロビジョニングエンジン110は、ゲートウェイ108aによる利用のためのユニークなTEID範囲、UE IPサブネット範囲、及び/又は他のユニークな値若しくは範囲により、ゲートウェイ108aをプロビジョニングし得る。ゲートウェイ108aが初期化された後に、ゲートウェイプロビジョニングエンジン110は、ルーティングルール及びフォーマットを、S1uルータ112及びSGiルータ116の受信及び送信インタフェースに通信し得る。より具体的には、ゲートウェイプロビジョニングエンジン110は、ゲートウェイ108aによる使用のためにプロビジョニングされたユニークなUE IPサブネット範囲、TEID範囲、及び/又は他のユニークな値若しくは範囲を通信し得る。
【0056】
いかなるコンテキストも確立されていない新しいセッションが開始するとき、セッション生成パケットのためのTEIDはゼロであり、MME106aは新しいセッション要求をゲートウェイプロビジョニングエンジン110に通信する。ロードバランサ134及びSDN制御部132(図示せず)を用いて、ゲートウェイプロビジョニングエンジン110は、ゲートウェイ108aが生成されたセッションに関連付けられるべきであると決定するよう構成され得る。ゲートウェイプロビジョニングエンジン110は、セッション生成要求をゲートウェイ108aに通信し得る。ゲートウェイ108aは、初期化中に割り当てられたIPサブネット範囲内のIPを割り当て、初期化中に割り当てられたTEID範囲からTEIDを割り当て、及び割り当てられたTEID及びIPに沿って肯定応答メッセージを、セッション要求を開始したUEに通信し得る。
【0057】
セッションに関連するパケット内の割り当てられたTEID及びIPを用いて、eNodeBは、パケットを、セッションを扱うよう割り当てられたゲートウェイに直接通信し、MME106a、セッションルータ108、及びゲートウェイプロビジョニングエンジン110を迂回できる。ベアラ変更要求が開始された場合(例えば、UEがある場所から別の場所へ移動している、eNodeBへのダウンリンクトンネルが変更された、等)、ベアラ変更要求はゲートウェイプロビジョニングエンジン110へ送信され得、ゲートウェイプロビジョニングエンジン110はベアラ変更要求をゲートウェイ114aに通信し得る。ベアラ変更要求は、特定UE宛てのトラフィック又はパケットをeNodeB IPアドレスに通信し新しいトンネルIDを使用するための要求であり得る。
【0058】
図6を参照すると、図6は、一実施形態による、3GPPネットワークにおけるモバイルゲートウェイをスケーリングする例示的な詳細を示すタイミング図である。一例では、ゲートウェイ114aは、オーケストレーションマネジャ130により初期化され得る。ゲートウェイ114aは、肯定応答をオーケストレーションマネジャ130へ返送し得る。初期化中、オーケストレーションマネジャ130は、ゲートウェイ114aを、ゲートウェイ114aによる使用のためのユニークな値又は範囲によりプロビジョニングし得る。より具体的には、オーケストレーションマネジャ130は、ゲートウェイ114aによる使用のためのユニークなUE IPサブネット範囲、TEID範囲、及び/又は他のユニークな値若しくは範囲により、ゲートウェイ114aをプロビジョニングし得る。ゲートウェイ114aが初期化された後に、オーケストレーションマネジャ130は、ゲートウェイ114aによる使用のためのユニークな値若しくは範囲(ゲートウェイデータ)をSDN制御部132に通信し得る。SDN制御部132は、ゲートウェイデータを使用して、S1uルータ112、SGiルータ116、及びセッションルータ108上のルート及びデータパスを初期化し得る。
【0059】
UE102aがeNodeB104aに接続すると、アタッチ要求がUE102aからeNodeB104aに通信され得る。eNodeB104aは、アタッチ要求をMME106aに通信し得る。MME106aは、ゼロのTEIDを有するセッション生成要求をセッションルータ108へ送信し得る。TEIDがゼロなので、セッションルータ108は、セッション要求をロードバランサ134に転送する。ロードバランサ134は、システム、セッション種別、等を分析し、セッションを扱うために割り当てられるべき特定ゲートウェイを決定する。図6に示すように、ゲートウェイ114aは、UE102aに関連付けられたセッションを扱うために割り当てられ又は生成された。ロードバランサ134は、セッション生成要求をゲートウェイ114aへ送信する。ゲートウェイ114aは、自身をセッションに関連付け、ゲートウェイが初期化されるときユニークな値(例えば、ユニークなTEID値)をSDN制御部132により割り当てられた範囲から選択し、セッション生成要求に対する応答をセッションルータ108に通信する。セッション生成要求に対する応答は、UE102aに関連付けられるためにゲートウェイ114aが選択したユニークな値(例えば、ユニークなTEID値)を含む。セッションルータ108は、(ユニークな値を有する)セッション生成要求に対する応答をMME106aに通信する。MME106aは、eNodeB104aによるアタッチ要求に応答し、アタッチ要求に対する応答にユニークな値を含める。eNodeB104aは、UE102aによるアタッチ要求に応答する。アップリンクトラフィックについて、UE102aは、ユニークな値を用いてS1uルータ112と直接通信でき、S1uルータ112は、TEIDテーブル122(より具体的には、図1に示すTEIDテーブル122b)を用いて、ゲートウェイ114aがセッションに関連付けられることを決定し、トラフィックをゲートウェイ114aへ転送できる。ダウンリンクトラフィックについて、トラフィックがSGiルータ116で受信されると、SGiルータ116は、トラフィックを分析し、トラフィックに関連付けられたユニークな識別子(例えば、UE102a向けの宛先IPアドレス)を決定し、IPテーブル124を用いて、ゲートウェイ114aがセッションに関連付けられることを決定し、トラフィックをゲートウェイ114aへ転送できる。
【0060】
図7を参照すると、図7は、一実施形態による、3GPPネットワークにおけるモバイルゲートウェイのスケーリングに関連し得るフロー700の可能な動作を説明する例示的なフローチャートである。一実施形態では、フロー700の1又は複数の動作は、セッションルータ108、ゲートウェイプロビジョニングエンジン110、オーケストレーションマネジャ130、SDN制御部132、及び/又はロードバランサ134により実行されて良い。702で、システムはスケーリングする必要があり、新しいゲートウェイが生成される必要がある。例えば、システムは、システムの現在の状態及びトラフィックに基づき、システムがスケーリングする必要があること、及び新しいゲートウェイが追加される必要があることを決定して良い。704で、ゲートウェイが生成される。706で、オーケストレーションマネジャは、ゲートウェイにより扱われるべきTEID及びUE IPの部分集合を決定する。708で、オーケストレーションマネジャは、TEID及びUE IPの部分集合を用いてゲートウェイを初期化する。710で、オーケストレーションマネジャは、TEID及びUE IPの部分集合をSDN制御部に通信する。712で、SDN制御部は、TEIDの部分集合をセッションルータに、TEIDの部分集合をS1uルータに、及びUE IPの部分集合をSGiルータに通信する。例えば、SDN制御部132は、TEIDの部分集合をセッションルータ108にTEIDテーブル122aとして、TEIDの部分集合をS1uルータ112にTEIDテーブル122bとして、及びUE IPの部分集合をSGiルータ116にIPテーブル124として通信する。
【0061】
図8を参照すると、図8は、一実施形態による、3GPPネットワークにおけるモバイルゲートウェイのスケーリングに関連し得るフロー800の可能な動作を説明する例示的なフローチャートである。一実施形態では、フロー800の1又は複数の動作は、セッションルータ108、ゲートウェイプロビジョニングエンジン110、オーケストレーションマネジャ130、SDN制御部132、及び/又はロードバランサ134により実行されて良い。802で、セッションに関連するメッセージが受信される。例えば、メッセージは、セッションルータ108で受信されて良い。804で、メッセージのTEIDが決定される。806で、システムは、メッセージがゼロ以外のTEIDを含むかどうかを決定する。メッセージがゼロ以外のTEIDを含む場合、808で、システムは、セッションルータテーブルがTEIDのためのルートを含むかどうかを決定する。例えば、メッセージはセッションルータ108で受信されて良く、システムは、TEIDテーブル122aがメッセージのための決定したTEIDに関連付けられたルートを含むかどうかを決定できる。セッションルータテーブルがTEIDのためのルートを含まない場合、810で、エラーメッセージが生成される。例えば、エラーメッセージは、原因、コンテキストが見付からない、を有するエラー応答メッセージであって良い。セッションルータテーブルがTEIDのためのルートを含む場合、812で、メッセージはTEIDに従いゲートウェイへルーティングされる。
【0062】
806に戻り、メッセージがゼロ以外のTEIDを含まない場合(TEIDがゼロであることを意味する)、814で、メッセージはロードバランサに通信される。例えば、メッセージはセッションルータ108で受信されて良く、セッションルータ108は、TEIDがゼロに等しいと決定でき、セッションルータ108はメッセージをロードバランサ134に通信できる。816で、ロードバランサはメッセージ種別を決定する。818で、システムは、メッセージ種別がセッション生成要求であるかどうかを決定する。メッセージ種別がセッション生成要求ではない場合、820で、ロードバランサはメッセージ種別に従い応答する。例えば、メッセージは、ロードバランサからの状態更新のための要求メッセージであって良い。メッセージ種別がセッション生成要求であった場合、822で、ロードバランサはメッセージをルーティングすべきゲートウェイを決定する。824で、メッセージはゲートウェイに通信される。826で、ゲートウェイは、セッション中に使用されるべきTEIDを通信する。
【0063】
留意すべきことに、本願明細書で提供した例では、相互作用は、2、3、又はさらに多くのネットワーク要素の観点から記載され得る。しかしながら、これらの実施形態は、単に明確性及び例示の目的であり、限定として考えられるべきではない。特定の例では、限られた数のネットワーク要素のみを参照することにより、所与のフローセットの1又は複数の機能を説明することが分かり易い。理解されるべきことに、システム100a~100c及びそれらの教示は、直ちに拡張可能であり、より多くの複雑な/高度な配置及び構成とともに多数のコンポーネントに対応できる。したがって、提供された例は、無数の他のアーキテクチャに適用可能なシステム100a~100cの範囲を制限し又はその広範な教示を抑制すべきではない。
【0064】
また、重要なことに、前述のフロー図(つまり図7及び8)の中の動作は、システム100a~100cにより又はその中で実行され得る可能な相関シナリオ及びパターンの一部のみを説明している。これらの動作の一部は、適切な場合、削除又は除去されて良い。或いは、これらの動作は、本開示の範囲から逸脱することなく大幅に修正又は変更されて良い。さらに、これらの動作の数は、1又は複数の追加動作と同時に又は並行して実行されるとして記載された。しかしながら、これらの動作のタイミングは大幅に変更されて良い。前述の動作フローは、例示及び議論を目的として提供された。任意の適切な配置、順序、構成及びタイミングメカニズムが本開示の教示から逸脱することなく提供され得るシステム100a~100cにより、十分な柔軟性が提供される。
【0065】
本開示は特定の配置及び構成を参照して詳述されたが、これらの例示的な構成及び配置は、本開示の範囲から逸脱することなく有意に変更されて良い。さらに、特定のコンポーネントが、特定の必要性及び実装に基づき、結合され、分離され、削除され、又は追加されて良い。さらに、システム100a~100cは通信処理を実現する特定の要素及び動作を参照して説明されたが、これらの要素及び動作は、システム100a~100cの意図した機能を達成する任意の適切なアーキテクチャ、プロトコル、及び/又は処理により置換されて良い。
【0066】
多くの他の変更、代替、変形、選択、及び修正が当業者により解明され得る。また、本開示は、全てのこのような変更、代替、変形、選択、及び修正を添付の請求の範囲の精神及び範囲に包含するものとする。USPTO(United States Patent and Trademark Office)及び追加で本願に関する任意の特許の任意の読者が本願明細書に添付された請求項を解釈するのを助けるために、出願人は、出願人が(a)語句「~する手段」又は「~するステップ」が特定の請求項で具体的に使用されない限り、本願の出願日に存在するとして、添付の請求項のいずれもが35U.S.C.Section112のParagraph6を行使することを意図しない、(b)明細書内の任意の記述により、本開示を限定することを意図しない、ことに留意することを願う。
【0067】
<補注、及び例>
例C1は、1又は複数の命令を有する少なくとも1つの機械可読記憶媒体であって、該命令は、少なくとも1つのプロセッサにより実行されると、前記少なくとも1つのプロセッサに、ゲートウェイを初期化させ、前記ゲートウェイにトンネルエンドポイント識別子(TEID)の範囲を割り当てさせ、前記TEIDの範囲は前記ゲートウェイに関連付けられ、前記TEIDの範囲をルータに通信させ、前記TEIDの範囲の中の各TEIDは、前記ルータにより前記ゲートウェイにパケットをルーティングするために使用される、機械可読記憶媒体である。
【0068】
例C2では、例C1の機械可読記憶媒体は、任意で、前記1又は複数の命令は、少なくとも1つのプロセッサにより実行されると、前記少なくとも1つのプロセッサに、初期メッセージパケットを受信させ、前記初期メッセージパケットはセッションの一部であり、前記TEIDの範囲から特定TEIDを前記セッションに割り当てる、ことを含み得る。
【0069】
例C3では、例C1~C2のいずれか1つの機械可読記憶媒体は、任意で、前記ゲートウェイが前記特定TEIDを前記セッションに割り当てる、ことを含み得る。
【0070】
例C4では、例C1~C3のいずれか1つの機械可読記憶媒体は、任意で、前記初期メッセージパケットがゼロに等しいTEIDを含む、ことを含み得る。
【0071】
例C5では、例C1~C4のいずれか1つの機械可読記憶媒体は、任意で、前記ゲートウェイはサービシングゲートウェイ(servicing gateway、S-GW)又はパケットデータネットワークゲートウェイ(packet data network gateway、P-GW)である、ことを含み得る。
【0072】
例C6では、例C1~C5のいずれか1つの機械可読記憶媒体は、任意で、前記ゲートウェイはスケーラブルな数の異種ゲートウェイを含むゲートウェイクラスタの一部である、ことを含み得る。
【0073】
例C7では、例C1~C6のいずれか1つの機械可読記憶媒体は、任意で、ロードバランサは、前記ゲートウェイが初期化されると決定するために使用される、ことを含み得る。
【0074】
例C8では、例C1~C7のいずれか1つの機械可読記憶媒体は、任意で、前記ゲートウェイは3GPP(3rd Generation Partnership Project)ネットワークの一部である、ことを含み得る。
【0075】
例A1では、データセンタ内のサーバは、メモリと、ゲートウェイプロビジョニングエンジンと、少なくとも1つのプロセッサとを含み得る。前記ゲートウェイプロビジョニングエンジンは、前記少なくとも1つのプロセッサに、ゲートウェイを初期化させ、前記ゲートウェイに関連付けられたトンネルエンドポイント識別子(TEID)の範囲を割り当てさせ、前記TEIDの範囲を前記ゲートウェイに通信させ、前記TEIDの範囲をルータに通信させ、前記TEIDの範囲の中の各TEIDは、パケットを前記ゲートウェイにルーティングし及びモビリティ管理エンティティを迂回するために使用される、よう構成される。
【0076】
例A2では、例A1のサーバは、任意で、前記ゲートウェイプロビジョニングエンジンは、前記少なくとも1つのプロセッサに、初期メッセージパケットを受信させ、前記初期メッセージパケットはセッションの部分であり、前記初期メッセージパケットを前記ゲートウェイに通信させ、前記ゲートウェイは前記TEIDの範囲からの特定TEIDを前記セッションに割り当てる、よう更に構成される、ことを含み得る。
【0077】
例A3では、例A1~A2のいずれか1つのサーバは、任意で、前記初期メッセージパケットがゼロに等しいTEIDを含む、ことを含み得る。
【0078】
例A4では、例A1~A3のいずれか1つのサーバは、任意で、前記ゲートウェイはサービシングゲートウェイ(servicing gateway、S-GW)又はパケットデータネットワークゲートウェイ(packet data network gateway、P-GW)である、ことを含み得る。
【0079】
例A5では、例A1~A4のいずれか1つのサーバは、任意で、前記ゲートウェイは3GPP(3rd Generation Partnership Project)ネットワークの一部である、ことを含み得る。
【0080】
例M1は、方法であって、初期メッセージパケットを受信するステップであって、前記初期メッセージパケットはセッションの部分である、ステップと、新しいゲートウェイが前記セッションのために生成されることを決定するステップと、前記セッションのためにトンネルエンドポイント識別子(TEID)を割り当てるステップであって、前記TEIDは前記ゲートウェイに関連付けられる、ステップと、前記TEIDをルータに通信するステップであって、前記TEIDは前記セッションに関連するパケットを前記ゲートウェイにルーティングするために使用される、ステップと、を含む方法である。
【0081】
例M2では、例M1の方法は、任意で、前記TEIDは、前記ゲートウェイが初期化されたときに前記ゲートウェイに関連付けられたTEIDの範囲の部分である、ことを含み得る。
【0082】
例M3では、例M1~M2のいずれか1つの方法は、任意で、前記ゲートウェイが前記TEIDを前記セッションに割り当てる、ことを含み得る。
【0083】
例M4では、例M1~M3のいずれか1つの方法は、任意で、前記初期メッセージパケットがゼロに等しいTEIDを含む、ことを含み得る。
【0084】
例M5では、例M1~M4のいずれか1つの方法は、任意で、前記ゲートウェイはスケーラブルな数の異種ゲートウェイを含むゲートウェイクラスタの一部である、ことを含み得る。
【0085】
例M6では、例M1~M5のいずれか1つの方法は、任意で、前記ゲートウェイは3GPP(3rd Generation Partnership Project)ネットワークの一部である、ことを含み得る。
【0086】
例S1は、3GPP(3rd Generation Partnership Project)ネットワークにおけるモバイルゲートウェイをスケーリングするシステムである。前記システムは、メモリと、1又は複数のプロセッサと、初期メッセージパケットを受信する手段であって、前記初期メッセージパケットはセッションの部分である、手段と、新しいゲートウェイが前記セッションのために生成されることを決定する手段と、前記セッションのためにトンネルエンドポイント識別子(TEID)を割り当てる手段であって、前記TEIDは前記ゲートウェイに関連付けられる、手段と、前記TEIDをルータに通信する手段であって、前記TEIDは前記セッションに関連するパケットを前記ゲートウェイにルーティングするために使用される、手段と、を含み得る。
【0087】
例S2では、例S1のシステムは、任意で、前記TEIDは、前記ゲートウェイが初期化されたときに前記ゲートウェイに関連付けられたTEIDの範囲の部分である、ことを含み得る。
【0088】
例S3では、例S1~S2のいずれか1つのシステムは、任意で、前記ゲートウェイが前記TEIDを前記セッションに割り当てる、ことを含み得る。
【0089】
例S4では、例S1~S3のいずれか1つのシステムは、任意で、直接無線インタフェースパスが確立されるとき媒体アクセス制御レイヤが不変に保たれる、ことを含み得る。
【0090】
例S5では、例S1~S4のいずれか1つの方法は、任意で、前記初期メッセージパケットがゼロに等しいTEIDを含む、ことを含み得る。
【0091】
例S6では、例S1~S5のいずれか1つのシステムは、任意で、前記ゲートウェイはサービシングゲートウェイ(servicing gateway、S-GW)又はパケットデータネットワークゲートウェイ(packet data network gateway、P-GW)である、ことを含み得る。
【0092】
例S6では、例S1~S6のいずれか1つのシステムは、任意で、前記ゲートウェイは3GPP(3rd Generation Partnership Project)ネットワークの一部である、ことを含み得る。
【0093】
例AA1は、機器であって、ゲートウェイを初期化する手段と、前記ゲートウェイにトンネルエンドポイント識別子(TEID)の範囲を割り当てる手段であって、前記TEIDの範囲は前記ゲートウェイに関連付けられる、手段と、前記TEIDの範囲をルータに通信する手段であって、前記TEIDの範囲の中の各TEIDは、前記ルータにより前記ゲートウェイにパケットをルーティングし及びモビリティ管理エンティティを迂回するために使用される、手段と、を含む機器である。
【0094】
例AA2では、例AA1の機器は、任意で、初期メッセージパケットを受信する手段であって、前記初期メッセージパケットはセッションの部分である、手段と、前記TEIDの範囲からの特定TEIDを前記セッションに割り当てる手段と、を含み得る。
【0095】
例AA3では、例AA1~AA2のいずれか1つの機器は、任意で、前記ゲートウェイが前記特定TEIDを前記セッションに割り当てる、ことを含み得る。
【0096】
例AA4では、例AA1~AA3のいずれか1つの機器は、任意で、前記初期メッセージパケットがゼロに等しいTEIDを含む、ことを含み得る。
【0097】
例AA5では、例AA1~AA4のいずれか1つの機器は、任意で、前記ゲートウェイはサービシングゲートウェイ(servicing gateway、S-GW)又はパケットデータネットワークゲートウェイ(packet data network gateway、P-GW)である、ことを含み得る。
【0098】
例AA6では、例AA1~AA5のいずれか1つの機器は、任意で、前記ゲートウェイはスケーラブルな数の異種ゲートウェイを含むゲートウェイクラスタの一部である、ことを含み得る。
【0099】
例AA7では、例AA1~AA6のいずれか1つの機器は、任意で、ロードバランサは、前記ゲートウェイが初期化されると決定するために使用される、ことを含み得る。
【0100】
例AA8では、例AA1~AA9のいずれか1つの機器は、任意で、前記ゲートウェイは3GPP(3rd Generation Partnership Project)ネットワークの一部である、ことを含み得る。
【0101】
例X1は、例A1~A5、AA1~AA8、又はM1~M6のいずれか1つの方法を実施し又は機器を実現するための機械可読命令を含む機械可読記憶媒体である。例Y1は、例M1~M6のいずれかの方法を実行する手段を有する機器である。例Y2では、例Y1の機器は、任意で、プロセッサ及びメモリを含む、方法を実行するための手段を含み得る。例Y3では、例Y2の機器は、任意で、機械可読命令を含むメモリを含み得る。
【符号の説明】
【0102】
108 セッションルータ
110 ゲートウェイプロビジョニングエンジン
112 S1uルータ
114 ゲートウェイ
116 SGiルータ
118 第1ネットワーク
120 第2ネットワーク
122 テーブル
図1A
図1B
図1C
図2
図3
図4
図5
図6
図7
図8