(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2023-09-14
(45)【発行日】2023-09-25
(54)【発明の名称】レーザ加工装置
(51)【国際特許分類】
B23K 26/08 20140101AFI20230915BHJP
B23K 26/12 20140101ALI20230915BHJP
【FI】
B23K26/08 D
B23K26/12
(21)【出願番号】P 2019123267
(22)【出願日】2019-07-01
【審査請求日】2022-06-08
(73)【特許権者】
【識別番号】503359821
【氏名又は名称】国立研究開発法人理化学研究所
(74)【代理人】
【識別番号】110000877
【氏名又は名称】弁理士法人RYUKA国際特許事務所
(72)【発明者】
【氏名】金子 良夫
【審査官】岩見 勤
(56)【参考文献】
【文献】特開2014-231459(JP,A)
【文献】特開2011-184233(JP,A)
【文献】特開2015-006989(JP,A)
【文献】特開昭57-106595(JP,A)
【文献】特開平08-316157(JP,A)
【文献】特開昭59-121187(JP,A)
【文献】特開平03-285789(JP,A)
【文献】特開平08-246137(JP,A)
【文献】特開2016-199411(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
B23K 26/00 - 26/70
C30B 1/00 - 35/00
(57)【特許請求の範囲】
【請求項1】
対象物を保持する
2つのシャフト棒と、
前記シャフト棒が移動する空間を密閉する密閉部と、
前記密閉部の外部に設けられ、前記シャフト棒を非接触で駆動する
2つの駆動部と、
を備え、
前記密閉部は、非磁性金属で形成された
2つの第1金属部
と、前記対象物に照射されるレーザ光を透過する材料で形成された透過部と、前記シャフト棒の長さ方向における前記透過部の端部に設けられ、非磁性金属で形成された2つの第2金属部とを有し、
前記第1金属部は、前記空間の一部において前記空間の周囲を囲んで
おり、
一方の前記駆動部は一方の前記シャフト棒を駆動し、他方の前記駆動部は他方の前記シャフト棒を駆動し、
一方の前記第1金属部は一方の前記シャフト棒が移動する前記空間の周囲を囲み、他方の前記第1金属部は他方の前記シャフト棒が移動する前記空間の周囲を囲み、
一方の前記第2金属部は前記透過部の一方の前記端部に設けられ、他方の前記第2金属部は前記透過部の他方の前記端部に設けられ、
一方の前記駆動部が、一方の前記第1金属部から前記透過部の方向に見て一方の方向に回転する場合、他方の前記駆動部は、前記透過部から他方の前記第2金属部の方向に見て他方の方向に回転する、
レーザ加工装置。
【請求項2】
前記密閉部は、前記シャフト棒の長さ方向における前記第1金属部の端部に設けられ、非磁性金属で形成され、前記シャフト棒を保持する2つの保持部をさらに有し、
一方の前記保持部は一方の前記シャフト棒を保持し、他方の前記保持部は他方の前記シャフト棒を保持し、
一方の前記保持部は前記第1金属部の一方の前記端部に設けられ、他方の前記保持部は前記第1金属部の他方の前記端部に設けられる、
請求項1に記載のレーザ加工装置。
【請求項3】
一方の前記第2金属部と一方の前記保持部とはガスケットを挟んで接続され、他方の前記第2金属部と他方の前記保持部とはガスケットを挟んで接続される、請求項2に記載のレーザ加工装置。
【請求項4】
前記保持部には、前記シャフト棒が通る貫通孔が設けられ、
前記保持部は、前記シャフト棒の径方向において、前記貫通孔の内壁と前記シャフト棒の表面との間に設けられたボールベアリングを含む、
請求項
2または
3に記載のレーザ加工装置。
【請求項5】
前記保持部は、複数の前記ボールベアリングを含み、
複数の前記ボールベアリングは、前記シャフト棒の長さ方向から見て等角度に配置されている、
請求項
4に記載のレーザ加工装置。
【請求項6】
前記ボールベアリングは、前記シャフト棒の長さ方向における複数の位置にそれぞれ配置されている、請求項
4または
5に記載のレーザ加工装置。
【請求項7】
前記空間は、前記貫通孔の前記内壁と前記シャフト棒との間に設けられた空隙を含み、
前記空隙は、2気圧以上の気圧に対して耐圧性を有する、
請求項
4から
6のいずれか一項に記載のレーザ加工装置。
【請求項8】
前記保持部、前記シャフト棒および前記駆動部が、100℃以上の温度に対して耐熱性を有する、請求項
2から
7のいずれか一項に記載のレーザ加工装置。
【請求項9】
前記駆動部は、前記第1金属部に配置される、請求項1
から8のいずれか一項に記載のレーザ加工装置。
【請求項10】
前記駆動部は、第1磁石を有し、
前記シャフト棒は、第2磁石を有し、
前記駆動部は、前記第1磁石と前記第2磁石との吸着力により、前記シャフト棒を非接触で駆動する、
請求項1
から9のいずれか一項に記載のレーザ加工装置。
【請求項11】
前記駆動部は、複数の前記第1磁石を有し、
前記シャフト棒は、前記第1磁石と同じ数の複数の前記第2磁石を有し、
複数の前記第1磁石は、前記シャフト棒の長さ方向から見て等角度に配置され、
複数の前記第2磁石は、前記シャフト棒の長さ方向から見て等角度に配置されている、
請求項
10に記載のレーザ加工装置。
【請求項12】
前記第1磁石は、前記シャフト棒の長さ方向における複数の位置にそれぞれ配置され、
前記第2磁石は、前記シャフト棒の長さ方向における前記複数の位置にそれぞれ配置されている、
請求項
10または
11に記載のレーザ加工装置。
【請求項13】
前記駆動部は、前記シャフト棒の長さ方向に移動可能であり、
前記シャフト棒は、前記駆動部の前記長さ方向への移動に伴い、前記長さ方向に移動可能である、
請求項
10から
12のいずれか一項に記載のレーザ加工装置。
【請求項14】
前記駆動部は、前記シャフト棒の長さ方向に平行な方向を中心軸として回転可能であり、
前記シャフト棒は、前記駆動部の回転に伴い、前記シャフト棒の前記長さ方向に平行な中心軸を中心に回転可能である、
請求項
10から
13のいずれか一項に記載のレーザ加工装置。
【請求項15】
前記シャフト棒に、前記対象物に隣接して、酸素または水の少なくとも一方を吸収および貯蔵する金属物が設けられている、請求項1から
14のいずれか一項に記載のレーザ加工装置。
【請求項16】
前記金属物は、チタン、バナジウム、鉄、ジルコニウム、ニオブ、モリブデンおよびタンタルの少なくともいずれかまたはこれらから選択された複数の金属を含む合金である、請求項
15に記載のレーザ加工装置。
【請求項17】
前記対象物に
前記レーザ光を照射するレーザ照射部をさらに備える、請求項1から
16のいずれか一項に記載のレーザ加工装置。
【請求項18】
前記密閉部は、前記シャフト棒の長さ方向において、前記透過部の側部と前記第2金属部との間に設けられたOリングをさらに有する、請求項
1から17のいずれか一項に記載のレーザ加工装置。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、レーザ加工装置に関する。
【背景技術】
【0002】
従来、レーザを照射して対象物を加工する装置が知られている(例えば、非特許文献1参照)。
非特許文献1 インターネット<http://www.crystalsys.co.jp/product03.html>
【発明の概要】
【発明が解決しようとする課題】
【0003】
レーザを照射して対象物を加工する場合、対象物が合金などからなる化合物が対象物の場合、対象物の酸化を抑制することが必須要件である。その為には、対象物を高純度アルゴンガス環境下にて、加工する必要がある。この場合において、アルゴン中の酸素や水などの濃度は1ppm(1ppm=0.000001)、対象物の材料によっては1ppb(1ppb=0.000000001)以下が必要である。この様な高純度アルゴンガスを得るためには、高純度アルゴンガスを使用する前に、対象物を加工する装置をベーク処理する必要がある。ベーク処理とは、対象装置の内部を真空排気しながら所定温度の環境下に所定時間置くことで、当該対象装置内に吸着した水を蒸発させ離脱させる処理である。例えば、48時間、200℃以上で当該対象装置を加熱する脱水処理が必要である。水が対象装置の内面に吸着していると、水は高純度アルゴンガス中に蒸発する。水は高温では容易に酸素を放出するので、合金材料を酸化しやすくなる。したがって、対象装置はベーク処理のために、ベークできる構造を有することが好ましい。
【0004】
合金を加工する場合、当該合金の溶融温度付近で当該合金に含まれる材料の蒸発を伴う場合がある。この蒸発を抑制するために、高圧高純度アルゴンガスを用いて合金を加工することが有効である。高圧とは2気圧以上1000気圧を示す。
【0005】
以上、レーザを照射して合金を加工する装置は、下記の構造を備えることが好ましい。
1.脱水ベーク処理可能な構造。
2.10気圧まで高純度アルゴンガスを加圧できる構造。
【0006】
このような、合金などからなる加工物を加工する装置として、レーザ光を用いた高真空浮遊溶融帯単結晶育成装置が知られている(非特許文献1参照)。この構造の加工装置は、シャフトのシール部に磁性流体シールを用いて、シャフトが回転や直線運動をしても、シャフトのシール部から酸素や水の混入を防止する。磁性流体とは鉄酸化物のFe3O4磁性粉体を油に拡散した高い粘性のある流体である。磁性流体シールの材料である流体の油を加熱すると装置内に油が揮発するので、装置内の真空を劣化させてしまう。装置内の内面に付着した油はベーク処理では除去できないので、重大な真空劣化を発生させる。また、磁性流体シールを加圧すると、磁性流体シールから磁性流体が流出してしまう。このため密封される空間の気密性を保持できない。このため、磁性流体シールを加圧すると、合金の蒸発を抑制することが困難になる。
【課題を解決するための手段】
【0007】
本発明の第1の態様においては、レーザ加工装置を提供する。レーザ加工装置は、対象物を保持するシャフト棒と、シャフト棒が移動する空間を密閉する密閉部と、密閉部の外部に設けられ、シャフト棒を非接触で駆動する駆動部と、を備える。密閉部は、非磁性金属で形成された第1金属部を有する。第1金属部は、空間の一部において空間の周囲を囲んでいる。
【0008】
駆動部は、第1金属部に配置されてよい。
【0009】
駆動部は、第1磁石を有してよい。シャフト棒は、第2磁石を有してよい。駆動部は、第1磁石と第2磁石との吸着力により、シャフト棒を非接触で駆動してよい。
【0010】
駆動部は、複数の第1磁石を有してよい。シャフト棒は、第1磁石と同じ数の複数の第2磁石を有してよい。複数の第1磁石は、シャフト棒の長さ方向から見て等角度に配置されていてよい。複数の第2磁石は、シャフト棒の長さ方向から見て等角度に配置されていてよい。
【0011】
第1磁石は、シャフト棒の長さ方向における複数の位置にそれぞれ配置されていてよい。第2磁石は、シャフト棒の長さ方向における複数の位置にそれぞれ配置されていてよい。
【0012】
駆動部は、シャフト棒の長さ方向に移動可能であってよい。シャフト棒は、駆動部の長さ方向への移動に伴い、長さ方向に移動可能であってよい。
【0013】
駆動部は、シャフト棒の長さ方向に平行な方向を中心軸として回転可能であってよい。シャフト棒は、駆動部の回転に伴い、シャフト棒の長さ方向に平行な中心軸を中心に回転可能であってよい。
【0014】
シャフト棒には、対象物に隣接して、酸素または水の少なくとも一方を吸収および貯蔵する金属物が設けられていてよい。
【0015】
金属物は、チタン、バナジウム、鉄、ジルコニウム、ニオブ、モリブデンおよびタンタルの少なくともいずれかまたはこれらから選択された複数の金属を含む合金、またはモリブデンタンタルであってよい。
【0016】
レーザ加工装置は、対象物にレーザ光を照射するレーザ照射部をさらに備えてよい。
【0017】
密閉部は、レーザ光を透過する材料で形成された透過部をさらに有してよい。
【0018】
密閉部は、シャフト棒の長さ方向における透過部の端部に設けられ、非磁性金属で形成された第2金属部と、シャフト棒の長さ方向における第1金属部の端部に設けられ、非磁性金属で形成され、シャフト棒を保持する保持部と、をさらに有してよい。第2金属部と保持部とは、ガスケットを挟んで接続されていてよい。
【0019】
密閉部は、シャフト棒の長さ方向において、透過部の側部と第2金属部との間に設けられたOリングをさらに有してよい。
【0020】
保持部には、シャフト棒が通る貫通孔が設けられていてよい。保持部は、シャフト棒の径方向において、貫通孔の内壁とシャフト棒の表面との間に設けられたボールベアリングを含んでよい。
【0021】
保持部は、複数のボールベアリングを含んでよい。複数のボールベアリングは、シャフト棒の長さ方向から見て等角度に配置されていてよい。
【0022】
ボールベアリングは、シャフト棒の長さ方向における複数の位置にそれぞれ配置されていてよい。
【0023】
空間は、貫通孔の内壁とシャフト棒との間に設けられた空隙を含んでよい。空隙は、5気圧以上の気圧に対して耐圧性を有してよい。
【0024】
保持部、シャフト棒および駆動部は、100℃以上の温度に対して耐熱性を有してよい。
【0025】
レーザ加工装置は、シャフト棒を2つ備えてよく、駆動部を2つ備えてよい。密閉部は、第1金属部を2つ有してよく、第2金属部を2つ有してよく、保持部を2つ有してよい。一方の駆動部は一方のシャフト棒を駆動してよく、他方の駆動部は他方のシャフト棒を駆動してよい。一方の第1金属部は一方のシャフト棒が移動する空間の周囲を囲んでよく、他方の第1金属部は他方のシャフト棒が移動する空間の周囲を囲んでよい。一方の保持部は一方のシャフト棒を保持してよく、他方の保持部は他方のシャフト棒を保持してよい。一方の第2金属部は透過部の一方の端部に設けられていてよく、他方の第2金属部は透過部の他方の端部に設けられていてよい。一方の保持部は第1金属部の一方の端部に設けられていてよく、他方の保持部は第1金属部の他方の端部に設けられていてよい。一方の第2金属部と一方の保持部とはガスケットを挟んで接続されていてよく、他方の第2金属部と他方の保持部とはガスケットを挟んで接続されていてよい。
【0026】
一方の駆動部が、一方の第1金属部から透過部の方向に見て一方の方向に回転する場合、他方の駆動部は、透過部から他方の第2金属部の方向に見て他方の方向に回転してよい。
【0027】
なお、上記の発明の概要は、本発明の必要な特徴の全てを列挙したものではない。また、これらの特徴群のサブコンビネーションもまた、発明となりうる。
【図面の簡単な説明】
【0028】
【
図1】本発明の一つの実施形態に係るレーザ加工装置100の一例を示す図である。
【
図2】
図1における第1金属部22-1、保持部25-1および第2金属部24-1、並びに透過部23の一部の拡大図である。
【
図3】
図1における第1金属部22-1、保持部25-1および第2金属部24-1、並びに透過部23の一部の拡大図である。
【
図4】
図2における保持部25-1を、シャフト棒10の長さ方向且つ端部S2から端部S1への方向に見た図である。
【
図5】本発明の一つの実施形態に係るレーザ加工装置100の他の一例を示す図である。
【
図6】
図1~
図3における第1金属部22-1および保持部25-1の拡大図である。
【
図7】本発明の一つの実施形態に係るレーザ加工装置100の上面の一例を示す図である。
【
図8】
図7における駆動部30-1のXY面内における内側を拡大した図である。
【
図9】1つの第1金属部22に対して複数の駆動部30が設けられる一例を示す図である。
【
図10】本発明の一つの実施形態に係るレーザ加工装置100の一例を示す図である。
【発明を実施するための形態】
【0029】
以下、発明の実施の形態を通じて本発明を説明するが、以下の実施形態は特許請求の範囲にかかる発明を限定するものではない。また、実施形態の中で説明されている特徴の組み合わせの全てが発明の解決手段に必須であるとは限らない。
【0030】
図1は、本発明の一つの実施形態に係るレーザ加工装置100の一例を示す図である。レーザ加工装置100は、シャフト棒10、密閉部20および駆動部30を備える。レーザ加工装置100は、固定板90に固定されていてよい。固定板は、所定の筐体に固定されている。本例の駆動部30は、シャフト棒10の長さ方向に移動可能である。
図1において、駆動部30の移動可能方向が太い両矢印で示されている。
【0031】
本明細書においては、X軸、Y軸およびZ軸の直交座標軸を用いて技術的事項を説明する場合がある。本明細書においては、シャフト棒10の長さ方向をZ軸とし、Z軸に垂直な面をXY面とする。本例の駆動部30は、Z軸方向に移動可能である。本明細書において、XY面内における所定の方向をX軸方向とし、XY面内においてX軸に直交する方向をY軸方向とする。
【0032】
密閉部20は、空間21(後述)を密閉する。本例の密閉部20は、レーザ加工装置100の一方の端部から他方の端部まで延伸している。Z軸方向において、密閉部20の一方の端部および他方の端部を、それぞれ端部S1および端部S2とする。本明細書において、Z軸方向における端部S1側を「上」、端部S2側を「下」と称する。Z軸方向は、重力方向であってよい。本明細書において上面視とは、レーザ加工装置100をZ軸方向に端部S1から端部S2の方向に見た場合を指す。
【0033】
シャフト棒10は、Z軸方向を中心軸とする円柱状の部材であってよい。シャフト棒10は、非磁性金属で形成されてよい。非磁性金属については、後述する。
【0034】
シャフト棒10は、対象物12を保持する。対象物12は、例えば単結晶の結晶棒または多結晶の原料棒である。シャフト棒10の長さ方向において、密閉部20の中央側におけるシャフト棒10の端部を端部ESとする。シャフト棒10は、端部ESにおいて対象物12を保持してよい。
【0035】
本例のレーザ加工装置100は、2つのシャフト棒10(シャフト棒10-1およびシャフト棒10-2)を備える。本例において、シャフト棒10-1およびシャフト棒10-2は、それぞれZ軸方向における端部S1側および端部S2側のシャフト棒10である。本例において、対象物12-1および対象物12-2は、それぞれZ軸方向における端部S1側および端部S2側の対象物12である。本例において、端部ES1および端部ES2は、それぞれZ軸方向における端部S1側および端部S2側の端部ESである。
【0036】
本例において、固定板90-1および固定板90-2は、それぞれZ軸方向における端部S1側および端部S2側の固定板90である。本例において、空間21-1はZ軸方向において固定板90-1から端部S1までの間に配置される空間21である。本例において、空間21-2はZ軸方向において固定板90-2から端部S2までの間に配置される空間21である。本例において、空間21-3はZ軸方向において固定板90-1から固定板90-2までの間に配置される空間21である。本例において、空間21はZ軸方向に端部S1から端部S2まで連続した一つの空間である。空間21-1、空間21-2および空間21-3は、説明の便宜上分けて定義されているに過ぎない。
【0037】
シャフト棒10は、空間21を移動する。本例のシャフト棒10-1は、空間21-1および空間21-3をZ軸方向に移動する。本例のシャフト棒10-2は、空間21-2および空間21-3をZ軸方向に移動する。
【0038】
密閉部20は、シャフト棒10が移動する空間21を密閉する。本例の密閉部20は、空間21-1、空間21-2および空間21-3を密閉する。空間21は、密閉部20の内部に設けられた空間である。空間21は、密閉部20の外部とは連通していない。
【0039】
駆動部30は、密閉部20の外部に設けられる。駆動部30は、空間21に接触しない。駆動部30は、シャフト棒10を非接触で駆動する。本例のレーザ加工装置100は、2つの駆動部30(駆動部30-1および駆動部30-2)を備える。本例の駆動部30-1および駆動部30-2は、それぞれシャフト棒10-1およびシャフト棒10-2を駆動する。
【0040】
密閉部20は、第1金属部22を有する。第1金属部22は、非磁性金属で形成される。本明細書において、非磁性金属とは室温で磁気モーメントを持たない金属を指す。非磁性金属は、例えばステンレスである。非磁性金属は、タングステン、モリブデン等であってもよい。第1金属部22は、空間21の一部において空間21の周囲を囲んでいる。本例の第1金属部22は、空間21-1の周囲を囲んでいる。第1金属部22は、Z軸方向を中心軸とする円柱状であってよい。
【0041】
本例の密閉部20は、2つの第1金属部22(第1金属部22-1および第1金属部22-2)を有する。第1金属部22-1および第1金属部22-2は、それぞれ空間21-1および空間21-2の周囲を囲んでいる。
【0042】
レーザ加工装置100は、レーザ照射部40をさらに備えてよい。レーザ加工装置100は、複数のレーザ照射部40を備えてよい。レーザ照射部40は、対象物12にレーザ光を照射する。当該レーザ光の波長帯域は、赤外帯域であってよく、可視帯域であってもよい。
【0043】
密閉部20は、透過部23をさらに有してよい。透過部23は、レーザ光を透過する材料で形成される。本例の透過部23は、二酸化珪素(SiO2)からなるアモルファス構造の石英ガラスである。本例において、レーザ照射部40から照射されたレーザ光は、透過部23を透過して空間21-3に侵入する。透過部23は、Z軸を中心軸とする円柱状であってよい。
【0044】
本例の透過部23は、アルミナ酸化物(Al2O3)からなるサファイアガラスであってもよい。透過部23がアルミナ酸化物(Al2O3)からなるサファイアガラスである場合、透過部23は、レーザ照射部40から照射されたレーザ光を中心軸とし、当該レーザ光が透過する部位に配置された円柱形状であってよい。透過部23がアルミナ酸化物(Al2O3)からなるサファイアガラスであり、且つ、レーザ加工装置100が複数のレーザ照射部40を備える場合、密閉部20はレーザ照射部40と同数の円柱形状の透過部23を有してよい。
【0045】
対象物12は、レーザ光が照射されることにより加熱されてよい。本例のレーザ加工装置100は、2つのレーザ照射部40(レーザ照射部40-1およびレーザ照射部40-2)を備える。本例のレーザ照射部40-1およびレーザ照射部40-2は、それぞれ密閉部20のX軸方向における一方側および他方側に配置される。レーザ照射部40-1から照射されるレーザ光と、レーザ照射部40-2から照射されるレーザ光は、互いに平行且つ逆方向に進行してよい。本例においては、レーザ照射部40-1から照射されるレーザ光はX軸方向における一方の方向に進行し、レーザ照射部40-2から照射されるレーザ光はX軸方向における他方の方向に進行する。
【0046】
レーザ加工装置100は、3つ以上のレーザ照射部40を備えてもよい。3つ以上のレーザ照射部40は、1つのXY面内に配置されてよい。
【0047】
対象物12における密閉部20の中央側の端部を端部EAとする。本例において、端部EA1および端部EA2は、それぞれ対象物12-1および対象物12-2の端部EAである。レーザ照射部40は、対象物12の端部EAにレーザ光を照射してよい。本例のレーザ照射部40は、対象物12-1の端部EA1および対象物12-2の端部EA2にレーザ光を照射する。端部EA1および端部EA2は、レーザ光が照射されることにより加熱されてよい。
【0048】
空間21は、ベーク処理されてよい。ベーク処理とは、対象装置の内部を真空排気しながら所定温度の環境下に所定時間置くことで、当該対象装置内に吸着した水を蒸発させ離脱させる処理である。本例においては、空間21は密閉部20により密閉されているので、空間21を真空排気することで空間21を真空にできる。本例において、空間21は真空排気されながら所定温度の環境下に所定時間置かれる。空間21は、当該所定温度に加熱されてよい。当該所定温度は、100℃以上400℃以下であってよく、150℃以上300℃以下であってもよい。当該所定時間は、12時間以上であってよく、24時間以上であってもよく、1週間であってもよい。本例の空間21は密閉部20により密閉されているので、空間21をベーク処理することにより、空間21の内部に吸着した水は空間21の外部に離脱する。
【0049】
空間21がベーク処理された後、空間21には高純度Ar(アルゴン)ガスが導入されてよい。高純度Ar(アルゴン)ガスとは、Ar(アルゴン)中に含まれるO2(酸素)やH2O(水)等の濃度が1ppm(1ppm=0.000001)以下であるAr(アルゴン)ガスを指す。空間21がベーク処理された後に空間21に高純度Ar(アルゴン)ガスが導入されることで、空間21におけるO2(酸素)分圧を1×10-30atm未満にできる。このため、対象物12がレーザ光により加熱される場合であっても、対象物12が酸化しにくい。
【0050】
空間21には、5気圧以上100気圧以下の高純度Ar(アルゴン)ガスが導入されてよい。密閉部20は、空間21が5気圧以上の気圧に加圧された場合においても、当該気圧に対する耐圧性を有してよい。密閉部20が当該耐圧性を有することで、レーザ加工装置100は、加圧された空間21において、レーザ光により対象物12を加熱できる。
【0051】
密閉部20は、第2金属部24および保持部25をさらに有してよい。第2金属部24は、非磁性金属で形成されてよい。本例の密閉部20は、2つの第2金属部24(第2金属部24-1および第2金属部24-2)を有する。保持部25は、非磁性金属で形成されてよい。本例の保持部25は、2つの保持部25(保持部25-1および保持部25-2)を有する。第2金属部24と保持部25とは、接続される。第2金属部24と保持部25との接続については、後述する。
【0052】
Z軸方向において、透過部23の端部を端部ETとする。本例において、端部ET1および端部ET2は、透過部23における、それぞれ端部S1側および端部S2側の端部ETである。第2金属部24は、透過部23の端部ETに設けられる。本例の第2金属部24-1および第2金属部24-2は、それぞれ透過部23の端部ET1および端部ET2に設けられる。言い換えると、透過部23は端部ET1および端部ET2において、それぞれ第2金属部24-1および第2金属部24-2と接続される。端部ET1は、第2金属部24-1の内部に設けられてよい。端部ET2は、第2金属部24-2の内部に設けられてよい。透過部23と第2金属部24との接続については、後述する。
【0053】
Z軸方向において、第1金属部22における透過部23の中央側の端部を端部EMとする。本例において、端部EM1は端部S1と反対側における第1金属部22-1の端部EMであり、端部EM2は端部S2と反対側における第1金属部22-2の端部EMである。保持部25は、第1金属部22の端部EMに設けられる。本例の保持部25-1および保持部25-2は、それぞれ第1金属部22-1の端部EM1および第1金属部22-2の端部EM2に設けられる。
【0054】
第1金属部22と保持部25は、一体に形成されていてもよい。第1金属部22と保持部25は、同じ非磁性金属により、第1金属部22と保持部25とが接合された1つの部材に形成されていてもよい。第1金属部22と保持部25とが、同じ非磁性金属により1つの部材に形成されている場合、端部EMにおいて第1金属部22と保持部25とは連続である。端部EMにおいて第1金属部22と保持部25とが連続であるとは、それぞれ異なる部材として形成された第1金属部22と保持部25とを接合した場合に生じる界面が、存在しない状態を指す。空間21の気密性確保の観点からは、第1金属部22と保持部25は一体に形成されていることが好ましい。
【0055】
保持部25は、シャフト棒10を保持する。本例の保持部25-1および保持部25-2は、それぞれシャフト棒10-1およびシャフト棒10-2を保持する。保持部25の詳細については、後述する。
【0056】
駆動部30は、第1金属部22に配置されてよい。本例の駆動部30-1および駆動部30-2は、それぞれ第1金属部22-1および第1金属部22-2に配置される。
【0057】
駆動部30は、シャフト棒10の長さ方向(Z軸方向)に移動可能であってよい。
図1において、駆動部30が移動可能な方向が太い両矢印にて示されている。また、駆動部30は、シャフト棒10の長さ方向(Z軸方向)に平行な方向を中心軸として回転可能であってよい。本例の駆動部30は、第1金属部22の周りを回転可能である。第1金属部22がZ軸方向を中心軸とする円柱状である場合、XY面内において第1金属部22の中心軸の位置と駆動部30が回転する中心軸の位置とは、一致していてよい。
【0058】
保持部25、シャフト棒10および駆動部30は、耐熱性を有することが好ましい。本例においては、保持部25、シャフト棒10および駆動部30は、100℃以上400℃以下の温度範囲において耐熱性を有することが好ましい。保持部25、シャフト棒10および駆動部30が耐熱性を有するとは、保持部25、シャフト棒10および駆動部30が当該温度範囲において、変形せず、変質せず、且つ、ガス等の蒸発物を発生しないことを指す。
【0059】
保持部25が耐熱性を有することにより、空間21が上述の温度範囲に加熱された場合においても、密閉部20は空間21の気密性を確保できる。保持部25およびシャフト棒10が耐熱性を有することにより、レーザ加工装置100は、加熱された空間21において、対象物12をレーザ光により加熱できる。駆動部30が耐熱性を有することにより、レーザ加工装置100は、空間21が加熱されている状態においてもシャフト棒10を駆動できる。
【0060】
第1金属部22、第2金属部24および透過部23も、耐熱性を有することが好ましい。本例においては、第1金属部22、第2金属部24および透過部23は、100℃以上400℃以下の温度範囲において耐熱性を有することが好ましい。第1金属部22、第2金属部24および透過部23が耐熱性を有することにより、空間21が上述の温度範囲に加熱された場合においても、密閉部20は空間21の気密性を確保できる。第1金属部22、第2金属部24および透過部23が耐熱性を有することにより、レーザ加工装置100は、加熱された空間21において、対象物12をレーザ光により加熱できる。
【0061】
レーザ加工装置100は、真空ポンプ96およびガス供給源98、並びに管72、管74および管76をさらに備えてよい。ガス供給源98は、例えばガスボンベである。管76には、ガス出口99が設けられていてよい。
【0062】
管72は、真空ポンプ96と空間21とを接続する。管74は、ガス供給源98と空間21とを接続する。管76は、空間21と密閉部20の外部とを接続する。管76の内部は、空間21および密閉部20の外部と連通している。
【0063】
管72、管74および管76には、それぞれバルブ54、バルブ56およびバルブ58が設けられている。バルブ54は、管72における真空ポンプ96と空間21との接続を開閉する。バルブ56は、管74におけるガス供給源98と空間21との接続を開閉する。バルブ58は、管76における空間21と密閉部20の外部との接続を開閉する。
【0064】
本例の管72および管76は、第2金属部24-1に設けられている。第2金属部24-1において、管72および管76はシャフト棒10の延伸方向に直交する方向に設けられていてよい。バルブ54およびバルブ58は、第2金属部24-1の外部に設けられていてよい。本例の管74は、第2金属部24-2に設けられている。第2金属部24-2において、管74はシャフト棒10の延伸方向に直交する方向に設けられていてよい。バルブ56は、第2金属部24-2の外部に設けられていてよい。
【0065】
図2は、
図1における第1金属部22-1、保持部25-1および第2金属部24-1、並びに透過部23の一部の拡大図である。
図2は、第2金属部24-1と保持部25-1とが接続される前における第1金属部22-1、保持部25-1および第2金属部24-1、並びに透過部23の一部を示している。ただし、
図2においては第2金属部24-1に設けられた管72および管76の図示を省略している。
【0066】
第2金属部24-1は、例えばフランジである。第2金属部24-1は、上面27を有する。本例において上面27は、XY面に平行な面である。第2金属部24-1には、開口50が設けられている。開口50は、上面27に垂直方向、且つ、上面27から端部S2(
図1参照)への方向を深さ方向とする。開口50は、第2金属部24-1を貫通している。内壁36は、開口50の内壁である。
【0067】
密閉部20(
図1参照)は、Oリング29をさらに有してよい。第2金属部24-1の内部においてZ軸方向に延伸する透過部23の側面を、側部52とする。側部52-1および側部52-2は、上面視でそれぞれ透過部23の内側の側面および外側の側面である。上面視で透過部23の内側のOリング29および外側のOリング29を、それぞれOリング29-1およびOリング29-2とする。本例のOリング29-1およびOリング29-2は、それぞれ側部52-1および側部52-2と接している。
【0068】
本例において、第2金属部24は透過部23に対して稼働しないので、透過部23の側部52と第2金属部24-1との間には、Oリング29が設けられていてよい。第2金属部24-1は、透過部23の側部52に溶着されていてもよい。この場合、透過部23の側部52と第2金属部24-1との間には、Oリング29が設けられなくてよい。透過部23の側部52と第2金属部24-1との間にOリング29が設けられるか、または、第2金属部24-1が透過部23の側部52に溶着されることで、空間21の気密性が確保されやすくなる。
【0069】
保持部25-1は、例えばフランジである。保持部25-1は、下面26を有する。本例において下面26は、XY面に平行な面である。保持部25-1には、貫通孔62が設けられている。貫通孔62は、下面26に垂直方向(Z軸方向)に保持部25-1を貫通している。内壁28は、貫通孔62の内壁である。内壁28は、空間21-1に接触している。シャフト棒10-1は、貫通孔62を通る。
【0070】
保持部25-1は、ボールベアリング60を含んでよい。第2金属部24-1は、ボールベアリング60を含んでよい。
【0071】
保持部25-1の下面26には、ガスケット70が配置されていてよい。ガスケットとは、対象物の気密性確保のために用いられる固定用シール材である。ガスケット70は、第2金属部24の上面27に配置されていてもよい。
【0072】
図3は、
図1における第1金属部22-1、保持部25-1および第2金属部24-1、並びに透過部23の一部の拡大図である。
図3は、第2金属部24-1と保持部25-1とが接続された後における第1金属部22-1、保持部25-1および第2金属部24-1、並びに透過部23の一部を示している。ただし、
図3においては第2金属部24-1に設けられた管72および管76の図示を省略している。
【0073】
本例において、第2金属部24-1と保持部25-1とは、ガスケット70を挟んで接続される。本例のガスケット70は、Z軸方向において第2金属部24-1の上面27(
図2参照)と保持部25-1の下面26(
図2参照)との間に挟まれている。第2金属部24-1と保持部25-1とがガスケット70を挟んで接続されることで、空間21の気密性が確保されやすくなる。
【0074】
貫通孔62の内壁28とシャフト棒10-1との間の空隙を、空隙64とする。空間21は、空隙64を含む。空隙64は、XY面内において、内壁28とシャフト棒10-1との間の空隙である。空隙64は、XY面内においてシャフト棒10-1を囲んでいる。
【0075】
開口50の内壁36とシャフト棒10-1との間の空隙を、空隙66とする。空間21は、空隙66を含む。空隙66は、XY面内において、内壁36とシャフト棒10-1との間の空隙である。空隙66は、XY面内においてシャフト棒10-1を囲んでいる。
【0076】
本例において、ボールベアリング60は空隙64および空隙66に設けられている。保持部25-1において、ボールベアリング60は内壁28とシャフト棒10の表面とに接していてよい。第2金属部24-1において、ボールベアリング60は内壁36とシャフト棒10の表面とに接していてよい。本例の保持部25-1は、内壁28とシャフト棒10の表面との間に設けられたボールベアリング60を含むので、シャフト棒10はZ軸方向に空間21を移動しやすくなる。また、本例の第2金属部24-1は、内壁36とシャフト棒10の表面との間に設けられたボールベアリング60を含むので、シャフト棒10はZ軸方向に空間21を移動しやすくなる。
【0077】
空隙64および空隙66は、5気圧以上の気圧に対して耐圧性を有してよい。空隙64および空隙66は、5気圧以上の気圧に対して耐圧性を有するとは、ボールベアリング60が、空隙64および空隙66が5気圧以上に加圧された場合においても、空間21におけるシャフト棒10のZ軸方向への移動を確保可能であることを指す。
【0078】
ボールベアリング60は、シャフト棒10の長さ方向(Z軸方向)における複数の位置に、それぞれ配置されていてよい。本例においては、ボールベアリング60はZ軸方向における4つの位置にそれぞれ配置されている。
【0079】
図4は、
図2における保持部25-1を、シャフト棒10の長さ方向(Z軸方向)且つ端部S2(
図1参照)から端部S1への方向に見た図である。
図4は、Z軸方向においてボールベアリング60を通る位置におけるXY断面である。
図4においては、ガスケット70の図示は省略されている。
【0080】
保持部25は、複数のボールベアリング60を有してよい。本例の保持部25-1は、
図4におけるXY断面において8つのボールベアリング60を有する。複数のボールベアリング60は、シャフト棒10の長さ方向(Z軸方向)から見て等角度に配置されていてよい。シャフト棒10のXY断面における中心を中心Dとする。本例において、一のボールベアリング60をボールベアリング60-1とし、一のボールベアリング60に隣り合う他のボールベアリング60をボールベアリング60-2する。ボールベアリング60-1と中心Dとを結ぶ直線と、ボールベアリング60-2と中心Dとを結ぶ直線とのなす角度を、角度θとする。角度θは、全てのボールベアリング60にわたり等しくてよい。本例においては、角度θは8つのボールベアリング60にわたり45度である。なお、ボールベアリング60と中心Dとを結ぶ直線とは、ボールベアリング60のXY面内における中心と中心Dとを結ぶ直線であってよい。
【0081】
図5は、本発明の一つの実施形態に係るレーザ加工装置100の他の一例を示す図である。本例のレーザ加工装置100は、シャフト棒10-2に金属物13がさらに設けられている点で、
図1に示されるレーザ加工装置100と異なる。金属物13は、対象物12-2に隣接して設けられていてよい。金属物13は棒状であってよい。金属物13が棒状である場合、当該金属物13の一端はシャフト棒10-2に接続されていてよく、当該金属物13の他端は対象物12-2に接続されていてよい。
【0082】
金属物13は、O2(酸素)またはH2O(水)の少なくとも一方を吸収および貯蔵する。金属物13は、いわゆるゲッター金属であってよい。ゲッター金属とは、真空中に残留している気体を吸着し得る金属である。金属物13は、空間21に設けられている。
【0083】
金属物13は、Ti(チタン)、V(バナジウム)、Fe(鉄)、Zr(ジルコニウム)、Nb(ニオブ)、Mo(モリブデン)およびTa(タンタル)の少なくともいずれかであってよい。金属物13は、Ti(チタン)、V(バナジウム)、Fe(鉄)、Zr(ジルコニウム), Nb(ニオブ)、Mo(モリブデン)およびTa(タンタル)から選択された複数の金属を含む合金であってもよい。
【0084】
金属物13は、ロッド15により固定されていてよい。ロッド15は、白金(Pt)で形成されていてよい。ロッド15は、ワイヤー状であってよい。当該ワイヤーの長さ方向は、Z軸方向であってよい。当該ワイヤーの直径は、例えば0.3mmである。ロッド15は、シャフト棒10-2に固定されていてよい。シャフト棒10-2には、複数のワイヤー状のロッド15が固定されていてもよい。当該複数のワイヤー状のロッド15は、上面視で金属物13を囲うように設けられていてよい。本例においては、金属物13は白金で形成された複数のワイヤー状のロッド15に固定されている。
【0085】
空間21は、金属物13をレーザ光により加熱することにより、ベーク処理されてもよい。当該レーザ光は、レーザ照射部40により照射されてよい。空間21を真空排気しつつ金属物13をレーザ光により加熱することにより、レーザ加工装置100は、空間21に残留しているO2(酸素)またはH2O(水)の少なくとも一方を金属物13に吸収および貯蔵させることができる。このため、レーザ加工装置100は空間21の真空度を向上させることができる。
【0086】
図6は、
図1~
図3における第1金属部22-1および保持部25-1の拡大図である。
図6においては、
図2および
図3における透過部23および第2金属部24-1は省略されている。
【0087】
本例のレーザ加工装置100は、駆動部30の移動および回転を制御する制御部80をさらに備える。本例の制御部80は、ガイド82、固定部84、接続部85、台座86および移動部88を有する。
【0088】
ガイド82は、棒状の部材であってよい。ガイド82の長さ方向は、シャフト棒10の長さ方向(Z軸方向)と平行であってよい。
【0089】
固定部84は、ガイド82と第1金属部22とを接続する。本例の制御部80は、2つの固定部84(固定部84-1および固定部84-2)を有する。本例の固定部84-1および固定部84-2は、Z軸方向においてそれぞれ端部S1側および端部S2側(
図1参照)に設けられている。ガイド82は、固定部84により第1金属部22との相対的な位置が変わらないように固定される。
【0090】
移動部88は、ガイド82に設けられる。移動部88は、ガイド82の長さ方向に沿って移動可能なように設けられている。本例の移動部88は、Z軸方向に移動可能である。
【0091】
台座86は、第1金属部22に設けられてよい。台座86の底面(XY面に平行な面)には、第1金属部22が通る開口が設けられていてよい。第1金属部22は、台座86の当該開口をシャフト棒10の長さ方向(Z軸方向)に貫通していてよい。台座86には、駆動部30が設けられる。駆動部30は、台座86の上方においてXY面内に回転可能なように設けられていてよい。
【0092】
接続部85は、台座86と移動部88とを接続する。台座86は、接続部85により移動部88との相対的な位置が変わらないように固定される。
【0093】
制御部80は、移動部88の、ガイド82に沿った移動を制御する。制御部80は、当該移動を制御することにより、シャフト棒10の長さ方向への駆動部30の移動を制御する。制御部80は、駆動部30のXY面内における回転を、さらに制御する。
【0094】
駆動部30は、第1金属部22に配置されてよい。本例の駆動部30-1は、第1金属部22-1に配置されている。また、
図1に示される通り本例の駆動部30-2は、第1金属部22-2に配置されている。
【0095】
駆動部30は、第1磁石32を有してよい。駆動部30は、複数の第1磁石32を有してもよい。本例の駆動部30は、2つの第1磁石32(第1磁石32-1および第1磁石32-2)を有する。第1磁石32-1および第1磁石32-2は、XY面内において第1金属部22-1を挟むように設けられてよい。第1金属部22-1が円柱状である場合、第1磁石32-1および第1磁石32-2は、第1金属部22-1の当該円柱の側面に対向して設けられてよい。当該側面は、Z軸方向に平行な面である。本例の第1磁石32-1および第1磁石32-2は、X軸方向において第1金属部22-1を挟むように設けられている。言い換えると、本例の第1磁石32-1および第1磁石32-2は、X軸方向において、それぞれ第1金属部22-1の一方側および他方側に設けられている。
【0096】
第1磁石32のN極およびS極は、それぞれZ軸方向における一方側および他方側に配置されてよい。第1磁石32-1のN極と第1磁石32-2のN極とは、Z軸方向における反対の位置に配置されてよい。第1磁石32-1のS極と第1磁石32-2のS極とは、Z軸方向における反対の位置に配置されてよい。本例においては、第1磁石32-1のN極およびS極は、Z軸方向における端部S1側および端部S2(
図1参照)側に、それぞれ配置されている。また、本例においては、第1磁石32-2のN極およびS極は、Z軸方向における端部S2(
図1参照)側および端部S1側に、それぞれ配置されている。
【0097】
シャフト棒10は、第2磁石14を有してよい。シャフト棒10が円柱状である場合、第2磁石14はシャフト棒10の当該円柱の側面に露出するように設けられてよく、当該側面上に設けられてもよい。当該側面は、Z軸方向に平行な面である。シャフト棒10は、複数の第2磁石14を有してもよい。本例のシャフト棒10は、2つの第2磁石14(第2磁石14-1および第2磁石14-2)を有する。第2磁石14-1および第2磁石14-2は、XY面内においてシャフト棒10を挟むように設けられてよい。本例の第2磁石14-1および第2磁石14-2は、X軸方向においてシャフト棒10-1を挟むように設けられている。言い換えると、本例の第2磁石14-1および第2磁石14-2は、X軸方向において、それぞれシャフト棒10-1の一方側および他方側に設けられている。
【0098】
第2磁石14のN極およびS極は、それぞれZ軸方向における一方側および他方側に配置されてよい。第2磁石14-1のN極と第2磁石14-2のN極とは、Z軸方向における反対の位置に配置されてよい。第2磁石14-1のS極と第2磁石14-2のS極とは、Z軸方向における反対の位置に配置されてよい。本例においては、第2磁石14-1のN極およびS極は、Z軸方向における端部S2(
図1参照)側および端部S1側に、それぞれ配置されている。また、本例においては、第2磁石14-2のN極およびS極は、Z軸方向における端部S1側および端部S2(
図1参照)側に、それぞれ配置されている。
【0099】
第1磁石32のN極と第2磁石14のS極とは、Z軸方向における一方側に配置されてよい。第1磁石32のS極と第2磁石14のN極とは、Z軸方向における他方側に配置されてよい。本例においては、第1磁石32-1のN極と第2磁石14-1のS極とは、Z軸方向における端部S1側に配置され、第1磁石32-1のS極と第2磁石14-1のN極とは、Z軸方向における端部S2(
図1参照)側に配置される。また、本例においては、第1磁石32-2のN極と第2磁石14-2のS極とは、Z軸方向における端部S2(
図1参照)側に配置され、第1磁石32-2のS極と第2磁石14-2のN極とは、Z軸方向における端部S1側に配置される。
【0100】
第1磁石32と第2磁石14とが上述のように配置されることで、第1磁石32と第2磁石14との間には吸着力が発生する。本例においては、第1金属部22は非磁性金属で形成されるので、第1金属部22は第1磁石32と第2磁石14との間の吸着力を妨げにくい。このため、駆動部30は、第1磁石32と第2磁石14との間の吸着力により、シャフト棒10を非接触で駆動できる。このため、制御部80は、駆動部30の移動および回転を制御することにより、シャフト棒10の移動および回転を非接触で制御できる。
【0101】
第1磁石32および第2磁石14は、希土類磁石であることが好ましい。希土類磁石は、例えばサマリウムコバルト磁石(SmCo5、Sm2Co17)、ネオジム磁石(Nd2Fe14B)等である。希土類磁石は、遷移金属磁石よりも飽和磁束密度が大きい。こんため、第1磁石32および第2磁石14を希土類磁石とすることにより、駆動部30によるシャフト棒10の駆動精度を向上させやすい。
【0102】
移動部88は、シャフト棒10の長さ方向(Z軸方向)における所定の範囲を移動可能であってよい。
図6において、移動部88の移動可能範囲が両矢印にて示されている。当該移動可能範囲における端部S1側の境界位置は、シャフト棒10-1の端部S1側の上端が端部S1と衝突しない範囲において決定されてよい。当該移動可能範囲における端部S2側(
図1参照)の境界位置は、例えばZ軸方向における固定部84-2の位置であってよい。
【0103】
図7は、本発明の一つの実施形態に係るレーザ加工装置100の上面の一例を示す図である。
図7は、
図1~4に示されるレーザ加工装置100の上面視における図である。ただし、
図7において制御部80は省略されている。なお、
図1~4は、
図7において中心C(後述)を通るXZ断面における断面図である。
【0104】
レーザ加工装置100は、密閉部20および駆動部30を備える。密閉部20は、第1金属部22-1、透過部23、第2金属部24-1および保持部25を有する。本例の第1金属部22-1、第2金属部24-1および保持部25は、上面視で円状である。
【0105】
第1金属部22-1の上面視における中心を中心Cとする。第2金属部24-1および保持部25の上面視における中心位置は、中心Cの位置に等しくてよい。即ち、第1金属部22-1、第2金属部24-1および保持部25は、上面視において、中心Cの位置を中心位置とする同心円状に配置されてよい。なお、XY面において、中心Cの位置は中心D(
図4参照)の位置に等しくてよい。
【0106】
図7において、透過部23の上面視における位置が破線にて示されている。
図7において内周側および外周側の破線は、それぞれ透過部23の内側面および外側面の位置を示している。透過部23の当該内側面および当該外側面は、上面視で円状であってよい。透過部23の当該内側面および当該外側面における当該円の中心位置は、中心Cの位置に等しくてよい。
【0107】
駆動部30は、上面視で円状であってよい。駆動部30の上面視における中心位置は、中心Cの位置に等しくてよい。本例の駆動部30は、
図7のXY断面において複数の第1磁石32を有する。本例の駆動部30-1は、4つの第1磁石32(第1磁石32-1~第1磁石32-4)を有する。
【0108】
複数の第1磁石32は、シャフト棒10の長さ方向(Z軸方向)から見て等角度に配置されていてよい。本例において、一の第1磁石32を第1磁石32-1とし、一の第1磁石32に隣り合う他の第1磁石32を第1磁石32-3する。第1磁石32-1と中心Cとを結ぶ直線と、第1磁石32-3と中心Cとを結ぶ直線とのなす角度を、角度θ'とする。角度θ'は、全ての第1磁石32にわたり等しくてよい。本例においては、角度θ'は4つの第1磁石32にわたり45度である。
【0109】
本例の第1磁石32-1および第1磁石32-2は、第1金属部22-1をX軸方向に挟むように設けられている。第1金属部22-1のX軸方向における両側には、第1磁石32-1の一方の極、および、第1磁石32-2の他方の極が、それぞれ配置されてよい。本例においては、第1金属部22-1のX軸方向における両側には、第1磁石32-1のN極、および、第1磁石32-2のS極が、それぞれ配置されている。
【0110】
本例の第1磁石32-3および第1磁石32-4は、第1金属部22-1をY軸方向に挟むように設けられている。第1金属部22-1のY軸方向における両側には、第1磁石32-3の一方の極、および、第1磁石32-4の他方の極が、それぞれ配置されてよい。本例においては、第1金属部22-1のY軸方向における両側には、第1磁石32-3のN極、および、第1磁石32-4のS極が、それぞれ配置されている。
【0111】
駆動部30は、第1金属部22-1の周囲を回転可能であってよい。本例の駆動部30は、中心Cの位置を中心軸として第1金属部22-1の周囲を回転可能である。また、本例の駆動部30は、中心Cの位置を中心軸としてZ軸方向に移動可能である。
【0112】
図8は、
図7における駆動部30-1のXY面内における内側を拡大した図である。
図8は、
図7のZ軸方向において、第1磁石32が設けられる位置におけるXY断面図である。
図8においては、第2金属部24-1、保持部25および透過部23の図示は省略されている。
【0113】
本例のシャフト棒10は、
図8のXY断面において複数の第2磁石14を有する。第2磁石14の数は、第1磁石32の数と同じであってよい。本例のシャフト棒10-1は、4つの第2磁石14(第2磁石14-1~第2磁石14-4)を有する。
【0114】
複数の第2磁石14は、シャフト棒10の長さ方向(Z軸方向)から見て等角度に配置されていてよい。本例において、一の第2磁石14を第2磁石14-1とし、一の第2磁石14に隣り合う他の第2磁石14を第2磁石14-3する。第2磁石14-1と中心Dとを結ぶ直線と、第2磁石14-3と中心Dとを結ぶ直線とのなす角度は、全ての第2磁石14にわたり等しくてよい。第2磁石14-1と中心Dとを結ぶ直線と、第2磁石14-3と中心Dとを結ぶ直線とのなす角度は、第1磁石32-1と中心Dとを結ぶ直線と、第1磁石32-3と中心Dとを結ぶ直線とのなす角度θ'と等しくてよい。本例においては、角度θ'は4つの第2磁石14にわたり45度である。
【0115】
本例の第2磁石14-1および第2磁石14-2は、シャフト棒10-1の中心DをX軸方向に挟むように設けられている。中心DのX軸方向における両側には、第2磁石14-1の一方の極、および、第2磁石14-2の他方の極が、それぞれ配置されてよい。本例においては、中心DのX軸方向における両側には、第2磁石14-1のN極、および、第2磁石14-2のS極が、それぞれ配置されている。
【0116】
本例の第2磁石14-3および第2磁石14-4は、シャフト棒10-1の中心DをY軸方向に挟むように設けられている。中心DのY軸方向における両側には、第2磁石14-3の一方の極、および、第2磁石14-4の他方の極が、それぞれ配置されてよい。本例においては、中心DのY軸方向における両側には、第2磁石14-3のN極、および、第2磁石14-4のS極が、それぞれ配置されている。
【0117】
XY面内において、第1磁石32と第2磁石14とは、第1金属部22を挟んで互いに対向して配置されてよい。XY面内において、当該第1磁石32の一方の極は、当該第2磁石14の他方の極と対向していてよい。本例においては、第1磁石32-1と第2磁石14-1とは、第1金属部22-1をX軸方向に挟んで、互いに対向して配置される。本例においては、第1磁石32-1のN極は、XY面内において第2磁石14-1のS極と対向している。また、本例においては、第1磁石32-3と第2磁石14-3とは、第1金属部22-1をY軸方向に挟んで、互いに対向して配置される。本例においては、第1磁石32-3のN極は、XY面内において第2磁石14-3のS極と対向している。
【0118】
図9は、1つの第1金属部22に対して複数の駆動部30が設けられる一例を示す図である。本例は、駆動部30が複数設けられる点で
図6に示される例と異なる。本例においては、1つの第1金属部22-1に対して2つの駆動部30(駆動部30-1および駆動部30-3)が設けられている。本例において、駆動部30-1は駆動部30-3よりもZ軸方向における端部S1側に設けられている。
【0119】
本例において、第1磁石32および第2磁石14は、シャフト棒10の長さ方向(Z軸方向)における複数の位置に配置されている。本例においては、第1磁石32-1および第1磁石32-2と、第1磁石32-5および第1磁石32-6とは、Z軸方向において異なる位置に配置されている。本例においては、第2磁石14-1および第2磁石14-2と、第2磁石14-5および第2磁石14-6とは、Z軸方向において異なる位置に配置されている。
【0120】
本例においては、第1磁石32-1および第1磁石32-2と、第2磁石14-1および第2磁石14-2とは、Z軸方向において同じ位置に配置されている。また、本例においては、第1磁石32-5および第1磁石32-6と、第2磁石14-5および第2磁石14-6とは、Z軸方向において同じ位置に配置されている。
【0121】
本例においては、駆動部30-1は第1磁石32-1および第1磁石32-2を有する。また、本例においては、駆動部30-2は第1磁石32-5および第1磁石32-6を有する。
【0122】
本例においては、制御部80は複数の接続部85、複数の台座86および複数の移動部88を有する。本例の制御部80は、2つの接続部85(接続部85-1および接続部85-2)、2つの台座86(台座86-1および台座86-2)および2つの移動部88(移動部88-1および移動部88-2)を有する。本例において、接続部85-1、台座86-1および移動部88-1は、それぞれ接続部85-2、台座86-2および移動部88-2よりもZ軸方向における端部S1側に設けられている。
【0123】
複数の移動部88は、1つのガイド82に設けられる。本例においては、移動部88-1および移動部88-2は、1つのガイド82に設けられる。移動部88-1および移動部88-2は、ガイド82の長さ方向に沿って移動可能なように設けられている。本例の移動部88は、Z軸方向に移動可能である。
【0124】
複数の台座86は、1つの第1金属部22に設けられてよい。本例のおいては、台座86-1および台座86-2は、1つの第1金属部22-1に設けられる。台座86-1および台座86-2の底面(XY面に平行な面)には、第1金属部22が通る開口が設けられていてよい。第1金属部22は、台座86-1および台座86-2の当該開口をシャフト棒10の長さ方向(Z軸方向)に貫通していてよい。台座86-1および台座86-2には、それぞれ駆動部30-1および駆動部30-2が設けられる。駆動部30-1および駆動部30-2は、それぞれ台座86-1および台座86-2の上方において、XY面内に回転可能なように設けられていてよい。
【0125】
接続部85-1は、台座86-1と移動部88-1とを接続する。接続部85-2は、台座86-2と移動部88-2とを接続する。台座86-1は、接続部85-1により移動部88-1との相対的な位置が変わらないように固定される。台座86-2は、接続部85-2により移動部88-2との相対的な位置が変わらないように固定される。
【0126】
制御部80は、複数の移動部88の、ガイド82に沿った移動を制御する。本例においては、制御部80は移動部88-1および移動部88-2の、ガイド82に沿った移動を制御する。制御部80は、当該移動を制御することにより、シャフト棒10の長さ方向への駆動部30-1および駆動部30-2の移動を制御する。制御部80は、駆動部30-1および駆動部30-2のXY面内における回転を、さらに制御する。
【0127】
本例においては、1つの第1金属部22に対して複数の駆動部30が設けられている。このため、1つの第1金属部22に対して1つの駆動部30が設けられている場合よりも、制御部80は、移動部88のガイド82に沿った移動、および、駆動部30のXY面内における回転を、より精密に制御できる。即ち、制御部は、シャフト棒10のZ軸方向に沿った移動、および、シャフト棒10のXY面内における回転を、より精密に制御できる。
【0128】
図10は、本発明の一つの実施形態に係る単結晶育成装置200の一例を示す図である。本例においては、
図1~5に示されるレーザ加工装置100をFZ(Floating Zone)法による単結晶育成装置200として用いる場合について説明する。
【0129】
本例のシャフト棒10-1は、端部ES1において原料棒16を保持する。本例のシャフト棒10-2は、端部ES2において結晶棒18を保持する。結晶棒18は、棒状に形成された単結晶である。原料棒16は、棒状に焼結された多結晶である。原料棒16および結晶棒18の長さ方向は、Z軸方向であってよい。原料棒16の中心軸と結晶棒18の中心軸は、XY面内において等しい位置に配置される。
【0130】
原料棒16は、結晶棒18と同じ材料で形成される。結晶棒18は、例えばSi(シリコン)の単結晶である。原料棒16は、例えばSi(シリコン)の多結晶である。
【0131】
シャフト棒10-1に原料棒16が、シャフト棒10-2に結晶棒18が、それぞれ設置された後、空間21はベーク処理される。空間21がベーク処理された後、空間21には高純度Ar(アルゴン)ガスが導入される。なお、空間21のベーク処理および空間21へのAr(アルゴン)ガス導入については、
図1の説明を参照されたい。
【0132】
制御部80(
図6参照)は、駆動部30-1および駆動部30-2の回転を制御する。一方の駆動部30が、一方の第1金属部22から透過部23の方向に見て一方の方向に回転する場合、他方の駆動部30は、透過部23から他方の第2金属部24の方向に見て他方の方向に回転してよい。本例においては、駆動部30-1が、第1金属部22-1から透過部23の方向に見て一方の方向に回転する場合、駆動部30-2は、透過部23から第2金属部24-2の方向に見て他方の方向に回転する。
【0133】
本例において、第1金属部22-1から透過部23の方向とは、Z軸方向において端部S1から端部S2への方向である。また、本例において、透過部23から第2金属部24-2の方向とは、Z軸方向において端部S1から端部S2への方向である。即ち、本例において、第1金属部22-1から透過部23の方向と、透過部23から第2金属部24-2の方向とは、同じである。
【0134】
本例において、駆動部30-1と駆動部30-2は、端部S1から端部S2への方向に見て反対方向に回転する。
図10において、駆動部30-1の回転方向と、駆動部30-2の回転方向とが、それぞれ黒い矢印にて示されている。
図10は、当該方向に見て駆動部30-1が右回りに、駆動部30-2が左回りに、それぞれ回転する例である。なお、駆動部30-1における回転の角速度の大きさと、駆動部30-2における回転の角速度の大きさとは、等しくてよい。
【0135】
原料棒16の端部S2側の端部を端部EB1とする。結晶棒18の端部S1側の端部を端部EB2とする。レーザ照射部40は、原料棒16の端部EB1および結晶棒18の端部EB2にレーザ光を照射する。原料棒16は一方の方向に、結晶棒18は他方の方向に、それぞれ回転している。端部EB1および端部EB2は、レーザ光の照射により加熱され溶融する。これにより、Z軸方向において端部EB1と端部EB2との間には、溶融帯19が生じる。溶融帯19は、端部EB1と端部EB2との間において溶融帯19の表面張力にて支えられる。
【0136】
制御部80(
図6参照)は、駆動部30-1および駆動部30-2のZ軸方向への移動を制御する。一方の駆動部30が、シャフト棒10の長さ方向(Z軸方向)且つ一方の第1金属部22から透過部23の方向に移動する場合、他方の駆動部30は、シャフト棒10の長さ方向且つ透過部23から他方の第2金属部24の方向に移動してよい。本例においては、駆動部30-1がZ軸方向且つ第1金属部22-1から透過部23の方向に移動する場合、駆動部30-2はZ軸方向且つ透過部23から第2金属部24-2の方向に移動する。なお、一方の駆動部30が移動する速度と他方の駆動部30が移動する速度とは、等しくてよく、異なっていてもよい。
【0137】
上述したとおり、第1金属部22-1から透過部23の方向、および、透過部23から第2金属部24-2の方向は、端部S1から端部S2への方向である。即ち、本例において駆動部30-1および駆動部30-2は、Z軸方向において同じ方向に移動する。
図10において、駆動部30-1および駆動部30-2の移動の方向が、太い矢印にて示されている。
【0138】
以下、本例の単結晶育成装置200による単結晶育成工程を説明する。単結晶育成工程は、ベーク処理工程、ガス導入工程および対象物溶解工程を備えてよい。ベーク処理工程は、真空ポンプ96が空間21を真空引きする真空引き工程、および、空間21を加熱する加熱工程を有してよい。
【0139】
真空引き工程においては、バルブ54が開とされ、且つ、バルブ56およびバルブ58が閉とされた状態で、真空ポンプ96が空間21を真空引きする。加熱工程においては、例えばシャフト棒10に設けられたリボンヒータが空間21を加熱する。空間21は、200℃以上に加熱されてよい。加熱工程は、空間21を真空ポンプ96により真空引きしながら実施されてよい。
【0140】
ベーク処理工程は、ゲッタリング工程をさらに含んでもよい。ゲッタリング工程においては、レーザ照射部40が金属物13にレーザ光を照射することにより、金属物13を加熱する。ゲッタリング工程において、金属物13は1000℃に加熱されてよい。
【0141】
本例の単結晶育成装置200は、空間21が密閉部20により密閉されている。このため、ベーク処理工程を実施することにより、空間21の内部に吸着した水は空間21の外部に離脱しやすくなる。
【0142】
ガス導入工程は、ベーク処理工程の後に実施される。ガス導入工程においては、バルブ54が閉とされ、且つ、バルブ56およびバルブ58が開とされた状態で、ガス供給源98が空間21にガスを供給する。当該ガスは、高純度Ar(アルゴン)ガスであってよい。管74から空間21に供給されたガスは、Z軸方向に透過部23の内部を通過する。Z軸方向に透過部23の内部を通過したガスは、管76を通り、ガス出口99から密閉部20の外部に排出される。ベーク処理工程の後にガス導入工程を実施することにより、空間21におけるO2(酸素)分圧を極低圧力(例えば1×10-30atm未満)にできる。
【0143】
ガス導入工程においては、ガス供給源98は空間21に高圧ガスを供給してもよい。当該高圧ガスの圧力は、2気圧以上1000気圧以下であってよい。本例の単結晶育成装置200は空間21が密閉部20による密閉されているので、空間21に導入されたガスの圧力を高圧にできる。
【0144】
対象物溶解工程は、ガス供給源98が空間21にガスを供給しながら実施されてよい。対象物溶解工程においては、レーザ照射部40が原料棒16および結晶棒18にレーザ光を照射することにより、原料棒16および結晶棒18を溶解し、溶融帯19を生成させる。本例の単結晶育成装置200によれば、ガス導入工程により空間21におけるO2(酸素)分圧を極低圧力(例えば1×10-30atm未満)にできるので、溶融帯19が酸化しにくい。
【0145】
以上説明したとおり、本例の単結晶育成装置200は、空間21が密閉部20により密閉されているので、空間21をベーク処理して空間21におけるO2(酸素)分圧を極低圧力にし、且つ、空間21に導入されたガス(例えば高純度Ar(アルゴン)ガス)の圧力を高圧にできる。このため、本例の単結晶育成装置200によれば、極低酸素濃度且つ高圧ガス濃度の環境下において単結晶を育成できる。このため、本例の単結晶育成装置200によれば、高純度の単結晶を育成できる。
【0146】
ベローズによりシャフト棒を移動させる単結晶育成装置が知られている。ベローズとは、蛇腹構造を有する伸縮可能な部材を指す。当該単結晶育成装置においては、この伸縮機能によりシャフト棒を移動させている。しかしながら、ベローズの気密性はガスケット接続の気密性よりも低くなりやすい。このため、ベローズを用いた単結晶育成装置の場合、ベーク処理がされてもO2(酸素)分圧を極低圧力(例えば1×10-30atm未満)にすることが困難である。言い換えると、ベローズを用いた単結晶育成装置の場合、単結晶を育成する空間にO2(酸素)が残留しやすい。このため、ベーク処理の後に高純度Ar(アルゴン)ガスが導入されても、残留したO2(酸素)の存在により当該Ar(アルゴン)ガスが汚染されやすい。このため、ベローズを用いた単結晶育成装置は、本例の単結晶育成装置200と比較して、高純度の単結晶を育成しにくい。
【0147】
また、回転するシャフト棒を磁気シールにより密封した単結晶育成装置が知られている。磁気シールとは、磁性流体により回転体と回転体の外部との間を密封する密封装置である。しかしながら、磁気シールは高温の環境下になるほど磁性が弱くなりやすいので、高温(例えば200℃以上)の環境下においては、当該磁気シールにより密封される空間の気密性が低下しやすい。このため、磁気シールを用いた単結晶育成装置の場合、当該磁気シールにより密封される空間をベーク処理することが困難である。このため、単結晶を育成する空間にO2(酸素)が残留しやすい。このため、ベーク処理の後に高純度Ar(アルゴン)ガスが導入されても、残留したO2(酸素)の存在により当該Ar(アルゴン)ガスが汚染されやすい。このため、磁気シールを用いた単結晶育成装置は、本例の単結晶育成装置200と比較して、高純度の単結晶を育成しにくい。
【0148】
以上、本発明を実施の形態を用いて説明したが、本発明の技術的範囲は上記実施の形態に記載の範囲には限定されない。上記実施の形態に、多様な変更または改良を加えることが可能であることが当業者に明らかである。その様な変更または改良を加えた形態も本発明の技術的範囲に含まれ得ることが、特許請求の範囲の記載から明らかである。
【0149】
特許請求の範囲、明細書、および図面中において示した装置、システム、プログラム、および方法における動作、手順、ステップ、および段階等の各処理の実行順序は、特段「より前に」、「先立って」等と明示しておらず、また、前の処理の出力を後の処理で用いるのでない限り、任意の順序で実現しうることに留意すべきである。特許請求の範囲、明細書、および図面中の動作フローに関して、便宜上「まず、」、「次に、」等を用いて説明したとしても、この順で実施することが必須であることを意味するものではない。
[項目1]
対象物を保持するシャフト棒と、
前記シャフト棒が移動する空間を密閉する密閉部と、
前記密閉部の外部に設けられ、前記シャフト棒を非接触で駆動する駆動部と、
を備え、
前記密閉部は、非磁性金属で形成された第1金属部を有し、
前記第1金属部は、前記空間の一部において前記空間の周囲を囲んでいる、
レーザ加工装置。
[項目2]
前記駆動部は、前記第1金属部に配置される、項目1に記載のレーザ加工装置。
[項目3]
前記駆動部は、第1磁石を有し、
前記シャフト棒は、第2磁石を有し、
前記駆動部は、前記第1磁石と前記第2磁石との吸着力により、前記シャフト棒を非接触で駆動する、
項目1または2に記載のレーザ加工装置。
[項目4]
前記駆動部は、複数の前記第1磁石を有し、
前記シャフト棒は、前記第1磁石と同じ数の複数の前記第2磁石を有し、
複数の前記第1磁石は、前記シャフト棒の長さ方向から見て等角度に配置され、
複数の前記第2磁石は、前記シャフト棒の長さ方向から見て等角度に配置されている、
項目3に記載のレーザ加工装置。
[項目5]
前記第1磁石は、前記シャフト棒の長さ方向における複数の位置にそれぞれ配置され、
前記第2磁石は、前記シャフト棒の長さ方向における前記複数の位置にそれぞれ配置されている、
項目3または4に記載のレーザ加工装置。
[項目6]
前記駆動部は、前記シャフト棒の長さ方向に移動可能であり、
前記シャフト棒は、前記駆動部の前記長さ方向への移動に伴い、前記長さ方向に移動可能である、
項目3から5のいずれか一項に記載のレーザ加工装置。
[項目7]
前記駆動部は、前記シャフト棒の長さ方向に平行な方向を中心軸として回転可能であり、
前記シャフト棒は、前記駆動部の回転に伴い、前記シャフト棒の前記長さ方向に平行な中心軸を中心に回転可能である、
項目3から6のいずれか一項に記載のレーザ加工装置。
[項目8]
前記シャフト棒に、前記対象物に隣接して、酸素または水の少なくとも一方を吸収および貯蔵する金属物が設けられている、項目1から7のいずれか一項に記載のレーザ加工装置。
[項目9]
前記金属物は、チタン、バナジウム、鉄、ジルコニウム、ニオブ、モリブデンおよびタンタルの少なくともいずれかまたはこれらから選択された複数の金属を含む合金である、項目8に記載のレーザ加工装置。
[項目10]
前記対象物にレーザ光を照射するレーザ照射部をさらに備える、項目1から9のいずれか一項に記載のレーザ加工装置。
[項目11]
前記密閉部は、前記レーザ光を透過する材料で形成された透過部をさらに有する、項目10に記載のレーザ加工装置。
[項目12]
前記密閉部は、
前記シャフト棒の長さ方向における前記透過部の端部に設けられ、非磁性金属で形成された第2金属部と、
前記シャフト棒の長さ方向における前記第1金属部の端部に設けられ、非磁性金属で形成され、前記シャフト棒を保持する保持部と、
をさらに有し、
前記第2金属部と前記保持部とは、ガスケットを挟んで接続されている、
項目11に記載のレーザ加工装置。
[項目13]
前記密閉部は、前記シャフト棒の長さ方向において、前記透過部の側部と前記第2金属部との間に設けられたOリングをさらに有する、項目12に記載のレーザ加工装置。
[項目14]
前記保持部には、前記シャフト棒が通る貫通孔が設けられ、
前記保持部は、前記シャフト棒の径方向において、前記貫通孔の内壁と前記シャフト棒の表面との間に設けられたボールベアリングを含む、
項目12または13に記載のレーザ加工装置。
[項目15]
前記保持部は、複数の前記ボールベアリングを含み、
複数の前記ボールベアリングは、前記シャフト棒の長さ方向から見て等角度に配置されている、
項目14に記載のレーザ加工装置。
[項目16]
前記ボールベアリングは、前記シャフト棒の長さ方向における複数の位置にそれぞれ配置されている、項目14または15に記載のレーザ加工装置。
[項目17]
前記空間は、前記貫通孔の前記内壁と前記シャフト棒との間に設けられた空隙を含み、
前記空隙は、2気圧以上の気圧に対して耐圧性を有する、
項目14から16のいずれか一項に記載のレーザ加工装置。
[項目18]
前記保持部、前記シャフト棒および前記駆動部が、100℃以上の温度に対して耐熱性を有する、項目12から17のいずれか一項に記載のレーザ加工装置。
[項目19]
前記シャフト棒を2つ備え、
前記駆動部を2つ備え、
前記密閉部は、前記第1金属部を2つ有し、前記第2金属部を2つ有し、前記保持部を2つ有し、
一方の前記駆動部は一方の前記シャフト棒を駆動し、他方の前記駆動部は他方の前記シャフト棒を駆動し、
一方の前記第1金属部は一方の前記シャフト棒が移動する前記空間の周囲を囲み、他方の前記第1金属部は他方の前記シャフト棒が移動する前記空間の周囲を囲み、
一方の前記保持部は一方の前記シャフト棒を保持し、他方の前記保持部は他方の前記シャフト棒を保持し、
一方の前記第2金属部は前記透過部の一方の前記端部に設けられ、他方の前記第2金属部は前記透過部の他方の前記端部に設けられ、
一方の前記保持部は前記第1金属部の一方の前記端部に設けられ、他方の前記保持部は前記第1金属部の他方の前記端部に設けられ、
一方の前記第2金属部と一方の前記保持部とはガスケットを挟んで接続され、他方の前記第2金属部と他方の前記保持部とはガスケットを挟んで接続される、
項目12から18のいずれか一項に記載のレーザ加工装置。
[項目20]
一方の前記駆動部が、一方の前記第1金属部から前記透過部の方向に見て一方の方向に回転する場合、他方の前記駆動部は、前記透過部から他方の前記第2金属部の方向に見て他方の方向に回転する、
項目19に記載のレーザ加工装置。
【符号の説明】
【0150】
10・・・シャフト棒、12・・・対象物、13・・・金属物、14・・・第2磁石、15・・・ロッド、16・・・原料棒、18・・・結晶棒、19・・・溶融帯、20・・・密閉部、21・・・空間、22・・・第1金属部、23・・・透過部、24・・・第2金属部、25・・・保持部、26・・・下面、27・・・上面、28・・・内壁、29・・・Oリング、30・・・駆動部、32・・・第1磁石、36・・・内壁、40・・・レーザ照射部、50・・・開口、52・・・側部、54・・・バルブ、56・・・バルブ、58・・・バルブ、60・・・ボールベアリング、62・・・貫通孔、64・・・空隙、66・・・空隙、70・・・ガスケット、72・・・管、74・・・管、76・・・管、80・・・制御部、82・・・ガイド、84・・・固定部、85・・・接続部、86・・・台座、88・・・移動部、90・・・固定板、96・・・真空ポンプ、98・・・ガス供給源、99・・・ガス出口、100・・・レーザ加工装置、200・・・単結晶育成装置