IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ ピーピージー・インダストリーズ・オハイオ・インコーポレイテッドの特許一覧

特許7350060導電性コーティングの状態の指標として導電性コーティングの抵抗を監視するためのシステムおよび方法
<>
  • 特許-導電性コーティングの状態の指標として導電性コーティングの抵抗を監視するためのシステムおよび方法 図1
  • 特許-導電性コーティングの状態の指標として導電性コーティングの抵抗を監視するためのシステムおよび方法 図2A
  • 特許-導電性コーティングの状態の指標として導電性コーティングの抵抗を監視するためのシステムおよび方法 図2B
  • 特許-導電性コーティングの状態の指標として導電性コーティングの抵抗を監視するためのシステムおよび方法 図3
  • 特許-導電性コーティングの状態の指標として導電性コーティングの抵抗を監視するためのシステムおよび方法 図4
  • 特許-導電性コーティングの状態の指標として導電性コーティングの抵抗を監視するためのシステムおよび方法 図5
  • 特許-導電性コーティングの状態の指標として導電性コーティングの抵抗を監視するためのシステムおよび方法 図6
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2023-09-14
(45)【発行日】2023-09-25
(54)【発明の名称】導電性コーティングの状態の指標として導電性コーティングの抵抗を監視するためのシステムおよび方法
(51)【国際特許分類】
   H05B 3/00 20060101AFI20230915BHJP
   H05B 3/20 20060101ALI20230915BHJP
   H05B 3/84 20060101ALI20230915BHJP
   G01N 27/20 20060101ALI20230915BHJP
【FI】
H05B3/00 310C
H05B3/00 320Z
H05B3/20 386
H05B3/20 392A
H05B3/84
G01N27/20 A
【請求項の数】 14
(21)【出願番号】P 2021512485
(86)(22)【出願日】2019-08-27
(65)【公表番号】
(43)【公表日】2021-12-16
(86)【国際出願番号】 IB2019057173
(87)【国際公開番号】W WO2020049405
(87)【国際公開日】2020-03-12
【審査請求日】2021-05-06
(31)【優先権主張番号】62/727,229
(32)【優先日】2018-09-05
(33)【優先権主張国・地域又は機関】US
(73)【特許権者】
【識別番号】399074983
【氏名又は名称】ピーピージー・インダストリーズ・オハイオ・インコーポレイテッド
【氏名又は名称原語表記】PPG Industries Ohio,Inc.
(74)【代理人】
【識別番号】100078282
【弁理士】
【氏名又は名称】山本 秀策
(74)【代理人】
【識別番号】100113413
【弁理士】
【氏名又は名称】森下 夏樹
(72)【発明者】
【氏名】フランソワ, エマニュエル シー.
(72)【発明者】
【氏名】モルマー, スティーブン ジェイ.
(72)【発明者】
【氏名】ラクダワラ, クシュルー エイチ.
(72)【発明者】
【氏名】ドゥアルテ, ニコラス ビー.
【審査官】杉浦 貴之
(56)【参考文献】
【文献】特表2015-530303(JP,A)
【文献】特開2006-039173(JP,A)
【文献】欧州特許出願公開第01648200(EP,A1)
【文献】特開2000-347746(JP,A)
【文献】特表2018-512318(JP,A)
【文献】特開平05-258838(JP,A)
【文献】特開平08-124653(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
H05B 3/00
H05B 3/20
H05B 3/84
G01N 27/20
(57)【特許請求の範囲】
【請求項1】
導電性コーティングを含む物品の状態を監視するためのシステムであって、前記システムは、
前記導電性コーティングの電気的特性を感知するように構成された、前記物品の前記導電性コーティングに電気的に接続可能な測定デバイスと、
前記測定デバイスに電気的に接続されたプロセッサであって、前記プロセッサは、
前記導電性コーティングの前記感知された電気的特性を前記測定デバイスから受信し、
前記受信された感知された電気的特性に基づいて前記導電性コーティングの抵抗を決定し、
前記導電性コーティングの前記決定された抵抗に基づいて、前記物品の推定残存使用可能寿命を決定し、
前記決定された推定残存使用可能寿命を表す出力信号を生成するように構成される、プロセッサと、を含み、
前記推定残存使用可能寿命は、
前記導電性コーティングの前記決定された抵抗と、
前記決定された抵抗に先行する所定の期間の間の前記導電性コーティングについての少なくとも1つの計算されたローリングまたは移動平均抵抗と
の間の差に基づき、
前記少なくとも1つの計算されたローリングまたは移動平均抵抗は、前記所定の期間にわたって特定の間隔またはサンプリングレートで得られた前記導電性コーティングについてのローリングまたは移動抵抗測定値を平均することによって計算される、システム。
【請求項2】
前記導電性コーティングの前記電気的特性が、前記コーティングの抵抗、前記コーティングを通る電流、および/または前記導電性コーティングの電圧降下を含む、請求項1に記載のシステム。
【請求項3】
前記物品の前記推定残存使用可能寿命は、前記導電性コーティングの実質的な退化が生じるまでの推定時間を含む、請求項1に記載のシステム。
【請求項4】
前記推定残存使用可能寿命を表す前記生成された出力信号を前記プロセッサから受信し、前記推定残存使用可能寿命が所定の値を下回るときに前記物品の保守が必要であることを示すアラートをユーザに提供するように構成されたフィードバックデバイスをさらに備える、請求項1に記載のシステム。
【請求項5】
前記推定残存使用可能寿命を表す前記生成された出力信号を前記プロセッサから受信し、前記推定残存使用可能寿命に基づいて決定された期間内に前記物品の破損の可能性を示すアラートを提供するように構成されたフィードバックデバイスをさらに備える、請求項1に記載のシステム。
【請求項6】
前記プロセッサは、前記決定された抵抗と閾値抵抗との間の差に基づいて、前記コーティングされた物品の前記推定残存使用可能寿命を決定するように構成される、請求項1に記載のシステム。
【請求項7】
前記プロセッサは、前記決定された抵抗と前記導電性コーティングについて計算された平均抵抗との間の差に基づいて、前記コーティングされた物品の前記推定残存使用可能寿命を決定するように構成される、請求項1に記載のシステム。
【請求項8】
前記プロセッサは、前記導電性コーティングの前記決定された抵抗の変化率に基づいて、前記推定残存使用可能寿命を決定するように構成される、請求項1に記載のシステム。
【請求項9】
前記推定残存使用可能寿命は、複数の先行する時間間隔にわたる前記導電性コーティングの前記決定された抵抗の変化率と、前記複数の時間間隔のうちの単一の直前の時間間隔にわたる前記決定された抵抗の変化率との間の差に基づく、請求項1に記載のシステム。
【請求項10】
前記導電性コーティングを加熱するために前記導電性コーティングに電流を供給するための、前記導電性コーティングに電気的に接続可能な電源をさらに備える、請求項1に記載のシステム。
【請求項11】
前記プロセッサによって生成された前記信号は、前記導電性コーティングの前記推定残存使用可能寿命が所定の値未満であるとき、前記電源に、前記導電性コーティングへの前記電流の印加を停止させる、請求項10に記載のシステム。
【請求項12】
前記導電性コーティングの温度を測定するように構成された温度センサをさらに備え、前記プロセッサは、前記温度センサから前記測定された温度を受信し、前記測定された温度に基づいて前記導電性コーティングの前記決定された抵抗を修正して、前記導電性コーティングの抵抗に対する温度変化の影響を考慮するように構成される、請求項1に記載のシステム。
【請求項13】
透明材の状態を監視する方法であって、
測定デバイスを用いて前記透明材の導電性コーティングの電気的特性を感知することと、
プロセッサを用いて、前記測定デバイスによって感知された前記感知された電気的特性に基づいて前記導電性コーティングの抵抗を決定することと、
プロセッサを用いて、前記決定された抵抗に基づいて、前記透明材の推定残存使用可能寿命を決定することと、を含み、
前記推定残存使用可能寿命は、
前記導電性コーティングの前記決定された抵抗と、
前記決定された抵抗に先行する所定の期間の間の前記導電性コーティングについての少なくとも1つの計算されたローリングまたは移動平均抵抗と
の間の差に基づき、
前記少なくとも1つの計算されたローリングまたは移動平均抵抗は、前記所定の期間にわたって特定の間隔またはサンプリングレートで得られた前記導電性コーティングについてのローリングまたは移動抵抗測定値を平均することによって計算される、方法。
【請求項14】
前記推定残存使用可能寿命を決定することは、複数の先行する時間間隔にわたる前記導電性コーティングの前記決定された抵抗の変化率と、前記複数の時間間隔のうちの単一の直前の時間間隔にわたる前記決定された抵抗の変化率との間の差を決定することを含む、請求項13に記載の方法。
【発明の詳細な説明】
【技術分野】
【0001】
本開示は、導電性コーティングの抵抗に基づいて導電性コーティングを含む物品の状態を監視するためのシステムおよび方法に関する。
【背景技術】
【0002】
航空機のフロントガラスおよび乗客用窓は、フロントガラスおよび窓の表面を加熱して水分を除去し、視界を改善するための防曇/除氷システムを含む。そのような防曇/除氷システムは、ヒータコントローラおよび/または電源に電気的に接続され、電流がコーティングまたはフィルムを通過するときに熱を生成するように構成される、透明または半透明の導電性および抵抗性コーティングまたはフィルムを含むことができる。
【0003】
窓加熱システムとともに使用することができる、そのような透明導電性コーティングを製造するための様々な異なる材料が知られている。一部の窓は、インジウムスズ酸化物(ITO)などの導電性金属酸化物の薄膜を含む。ITOは、ターゲットからのスパッタリングによって基板上に形成することができる。ターゲットは、スパッタリング中に基板に対して静止していてもよく、または所定のパターンに従って基板の表面を横切って移動してもよい。
【0004】
導電性(例えば、ITO)コーティングに電力を印加するために、コーティングは、バスバーおよびワイヤリードを含む加熱装置を介して電源に電気的に接続することができる。電源は、DC電源またはAC電源であり得る。長期の使用(例えば、電流への長期の曝露)の後、またはコーティングもしくは窓との衝突によって引き起こされる損傷などの損傷により、導電性コーティングは劣化または退化する可能性がある。窓は、コーティングが劣化するかまたは許容限度を超えて退化すると、修理または交換されるべきである。コーティングが退化した窓を継続的に使用すると、コーティングまたは窓に亀裂が入ったり、破損したりして、緊急事態が発生する可能性がある。
【発明の概要】
【課題を解決するための手段】
【0005】
本発明は、導電性コーティングを含む物品の状態を監視するためのシステムを含むことができる。システムは、導電性コーティングの電気的特性を感知するように構成された、物品の導電性コーティングに電気的に接続可能な測定デバイスと、測定デバイスに電気的に接続されたプロセッサとを含むことができる。プロセッサは、測定デバイスから導電性コーティングの感知された電気的特性を受信し、受信した感知電気的特性に基づいて導電性コーティングの抵抗を決定し、導電性コーティングの決定抵抗に基づいて物品の推定残存使用可能寿命を決定し、決定推定残存使用可能寿命を表す出力信号を生成するように構成される。
【0006】
本発明はまた、車両用のフロントガラス加熱システムを含むことができる。システムは、透明材と、電流が導電性コーティングに印加されたときに熱を発生するように構成された、透明材の一部分上の導電性コーティングと、導電性コーティングに接続され、導電性コーティングを加熱する電流を発生するように構成された電源と、導電性コーティングに電気的に接続可能であり、電流が導電性コーティングに印加されたときに導電性コーティングの電気的特性を感知するように構成された測定デバイスと、電源および測定デバイスに電気的に接続されたプロセッサとを含むことができる。プロセッサは、電源に、導電性コーティングに電源から電流を印加させることと、導電性コーティングの感知された電気的特性を測定デバイスから受信することと、感知された電気的特性に基づいて導電性コーティングの抵抗を決定することと、導電性コーティングの決定された抵抗に基づいて導電性コーティングから電源を切断する信号を生成すること、とを行わせるように構成される。
【0007】
本発明はまた、透明材の状態を監視する方法を含むことができる。この方法は、測定デバイスを用いて透明材の導電性コーティングの電気的特性を感知することと、プロセッサを用いて、測定デバイスによって感知された感知電気的特性に基づいて導電性コーティングの抵抗を決定することと、プロセッサを用いて、決定された抵抗に基づいて透明材の推定残存使用可能寿命を決定することとを含む。
本明細書は、例えば、以下の項目も提供する。
(項目1)
導電性コーティングを含む物品の状態を監視するためのシステムであって、前記システムは、
前記導電性コーティングの電気的特性を感知するように構成された、前記物品の前記導電性コーティングに電気的に接続可能な測定デバイスと、
前記測定デバイスに電気的に接続されたプロセッサであって、前記プロセッサは、
前記導電性コーティングの前記感知された電気的特性を前記測定デバイスから受信し、
前記受信された感知電気的特性に基づいて前記導電性コーティングの抵抗を決定し、
前記導電性コーティングの前記決定抵抗に基づいて、前記物品の推定残存使用可能寿命を決定し、
前記決定された推定残存使用可能寿命を表す出力信号を生成するよう構成されるプロセッサと、を含む、システム。
(項目2)
前記導電性コーティングの前記電気的特性が、前記コーティングの抵抗、前記コーティングを通る電流、および/または前記導電性コーティングの電圧降下を含む、項目1に記載のシステム。
(項目3)
前記物品の前記推定残存使用可能寿命は、前記導電性コーティングの実質的な退化が生じるまでの推定時間を含む、項目1に記載のシステム。
(項目4)
前記推定残存使用可能寿命を表す前記生成された出力信号を前記プロセッサから受信し、前記推定残存使用可能寿命が所定の値を下回るときに前記物品の保守が必要であることを示すアラートをユーザに提供するように構成されたフィードバックデバイスをさらに備える、項目1に記載のシステム。
(項目5)
前記推定残存使用可能寿命を表す前記生成された出力信号を前記プロセッサから受信し、前記推定残存使用可能寿命に基づいて決定された期間内に前記物品の破損の可能性を示すアラートを提供するように構成されたフィードバックデバイスをさらに備える、項目1に記載のシステム。
(項目6)
前記プロセッサは、前記決定抵抗と閾値抵抗との間の差に基づいて、前記コーティングされた物品の前記推定残存使用可能寿命を決定するように構成される、項目1に記載のシステム。
(項目7)
前記プロセッサは、前記決定抵抗と前記導電性コーティングについて計算された平均抵抗との間の差に基づいて、前記コーティングされた物品の前記推定残存使用可能寿命を決定するように構成される、項目1に記載のシステム。
(項目8)
前記プロセッサは、前記導電性コーティングの前記決定抵抗の変化率に基づいて、前記推定残存使用可能寿命を決定するように構成される、項目1に記載のシステム。
(項目9)
前記推定残存使用可能寿命は、複数の先行する時間間隔にわたる前記導電性コーティングの前記決定抵抗の変化率と、前記複数の時間間隔のうちの単一の直前の時間間隔にわたる前記決定抵抗の変化率との間の差に基づく、項目1に記載のシステム。
(項目10)
前記導電性コーティングを加熱するために前記導電性コーティングに電流を供給するための、前記導電性コーティングに電気的に接続可能な電源をさらに備える、項目1に記載のシステム。
(項目11)
前記プロセッサによって生成された前記信号は、前記導電性コーティングの前記推定残存使用可能寿命が所定の値未満であるとき、前記電源に、前記導電性コーティングへの前記電流の印加を停止させる、項目10に記載のシステム。
(項目12)
前記導電性コーティングの温度を測定するように構成された温度センサをさらに備え、前記プロセッサは、前記温度センサから前記測定された温度を受信し、前記測定温度に基づいて前記導電性コーティングの前記決定抵抗を修正して、前記導電性コーティングの抵抗に対する温度変化の影響を考慮するように構成される、項目1に記載のシステム。
(項目13)
車両のためのフロントガラス加熱システムであって、
透明材と、
前記透明材の一部上の導電性コーティングであって、電流が前記導電性コーティングに印加されたときに熱を発生するように構成された導電性コーティングと、
前記導電性コーティングに接続され、前記導電性コーティングを加熱する前記電流を生成するように構成された電源と、
前記導電性コーティングに電気的に接続可能であり、前記電流が前記導電性コーティングに印加されたときに前記導電性コーティングの電気的特性を感知するように構成された測定デバイスと、
前記電源および前記測定デバイスに電気的に接続されたプロセッサであって、前記プロセッサは、
前記電源に、前記電源から前記導電性コーティングに前記電流を印加させ、
前記導電性コーティングの前記感知電気的特性を前記測定デバイスから受信し、
前記感知電気的特性に基づいて前記導電性コーティングの抵抗を決定し、
前記導電性コーティングの前記決定抵抗に基づいて、前記導電性コーティングから前記電源を切断するための信号を生成するように構成されているプロセッサと、を含む、車両のためのフロントガラス加熱システム。
(項目14)
前記プロセッサは、前記導電性コーティングの前記決定抵抗と前記導電性コーティングの計算された平均抵抗との間の差が所定の値を超えるとき、前記導電性コーティングから前記電源を切断するための前記信号を生成する、項目13に記載のシステム。
(項目15)
前記透明材が、第1のシートと、第2のシートと、前記第1のシートと前記第2のシートとの間の中間層とを備える、項目13に記載のフロントガラス加熱システム。
(項目16)
前記第1のシートおよび前記第2のシートは、プラスチックおよび/またはガラスを含み、前記中間層は、前記第1のシートおよび/または前記第2のシートよりも柔らかいプラスチックを含む、項目15に記載のフロントガラス加熱システム。
(項目17)
前記導電性コーティングが、金属酸化物、ドープされた金属酸化物、貴金属を含む反射層、誘電体層、および/または金属層を含む、項目13に記載のフロントガラス加熱システム。
(項目18)
前記電源と前記導電性コーティングとの間に前記生成された電流を印加するための回路をさらに備え、前記回路は、前記導電性コーティングに電気的に結合されたバスバーを備える、項目13に記載のフロントガラス加熱システム。
(項目19)
透明材の状態を監視する方法であって、
測定デバイスを用いて前記透明材の導電性コーティングの電気的特性を感知することと、
プロセッサを用いて、前記測定デバイスによって感知された前記感知電気的特性に基づいて前記導電性コーティングの抵抗を決定することと、
プロセッサを用いて、前記決定抵抗に基づいて、前記透明材の推定残存使用可能寿命を決定することと、を含む、方法。
(項目20)
前記推定残存使用可能寿命を決定することは、複数の先行する時間間隔にわたる前記導電性コーティングの前記決定抵抗の変化率と、前記複数の時間間隔のうちの単一の直前の時間間隔にわたる前記決定抵抗の変化率との間の差を決定することを含む、項目19に記載の方法。
【0008】
本開示のこれらおよび他の特徴および特性、ならびに構造の関連要素の操作方法および機能、ならびに部品の組合せおよび製造の経済性は、添付の図面を参照して以下の説明および添付の特許請求の範囲を考慮するとより明らかになり、添付の図面は全て本明細書の一部を形成し、同様の参照番号は様々な図において対応する部品を示す。しかしながら、図面は例示および説明のみを目的とするものであり、本発明の限定の定義を意図するものではないことを明確に理解されたい。
【0009】
さらなる特徴ならびに他の例および利点は、図面を参照してなされる以下の詳細な説明から明らかになるであろう。
【図面の簡単な説明】
【0010】
図1】導電性コーティングおよび導電性コーティングの状態を監視するためのシステムを含むフロントガラスおよび乗客窓を含む航空機の概略図である。
図2A】コーティングの状態を監視するためのシステムとともに使用される導電性コーティングを含む透明材の上面図である。
図2B】線2A-2Aに沿った図2Aの透明材の断面図である。
図3図2Aおよび2Bの透明材および導電性コーティングのための加熱システムの概略図である。
図4図2Aおよび2Bの透明材および導電性コーティングのための監視システムの概略図である。
図5】コーティングが破損する前の導電性コーティングについて測定された電流の変化を示すグラフである。
図6】透明材の状態を監視するプロセスを説明するフローチャートである。
【発明を実施するための形態】
【0011】
本明細書で使用されるように、用語「右」、「左」、「上部」、「底部」、およびそれらの派生語は、図面において方向付けられるように本発明に関連するものとする。しかしながら、以下の詳細な説明の目的のために、本発明は、反対に明示的に指定されている場合を除いて、様々な代替の変形形態およびステップシーケンスを想定し得ることを理解されたい。さらに、任意の実施例以外で、または他に示される場合以外で、例えば、本明細書および特許請求の範囲において使用される成分の量を表す全ての数は、全ての場合において、用語「約」によって修飾されると理解されるべきである。したがって、反対の指示がない限り、以下の明細書および添付の特許請求の範囲に記載される数値パラメータは、本発明によって得られる所望の特性に応じて変化し得る近似値である。少なくとも、均等論の適用を特許請求の範囲に限定する試みとしてではなく、各数値パラメータは、少なくとも、報告された有効桁数に照らして、通常の丸め技法を適用することによって解釈されるべきである。
【0012】
本発明の広い範囲を示す数値範囲およびパラメータは近似値であるにもかかわらず、特定の実施例に示される数値は、可能な限り正確に報告される。しかしながら、いずれの数値も、それぞれの試験測定値に見られる標準偏差から必然的に生じる特定の誤差を本質的に含む。
【0013】
また、本明細書に列挙された任意の数値範囲は、その中に含まれる全ての部分範囲を含むことを意図していることを理解されたい。例えば、「1から10」の範囲は、列挙された最小値1と列挙された最大値10との間(これらを含む)の任意および全ての部分範囲、即ち、1以上の最小値で始まり、10以下の最大値で終わる全ての部分範囲、ならびにその間の全ての部分範囲(例えば、1から6.3または5.5から10または2.7から6.1)を含むことを意図するものである。
【0014】
加えて、本出願では、「または」の使用は、「および/または」が特定の事例で明示的に使用され得るとしても、特に明記されない限り、「および/または」を意味する。本出願では、特に明記しない限り、単数形の使用は複数形を含み、複数形は単数形を包含する。さらに、本明細書で使用される場合、単数形の「a」、「an」、および「the」は、文脈が明らかにそうでないことを示さない限り、複数の指示対象を含む。例えば、本発明は、「1つの」導電性コーティング、「1つの」プロセッサ、または「1つの」測定デバイスに関して本明細書で説明されるが、これらの構成要素のうちのいずれか、または本明細書で列挙される任意の他の構成要素のうちの1つ以上が、本開示の範囲内で使用され得る。
【0015】
本明細書で使用する「通信」および「通信する」という用語は、1つまたは複数の信号、メッセージ、コマンド、または他のタイプのデータの受信または転送を指す。1つのユニットまたは構成要素が別のユニットまたは構成要素と通信することは、1つのユニットまたは構成要素が、他のユニットまたは構成要素からデータを直接または間接的に受信すること、および/または他のユニットまたは構成要素にデータを送信することが可能であることを意味する。これは、本質的に有線および/または無線である可能性のある直接的または間接的な接続を指し得る。さらに、2つのユニットまたは構成要素は、第1のユニットまたは構成要素と第2のユニットまたは構成要素との間で送信されるデータが変更され、処理され、ルーティングなどされ得る場合でも、互いに通信することができる。例えば、第1のユニットが受動的にデータを受信し、第2のユニットに能動的にデータを送信しなくても、第1のユニットは第2のユニットと通信することができる。別の例として、中間ユニットが1つのユニットからのデータを処理し、処理されたデータを第2のユニットに送信する場合、第1のユニットは第2のユニットと通信することができる。多数の他の構成も可能であることが理解されよう。
【0016】
図面を参照すると、本開示は、概して、導電性コーティング30を含む物品の状態を監視するためのシステム200(図4に示す)に関する。本明細書で使用される場合、「導電性コーティング」は、電流を伝導する能力を有する材料を指すことができる。「導電性コーティング」は、導電性層、フィルム、膜、および物品の部分に適用されるおよび/または物品の部分の間に配置される他の表面を含むことができる。物品は、航空機、陸上車両、または船舶などの車両の窓またはフロントガラスなどの透明材であり得る。透明材は、一般に、個人が透明材を通して物体を見ることを可能にするのに十分な可視光透過率を有する透明または半透明の物品である。透明材は、少なくとも10%の可視光透過率を有することができる。物品はまた、他の種類の基材、パネル、シート、壁、および表面を含み得る。
【0017】
以下の説明では、物品は、航空機のフロントガラスまたは窓などの航空機の透明材として記載される。しかしながら、本開示のシステム200は、先に記載された物品または本明細書に列挙されていない他の物品のいずれかとともに使用することができる。航空機用透明材の導電性コーティング30は、コーティング30に電流が印加されたときに温度が上昇するように構成されたヒータフィルムとすることができる。導電性コーティング30は、湿気、霧、および/または氷が透明材の表面上に蓄積するのを防止するように構成された窓加熱装置またはシステム100において使用することができる。本明細書に開示されるシステム200はまた、表面を加熱するために包装内に位置付けられる抵抗ワイヤを含む、ヒートマットまたは類似デバイスの状態を監視するために使用されることができる。そのような場合、システム200は、時間の経過とともに抵抗性ワイヤを通過する電流の抵抗の変化を監視するように構成され得る。導電性コーティング30は、静電低減層またはp静電層などの、透明材の別のタイプの導電層であってもよい。p静電層は、帯電防止特性および/または静電気消散特性を有することができ、航空機の運航中、特に着陸中に透明材に集まる静電気を排出または消散するように構成することができる。
【0018】
本明細書に開示されるシステム200は、長期間の使用、環境要素への曝露による導電性コーティング30の劣化によって引き起こされる変化、および/または物体との突然の衝撃、熱衝撃、および/または透明材の周囲の温度および/または圧力の突然の変化などの突然の事象によって引き起こされる損傷などの、導電性コーティング30に対する変化を監視する。開示されたシステム200および方法は、時間の経過に伴う導電性コーティング30の抵抗の変化を追跡することができる。このような抵抗の変化は、コーティング30の劣化と、コーティング30の接近または差し迫った破損を示すと判断されている。理論に縛られることを意図するものではないが、通常の使用中、導電性コーティング30の抵抗は、コーティング構造の段階的な退化、および/または周囲のコーティング、バスバー、および/または物品の他の密接な電気的接続の退化に起因して、時間の経過とともに実質的に直線的に徐々に増加すると考えられる。本明細書で使用するとき、「実質的に直線的に」とは、コーティング30の通常の動作中に5時間以上の期間にわたって0.9以上の回帰係数(R)を有する導電性コーティング30の抵抗が徐々に増加することを指す。このような漸進的な退化は、コーティング30を通る電流の流れを妨害または制限し、抵抗の増加を引き起こす。コーティング30が破損する直前に、抵抗が急上昇する(例えば、抵抗の変化率が急激に増加する)と考えられる。そのようなスパイクは、コーティング30の壊滅的な破損の前48時間以内に識別され得ると考えられている。スパイクが発生し、および/または破損のかなりの時間前(例えば、破損の1時間前から48時間前)にスパイクを識別することができる場合、そのような壊滅的な破損によって引き起こされる緊急事態を回避するために、透明材に対してメンテナンスを行うことができ、または透明材を交換することができる。スパイクが発生したとき、および/またはスパイクが導電性コーティング30の破損により近いと識別されたとき(例えば、予期される破損の1分前から1時間前)、透明材を修理または交換するのに十分な時間がない可能性がある。その場合、導電性コーティング30への電流の印加を停止するなどの是正措置を講じて、コーティング30へのさらなる損傷を低減または防止して、コーティング30および/または透明材の破損を回避または遅延させることができる。自動化されたシステムでは、スパイクがコーティング30の予想される破損の1分未満前に識別された場合でも、印加電流を自動的に停止して、導電性コーティング30の破損を遅延または防止することができる。
【0019】
コーティング30の破損は、実質的なアーク事象の発生を指すことができる。アーク放電は、電荷がコーティング30内および/または透明材の他の部分内に蓄積するときに発生する可能性がある。電荷の蓄積は、バスバーなどの電極間のガスおよび/または絶縁材料が破壊し始めるときに起こり得る。蓄積された電流が最終的にコーティング30または透明材から放電すると、コーティング30の表面全体に広がるように見える電気アークが生成される。極端な場合には、そのようなアーク放電事象は、アーク放電事象によって引き起こされる熱衝撃により、導電性コーティング30および/または透明材に亀裂を生じさせる可能性がある。透明材の亀裂は以下のようにして生じ得る。ほとんどの場合、アーク放電は、導電性コーティング30を横切って伝播し、次いで、コーティング30の構造的特徴、例えば、コーティング厚の変化、のために停止する。停止することでエネルギーの集中が生成され、それがホットスポットを生成する。このような「ホットスポット」は、ホットスポットとコーティング30および/または透明材の周囲部分との間の温度差のために大きな熱応力を生じる。このような応力は、最終的に透明材の破壊につながる。透明材に亀裂が生じない場合であっても、アーク事象は、車両運転者にとって気を散らす可能性がある。
【0020】
本明細書で使用されるように、「実質的なアーク事象」は、車両運転者に顕著である、および/または許容限度までコーティング30の局所温度を上昇させる熱衝撃を生成するアークを指すことができる。当業者には理解されるように、実質的なアーク事象が発生する前に透明材を交換することが望ましい。導電性コーティング30の通常の使用中にマイナーアークが発生する可能性がある。マイナーアーク放電は、車両運転者には見えないアーク放電および/または導電性コーティングにホットスポットを生成しないアーク放電を指すことができる。透明材は、一般に、そのようなマイナーアークを回避するために修理または交換する必要がない。
【0021】
本開示はまた、コーティング30の状態およびコーティング30の推定残存使用可能寿命に関する情報をユーザ(例えば、車両オペレータ、パイロット、保守要員、スケジューリングシステム、および/または車両所有者)に提供するためのシステム200に関する。より具体的には、本開示のシステム200および方法は、以下のタイプの情報をユーザに提供すること、および/または以下の機能を実行することを意図するものである。
【0022】
第1に、航空機の通常運航中に、透明材の推定残存使用可能寿命に関連する定期的な更新がユーザに提供され得る。更新は、コーティングおよび/または透明材の予想される破損までの残りの飛行時間数、加熱サイクル数、日数、週数、または月数を表す数値として提供されてもよい。
【0023】
第2に、本明細書で開示されるシステム200および方法は、予想される破損が差し迫っていることを示すアラームまたはアラートをユーザに提供してもよい。そのようなアラートは、導電性コーティング30の抵抗のスパイクが識別されたときに提供され得る。先に述べたように、スパイクは、破損が発生する1分から48時間前に識別され得る。予想される破損のアラームまたはアラートを提供する代わりに、またはそれに加えて、システム200は、航空機のコーティング30、透明材、および/または電子部品を保護するための是正措置を自動的に講じることができる。本明細書で詳細に説明するように、システム200は、抵抗のスパイクが識別されると、コーティング30への電流の流れを自動的に遮断するか、または航空機の電子部品をコーティング30から隔離するように構成することができる。電流は、直接的に(例えば、電源から透明材への電力を遮断することによって)または間接的に(例えば、透明材上の温度センサから電源への電気接続を電気的に開くことによって、電源および/またはヒータコントローラに電力を遮断させる)のいずれかで遮断され得る。
【0024】
第3に、本明細書に記載のシステム200および方法は、コーティング30および/または透明材が破損したとき、および/または破損の過程にあるときに、ユーザに警告を提供してもよい。このような突然の破損は、突然の損傷事象(例えば、岩石または鳥などの物体が透明材に衝突して、コーティング30および/または透明材パネルに亀裂を生じさせるとき)の結果として生じ得る。このような突然の破損は、アーク放電によって引き起こされる熱衝撃の結果としても起こり得る。警告は、透明材を交換することができるまで航空機を運航から外すための命令、可能な限り迅速に航空機を着陸させるための命令、または透明材が短期間のうちに亀裂を生じるかまたは破損し始める可能性があるという指示に基づいて他の適切な是正措置を講じるための命令を含むことができる。先に述べたように、是正措置は、透明材への電力をオフにすることを含むことができ、これは、航空機が着陸するまで透明材の少なくとも外側層を保存することができる。航空機が着陸すると、航空機が再び使用される前に透明材が交換されるべきであることを示す警告を発することができる。
【0025】
透明材および導電性コーティング
図1を特に参照すると、本開示の加熱システム100および監視システム200を含むことができる例示的な翼付き航空機2は、航空機2の前方または前端に隣接して配置されたフロントガラス4を含む。フロントガラス4は、フロントガラス4が設置される対応する航空機2の形状に適合する形状を有することが望ましい。航空機2への取り付けを容易にするために、各フロントガラス4は、フロントガラス4を取り囲み、フロントガラス4と航空機2の本体との間に機械的インターフェースを提供する支持フレーム6を含む。航空機2はまた、航空機2の胴体に沿って延在する、並んで配置された複数の乗客用窓8を含む。乗客用窓8はまた、窓8を航空機2の本体に取り付けるためのフレーム6を含むことができる。本明細書に記載されるように、フロントガラス4および/または乗客用窓8は、窓8またはフロントガラス4の表面の少なくとも一部を覆う、ヒータフィルムおよび/またはp型静電層などの導電性コーティングを含むことができる。
【0026】
図1に示すフロントガラス4および/または窓8は、フレーム6に接続された透明材10を含むことができる。本明細書に記載される透明材10はまた、陸上車両(例えば、トラック、バス、列車、または自動車)または水上車両(例えば、船または潜水艦)などの他のタイプの車両のための窓を含む他の用途のための窓として使用することができる。本明細書に記載される透明材10はまた、住居用建物または商業用建物などの建物の窓を形成するために使用することもできる。
【0027】
本開示の特徴を含む透明材10を図2Aおよび2Bに示す。図2Aおよび図2Bに示される透明材10は、シートの主表面に沿って一緒に接続された2つの積層シートを含む2層透明材である。透明材10は、3つ以上の層を含むこともできる。本開示の抵抗監視システム200によって監視することができる導電性コーティングを含む3層の透明材が、参照により組み込まれる米国特許第10,063,047号の図2と第5欄第18行から第6欄第2行に示され、説明されている。
【0028】
図2Aおよび2Bに示される2層透明材10は、第1のシート12、第2のシート14、およびシート12、14の間の中間層16を含む。シート12、14は、第1または内側表面18、20と、対向する第2または外側表面22、24と、それらの間に延在する周縁26、28とを含む。第1のシート12および第2のシート14は、ポリカーボネート、ポリウレタン(PPG インダストリーズ オハイオ、インコーポレーテッド社 (PPG Industries Ohio,Inc.)製のOPTICOR(商標)を含む)、ポリアクリレート、ポリアルキルメタクリレート、延伸アクリル、またはポリエチレンテレフタレート(PET)、ポリプロピレンテレフタレート、および/またはポリブチレンテレフタレートなどのポリアルキルテレフタレートなどのプラスチック材料から形成することができる。シート12、14は、従来のソーダ石灰ケイ酸塩ガラスなどのガラス材料から形成することができる(ガラスは、アニールされた、熱処理された、熱的に強化された、または化学的に強化されたガラスとすることができる)。シート12、14は、プラスチック材料とガラス材料との組み合わせから形成することもできる。中間層16は、ポリビニルブチラールなどのより軟質のプラスチック材料から形成することができる。
【0029】
透明材10はまた、シート12、14の一方の表面18、20、22、および/または24の少なくとも一部を覆う中央領域36を含む導電性コーティング30を含む。コーティング30は、透明導電性フィルムまたは透明導電性メッシュとすることができる。導電性コーティング30は、シート12、14の外側表面22、24に塗布することができる。導電性コーティング30は、シート12、14の一方の内側表面18、20と中間層16の間に塗布することもできる。導電性コーティング30は、インジウムスズ酸化物(ITO)、アルミニウムドープ酸化亜鉛、フッ素ドープ酸化スズ、酸化スズ、アンチモンドープ酸化スズなどの導電性金属酸化物から形成することができる。導電性コーティング30は、金、銀、アンチモン、パラジウム、白金などの導電性金属から形成することもできる。導電性コーティング30は、1つ以上の金属酸化物、1つ以上のドープされた金属酸化物、貴金属を含む1つ以上の反射層、または複数の誘電体層および少なくとも1つの金属層を有するコーティングを含むことができる。
【0030】
導電性コーティング30は、シート12、14の表面18、20、22、および/または24のうちの少なくとも1つに塗布されて、シート12、14の選択された部分に対して的を絞った加熱を提供することができる。導電性コーティング30は、透明材10の選択された領域を透明材10の他の領域よりも高い温度に加熱するように構成することができる。特に、コーティング30は、曇りやすいシート12、14の部分、またはコーティング30の周囲の部分34などの水分または氷が最も形成されやすいシート12、14の部分が、透明材10の他の部分よりも高い温度に温められ得るように構成され得る。コーティング30の中央部分32のような、曇りまたは氷結の影響を受けにくいシート12、14の部分は、より低い温度に加熱されるように構成することができる。
【0031】
窓加熱システム
図3および図4を参照すると、本明細書に記載の透明材10は、透明材10の導電性コーティング30を通る電流の流れを制御するための窓加熱システム100とともに使用することができる。窓加熱システム100は、図2Aおよび図2Bに関連して説明したように、透明材10および導電性コーティング30を含む。システム100はまた、シート12の第1の縁部116に沿って配置された第1のバスバー114と、シート12の対向する縁部120に沿って配置された第2のバスバー118とを含む導電性バスバーシステム112を含む。当技術分野で知られているように、バスバー114、118は、導電性コーティング30またはフィルムの上に配置することができ、当技術分野で知られているように、導電性接着剤または導電性テープによってコーティング30またはフィルムに電気的に接続することができる。バスバー114、118はまた、シート12の最外表面22と導電性コーティング30との間など、導電性コーティング30の下に配置することもできる。導電性コーティング30はまた、コーティング30を保護するために、シート12、14の内側に面する表面18、20上に配置することもできる。
【0032】
システム100はまた、半田、導電性テープ、または他の既知の導電性接着剤によってバスバー114、118に接続され、そこから延びるリード線などのリード122を含むことができる。リード122は、バスバー114、118から、電源124を備えるヒータコントローラ226(図4に示す)まで延びることができる。電源124は、導電性コーティング30に電流を供給して導電性コーティング30を加熱するように構成することができる。ヒータコントローラ226および/または電源124は、透明材10上に配置された温度センサ126から情報を受信するように構成することができる。温度センサ126は、透明材10のシート12、14の間など、透明材10内に設置することができ、透明材10から延びるリード線またはワイヤによってヒータコントローラまたは電源124に接続することができる。温度センサ126は、透明材10と航空機のフレームとの間に配置されるなど、透明材10の外部にあってもよい。透明材10および/または透明材10の表面上の測定温度が所定の値を超えると、電源124および/またはヒータコントローラ226は、バスバー114、118および導電性コーティング30への電流の印加を停止するように構成することができる。同様に、監視システム200についてさらに詳細に説明するように、システム100は、導電性コーティング30を電源124から切断して、導電性コーティング30および/または電源124を保護するように構成することができる。具体的には、電源124は、アーク放電が差し迫っているか、またはアーク放電が発生したときに、導電性コーティング30から切断され得る。
【0033】
監視システムまたは物品および/または導電性コーティング
様々な透明材および窓加熱システム100を説明してきたが、次に、導電性コーティング30の状態を監視するための、特にコーティング30および透明材10の状態の指標としてコーティング30の抵抗の変化を識別するためのシステム200について説明する。
【0034】
特に図4を参照すると、コーティング30の状態を監視するためのシステム200は、透明材10および加熱システム100から受信した情報を処理するためのプロセッサ210を備える監視デバイス208を含む。監視デバイス208は、航空機の既存の電気システムと通信するように適合された専用または汎用コンピューティングデバイスとすることができる。監視デバイス208は、コンピュータサーバ、タブレット、ラップトップ、スマートフォン、または任意の他の汎用コンピューティングデバイスであり得る。監視デバイス208は、透明材10に近接して、または航空機の内部または外部の任意の他の場所に配置することができる。監視デバイス208は、導電性コーティング30の抵抗に関連するデータを処理するための独立した電子機器とすることができる。監視デバイス208は、ヒータコントローラ226または他の電気システムなど、航空機の他の電気システムと統合することもできる。監視デバイス208はまた、複数の航空機のための保守タスクの状態を監視し、保守タスクをスケジュールするために、施設によって供給される複数の航空機からデータを受信および処理するように構成される、車両保守施設におけるサーバ等の外部コンピュータサーバであってもよい。
【0035】
監視デバイス208のプロセッサ210は、ヒータコントローラ226に電気的に接続され、導電性コーティング30に印加される電流を制御するために、ヒータコントローラ226および/または電源124に命令を提供するように構成することができる。前述したように、ヒータコントローラ226は、温度センサ126によって測定された導電性コーティング30の温度が所定の値よりも高いときに電源124をオフにするように構成することができる。導電性コーティング30への電流の印加を停止するために、ヒータコントローラ226は、電源124とバスバー114との間に延在するリード122上に配置されたスイッチ218を開くように構成することができる。測定された温度が所定の値を下回るとき、ヒータコントローラ226は、スイッチ218を閉位置に移行させるように構成することができ、閉位置では、電源124と導電性コーティング30との間の電気的接続が確立される。
【0036】
監視デバイス208のプロセッサ210は、導電性コーティング30の電気的特性を感知または測定するための測定デバイス214に電気的に接続することもできる。測定デバイス214によって測定される電気的特性は、導電性コーティング30の抵抗、コーティング30を通る電流、および/または導電性コーティング30の電圧降下を含むことができる。測定デバイス214は、コーティング30および/またはリード122を通過する電気信号を測定するために、コーティング30および/またはコーティング30から延在するリード122、220に接続されたセンサとすることができる。測定デバイス214は、コーティング30を通過する電流を測定するように構成された、当技術分野で知られている電流計(例えば、電流を測定するためのデバイス)であってもよい。当技術分野で知られているように、交流電流(AC)回路に接続された電流計は、回路を通過する電流の二乗平均平方根(RMS)値を測定するように構成することができる。測定デバイス214は、測定された電流に基づいてコーティング30の電気抵抗を決定するように構成され得る。測定デバイス214は、誘導変圧器法によって導電性コーティングから通過する信号の抵抗を直接測定することができる。測定デバイス214は、導電性コーティング30に電流を供給し、導電性コーティング30からの応答信号を測定するように構成された、ハンドヘルド電子スキャナなどの周辺デバイスとすることもできる。測定デバイス214は、応答信号を処理してコーティング30の電気的特性を決定するように構成することができる。
【0037】
測定デバイス214は、導電性コーティング30の電気的特性を周期的または連続的に感知または決定し、感知された電気的特性をプロセッサ210に提供するように構成され得る。プロセッサ210は、受信した電気的特性に基づいて導電性コーティング30の抵抗を決定または推定するように構成することができる。抵抗は、導体に電流を通すことの困難さの尺度を指す。先に述べたように、長期間の使用または突然の損傷事象によるコーティング30の劣化は、導電性コーティング30の抵抗を増加させる。特に、プロセッサ210は、抵抗の急激な増加またはスパイクを識別するように構成することができ、これは、透明材10の破損が切迫しているか、または発生したことを示すことができる。
【0038】
監視システム200の構成要素を一般的に説明したので、次に、プロセッサ210によって実行することができる、導電性コーティング30の抵抗を決定するためのプロセスを説明する。
【0039】
コーティング30の電気的特性を処理するとき、プロセッサ210は、コーティング30の温度の変動を説明するように構成され得る。コーティング30の温度変化は、コーティング30が損傷を受けていない場合であっても、コーティング30の抵抗の実質的な変化を引き起こす可能性がある。温度の変化によって引き起こされるそのような抵抗の変化は、抵抗のスパイクとして現れ、コーティング30の残存使用可能寿命についての誤検知アラームまたは不必要に低い推定値をもたらし得る。
【0040】
理論に縛られることを意図するものではないが、ITOから形成されたコーティング30の抵抗は、極端な温度変化により1%から7%まで変化する可能性があると考えられる。本発明者らによって行われた実験は、「極端な温度変動」(例えば、コーティングの温度を-40°Fから130°Fに増加させること)が、コーティング30の抵抗を6%から7%増加させることを実証した。
【0041】
コーティング30の温度の変化を説明するために、コーティング30がほぼ破損しているときを決定するための閾値は、コーティング30の温度を考慮することなく、短期間にわたって10%を超える抵抗の任意の検出された変化であり得る。「短時間」は24時間以下であり得る。システム200は、10%未満の抵抗の変化を、コーティング30の退化ではなく、加熱サイクル間の期間によって引き起こされる熱変動などのコーティング30の熱変動に帰するように構成することができる。短期間にわたって少なくとも10%の抵抗の変化に対する閾値を使用することは、コーティング30の温度の極端な変化によって引き起こされ得る抵抗の6%から7%の変化と、誤検知応答またはアラームを回避するための3%から4%の安全率との両方を考慮に入れる。
【0042】
コーティング30の温度変化を説明する別の方法は、測定された抵抗変化のどの部分が温度変化によるものであるかを推定するために、実験的に導出または計算された値を使用する。特に、周囲温度の変化によるコーティング30の抵抗の変化を示す導電性コーティング30の実験的測定値を得ることができる。実験値は、プロセッサ210に関連付けられたシステムメモリに記憶され得る。プロセッサ210は、温度センサ126によって感知されたデータからコーティング30の温度変化を決定するように構成することができる。次いで、プロセッサ210は、測定された温度値およびシステムメモリ上に記憶された実験データに基づいて、測定された温度変動による予想される抵抗変化を決定することができる。コーティング30の抵抗変化データを分析するとき、プロセッサ210は、温度変化によって引き起こされる「予想される抵抗変化」をフィルタ除去することができる。「予期される抵抗変化」がフィルタ除去された後に残る任意の抵抗変化は、コーティング30の状態の変化によるものであり、温度変化によるものではないと想定される。
【0043】
熱効果によって引き起こされる抵抗の変化が説明されると、または温度が一定のままである場合、コーティング30の抵抗の変化は、以下のうちの1つまたは複数によって引き起こされる。第1に、コーティング30および/またはフロントガラスの抵抗の変化(例えば、経時的なコーティング30の抵抗の実質的に直線的な増加)は、フロントガラスおよびコーティング30の通常の老朽化に起因し得る。特に、理論に縛られることを意図するものではないが、コーティング30は、水分がコーティング30内に蓄積するにつれて、使用年数の間にゆっくりと酸化すると考えられる。
【0044】
第2に、コーティング30および/または透明材10の寿命の終わり近くに、コーティング30の酸化が始まってマイクロアーク放電(例えば、車両運転者には見えないアーク放電)を生成する。マイクロアーク放電は、実質的なアーク放電事象が発生する数時間前または大きな欠陥が検出される数時間前に、コーティング30の抵抗の変化(例えば、コーティング30の抵抗の識別可能な非線形スパイク)を引き起こす。
【0045】
第3に、大きな欠陥が発生すると、抵抗が実質的に増加し、コーティング30および/または透明材10の破損を示す。マイクロアーク放電の蓄積された効果によって引き起こされる欠陥に対して、この抵抗変化は低くなり得る(例えば、破損前のある期間に対するコーティング30の平均抵抗と比較して10%から20%)。コーティング30および/または透明材10への突然の衝撃による損傷によって引き起こされる主要な欠陥については、抵抗の変化は、コーティング30の平均抵抗と比較して30%から40%以上であり得る。抵抗のスパイクが検出されると、プロセッサ210は、抵抗のスパイクがコーティング30の温度のスパイクと一致するかどうかを判定するように構成され得る。温度のスパイクが検出されない場合、プロセッサ210は、検出された抵抗の変化が小さくても(例えば、コーティング30の平均値または抵抗と比較して1%から5%の抵抗の変化)、アラームを発することができる。しかしながら、温度のスパイクが検出された場合、アラームを発するための閾値は、10%以上の抵抗の変化とすることができる。同様に、プロセッサ210は、システム200が電源124からコーティング30への電流の流れをオフにするときに起こり得るように、コーティング30の決定または測定抵抗が一定のままであるか、またはコーティング30の温度が低下し続ける間にゆっくりと(例えば、1%未満だけ)上昇するときにアラームを発するように構成され得る。
【0046】
抵抗のスパイクを識別することに加えて、プロセッサ210は、導電性コーティング30および透明材10の推定残存使用可能寿命を決定するように構成することもできる。先に述べたように、推定残存使用可能寿命は、コーティング30または透明材10の破損が生じる前の推定された期間を指すことができる。推定残存使用可能寿命はまた、破損のリスクがユーザの快適レベルを超える前の推定された期間を指すことができる。推定残存使用可能寿命を計算するために、プロセッサ210は、決定または測定抵抗値をコーティング30のベースラインまたは予想抵抗値と比較するように構成されてもよい。コーティング30に交流電流(AC)を提供するための加熱システム100の場合、決定または測定抵抗は、所定の期間にわたってコーティング30を通過する電流の二乗平均平方根(RMS)値を指すことができる。ベースライン値は、透明材10およびフロントガラス4の製造時、または透明材10が航空機2に設置された直後のコーティング30の抵抗を指すことができる。予想抵抗値は、初期抵抗値またはベースライン抵抗値と、コーティング30および/または透明材10が使用されてきた時間の長さとに基づいて計算された抵抗値を指すことができる。予想抵抗を計算するためのアルゴリズムは、コーティング30および航空機2の通常動作中に、コーティング30の抵抗が時間とともに直線的に増加すると想定することができる。したがって、予想抵抗値は、コーティング30の初期抵抗と、コーティング30および透明材10の通常動作中に生じる抵抗の漸進的な増加との両方を考慮に入れることができる。
【0047】
コーティング30の推定残存使用可能寿命は、コーティング30についての決定または測定抵抗と、決定または測定抵抗に先行する所定の期間または時間枠の間のコーティング30についての計算されたローリングまたは移動平均抵抗との間の差に基づき得る。移動またはローリング平均抵抗は、コーティング30の通常の使用中に生じる抵抗の漸進的な増加を説明するために、周期的または連続的に更新することができる。所定の期間または時間枠は、6時間から12時間、例えば9時間であってもよい。プロセッサ210は、所定の期間または時間枠にわたって適切な間隔またはサンプリングレートで得られたコーティングの抵抗測定値を使用して平均抵抗を計算するように構成することができる。抵抗測定間の間隔は、10ミリ秒(ms)から1000ミリ秒、例えば100msから500msであってもよい。間隔は250msとすることができる。理論に縛られることを意図するものではないが、250msは、400Hz信号の100波にわたって電流を取り出すための信号のRMSの分析を可能にするので、適切な間隔長であり得ると考えられる。経時的な抵抗の分散または標準偏差など、収集された抵抗データから導出される他の統計的変数も、コーティング30の推定される残存使用可能寿命を決定するために使用され得る。
【0048】
制限されたデータ記憶能力のために、全期間または時間枠(例えば、決定または測定抵抗に先行する全9時間)にわたって抵抗値の一定のログを維持することが可能でない場合がある。その場合、無限インパルス応答(IIR)フィルタまたは重み付け関数を使用して、新たに得られた抵抗測定値ごとに移動平均を更新することができる。IIRフィルタまたは重み関数を使用して、各新しいデータ点は、小さい所定の量だけローリング平均値に影響を及ぼす。したがって、プロセッサ210は、9時間の期間全体にわたって各決定または測定抵抗値のログを維持する必要がない。代わりに、更新された平均抵抗値は、最新の抵抗測定値と以前に計算された平均とに基づいて計算される。
【0049】
ベースライン抵抗値または平均抵抗値が計算または決定されると、決定または測定抵抗値をベースライン抵抗値または移動平均抵抗値と比較して、導電性コーティング30および/または透明材10の推定残存使用可能寿命に関する結論を引き出すことができる。推定残存使用可能寿命は、決定または測定抵抗と平均(または予想)抵抗との間の計算された差に基づいて使用可能寿命値を提供するルックアップテーブル222から取得され得る。ルックアップテーブルエントリは、当技術分野で知られているように、モデリングアルゴリズムを使用して、またはデータ収集および処理技法を使用して得られた実験的に導出されたデータに基づいて決定され得る。アルゴリズムは、測定された電流と平均またはベースライン電流との間の計算された差に基づいて推定残存使用可能寿命を計算するためのコンピュータモデリングまたは実験的に導出されたデータに基づいて導出され得る。
【0050】
先に述べたように、推定残存使用可能寿命は、コーティング30または透明材10および関連する電子装置が通常の使用条件下で安全な動作状態に留まるであろう推定された時間の長さを指すことができる。推定残存使用可能寿命はまた、コーティング30または透明材10の予想される破損までの時間の長さを指すことができる。一般に、推定残存使用可能寿命は、コーティング30または透明材10の寿命を大幅に短縮する可能性のある、コーティングまたはフロントガラスへの突然の衝撃などの特定の突然の損傷事象の発生を考慮していない。しかしながら、本明細書に記載されるように、システム200は、衝撃などの突然の事象がコーティングの亀裂または破損を引き起こすときに、ユーザに警告を提供するように構成され得る。
【0051】
推定残存使用可能寿命に関する情報は、航空機2およびフロントガラス4の保守をスケジュールするために使用することができる。保守要員は、推定残存使用可能寿命が満了する数日または数週間前にフロントガラス4を交換するように計画することができる。フロントガラス4の推定残存使用可能寿命の決定はまた、フロントガラスがほぼ破損しているときにユーザにアラートまたはアラームを提供するために使用され得る。システム200は、コーティング30の決定または測定抵抗におけるスパイクが、コーティング30または透明材10が48時間などの指定された期間内に破損すると予想されることを示すときに、ユーザにアラートを提供するように構成することができる。指定された期間を提供することによって、車両オペレータおよび保守要員は、コーティング30に関する任意の特定された問題を修正するため、および/またはコーティング30の壊滅的な破損が生じる前にフロントガラス4を交換するための十分な時間を有することになる。同様に、システム200は、推定残存使用可能寿命が短い期間内(例えば、24時間未満の期間)に実質的に変化したときにユーザにアラートを提供するように構成することができ、そのような実質的な変化は、フロントガラス30がアーク放電によって引き起こされる衝撃または熱衝撃などの損傷事象を受けたことを示すことができる。
【0052】
推定残存使用可能寿命が決定されると、プロセッサ210は、推定残存使用可能寿命に関するフィードバックをユーザ(例えば、車両オペレータ、保守技術者、または所有者)に提供するように構成され得る。システム200は、推定残存使用可能寿命を表示する視覚ディスプレイなどのフィードバックデバイス224を含むことができる。フィードバックデバイス224は、航空機制御システムの要素とすることができ、航空機制御パネル上に配置することができる。フィードバックデバイス224は、監視デバイス208およびプロセッサ210と有線または無線通信する、ラップトップコンピュータ、ポータブルコンピュータデバイス、コンピュータタブレット、スマートフォン、または同様のポータブルコンピュータデバイスなどの別個のコンピュータデバイスとすることができる。フィードバックデバイス224は、車両から遠隔にあり、長距離有線または無線データ通信インターフェースによって航空機に接続される、コンピュータサーバまたはデータベースシステムなどの装置であってもよい。
【0053】
推定残存使用可能寿命は、(例えば、コーティング30または透明材10の破損までの)残存使用可能寿命のフライト分、時間、または日の数を示す数値などの数値としてユーザに表示することができる。推定残存使用可能寿命に関する情報はまた、視覚的表示画面上に表示されるゲージまたはスケールのコンピュータ生成アイコン等のグラフィカルインジケータとして提供されてもよい。フィードバックデバイス224は、推定残存使用可能寿命が尽きたときに空の位置に向かって移動するダイヤルを含むガスゲージアイコンを表示することができる。
【0054】
先に述べたように、システム200はまた、システム200がコーティング30および/または透明材10の破損が差し迫っていると判断したときに、ユーザにアラームまたはアラートを提供するように構成することができる。プロセッサ210は、コーティング30の抵抗のスパイクが識別されたときに、フィードバックデバイス224にアラームまたはアラートを提供させ得る。プロセッサ210はまた、決定または測定抵抗データが、コーティング30および/または透明材10が破損しているか、または破損しそうであることを示すとき、警告を発し、是正措置を講じるように構成されてもよい。差し迫った破損および/または緊急事態が識別されると、プロセッサ210は、フィードバックデバイス224に、ユーザに警告を提供させ得る。同様の警告を、航空交通管制または救急隊員などの他の関係者に自動的に送信することもできる。
【0055】
プロセッサ210はまた、決定または測定抵抗および/または透明材10の推定残存使用可能寿命に基づいて加熱システム100を制御するように構成され得る。特に、プロセッサ210は、コーティング30の破損が差し迫っているか、または既に発生しているときに、ヒータコントローラ226に命令を提供するように構成することができる。受信した命令に基づいて、ヒータコントローラ226は、スイッチ218を開いて導電性コーティング30への電流の印加を停止することによって、電源124をオフにし、かつ/または電源124を導電性コーティング30から切断するように構成することができる。プロセッサ210は、決定または測定抵抗と計算された移動またはローリング平均抵抗との間の差が所定の値よりも大きいときに、電源124に導電性コーティング30への電力の供給を停止させるように構成され得る。プロセッサ210はまた、コーティング30の推定残存使用可能寿命が所定の値を下回るとき、および/または決定または測定抵抗、または決定もしくは測定抵抗と平均抵抗との間の差が所定の値を超えるとき、電源124に導電性コーティング30への電流の印加を停止させることができる。
【0056】
先に述べたように、システム200は、導電性コーティング30の抵抗におけるスパイクを識別するように構成され、これは、コーティング30および/または透明材10がほぼ破損していることを示す。導電性コーティング30が破損する前の期間における例示的なコーティング30の測定電流を示すグラフ500を図5に示す。グラフ500は、コーティングが破損する前の3.5日間にわたって取られた360個の電流測定値(x軸上に示されるように)に対して定電圧が印加されたフロントガラスのコーティングについての測定電流を示している。グラフ500に示されるように、導電性コーティング30を通過する電流(アンペア)は、グラフ500の実質的に平坦な部分512によって示されるように、抵抗測定値0から260について15A±0.05Aであると測定された。コーティング30が破損する前の8時間(電流測定値260~360)において、グラフ500の傾きは、グラフ500の部分514によって示されるように、急激に減少し始める。部分514の間、測定された電流(アンペア)は、15Aから14.3Aに減少する。グラフ500の垂直部分516によって示されるように、透明材の破損およびコーティングのアーク放電は、抵抗測定値360において発生する。当業者には理解されるように、透明材10に印加される電圧が一定であるため、測定される電流の変化は、導電性コーティング30の抵抗の比例した変化を示す。
【0057】
フロントガラス監視方法
図6は、フロントガラスを監視する方法を示すフローチャートである。先に述べたように、フロントガラスは車両のフロントガラスとすることができる。この方法は、ステップ612に示すように、フロントガラスの平均またはベースライン抵抗を決定することを含む。ベースライン抵抗は、設置中に測定されたフロントガラスの初期抵抗を指すことができる。平均抵抗は、所定の期間にわたって計算されたフロントガラスの平均抵抗を指すことができる。平均は、所定の期間内に得られた測定値のみが平均抵抗を計算するために考慮される、ローリング平均または移動平均であり得る。
【0058】
平均抵抗は、ステップ614に示すように、導電性コーティングの抵抗を周期的に測定して周期的抵抗測定値を得ることによって求めることができる。周期的測定値が得られると、ステップ616に示すように、所定数の先行する周期的抵抗測定値の平均が計算される。ローリング平均はまた、先に述べたように、コンピューティングリソースを節約するために、IIRフィルタまたは重み付け関数を使用して計算することができる。
【0059】
フロントガラスまたは導電性コーティングの推定残存使用可能寿命を決定するために、本方法は、ステップ618に示すように、導電性コーティングに電流を印加するステップをさらに含むことができる。電流は、図3および図4に示すシステム100などの加熱システムを通して供給することができる。電流はまた、フロントガラスに取り付けられた電源によって、または別の供給源から提供され得る。誘導装置を介してコーティングに電流を無線で供給する携帯型スキャナデバイスから導電性コーティングに電流を供給することができる。
【0060】
方法は、ステップ620において、印加された電流に応答してフロントガラスから受信された信号に基づいて導電性コーティングの抵抗を決定または測定することをさらに含む。コーティングの抵抗は、コーティングと電源との間に電気的に接続された電流計などの市販のデバイスを用いて従来の方法で得ることができる。測定デバイスは、コーティングの電気的特性を測定するように構成することができ、電気的特性は、コーティングの抵抗を決定するために処理および分析することができる。先に述べたように、加熱システムから導電性コーティングに交流電流(AC)が印加されると、測定デバイスは、コーティングを通過する電流のRMS値を測定するように構成することができる。あるいはまたは追加して、導電性コーティングから通過する信号の抵抗は、誘導変圧器法によって直接測定することができる。
【0061】
抵抗が測定または決定されると、ステップ622に示すように、決定または測定抵抗と導電性コーティングについて計算されたベースラインまたは平均抵抗との間の差に基づいて、フロントガラスの推定残存使用可能寿命を決定することができる。方法は、推定残存平均使用可能寿命が決定されると、推定残存使用可能寿命に関する情報をユーザに提供するステップをさらに含む。先に述べたように、推定残存使用可能寿命は、フィードバックデバイスを通してユーザに提供され得る。フィードバックデバイスは、車両制御またはオペレーティングシステムの要素とすることができる。フィードバックデバイスは、別個の電子デバイスまたはコンピュータデバイスであり得る。フィードバックデバイスは航空機から遠隔であってもよい。その場合、航空機は、コーティングおよび/またはフロントガラスの推定残存使用可能寿命に関する情報を遠隔位置に送信するための無線送信機などの通信インターフェースを含むことができる。フロントガラスの推定残存使用可能寿命についての情報はまた、中央保守施設に、またはフロントガラスおよび/もしくは車両の他の構成要素を交換するための時間を監視およびスケジューリングすることを担当する別の施設に送信され得る。フロントガラスの状態は、フロントガラスの寿命全体にわたって定期的に監視し続けることができる。フロントガラスの破損につながる状態が識別されると、そのような状態に関する情報もフィードバックデバイスに送信することができる。
【0062】
上述したように、コーティングおよび/または透明材の推定残存使用可能寿命に関するフィードバックは、予想される破損が生じるまでの時間に基づいて様々な方法で提供してもよい。コーティングの抵抗が徐々に増加し、スパイクが識別されないとき、フィードバックデバイスは、ステップ624に示されるように、残存使用可能寿命についての数値のみを提供し得る。その場合、システムは、コーティングの抵抗を監視し続け、適切な所定の間隔で推定残存使用可能寿命を更新する。ステップ626に示されるように、コーティングの抵抗のスパイクが識別されると、フィードバックデバイスは、破損が差し迫っていること(例えば、コーティングまたは透明材が1分から48時間以内に破損し得ること)をユーザに知らせるアラームまたはアラートを提供し得る。フィードバックデバイス、監視システム、または航空機に関連する通信回路および/または送信機を使用して、同様のアラートを他の関係者に送信することもできる。システムは、破損するまでコーティングを監視し続ける。ステップ628に示すように、コーティングまたは透明材の破損が識別されると、システムは、フィードバックデバイスに、破損が発生したおよび/または発生中であるという警告情報をユーザに提供させる。破損が識別されると、プロセッサおよび/またはヒータコントローラはまた、ステップ630に示されるように、電源からの電力をオフにすること、または電源と導電性コーティングとの間のスイッチを開くこと等の他の是正措置を講じて、コーティングまたは透明材に対するさらなる損傷を防止してもよい。
【0063】
本発明の特定の実施形態を例示の目的で上述したが、添付の特許請求の範囲で定義される本発明から逸脱することなく、本発明の詳細の多数の変形を行うことができることが当業者には明らかであろう。
【0064】
したがって、前述の説明を考慮すると、本発明は、とりわけ、以下の条項の主題に関するが、それに限定されない。
【0065】
条項1:導電性コーティングを備える物品の状態を監視するためのシステムであって、システムは、物品の導電性コーティングに電気的に接続可能であり、導電性コーティングの電気的特性を感知するように構成された測定デバイスと、測定デバイスに電気的に接続されたプロセッサとを備え、プロセッサは、測定デバイスから導電性コーティングの感知された電気的特性を受信し、受信された感知電気的特性に基づいて導電性コーティングの抵抗を決定し、導電性コーティングの決定抵抗に基づいて物品の推定残存使用可能寿命を決定し、決定された推定残存使用可能寿命を表す出力信号を生成するように構成されている。
【0066】
条項2:導電性コーティングの電気的特性は、コーティングの抵抗、コーティングを通る電流、および/または導電性コーティングの電圧降下を含む、条項1に記載のシステム。
【0067】
条項3:物品の推定残存使用可能寿命は、導電性コーティングの実質的な退化が生じるまでの推定時間を含む、条項1または条項2に記載のシステム。
【0068】
条項4:推定残存使用可能寿命を表す生成された出力信号をプロセッサから受信し、推定残存使用可能寿命が所定の値を下回るときに物品のメンテナンスが必要とされることを示すアラートをユーザに提供するように構成されたフィードバックデバイスをさらに備える、条項1~3のいずれかに記載のシステム。
【0069】
条項5:推定残存使用可能寿命を表す生成された出力信号をプロセッサから受信し、推定残存使用可能寿命に基づいて決定された期間内に物品の破損の可能性を示すアラートを提供するように構成されたフィードバックデバイスをさらに備える、条項1~4のいずれかに記載のシステム。
【0070】
条項6:プロセッサは、決定抵抗と閾値抵抗との間の差に基づいて、コーティングされた物品の推定残存使用可能寿命を決定するように構成される、条項1~5のいずれかに記載のシステム。
【0071】
条項7:プロセッサは、決定抵抗と導電性コーティングについて計算された平均抵抗との間の差に基づいて、コーティングされた物品の推定残存使用可能寿命を決定するように構成される、条項1~6のいずれかに記載のシステム。
【0072】
条項8:プロセッサは、導電性コーティングの決定抵抗の変化率に基づいて推定残存使用可能寿命を決定するように構成される、条項1~7のいずれかに記載のシステム。
【0073】
条項9:推定残存使用可能寿命は、複数の先行する時間間隔にわたる導電性コーティングの決定抵抗の変化率と、複数の時間間隔のうちの単一の直前の時間間隔にわたる決定抵抗の変化率との間の差に基づく、条項1~8のいずれかに記載のシステム。
【0074】
条項10:導電性コーティングを加熱するために導電性コーティングに電流を供給するための、導電性コーティングに電気的に接続可能な電源をさらに備える、条項1~9のいずれかに記載のシステム。
【0075】
条項11:プロセッサによって生成された信号は、導電性コーティングの推定残存使用可能寿命が所定の値未満であるとき、電源に、導電性コーティングへの電流の印加を停止させる、条項10に記載のシステム。
【0076】
条項12:導電性コーティングの温度を測定するように構成された温度センサをさらに備え、プロセッサは、温度センサから測定温度を受信し、測定温度に基づいて導電性コーティングの決定抵抗を修正して、導電性コーティングの抵抗に対する温度変化の影響を考慮するように構成される、条項1~11のいずれかに記載のシステム。
【0077】
条項13:車両のためのフロントガラス加熱システムであって、透明材と、透明材の一部上の導電性コーティングであって、電流が導電性コーティングに印加されたときに熱を発生するように構成された導電性コーティングと、導電性コーティングに接続され、導電性コーティングを加熱する電流を生成するように構成された電源と、導電性コーティングに電気的に接続可能であり、電流が導電性コーティングに印加されたときに導電性コーティングの電気的特性を感知するように構成された測定デバイスと、電源および測定デバイスに電気的に接続されたプロセッサであって、プロセッサは、電源に、電源から導電性コーティングに電流を印加させ、導電性コーティングの感知された電気的特性を測定デバイスから受信し、感知電気的特性に基づいて導電性コーティングの抵抗を決定し、導電性コーティングの決定抵抗に基づいて、導電性コーティングから電源を切断するための信号を生成するように構成される、プロセッサと、を含む、車両のためのフロントガラス加熱システム。
【0078】
条項14:プロセッサは、導電性コーティングの決定抵抗と導電性コーティングの計算された平均抵抗との間の差が所定の値を超えるとき、導電性コーティングから電源を切断するための信号を生成する、条項13に記載のシステム。
【0079】
条項15:透明材は、第1のシートと、第2のシートと、第1のシートと第2のシートとの間の中間層とを備える、条項13または条項14に記載のフロントガラス加熱システム。
【0080】
条項16:第1のシートおよび第2のシートは、プラスチックおよび/またはガラスを含み、中間層は、第1のシートおよび/または第2のシートよりも柔らかいプラスチックを含む、条項15に記載のフロントガラス加熱システム。
【0081】
条項17:導電性コーティングは、金属酸化物、ドープされた金属酸化物、貴金属を含む反射層、誘電体層、および/または金属層を含む、条項13~16のいずれかに記載のフロントガラス加熱システム。
【0082】
条項18:生成された電流を電源と導電性コーティングとの間に印加するための回路をさらに備え、回路は、導電性コーティングに電気的に結合されたバスバーを備える、条項13~17のいずれかに記載のフロントガラス加熱システム。
【0083】
条項19:透明材の状態を監視する方法であって、測定デバイスを用いて透明材の導電性コーティングの電気的特性を感知することと、プロセッサを用いて、測定デバイスによって感知された電気的特性に基づいて導電性コーティングの抵抗を決定することと、プロセッサを用いて、決定抵抗に基づいて透明材の推定残存使用可能寿命を決定することとを含む方法。
【0084】
条項20:推定残存使用可能寿命を決定することは、複数の先行する時間間隔にわたる導電性コーティングの決定抵抗の変化率と、複数の時間間隔のうちの単一の直前の時間間隔にわたる決定抵抗の変化率との間の差を決定することを含む、条項19に記載の方法。
図1
図2A
図2B
図3
図4
図5
図6