(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2023-09-15
(45)【発行日】2023-09-26
(54)【発明の名称】濁度計測装置及び濁度計測方法、浄水監視システム
(51)【国際特許分類】
G01N 15/02 20060101AFI20230919BHJP
G01N 15/06 20060101ALI20230919BHJP
G01N 21/49 20060101ALI20230919BHJP
G01N 21/64 20060101ALI20230919BHJP
C02F 1/00 20230101ALI20230919BHJP
【FI】
G01N15/02 A
G01N15/06 E
G01N21/49 Z
G01N21/64 Z
C02F1/00 K
C02F1/00 V
G01N15/06 C
(21)【出願番号】P 2019196327
(22)【出願日】2019-10-29
【審査請求日】2022-10-12
(73)【特許権者】
【識別番号】000115636
【氏名又は名称】リオン株式会社
(74)【代理人】
【識別番号】100120592
【氏名又は名称】山崎 崇裕
(74)【代理人】
【識別番号】100192223
【氏名又は名称】加久田 典子
(72)【発明者】
【氏名】大橋 勇貴
(72)【発明者】
【氏名】三宮 尚志
(72)【発明者】
【氏名】佐久間 暢
(72)【発明者】
【氏名】水上 敬
(72)【発明者】
【氏名】関本 一真
【審査官】外川 敬之
(56)【参考文献】
【文献】特開2013-148391(JP,A)
【文献】特開平10-311784(JP,A)
【文献】特開昭61-071339(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
G01N 15/02
G01N 15/06
G01N 21/49
G01N 21/64
C02F 1/00
(57)【特許請求の範囲】
【請求項1】
液体に向けて光を照射する発光手段と、
前記液体に含まれる粒子から放出される散乱光を選択的に受光し、その強度に応じた大きさの信号を出力する散乱光受光手段と、
前記液体に含まれる粒子から放出される蛍光を選択的に受光し、その強度に応じた大きさの信号を出力する蛍光受光手段と、
前記散乱光受光手段及び前記蛍光受光手段により出力される前記各信号に基づいて、
単位体積当たりの粒子の個数及び単位体積当たりの蛍光を発する蛍光粒子の個数を予め定められた粒径区分毎に計数する粒子計数手段と、
前記粒子計数手段による計数結果に基づいて、
前記液体の濁度及び前記液体の蛍光粒子に由来する濁度を算出
し、前記液体の濁度に占める前記蛍光粒子に由来する濁度の割合を算出する濁度算出手段と
、
少なくとも前記液体の濁度に占める前記蛍光粒子に由来する濁度の割合を表示する結果表示手段と
を備えた濁度計測装置。
【請求項2】
請求項1に記載の濁度計測装置において、
前記結果表示手段は、
前記液体の濁度に占める前記蛍光粒子に由来する濁度の割合を視覚的に表現することを特徴とする濁度計測装置。
【請求項3】
液体に向けて光を照射する発光工程と、
前記液体に含まれる粒子から放出される散乱光を選択的に受光してその強度に応じた大きさの信号を出力するとともに、前記粒子から放出される蛍光を選択的に受光してその強度に応じた大きさの信号を出力する受光工程と、
前記受光工程で出力された各信号に基づいて、
単位体積当たりの粒子の個数及び単位体積当たりの蛍光を発する蛍光粒子の個数を予め定められた粒径区分毎に計数する粒子計数工程と、
前記粒子計数工程で計数された結果に基づいて、
前記液体の濁度及び前記液体の蛍光粒子に由来する濁度を算出
し、前記液体の濁度に占める前記蛍光粒子に由来する濁度の割合を算出する濁度算出工程と
、
前記濁度算出工程で算出された前記液体の濁度に占める前記蛍光粒子に由来する濁度の割合を少なくとも表示する結果表示工程と
を含む濁度計測方法。
【請求項4】
請求項3に記載の濁度計測方法において、
前記結果表示工程では、
前記液体の濁度に占める前記蛍光粒子に由来する濁度の割合を視覚的に表現することを特徴とする濁度計測方法。
【請求項5】
水を対象として浄化処理を行う浄水施設において、
浄水過程の水路上に請求項1
又は2に記載の濁度計測装置が設置されており、
前記濁度計測装置により算出される濁度に基づいて、浄水過程で注入する薬剤の種類又は量を決定することを特徴とする浄水監視システム。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、光の散乱を利用した濁度測定装置及びその方法に関し、特に、水質管理に用いられる濁度計測装置及びその方法に関する。
【背景技術】
【0002】
従来、水質管理の指標として、水の濁りの程度を表す濁度が用いられている。例えば、水道事業においては、クリプトスポリジウム等の耐塩素性病原生物への対策推進のために適用された「水道におけるクリプトスポリジウム等対策指針」により、ろ過池等の出口の濁度を0.1度以下に維持することが求められており、このレベルを超えた場合には取水を停止する等の大規模な対策を講じなければならない。したがって、濁度を監視し適切に管理することは、非常に重要な課題となっている。
【0003】
濁度の測定は、透過散乱光法、表面散乱光法、透過光法、散乱光法、積分球法、微粒子カウント法等の様々な方式に沿って行われるが、これらの方式はいずれも、光の透過や散乱を利用したものである。例えば、微粒子カウント法により、試料水中に存在する微粒子の粒径区分毎の個数濃度及び光散乱断面積に基づいて濁度を測定する装置が知られている(特許文献1を参照。)。
【0004】
ところで、水の処理工程において発生する様々な障害には、生物が発生原因となる生物障害が含まれる。例えば、上水処理であれば、ろ過漏出障害、異臭味障害、凝集不良、ろ過閉塞等が、一般的に生物障害として認識されている。こうした生物障害を未然に防止するためには、濁度だけでなく、水に含まれる生物粒子の状況を把握することもまた重要である。
【先行技術文献】
【特許文献】
【0005】
【非特許文献】
【0006】
【文献】「水道におけるクリプトスポリジウム等対策指針」,厚生労働省,平成19年3月
【発明の概要】
【発明が解決しようとする課題】
【0007】
上記の先行技術によれば、試料水の濁度をリアルタイムで測定することができると考えられるが、濁度が上昇したとしても、その原因が生物に由来するものであるか否かを判別することができない。そこで通常、水の処理工程においては、濁度の測定とは別に、蛍光顕微鏡や培養によって微生物の検知がなされている。
【0008】
しかしながら、そのような手法では、微生物の検知をリアルタイムで行うことができないため、濁度の変化に応じて迅速かつ適切なフィードバックを行うことが困難である。また、試料水中に存在する自家蛍光を発する粒子を計数することにより、生物由来の粒子数を測定する手法も知られてはいるが、濁度の測定結果と蛍光粒子の計数結果とでは指標が異なるため、両者を単純に対比させるだけでは、蛍光物質(生物)が濁度にどの程度影響を及ぼしているのかを把握することが困難である。
【0009】
そこで、本発明は、蛍光物質に由来する濁度を特定する技術の提供を課題とする。
【課題を解決するための手段】
【0010】
上記の課題を解決するため、本発明は以下の生物粒子測定装置及び生物粒子測定装置を採用する。なお、以下の括弧書中の文言はあくまで例示であり、本発明はこれに限定されるものではない。
【0011】
すなわち、本発明の濁度計測装置及び濁度計測方法においては、液体に向けて所定波長の光を照射し、液体に含まれる粒子から放出される散乱光を選択的に受光してその強度に応じた大きさの信号を出力するとともに、液体に含まれる粒子から放出される蛍光を選択的に受光してその強度に応じた大きさの信号を出力し、出力された各信号に基づいて単位体積当たりの蛍光を発する蛍光粒子の個数を予め定められた粒径区分毎に計数し、計数結果に基づいて、液体の蛍光粒子に由来する濁度を算出する。
【0012】
微粒子カウント法においては、公知のように、液体に含まれる粒子から放出される散乱光に基づいて濁度の測定がなされる。すなわち、この測定で加味される光は散乱光のみであるため、測定された濁度のうち微生物に由来する値が果たしてどの程度なのかを知る術はない。
【0013】
これに対し、上記の態様においては、液体に含まれる粒子から放出される散乱光及び蛍光に基づいて、蛍光粒子に由来する濁度(蛍光濁度)が算出される。したがって、この態様によれば、蛍光物質に由来する濁度の大きさを、一般的な濁度と同一の単位で特定することができる。
【0014】
好ましくは、上記の濁度計測装置及び濁度計測方法において、さらに単位体積当たりの粒子の個数を粒径区分毎に計数可能であり、計数された結果に基づいて、液体の濁度を算出可能である。
【0015】
この態様においては、単位体積当たりの全ての粒子の個数が粒径区分毎に計数される。或いは、全ての粒子の個数が直接的には計数されないとしても、全ての粒子の個数は蛍光粒子の個数と蛍光を発しない非蛍光粒子の個数の合計に等しいため、蛍光粒子の個数と非蛍光粒子の個数が計数されれば、これらを足し合わせることで、自ずと全ての粒子の個数が間接的に計数されることになる。
【0016】
また、濁度は全ての粒子に由来して算出されるものであるから、蛍光濁度と蛍光を発しない粒子に由来する濁度(非蛍光濁度)との合計が濁度となる。したがって、粒径区分別の全ての粒子の個数に基づいて濁度が算出されれば、ここから蛍光濁度を差し引くことで、自ずと非蛍光濁度も算出されることになる。また、濁度が直接的には算出されないとしても、粒径区分別の非蛍光粒子の個数に基づいて非蛍光濁度が算出されれば、これを蛍光濁度と足し合わせることで、自ずと濁度も間接的に算出されることになる。したがって、この態様によれば、濁度、蛍光濁度及び非蛍光濁度を特定することができ、濁度の内訳を把握することが可能となる。
【0017】
より好ましくは、上記の濁度計測装置及び濁度計測方法において、さらに液体の濁度に占める蛍光粒子に由来する濁度の割合を算出する。また、算出された液体の濁度に占める蛍光粒子に由来する濁度の割合を少なくとも表示する。
【0018】
この態様によれば、液体の濁度に占める蛍光濁度の割合が特定され、その値が表示されるため、濁度に対する蛍光物質の影響度合いを容易に把握することができる。
【発明の効果】
【0019】
以上のように、本発明によれば、蛍光物質に由来する濁度を特定することができる。
【図面の簡単な説明】
【0020】
【
図1】蛍光濁度計測装置の一実施形態を示す概略構成図である。
【
図2】蛍光濁度計測処理の手順例を示すフローチャートである。
【
図3】データ解析処理の手順例を示すフローチャートである。
【
図4】蛍光信号及び散乱光信号の入力例を示す図である。
【
図5】粒子計数処理の手順例を示すフローチャートである。
【
図6】粒子計数処理により粒径区分別に計数される蛍光粒子数及び非蛍光粒子数をまとめた表である。
【
図7】比較例において粒径区分別に計数される粒子数をまとめた表である。
【
図8】報知処理の手順例を示すフローチャートである。
【
図9】計測結果の表示態様の一例を示す図である(1/2)。
【
図10】計測結果の表示態様の一例を示す図である(2/2)。
【
図11】濁度、蛍光粒子数及び非蛍光粒子数の推移、並びに、濁度に占める蛍光濁度の割合の一例を示す図である(1/2)。
【
図12】濁度、蛍光粒子数及び非蛍光粒子数の推移、並びに、濁度に占める蛍光濁度の割合の一例を示す図である(2/2)。
【
図13】蛍光濁度計測装置を備えた浄水監視システムの一例を示す図である。
【発明を実施するための形態】
【0021】
以下、本発明の実施の形態について、図面を参照しながら説明する。なお、以下の実施形態は好ましい例示であり、本発明はこの例示に限定されるものではない。
【0022】
図1は、蛍光濁度計測装置1の構成を簡略的に示す図である。ここで、「蛍光濁度」とは、試料水に含まれる蛍光を発する粒子(以下、「蛍光粒子」と称する。)に由来して計測される濁度のことである。これに対し、「非蛍光濁度」とは、試料水に含まれる蛍光を発しない粒子(以下、「非蛍光粒子」と称する。)に由来して計測される濁度のことである。また、「蛍光濁度計測装置」とは、試料水に関し、濁度、蛍光濁度、非蛍光濁度、及び、濁度に占める蛍光濁度の割合等の計測(以下、これらを総括して「蛍光濁度の計測」と称する。)を行ってその結果を報知する装置のことである。
【0023】
図1に示されるように、蛍光濁度計測装置1は、大きくみると検出システム2及び計測システム3から成る。このうち、検出システム2は、試料水に光を照射し、試料水に含まれる粒子と照射光との相互作用により生じる光を検出する部分である。また、計測システム3は、検出システム2により検出された光に基づいて蛍光濁度の計測を行い、その結果を報知する部分である。
【0024】
なお、本実施形態の蛍光濁度計測装置1は、蛍光粒子に由来する濁度を計測する上で、藻類等の植物プランクトンの細胞内に存在する代謝に必要となるクロロフィル等の物質から発せられる自家蛍光を指標とする。また、粒径が0.5μm~数100μmの大きさの粒子を検出可能である。
【0025】
〔検出システム〕
先ず、検出システム2の構成について説明する。
検出システム2は、例えば、発光手段10、照射用レンズ20、フローセル30、第1集光用レンズ40、遮光手段50、散乱光選択光学手段60、遮光壁65、蛍光選択光学手段70、第2集光用レンズ80、蛍光受光手段90、第3集光用レンズ100、散乱光受光手段110等で構成されている。
【0026】
発光手段10は、例えば、半導体レーザーダイオード又は半導体LED素子であり、照射光11をフローセル30に向けて照射する。上述したように、本実施形態においてはクロロフィル等の物質から発せられる自家蛍光を指標として蛍光の検出がなされるが、例えば、クロロフィルaの励起波長スペクトルは約430nmをピークとした分布をしており、クロロフィルaを励起させるには紫外線領域から青色の可視光領域(例えば、330~460nm)にある光が適している。そこで、より多くの蛍光を放出させるべく、照射光11の波長には405nmが採用されている。
【0027】
照射光11の光軸上には、照射用レンズ20が設けられている。照射用レンズ20は、例えば、コリメータレンズ、両凸レンズ、シリンドリカルレンズ等の光学レンズで構成されており、照射光11の広がり角を平行以下に調整してフローセル30の内部に集光する。
【0028】
フローセル30は、石英やサファイア等の透明な材料で筒状に形成されており、その内部が試料水の流路となる。フローセル30には、例えば、浄水過程にある水が分流された蛍光粒子Pfや非蛍光粒子Psを含む試料水が流し込まれる。
【0029】
試料水が流し込まれたフローセル30に向けて発光手段10が照射光11を照射すると、照射光11は照射用レンズ20により集光されてフローセル30に入射する。これにより、フローセル30内の所定の位置に、蛍光粒子Pfや非蛍光粒子Psから生じる光を検出するための検出領域が形成される。そして、照射光11が蛍光粒子Pfの細胞内のクロロフィルaにより吸収されると、630~710nmの波長域にある蛍光が放出される。また、蛍光粒子Pfから放出される蛍光の波長分布は、約670nmをピークとしたものとなる。
【0030】
照射光11の光軸に対して前方の位置、すなわちフローセル30を介して発光手段10とは反対側の位置には、遮光手段50が設けられている。遮光手段50は、例えば、ビームダンパ又はビームトラップであり、フローセル30を通過した照射光11を遮蔽し吸収する。
【0031】
一方、照射光11の光軸に対して側方の位置には、第1集光用レンズ40が配置されている。第1集光用レンズ40は、フローセル30内で蛍光粒子Pfや非蛍光粒子Psと照射光11との相互作用により生じた光を集光する。できるだけ多くの光を集光するために、レンズの口径は大きい方が好ましい。
【0032】
第1集光用レンズ40により集光された光は、散乱光選択光学手段60に入射する。散乱光選択光学手段60は、例えば、ダイクロイックミラーである。本実施形態においては、例えば、410nmをカットオフ波長とするダイクロイックミラーが採用されている。蛍光粒子Pfや非蛍光粒子Psから放出される散乱光は照射光11と同一の波長を有するため、このような散乱光選択光学手段60を配置することにより、蛍光粒子Pfや非蛍光粒子Psから放出される散乱光を反射させつつ、蛍光粒子Pfから放出される蛍光を含むその他の光は透過させることができる。
【0033】
散乱光選択光学手段60を透過した光の光軸上には、蛍光選択光学手段70が配置されている。蛍光選択光学手段70は、例えば、ロングパスフィルタである。本実施形態においては、約670nmをピークとする蛍光スペクトルを有するクロロフィルaを指標とするため、これに対応して、600nmをカットオフ波長とするロングパスフィルタが採用されている。なお、ロングパスフィルタのカットオフ波長はこれに限定されず、蛍光よりも短い波長を有するその他の光(ラマン散乱光等)をより多くカットすることができる波長を選択してもよい。また、ロングパスフィルタに代えて、所定の波長域にある光を透過するバンドパスフィルタを採用してもよいし、或いは、所定の波長よりも長波長の光を透過させつつ短波長の光を反射させるダイクロイックミラーを採用してもよい。
【0034】
蛍光選択光学手段70を透過した光の光軸上には、第2集光用レンズ80が配置されている。第2集光用レンズ80は、蛍光選択光学手段70を透過した光を集光して、蛍光受光手段90に入射させる。蛍光選択光学手段70を透過した光には、蛍光粒子Pfからの蛍光の他に、蛍光選択光学手段70でカットされなかったラマン散乱光等が含まれる。なお、散乱光選択光学手段60を透過してから蛍光受光手段90に到達するまでの光路は、遮光壁65で覆われている。遮光壁65は、例えば、筒状をなす構造物である。遮光壁65により、他からの光が蛍光受光手段90に入射するのを防止することができる。
【0035】
蛍光受光手段90は、例えば、フォトダイオード(PD、半導体光学素子)又はフォトマルチプライヤーチューブ(PMT、光電子増倍管)であり、入射した光の強度(光量)に応じた大きさの電圧値により電気信号を出力する。なお、蛍光受光手段90が出力した電気信号は、計測システム3に入力する。
【0036】
一方、散乱光選択光学手段60により反射された光、すなわち散乱光の光軸上には、第3集光用レンズ100が配置されている。第3集光用レンズ100は、散乱光を集光して、散乱光受光手段110に入射させる。なお、散乱光選択光学手段60の反射側から散乱光受光手段110に到達するまでの光路に対しても、散乱光選択光学手段60の透過側から蛍光受光手段90までの光路と同様に遮光壁65を設けてもよい。
【0037】
散乱光受光手段110は、例えば、フォトダイオード(PD、半導体光学素子)又はフォトマルチプライヤーチューブ(PMT、光電子増倍管)であり、入射した光の強度(光量)に応じた大きさの電圧値により電気信号を出力する。なお、散乱光受光手段110が出力した電気信号は、計測システム3に入力する。
【0038】
〔計測システム〕
次に、計測システム3の構成について説明する。
計測システム3は、例えば、信号処理ユニット200、データ処理ユニット300、報知ユニット400等で構成されている。このうち、信号処理ユニット200は、検出システム2(蛍光受光手段90、散乱光受光手段110)により入力された電気信号を解析に適した形に変換する。また、データ処理ユニット300は、変換後の信号データに基づいて蛍光粒子数及び非蛍光粒子数を粒径区分毎に計数した上で、その計数結果に基づいて蛍光濁度を算出する。そして、報知ユニット400は、処理された結果の報知を行う。
【0039】
続いて、個々のユニット200,300,400により実行される処理の内容をより具体的に説明する。
【0040】
〔蛍光濁度計測処理〕
図2は、蛍光濁度計測処理の手順例を示すフローチャートである。蛍光濁度計測処理は、計測システム3により実行される処理である。以下、手順例に沿って説明する。
【0041】
ステップS10:先ず、信号処理ユニット200がデータ収集処理を実行する。具体的には、蛍光受光手段90からの電気信号を受信すると、蛍光信号処理部210において、第1増幅器212が受信された電気信号を所定の増幅率で増幅し、第1A/D変換部214が増幅された電気信号(アナログ信号)をデジタル信号に変換する。また、散乱光受光手段110からの電気信号を受信すると、散乱光信号処理部220において、第2増幅器222が受信された電気信号を所定の増幅率で増幅し、第2A/D変換部224が増幅された電気信号(アナログ信号)をデジタル信号に変換する。各A/D変換部214,224により変換されたデジタル信号は、データ処理ユニット300に入力する。
【0042】
なお、以下の説明においては、第1A/D変換部214により変換されたデジタル信号を「蛍光信号」と称し、第2A/D変換部224により変換されたデジタル信号を「散乱光信号」と称することとする。
【0043】
ステップS20:次に、データ処理ユニット300がデータ解析処理を実行する。この処理では、データ記憶部310が、入力された蛍光信号及び散乱光信号を記憶し、データ解析部320が、これらの信号に基づいてデータ解析を行う。
【0044】
ステップS30:そして、データ処理ユニット300が解析結果出力処理を実行する。この処理では、結果出力部330が、データ解析部320により解析された最新の計測結果をデータ記憶部310に記憶させるとともに、報知ユニット400に入力する。この他に、結果出力部330は、計測結果をプリンタに出力したり、或いはネットワークを介した他のデバイスに送信したりすることも可能である。
【0045】
ステップS40:最後に、報知ユニット400が報知処理を実行する。この処理では、報知ユニット400が、入力された最新の計測結果を報知する。
【0046】
なお、データ解析処理及び報知処理の具体的な内容については、別の図面を参照しながら詳しく後述する。
【0047】
〔データ解析処理〕
図3は、データ解析処理の手順例を示すフローチャートである。以下、手順例に沿って説明する。
【0048】
ステップS100:データ処理ユニット300が信号記憶処理を実行する。この処理では、データ記憶部310が、信号処理ユニット200(第1A/D変換部214、第2A/D変換部224)により入力された蛍光信号、散乱光信号を記憶する。すなわち、データ記憶部310の実体は、記憶領域(メモリ)である。
【0049】
ステップS110:データ処理ユニット300が粒子計数処理を実行する。この処理では、データ解析部320が、同時期に入力した蛍光信号及び散乱光信号に基づいて、蛍光粒子数及び非蛍光粒子数を粒径区分毎に計数する。
【0050】
〔蛍光信号及び散乱光信号の入力例〕
図4は、蛍光信号及び散乱光信号の入力例を示す図である。
【0051】
図4中の上段は、蛍光受光手段90からの電気信号に応じてA/D変換されデータ処理ユニット300に入力した蛍光信号V
Aの時間変化分布を示している。蛍光信号V
Aの波高値に対しては、閾値A(V
thA)が設けられている。ところで、上述したように、蛍光受光手段90には蛍光選択光学手段70を透過した光が入射するが、入射光には、蛍光L
1の他に、蛍光選択光学手段70でカットされなかったラマン散乱光等の光L
2が僅かに含まれる。したがって、蛍光信号V
Aの大きさは、厳密には、蛍光L
1及びその他の光L
2の各光量を合計した光量の光L
tに対応している。
【0052】
また、
図4中の下段は、散乱光受光手段110からの電気信号に応じてA/D変換されデータ処理ユニット300に入力した散乱光信号V
Bの時間変化分布を示している。本実施形態においては、蛍光粒子数及び非蛍光粒子数をそれぞれn個の粒径区分毎に計数するために、散乱光信号V
Bの波高値に対しn個の閾値が設けられ、散乱光信号V
Bの波高値がn個の粒径区分に分類される。n個の閾値のうち、最も小さい閾値B1(V
thB1)は、蛍光濁度計測装置1が検出可能とする粒径の最小値である0.5μmに対応する値である。
【0053】
発明の理解を容易とするために、ここでは粒径区分を5個とする場合を例に挙げて説明する。5個の粒径区分としては、例えば、粒径dが0.5μm以上かつ1.0μm未満の粒子が分類される第1粒径区分D1、粒径dが1.0μm以上かつ2.0μm未満の粒子が分類される第2粒径区分D2、粒径dが2.0μm以上かつ3.0μm未満の粒子が分類される第3粒径区分D3、粒径dが3.0μm以上かつ5.0μm未満の粒子が分類される第4粒径区分D4、及び、粒径dが5.0μm以上の粒子が分類される第5粒径区分D5が設定される。この場合には、散乱光信号VBに対し5個の閾値B1(VthB1)~B5(VthB5)が設けられる。このうち、閾値B1(VthB1)は0.5μmに対応する値であり、閾値B2(VthB2)は1.0μmに対応する値であり、閾値B3(VthB3)は2.0μmに対応する値であり、閾値B4(VthB4)は0.3μmに対応する値であり、閾値B5(VthB5)は5.0μmに対応する値である。
【0054】
粒子計数処理においては、散乱光信号VBの波高値が閾値B1以上であり、かつ、散乱光信号VBと同時期に入力した蛍光信号VAの波高値が閾値A以上である場合には、このタイミングで入力した光は蛍光粒子Pfから放出された光であると判定され、蛍光粒子数が1加算される。これに対し、散乱光信号VBの波高値が閾値B1以上ではあるものの、散乱光信号VBと同時期に入力した蛍光信号VAの波高値が閾値A未満である場合には、このタイミングで入力した光は非蛍光粒子Psから放出された光であると判定され、非蛍光粒子数が1加算される。
【0055】
例えば、時刻t1においては、散乱光信号VBの波高値が閾値B1以上であるが、蛍光信号VAの波高値が閾値A未満であるため、非蛍光粒子が1加算される。また、時刻t2においては、散乱光信号VBの波高値が閾値B1以上であり、かつ、蛍光信号VAの波高値が閾値A以上であるため、蛍光粒子が1加算される。
【0056】
〔粒子計数処理〕
図5は、粒子計数処理の手順例を示すフローチャートである。以下、手順例に沿って説明する。
【0057】
ステップS200:データ解析部320が、散乱光信号VBの波高値が閾値B1以上である場合に、散乱光信号VBの波高値の大きさに応じて処理を分岐する。具体的には、データ解析部320は、散乱光信号VBの波高値が閾値B1以上であり閾値B2未満である場合には、検出された粒子を第1粒径区分D1に分類し(ステップS210)、散乱光信号VBの波高値が閾値B2以上であり閾値B3未満である場合には、検出された粒子を第2粒径区分D2に分類し(ステップS212)、散乱光信号VBの波高値が閾値B3以上であり閾値B4未満である場合には、検出された粒子を第3粒径区分D3に分類し(ステップS214)、散乱光信号VBの波高値が閾値B4以上であり閾値B5未満である場合には、検出された粒子を第4粒径区分D4に分類し(ステップS216)、散乱光信号VBの波高値が閾値B5以上である場合には、検出された粒子を第5粒径区分D5に分類する(ステップS218)。なお、閾値B1は検出可能な粒径の最小値に対応しているため、閾値B1未満である場合についての処理は不要である。
【0058】
ステップS220:続いてデータ解析部320が、散乱光信号VBと同時期に入力した蛍光信号VAの波高値が閾値A以上であるか否かを確認する。確認の結果、蛍光信号VAの波高値が閾値A以上である場合には(ステップS220:Yes)、データ解析部320は、次にステップS230を実行する。一方、蛍光信号VAの波高値が閾値A未満である場合には(ステップS220:No)、データ解析部320は、次にステップS232を実行する。
【0059】
ステップS230:データ解析部320が、散乱光信号VBの波高値の大きさに応じて分類された粒径区分の蛍光粒子数を1加算する。
【0060】
ステップS232:データ解析部320が、散乱光信号VBの波高値の大きさに応じて分類された粒径区分の非蛍光粒子数を1加算する。
【0061】
以上の手順を繰り返し実行することにより、単位体積当たりの蛍光粒子数及び非蛍光粒子数が粒径区分毎に計数される。また、計数された蛍光粒子数と非蛍光粒子数とを足し合わせることにより、単位体積当たりの総粒子数が粒径区分毎に算出される。
【0062】
なお、上記の手順例は飽くまで一例であり、これに限定されない。例えば、上記の手順例においては、蛍光粒子数及び非蛍光粒子数を計数しているが、これに代えて、総粒子数及び蛍光粒子数を計数してもよい。この場合には、計数された総粒子数から蛍光粒子数を差し引くことにより、単位体積当たりの非蛍光粒子数を粒径区分毎に算出することができる。
【0063】
〔粒径区分別の計数結果:実施形態〕
図6は、粒子計数処理(
図5)により粒径区分別に計数される蛍光粒子数及び非蛍光粒子数をまとめた表である。
【0064】
第1粒径区分D1に分類された蛍光粒子の数はNf1個であり、非蛍光粒子の数はNs1個である。また、これらの計数値の合計から、第1粒径区分D1に分類された粒子の総数はN1個(=Nf1+Ns1)と算出される。
【0065】
第2粒径区分D2に分類された蛍光粒子の数はNf2個であり、非蛍光粒子の数はNs2個である。また、これらの計数値の合計から、第2粒径区分D2に分類された粒子の総数はN2個(=Nf2+Ns2)と算出される。
【0066】
第3粒径区分D3に分類された蛍光粒子の数はNf3個であり、非蛍光粒子の数はNs3個である。また、これらの計数値の合計から、第3粒径区分D3に分類された粒子の総数はN3個(=Nf3+Ns3)と算出される。
【0067】
第4粒径区分D4に分類された蛍光粒子の数はNf4個であり、非蛍光粒子の数はNs4個である。また、これらの計数値の合計から、第4粒径区分D4に分類された粒子の総数はN4個(=Nf4+Ns4)と算出される。
【0068】
第5粒径区分D5に分類された蛍光粒子の数はNf5個であり、非蛍光粒子の数はNs5個である。また、これらの計数値の合計から、第5粒径区分D5に分類された粒子の総数はN5個(=Nf5+Ns5)と算出される。
【0069】
ここで、粒径区分別の蛍光粒子数及び非蛍光粒子数は、いずれも単位体積当たりでの粒子数として計数されたものであるため、各計数値は、そのまま個数濃度として読み替えることができる。
【0070】
本実施形態においては、上記の粒径区分別の計数結果に基づいて濁度及び蛍光濁度が微粒子カウント法に準じて算出される。なお、
図6の表において粒径区分D
1~D
5の各直下に示した粒径r
1~r
5は、濁度を算出する上で各粒径区分の粒径として用いられる。ここでは一例として、粒径r
1~r
5の値に、対応する粒径区分における粒径範囲の中央値を用いている。例えば、第1粒径区分D
1の粒径r
1は、「0.5μm以上かつ1.0μm未満」の中央値である「0.75μm」とされている。但し、第5粒径区分D
5の粒径r
5については、粒径範囲に上端がなく中央値が定まらないため、予め定めた「7.0μm」とされている。なお、粒径r
1~r
5として用いる値は、粒径範囲の中央値に限定されない。例えば、中央値に代えて最小値を用いてもよい。
【0071】
〔濁度算出処理:
図3参照〕
ステップS120:データ処理ユニット300が濁度算出処理を実行する。この処理では、データ解析部320が、上記のステップS110(粒子計数処理:
図5)の結果として算出された粒径区分別の総粒子数に基づき、微粒子カウント法に沿って粒径区分別の個数濃度と平均散乱断面積との積の総和を求める公知の数式を用いて濁度を算出する。
【0072】
濁度の算出においては、各粒径区分の個数濃度は、粒径区分別の総粒子数N1~N5と流量に基づいて算出される。また、各粒径区分の平均散乱断面積は、各粒径区分の粒径r1~r5に基づいて算出可能である。
【0073】
ステップS130:データ処理ユニット300が蛍光濁度算出処理を実行する。この処理では、データ解析部320が、上記のステップS110(粒子計数処理:
図5)の結果として算出された粒径区分別の蛍光粒子数に基づいて、蛍光濁度を算出する。
【0074】
蛍光濁度についても、濁度の算出時と同じ数式を用いて算出される。また、蛍光濁度の算出においては、各粒径区分の個数濃度は、粒径区分別の蛍光粒子数Nf1~Nf5と流量に基づいて算出される。また、各粒径区分の平均散乱断面積は、各粒径区分の粒径r1~r5に基づいて算出可能である。
【0075】
ステップS140:データ処理ユニット300が非蛍光濁度算出処理を実行する。この処理では、データ解析部320が、ステップS120で算出された濁度からステップS130で算出された蛍光濁度を差し引くことにより、非蛍光濁度を算出する。
【0076】
なお、非蛍光濁度を濁度と蛍光濁度との差分として算出するのに代えて、濁度や蛍光濁度の算出時と同じ数式を用いて算出することも可能である。その場合の非蛍光濁度の算出においては、各粒径区分における個数濃度は、それぞれ粒径区分別の非蛍光粒子数Ns1~Ns5と流量に基づいて算出されることとなる。
【0077】
ステップS150:データ処理ユニット300が割合算出処理を実行する。この処理では、データ解析部320が、ステップS120~S140で算出された濁度、蛍光濁度及び非蛍光濁度に基づいて、濁度に占める蛍光濁度及び非蛍光濁度の各割合を算出する。
【0078】
以上の手順により、濁度、蛍光濁度、非蛍光濁度、及び、濁度に占める蛍光濁度及び非蛍光濁度の各割合が算出される。これにより、濁度に対する蛍光粒子(生物粒子)の影響度合いを特定することが可能となる。
【0079】
〔粒径区分別の計数結果:比較例〕
図7は、比較例において粒径区分別に計数される粒子数をまとめた表である。比較例には、微粒子カウント法により濁度を測定する一般的な濁度計が該当する。
【0080】
比較例においては、散乱光のみに基づいて粒子数が粒径区分別に計数される。そして、その計数結果に基づいて濁度が算出されることとなる。そのため、算出されるのは濁度のみであり、蛍光濁度を特定することも、濁度に対する蛍光粒子(生物粒子)の影響度合いを特定することも不可能である。
【0081】
〔報知処理〕
図8は、報知処理の手順例を示すフローチャートである。以下、手順例に沿って説明する。
【0082】
ステップS300:報知ユニット400が報知の更新タイミングであるか否かを確認する。蛍光濁度計測装置1においては、蛍光濁度の計測及びその結果の記憶が継続的に実行され、最新の計測結果の報知がなされる(計測結果の更新毎に報知の更新タイミングが生じる)が、計測結果の報知を予め設定された一定時間毎に(例えば、数分間隔で)実行することも可能な構成とされている。一定時間に関する設定がなされている場合には、報知の更新タイミングが一定時間毎に生じる。
【0083】
確認の結果、報知の更新タイミングである場合には(ステップS300:Yes)、報知ユニット400は、次にステップS310を実行する。一方、報知の更新タイミングでない場合には(ステップS300:No)、報知ユニット400は何も実行することなく処理を終了する。
【0084】
ステップS310:報知ユニット400が表示更新処理を実行する。この処理では、報知ユニット400は、表示器410に最新の計測結果を画面に表示させる。なお、計測結果の表示態様については、別の図面を用いてさらに後述する。
【0085】
ステップS320:報知ユニット400が報知音出力処理を実行する。この処理では、報知ユニット400は、スピーカ320から所定の報知音を出力させ、これにより表示画面が更新されたことをユーザに報知する。なお、これに加えて、最新の計測結果が所定の条件を満たした場合(例えば、蛍光濁度が所定値を超えた場合や、蛍光濁度の割合が所定割合を超えた場合等)に、所定の警告音を出力させてもよい。また、警告内容に応じて警告音を異ならせてもよい。
【0086】
〔計測結果の表示態様〕
図9及び
図10は、表示器410の画面に表示される計測結果の表示態様の一例を示す図である。
【0087】
図9中(A):濁度、蛍光濁度、及び、濁度に占める蛍光濁度の割合が円グラフで表されている。図示された表示例を見ると、濁度が「0.00016」であり、蛍光濁度が「0.00005」であり、濁度に占める蛍光濁度の割合が「31%」であることが分かる。円グラフで表示することで、視覚的なインパクトを与えて濁度に占める蛍光濁度の割合を容易に把握させることができる。
【0088】
図9中(B):蛍光濁度及び非蛍光濁度が、両者の合計を100%とするインジケータとともに帯グラフで表されている。図示された表示例を見ると、蛍光濁度が「0.00005」であり、非蛍光濁度が「0.00011」であることが分かる。また、蛍光濁度及び非蛍光濁度の各割合は数値では示されていないが、帯グラフに占める幅の大きさから、凡その割合を把握可能である。このように帯グラフで表示することで、蛍光濁度及び非蛍光濁度の各割合を感覚的に捉えさせることができる。
【0089】
図10:時間の経過に伴う蛍光濁度及び非蛍光濁度の変化が面グラフで表されている。図示された表示例を見ると、非蛍光濁度には局所的な乱高下を除くとさほど大きな変化は見られないのに対し、蛍光濁度には緩やかに上昇した時間帯と急激に下降した時間帯があることが分かる。このように面グラフで表示することで、蛍光濁度及び非蛍光濁度の時系列の推移を比較しながら確認することができる。
【0090】
なお、これらの表示態様は一例として挙げたものであり、その他の態様により計測結果を表示してもよい。また、小数点以下の桁数やグラフの目盛間隔等は状況に応じて適宜変更である。
【0091】
図11及び12は、浄水場において夕方から早朝の時間帯に蛍光濁度計測装置1により計測された濁度、蛍光粒子数及び非蛍光粒子数の推移、並びに、4つの時点での濁度に占める蛍光濁度の割合の一例を示す図である。
【0092】
いずれの図においても、上段の折れ線グラフは、試料水の濁度の推移を示しており、下段の折れ線グラフは、蛍光粒子及び非蛍光粒子の個数濃度(試料水10mL当たりの蛍光粒子数Nf及び非蛍光粒子数Ns)の推移を示している。また、4つの円グラフは、それぞれが対応する時点での濁度に占める蛍光濁度の割合を示している。
【0093】
図11:浄水場Aにおいて6月13日の夕方から6月14日の早朝の時間帯に計測された計測値の推移を示している。折れ線グラフでは、16時半から19時頃の時間帯には濁度に大きな変化はみられないが、左側の2つの円グラフを比較すると、この時間帯の序盤には「31%」だった蛍光濁度が終盤には「76%」となり、大幅に上昇していたことが分かる。また、折れ線グラフをみると、夜から夜中にかけて蛍光粒子数N
fが高い数値で推移し、これに伴って濁度も高い数値で推移して3時頃に最大となっているが、右から2番目の円グラフから、この時点での蛍光濁度が「94%」にまで達していたことが分かる。また、折れ線グラフをみると、5時頃から早朝にかけて蛍光粒子数N
fが急激に減少し、これに伴って濁度も急激に下降しているが、最も右側の円グラフから、この時点での蛍光濁度が「80%」であり、濁度が下降した後も依然として高い割合で蛍光粒子(生物粒子)が濁度に影響していたことが分かる。
【0094】
図12:浄水場Bにおいて6月17日の夕方から6月18日の早朝の時間帯に計測された計測値の推移を示している。折れ線グラフをみると、夜から夜中にかけて蛍光粒子数N
fが高い数値で推移する一方で、非蛍光粒子数N
sが局所的に乱高下する時間帯が数か所にみられ、これらに伴って濁度が高い数値で推移しつつも部分的に乱高下している。4つの円グラフを順に追っていくと、17時頃には「35%」であった蛍光濁度が、19時前には「52%」になり、濁度が最大となった後の3時頃には「79%」に達したが、濁度が下降した9時前には「36%」まで下降したことが分かる。
【0095】
図11及び
図12のいずれにおいても、濁度の推移を示す折れ線グラフの形状は、蛍光粒子数N
fの推移を示す折れ線グラフと非蛍光粒子数N
sの推移を示す折れ線グラフとを丁度足し合わせたような形状をなしている。このことから、濁度が蛍光粒子及び非蛍光粒子の個数濃度と何らかの形で連動していると推測することは可能である。しかしながら、濁度の単位は「度」であるのに対し、個数濃度の単位は「個/mL」であるため、両者の値を単純に対比させただけでは、蛍光粒子(生物粒子)が濁度にどの程度影響を及ぼしているのかを把握することは困難である。
【0096】
これに対し、本実施形態においては、蛍光濁度の計測がなされた上で、蛍光濁度の値や濁度に占める蛍光濁度の割合がグラフ化される。したがって、本実施形態によれば、計測結果の表示から、濁度と蛍光濁度を同一の指標下で比較することができ、濁度に対する蛍光粒子(生物粒子)の影響度合いを容易に把握することが可能となる。
【0097】
また、濁度が低い値で推移しているものの濁度に占める蛍光濁度の割合が上昇し始めていることが計測結果に表れていれば、そこから生物の流入量が増えて濁度が上昇する予兆を捉えることができ、濁度の上昇を未然に防ぐための対策を早い段階で講じることが可能となる。早い段階で対策を講じることができれば、濁度の上昇を未然に防ぐだけでなく、投入する薬剤の量も必要最小限に抑制することができるため、結果として、濁度の管理に要するコストの削減につなげることが可能となる。
【0098】
〔蛍光濁度計測装置を備えた浄水システム〕
最後に、蛍光濁度計測装置1のさらなる活用例を説明する。
図13は、蛍光濁度計測装置1を備えた浄水システム500の一例を示す図である。
【0099】
浄水システム500は、例えば一般的な浄水場の設備を用いて実現することができる。公知のように一般的な浄水場では、河川や湖沼、ダム湖等の各種の水源502から取水し、その原水が沈砂池504、着水井504、さらに凝集剤注入設備508へと移行されて凝集剤と共に塩素が注入される。その後、水は、沈殿池510に貯められた後、塩素注入設備512を通り塩素が注入される。塩素注入後の水は、ろ過池514にてろ過された後、別の塩素注入設備516を通り再び塩素が注入される。このようにして浄水処理された水は、配水池518から送水装置520へ移され、給水管から各家庭へ送られる。
【0100】
また浄水システム500は、凝集剤注入設備508及び2つの塩素注入設備512,516に付随して薬剤供給装置530、薬剤調整装置540及び中央監視制御装置560を備えている。このうち薬剤供給装置530は、凝集剤注入設備508及び塩素注入設備512,516にて注入される薬剤の供給源である。薬剤供給装置530から供給される薬剤は、薬剤調整装置540で供給量を調整され、凝集剤注入設備508及び塩素注入設備512,516に送られる。また中央監視制御装置560は、薬剤調整装置540による薬剤供給量の調整を制御している。
【0101】
このような浄水システム500において、例えば、着水井506の出口付近やろ過池514の出口付近からの水を分流する分流装置550を設置し、分流された水を蛍光濁度計測装置1に流し込む。蛍光濁度計測装置1は、分流された水、すなわちこれらの位置を通過して次工程に移行する水の蛍光濁度の計測を行い、ネットワークを介して計測結果を中央監視制御装置560に送信する。これを受けて中央監視制御装置560は、計測された蛍光濁度及び非蛍光濁度の大きさに応じて、薬剤調整装置540から各注入設備508,512,516に供給される薬剤の種類やその供給量をリアルタイムに制御することが可能となる。
【0102】
続いて、薬剤の制御について具体的に説明する。
【0103】
薬剤供給装置530は、複数種類の薬剤を貯蔵するタンクであり、例えば、水に混ざっている細かい砂や土等を凝集沈殿させるために用いられるポリ塩化アルミニウム(PAC)等の凝集剤や、消毒に用いられる次亜塩素酸ナトリウム(塩素)等の消毒剤を貯蔵している。薬剤供給装置530から供給されるこれらの薬剤は、配水管を通して薬剤調整装置540に送られる。なお、図示を省略したが、薬剤供給装置530と薬剤調整装置540とを接続する配水管は、凝集剤用と消毒剤用の2系統が存在する。
【0104】
薬剤調整装置540は、薬剤供給装置530から供給される各種の薬剤の流量を調整して凝集剤注入設備508及び各塩素注入設備512,516に送る装置であり、調整バルブ542,544,546を有している。調整バルブ542は、薬剤供給装置530から凝集剤注入設備508の間の配水管に接続されている。なお、図示を省略したが、凝集剤注入設備508には凝集剤及び塩素が注入されるため、薬剤供給装置530と凝集剤注入設備508とを接続する配水管は2系統存在し、調整バルブ542は、各系統の流量を調整可能である。また、調整バルブ544は、薬剤供給装置530から塩素注入設備512の間の配水管に接続されており、調整バルブ546は、薬剤供給装置530から塩素注入設備516の間の配水管に接続されている。薬剤調整装置540は、凝集剤注入設備508及び各塩素注入設備512,516に送る薬剤の流量を、中央監視制御装置560からの指示に基づいて調整バルブ542,544,546により個別に調整する。
【0105】
中央監視制御装置560は、受信した計数結果に応じて、各注入設備508,512,516に供給する薬剤の種類やその供給量をリアルタイムに決定する。例えば、蛍光濁度が高い場合には、藻類等が多く含まれているものとして、塩素の供給量の増加が決定される。また、例えば、非蛍光濁度が高い場合には、非生物の混入物が多く含まれているものとして、凝集剤の供給量の増加及び塩素の供給量の減少が決定される。そして、中央監視制御装置560は、決定した内容に基づいて薬剤調整装置540に対し薬剤の供給量の調整を指示する。
【0106】
このように、蛍光濁度計測装置1を備えた浄水システム500によれば、浄水過程にある水の蛍光濁度及び非蛍光濁度に基づいて、凝集剤注入設備508及び各塩素注入設備512,516に供給する薬剤の種類及びその供給量を異ならせることができ、浄水処理の過程における水質管理を効率よく行うことができる。また、薬剤の供給量が状況に応じて適切に制御されるため、薬剤の供給量を必要最小限に抑制することができ、浄水処理に要するコストを削減することが可能となる。
【0107】
なお、上述した例においては、蛍光濁度計測装置1を着水井506の出口付近及びろ過池514の出口付近に設置しているが、設置場所はこれに限定されない。例えば、これらに加えて沈殿池510の出口付近にも設置してもよい。或いは、着水井506、沈殿池510、ろ過池514の各出口付近のうち少なくとも1箇所に設置する構成とすることも可能である。また、浄水システムだけでなく、工業用水やミネラルウォーターの濁度の監視にも用いることができる。
【0108】
〔本発明の優位性〕
以上のように、上述した実施形態によれば、以下のような効果が得られる。
(1)蛍光粒子の個数が粒径区分毎に計数され、これに基づいて蛍光濁度が算出されるため、蛍光粒子に由来する濁度の大きさを一般的な濁度と指標を併せて同一の単位で特定することができる。
【0109】
(2)粒径区分毎に計数された蛍光粒子数、非蛍光粒子数、これらの合計による総粒子数に基づいて、濁度、蛍光濁度、非蛍光濁度が算出されるため、濁度と蛍光濁度を同一の指標下で比較することができる。
【0110】
(3)濁度に占める蛍光濁度及び非蛍光濁度の各割合が算出されるため、濁度に対する蛍光粒子(生物粒子)の影響度合いを特定することができる。
【0111】
(4)計測結果が数値とともにグラフで表示されるため、濁度に占める蛍光濁度の割合や蛍光濁度及び非蛍光濁度の時系列の推移の状況を感覚的に捉えることができる。
【0112】
(5)計測結果として表示される蛍光濁度の変化から、濁度が上昇する予兆を捉えることが可能となり、これに応じて濁度の上昇を未然に防ぐための対策を早い段階で講じることで、濁度の上昇を未然に防ぐことができる。また、早い段階で対策を講じれば、薬剤の投入量を必要最小限に抑制することができるため、濁度の管理に要するコストを削減することが可能となる。
【0113】
(6)浄水システムにおいて、蛍光濁度計測装置1を用いて浄水過程にある水を対象として蛍光濁度の計測を行い、計測結果に応じて投入する薬剤の種類や量を制御することで、浄水処理における水質管理を効率よく行うことができる。また、薬剤の供給量を必要最小限に抑制することができ、浄水処理に要するコストを削減することが可能となる。
【0114】
本発明は、上述した実施形態に制約されることなく、種々に変形して実施することが可能である。
【0115】
上述した実施形態における照射光11の波長、散乱光選択光学手段60及び蛍光選択光学手段70のカットオフ波長は、飽くまで一例として挙げたものであり、これに限定されることなく、状況に応じて適宜変更が可能である。
【0116】
上述した実施形態においては、クロロフィル等を指標として蛍光を検出しているが、これに代えて、他の物質を指標としてもよい。その場合には、指標とする物質に応じて、照射光11の波長、散乱光選択光学手段60及び蛍光選択光学手段70のカットオフ波長を変更すればよい。
【0117】
上述した実施形態においては、浄水場における計測結果を例示しているが、蛍光濁度計測装置1の利用場所は浄水場に限定されず、水質の適切な管理が必要となる他の場所(例えば、プール等)においても利用可能である。
【0118】
その他、蛍光濁度計測装置1の各構成部品の例として挙げた材料や数値等はあくまで例示であり、本発明の実施に際して適宜に変形が可能であることは言うまでもない。
【符号の説明】
【0119】
1 蛍光濁度計測装置
2 検出システム
3 計測システム
10 発光手段
20 照射用レンズ
30 フローセル
40 第1集光用レンズ
50 遮光手段
60 散乱光選択光学手段
65 遮光壁
70 蛍光選択光学手段
80 第2集光用レンズ
90 蛍光受光手段
100 第3集光用レンズ
110 散乱光受光手段
200 信号処理ユニット
300 データ処理ユニット
400 報知ユニット
500 浄水システム