(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2023-09-19
(45)【発行日】2023-09-27
(54)【発明の名称】誘電体薄膜、容量素子および電子回路基板
(51)【国際特許分類】
H01G 4/33 20060101AFI20230920BHJP
H01G 4/30 20060101ALI20230920BHJP
【FI】
H01G4/33 102
H01G4/30 544
(21)【出願番号】P 2020539510
(86)(22)【出願日】2019-08-27
(86)【国際出願番号】 JP2019033545
(87)【国際公開番号】W WO2020045447
(87)【国際公開日】2020-03-05
【審査請求日】2022-03-22
(31)【優先権主張番号】P 2018163799
(32)【優先日】2018-08-31
(33)【優先権主張国・地域又は機関】JP
(73)【特許権者】
【識別番号】000003067
【氏名又は名称】TDK株式会社
(74)【代理人】
【識別番号】110001494
【氏名又は名称】前田・鈴木国際特許弁理士法人
(72)【発明者】
【氏名】山▲崎▼ 久美子
(72)【発明者】
【氏名】佐藤 和希子
(72)【発明者】
【氏名】山▲崎▼ 純一
【審査官】田中 晃洋
(56)【参考文献】
【文献】国際公開第2017/135298(WO,A1)
【文献】国際公開第2017/135294(WO,A1)
【文献】国際公開第2017/135296(WO,A1)
(58)【調査した分野】(Int.Cl.,DB名)
H01G 4/33
H01G 4/30
(57)【特許請求の範囲】
【請求項1】
A-B-O-N型酸窒化物を有する誘電体薄膜であって、
前記A-B-O-N型酸窒化物を組成式A
aB
bO
oN
nで表す場合に、
(o+n)/a<3.00
を満た
し、
前記A-B-O-N型酸窒化物の結晶構造が非ペロブスカイト構造であることを特徴とする誘電体薄膜。
【請求項2】
(o+n)/a<2.95を満たす請求項1に記載の誘電体薄膜。
【請求項3】
n/a≦0.050を満たす請求項1または2に記載の誘電体薄膜。
【請求項4】
AはSr、Ba、Ca、La、Nd、NaおよびKから選択される1種以上の元素であり、BはTa、Nb、TiおよびWから選択される1種以上の元素である請求項1~3のいずれかに記載の誘電体薄膜。
【請求項5】
請求項1~
4のいずれかに記載の誘電体薄膜を有する容量素子。
【請求項6】
請求項1~
4のいずれかに記載の誘電体薄膜を有する薄膜キャパシタを有する電子回路基板。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、誘電体薄膜、容量素子および電子回路基板に関する。
【背景技術】
【0002】
近年、デジタル機器の高性能化に伴い、高性能な誘電体組成物が求められている。そして、ペロブスカイト型酸化物に対して欠陥を導入した誘電体組成物が研究されている。
【0003】
例えば、特許文献1では、チタン酸バリウム粉末に対して添加物を加えることでチタン酸バリウムの結晶格子に欠陥を導入し、比誘電率を向上させた誘電体組成物について記載されている。
【0004】
しかし、現在ではさらに多様な組成の誘電体組成物が求められており、添加物の有無に関わらず比誘電率を向上させた誘電体組成物が求められている。
【先行技術文献】
【特許文献】
【0005】
【発明の概要】
【発明が解決しようとする課題】
【0006】
本発明は、このような実状に鑑みてなされ、特に低周波数での比誘電率が大きく、誘電損失が小さい誘電体薄膜、容量素子および電子回路基板を提供することを目的とする。
【課題を解決するための手段】
【0007】
本発明に係る誘電体薄膜は、A-B-O-N型酸窒化物を有する誘電体薄膜であって、
前記A-B-O-N型酸窒化物を組成式AaBbOoNnで表す場合に、
(o+n)/a<3.00
を満たすことを特徴とする。
【0008】
本発明に係る誘電体薄膜は、上記の特徴を有することで、特に周波数1kHz程度の低周波数での比誘電率を大きくし、誘電損失を小さくすることができる。
【0009】
本発明に係る誘電体薄膜は、(o+n)/a<2.95を満たしてもよい。
【0010】
本発明に係る誘電体薄膜は、n/a<0.050を満たしてもよい。
【0011】
本発明に係る誘電体薄膜は、AはSr、Ba、Ca、La、Nd、NaおよびKから選択される1種以上の元素であってもよく、BはTa、Nb、TiおよびWから選択される1種以上の元素であってもよい。
【0012】
本発明に係る誘電体薄膜は、前記A-B-O-N型酸窒化物の結晶構造が非ペロブスカイト構造であってもよい。
【0013】
本発明に係る容量素子は、上記の誘電体薄膜を有する。
【0014】
本発明に係る電子回路基板は上記の誘電体薄膜を有する薄膜キャパシタを有する。
【図面の簡単な説明】
【0015】
【
図1】本発明の一実施形態に係る薄膜キャパシタの概略図である。
【
図2】実施例1~3および比較例1のXRD測定結果を示すグラフである。
【
図3】成膜時の酸素分圧とtanδとの関係を示すグラフである。
【
図4】本発明の一実施形態に係る電子回路基板の概略図である。
【発明を実施するための形態】
【0016】
以下、本発明を実施形態に基づき説明する。
【0017】
本実施形態に係る誘電体薄膜を有する薄膜キャパシタの模式図を
図1に示す。
図1に示す薄膜キャパシタ1は、基板11上に第1電極12、誘電体薄膜13の順に形成され、誘電体薄膜13の表面に第2電極14を備える。
【0018】
基板11の材質には特に制限はないが、基板11としてSi単結晶基板を用いることが入手容易性およびコスト性に優れている。フレキシビリティを重視する場合にはNi箔を基板として使用することも出来る。
【0019】
第1電極12および第2電極14の材質に特に制限はなく、電極として機能すればよい。例えば、Pt,Ag,Ni等が挙げられる。第1電極12の厚みは0.01~10μmが好ましい。第2電極14の厚みは0.01~10μmが好ましい。
【0020】
誘電体薄膜13は、A-B-O-N型酸窒化物を有する多結晶誘電体薄膜である。A-B-O-N型酸窒化物を有することにより、誘電体薄膜の周波数1kHz程度での比誘電率を大きくし、誘電損失(tanδ)を小さくすることができる。また、誘電体薄膜13は多結晶誘電体薄膜であることが好ましく、エピタキシャル膜とは異なる種類の薄膜であることが好ましい。誘電体薄膜13が多結晶誘電体薄膜であり、エピタキシャル膜とは異なる種類の薄膜であることは、例えばXRDパターンにより確認することができる。
【0021】
Aの種類およびBの種類は任意であるが、ペロブスカイト構造であるA-B-O型酸化物、すなわち、結晶構造がABO3型構造である酸化物を形成可能な種類とする。また、AはSr、Ba、Ca、La、Nd、NaおよびKから選択される1種以上の元素であることが好ましく、BはTa、Nb、TiおよびWから選択される1種以上の元素であることが好ましい。また、AはSrであることが最も好ましく、BはTaであることが最も好ましい。
【0022】
A-B-O-N型酸窒化物の組成は原子数比で組成式AaBbOoNnと表すことができる。また、A-B-O-N型酸窒化物に含まれる全ての元素の含有量の合計を100mol%として、Nの含有量が0.0001mol%以上である場合に誘電体薄膜13にA-B-O-N型酸窒化物が含まれているとする。また、A,B,Oの各元素の含有量も同様に0.0001mol%以上である。
【0023】
本実施形態にかかる誘電体薄膜13の組成を組成式AaBbOoNnで表す場合に、(o+n)/a<3.00を満たす。(o+n)/a<3.00を満たすことにより、周波数1kHz程度での比誘電率を向上させることができる。
【0024】
また、a/bについては任意であり、必ずしもa/b=1.0である必要は無い。具体的には、0.7≦a/b≦1.3であってもよい。
【0025】
また、(o+n)/a<2.95を満たすことがさらに好ましく、(o+n)/a<2.85を満たすことがさらに好ましい。なお、(o+n)/aの下限には特に制限はない。例えば(o+n)/a≧2.00である。
【0026】
また、n/a≦0.050を満たしてもよい。
【0027】
誘電体薄膜13に含まれるA-B-O-N型酸窒化物の組成を測定する方法は任意である。例えばX線光電子分光法やインパルス加熱溶融抽出法(赤外線吸収法)などの方法によって測定することができる。
【0028】
誘電体薄膜13の表面部におけるA-B-O-N型酸窒化物の組成については、誘電体薄膜13の内部におけるA-B-O-N型酸窒化物の組成とは異なっていてもよい。誘電体薄膜13の表面部とは、誘電体薄膜13の表面からの深さが10nm以下である部分を指す。誘電体薄膜13の内部とは、誘電体薄膜13の表面からの深さが30nm以上である部分を指す。本実施形態では、誘電体薄膜の表面部におけるA-B-O-N型酸窒化物の組成式を原子数比でAa1Bb1Oo1Nn1とする。
【0029】
(o1+n1)/a1<3.00を満たしていてもよい。(o1+n1)/a1<3.00を満たすことにより、周波数1kHz程度での比誘電率を向上させることができる。
【0030】
また、a1/b1については任意であり、必ずしもa1/b1=1.0である必要は無い。具体的には、0.7≦a1/b1≦1.3であってもよい。
【0031】
また、(o1+n1)/a1<2.95を満たすことがさらに好ましい。なお、(o1+n1)/a1の下限には特に制限はない。例えば(o1+n1)/a1≧2.00である。
【0032】
また、n1/a1≦0.500を満たしてもよい。
【0033】
誘電体薄膜の表面部におけるA-B-O-N型酸窒化物の組成を測定する方法は任意である。例えばX線光電子分光法やインパルス加熱溶融抽出法(赤外線吸収法)などの方法によって測定することができる。
【0034】
誘電体薄膜13の厚さは任意であるが、好ましくは10nm~1μmである。
【0035】
誘電体薄膜13の表面および/または内部に含まれるA-B-O-N型酸窒化物の結晶構造は任意であるが、非ペロブスカイト構造であることが好ましい。非ペロブスカイト構造であることにより、周波数1kHz程度での比誘電率をさらに向上させることができる。ここで、非ペロブスカイト構造とは、ペロブスカイト構造以外の構造を指す。A-B-O-N型酸窒化物においては、ABO2N型構造ではない結晶構造を指す。
【0036】
誘電体薄膜13の表面および/または内部に含まれるA-B-O-N型酸窒化物がペロブスカイト構造であるか非ペロブスカイト構造であるかを確認する方法は任意である。例えば、XRDパターンを測定することでA-B-O-N型酸窒化物がペロブスカイト構造であるか非ペロブスカイト構造であるかを確認できる。
【0037】
図4に示すように、本実施形態に係る電子回路基板100は、エポキシ系樹脂基板10と、エポキシ系樹脂基板10上に形成された樹脂層20と、樹脂層20上に設置された薄膜キャパシタ1と、薄膜キャパシタ1が設置された樹脂層20上に形成された絶縁性被覆層30と、絶縁性被覆層30上に設置された電子部品40と、薄膜キャパシタ1または電子部品40に接続され、エポキシ系樹脂基板10の表面または絶縁性被覆層30の表面に引き出された金属配線50と、を備える。薄膜キャパシタ1は、基板11を除去された状態であってもよく、基板11を除去されていない状態であってもよい。金属配線50の一部は、エポキシ系樹脂基板10の表面と、絶縁性被覆層30の表面と、の間を導通させるために、電子回路基板100を貫通している。金属配線50の種類には特に制限はない。例えばCu等が挙げられる。
図4に示す実施形態では、薄膜キャパシタ1が電子回路基板100内に埋め込まれている。
【0038】
薄膜キャパシタ1の製造方法
次に、容量素子の一種である薄膜キャパシタ1の製造方法について説明する。以下、AをSr、BをTaとする場合について説明するが、他の元素を用いる場合でも同様である。
【0039】
最終的に誘電体薄膜13となる薄膜の成膜方法に特に制限はない。例えば、真空蒸着法、スパッタリング法、PLD法(パルスレーザー蒸着法)、MO-CVD(有機金属化学気相成長法)、MOD(有機金属分解法)、ゾル・ゲル法、CSD(化学溶液堆積法)などが例示される。また、成膜時に使用する原料には微少な不純物や副成分が含まれている場合があるが、薄膜の性能を大きく損なわない程度の量であれば特に問題はない。また、本実施形態に係る誘電体薄膜13も、性能を大きく損なわない程度に微少な不純物や副成分を含んでいてもよい。
【0040】
上記の成膜方法のうち、PLD法、スパッタリング法およびCSD法などの方法で成膜すると、最終的に得られる薄膜が多結晶膜となりやすい。本実施形態ではPLD法による成膜方法について説明する。
【0041】
まず、基板11としてSi単結晶基板を準備する。次に、Si単結晶基板上にSiO2、TiOx、Ptの順に成膜し、Ptからなる第1電極12を形成する。第1電極12を形成する方法には特に制限はない。例えば、スパッタリング法やCVDなどが挙げられる。
【0042】
次に、第1電極12上にPLD法で金属酸化物薄膜を成膜する。また、用途に応じて第1電極12の一部を露出させるためにメタルマスクを使用して薄膜が一部成膜されない領域を形成してもよい。
【0043】
PLD法では、まず、目的とする多結晶誘電体薄膜の構成元素(Srおよび/またはTa)を含むターゲットを成膜室内に設置する。次に、ターゲットの表面上にパルスレーザーを照射する。パルスレーザーの強いエネルギーによりターゲットの表面を瞬時に蒸発させる。そして、ターゲットと対向するように配置した基板上に蒸発物を堆積させて金属酸化物薄膜を成膜する。なお、金属酸化物薄膜の組成式はSrTaOxである。
【0044】
ターゲットの種類に特に制限はなく、作製する多結晶誘電体薄膜の構成元素(Srおよび/またはTa)を含む金属酸化物焼結体、構成元素の単体金属または構成元素の合金などを用いることができる。また、ターゲットにおいては各元素が平均的に分布していることが好ましいが、得られる多結晶誘電体薄膜の品質に影響がない範囲で分布にばらつきがあってもよい。さらに、ターゲットは必ずしも一つである必要はなく、多結晶誘電体薄膜の構成元素の一部を含むターゲットを複数用意して成膜に用いることも可能である。ターゲットの形状にも制限はなく、使用する成膜装置に適した形状とすればよい。また、成膜条件、例えば酸素のガス圧等を調整することで、得られる金属酸化物薄膜のxを制御することができる。例えば、酸素のガス圧を制御し、成膜時の雰囲気における酸素分圧(成膜酸素分圧)を小さくするほどxが小さくなり、結晶格子に欠陥(何も入っていないサイト)が多くなる。逆に、成膜時の雰囲気における酸素分圧(成膜酸素分圧)を大きくするほどxが大きくなり、結晶格子に欠陥が少なくなる。
【0045】
本実施形態では、例えば、ターゲットとしてSr2Ta2O7を含む焼結体を用いてもよい。そして、成膜条件、例えば酸素のガス圧等を調整することで、最終的に得られる上記のxを制御することができる。なお、本実施形態では、当該金属酸化物薄膜の金属酸化物はSrTaOx、3.2≦x≦3.8であることが好ましい。
【0046】
また、PLD法の際には、成膜する金属酸化物薄膜を結晶化させるために成膜時に基板11を赤外線レーザーで加熱することが好ましい。基板11の加熱温度は金属酸化物薄膜および基板11の構成元素および組成等により変化するが、例えば、600~800℃となるように加熱して成膜を行う。基板11の温度を適温とすることで、金属酸化物薄膜が結晶化しやすくなるとともに冷却時に生じる割れの発生を防止することができる。
【0047】
成膜中に、窒素ラジカルを金属酸化物薄膜に照射して窒化処理を行うことで、金属酸化物薄膜中、少なくとも金属酸化物薄膜の表面に窒素を導入し、本実施形態の誘電体薄膜13を得ることができる。成膜中に窒素ラジカルを導入して窒化処理を行ってもよいが、窒素の導入量が過剰にならないように制御するためには、成膜後の金属酸化物薄膜に窒素ラジカルを照射して窒化処理を行う方が容易であり好ましい。なお、成膜後の金属酸化物薄膜に窒素ラジカルを照射して窒化処理を行う場合には、誘電体薄膜13の内部における窒素の含有量が誘電体薄膜13の表面における窒素の含有量よりも少なくなることが通常である。また、窒素ラジカルを金属酸化物薄膜に照射する時間が短いほど、誘電体薄膜13の比誘電率が向上しやすい。窒素ラジカルを金属酸化物薄膜に照射する時間が長いほど、誘電体薄膜13が窒素ラジカルによるダメージを受けるためであると考えられる。
【0048】
上記の方法で誘電体薄膜13を得る場合には、誘電体薄膜13の内部は実質的に均一である。したがって、X線光電子分光法やインパルス加熱溶融抽出法(赤外線吸収法)などの方法で誘電体薄膜13の内部の組成を測定する場合には、測定点を1か所設定して組成を測定し、得られた組成を誘電体薄膜13の内部の組成としてもよい。また、誘電体薄膜13の表面の組成については、好ましくは3点以上の測定点で組成を測定し、平均する。
【0049】
最後に、誘電体薄膜13上に第2電極14を形成することで、薄膜キャパシタ1を製造することができる。なお、第2電極14の材質に特に制限はなく、Ag,Au,Cu等を用いることができる。また、第2電極14の形成方法にも特に制限はない。例えば、スパッタリング法により形成することができる。
【0050】
本実施形態の誘電体薄膜13において、特に周波数1kHz程度の比誘電率が向上する理由は以下に示す通りであると考える。
【0051】
代表的なA-B-O-N型酸窒化物であるSrTaOxNyはNの含有量(y)が増えるに従って結晶格子が大きくなる傾向が本発明者らの研究により得られている。これは、N原子とO原子とを比較した場合に、N原子がO原子よりも大きいことに起因していると考えられる。
【0052】
一方、代表的なA-B-O型酸化物であるSrTaOxはOの含有量(x)が減るに従って結晶格子が小さくなる傾向が本発明者らの研究において得られている。これは、O原子と欠陥とを比較した場合に、O原子が欠陥よりも大きいことに起因していると考えられる。
【0053】
ここで、SrTaOxからなる金属酸化物薄膜にNを導入する場合において、xが小さく欠陥が多く結晶格子が小さいほど、Nを導入した後の結晶格子の歪みが大きくなると考えられる。これは、欠陥またはO原子に対してN原子が大きいため、Nを導入する前の結晶格子が小さいほどNを導入した後の結晶格子の歪みが大きくなるためである。
【0054】
一方、xが大きく、欠陥が少なく、結晶格子が大きい場合には、Nを導入した後の結晶格子の歪みが小さくなると考えられる。また、xが大きい場合やNの導入量が過剰な場合では、OとNとの合計含有量が増加し、欠陥が減少し、結晶格子の歪みが小さくなると考えられる。
【0055】
ここで、多結晶誘電体薄膜の比誘電率は、主にイオン分極および空間電荷分極に由来する。また、N原子および欠陥による分極は空間電荷分極に分類される分極である。ここで、イオン分極と空間電荷分極とを比較すると、1MHz程度の高周波数ではイオン分極の影響が大きい。これに対し、1kHz程度の低周波数では空間電荷分極の影響が大きい。したがって、本実施形態に係る誘電体薄膜13は特に1kHz程度の低周波数での比誘電率が大きくなり誘電損失(tanδ)が小さくなる。
【0056】
電子回路基板100は例えば以下の方法により製造されるが、電子回路基板100の製造方法は下記の方法に限定されない。まず、樹脂層20の前駆体である未硬化樹脂層をエポキシ系樹脂基板10に形成する。そして、薄膜キャパシタ1の第1電極11と未硬化樹脂層とが面するように、薄膜キャパシタ1を未硬化樹脂層上に搭載する。なお、薄膜キャパシタ1は、基板11を除去された状態であってもよく、基板11を除去されていない状態であってもよい。次に、薄膜キャパシタ1が搭載された未硬化樹脂層上に絶縁性被覆層30を形成し、薄膜キャパシタ1をエポキシ系樹脂基板10と絶縁性被覆層30との間に挟み込む。次に、未硬化樹脂層を熱硬化させて樹脂層20を形成すると共に、エポキシ系樹脂基板10と絶縁性被覆層30とを圧着させる。圧着の方法には特に制限はない。例えば熱プレスによる方法が挙げられる。次に、スルーホールを形成し、スルーホール内に金属配線50を形成した後に、絶縁性被覆層30上に電子部品40を搭載する。これにより、薄膜コンデンサ1が内部に埋め込まれた電子回路基板100が得られる。なお、未硬化樹脂層は、室温では未硬化の状態であり、加熱により熱硬化する性質を有するBステージのエポキシ樹脂等から形成すればよい。また、絶縁性被覆層30は、エポキシ系樹脂、テフロン(登録商標)系樹脂またはポリイミド系樹脂等の樹脂から形成すればよい。
【0057】
以上、本発明の実施形態について説明してきたが、本発明はこうした実施形態に何等限定されるものではなく、本発明の要旨を逸脱しない範囲内において種々異なる態様で実施し得ることは勿論である。例えば、電子回路基板100における薄膜コンデンサ1は、表面実装により実装されていてもよい。
【0058】
なお、本発明に係る容量素子とは、誘電性を利用した素子のことであり、コンデンサ、サーミスタ、フィルター、ダイプレクサ、共振器、発信子、アンテナ、圧電素子、トランジスタ、強誘電体メモリ等を含む。本実施形態に係る多結晶誘電体薄膜は、特に周波数1kHz程度での比誘電率が高く誘電損失が小さいことが求められる容量素子に好適に用いられる。
【実施例】
【0059】
以下、本発明を、さらに詳細な実施例に基づき説明するが、本発明は、これら実施例に限定されない。
【0060】
(実施例1~4、比較例1~5)
まず、成膜用ターゲットとして用いるSr2Ta2O7焼結体の原料として、SrCO3粉末およびTa2O5粉末を準備した。Sr/Taのモル比が1となるようにSrCO3粉末およびTa2O5粉末を秤量した。
【0061】
次に、SrCO3粉末およびTa2O5粉末に対して、エタノール溶媒を用いた湿式ボールミルにて16時間混合して混合スラリーを得た。
【0062】
次に、前記混合スラリーを恒温乾燥機にて80℃で12時間乾燥し、混合物を得た。
【0063】
次に、前記混合物を乳鉢にて軽く解砕し、セラミック製のるつぼに入れた。そして、電気炉を用いて大気雰囲気中、1000℃で2時間熱処理し、仮焼物を得た。
【0064】
次に、前記仮焼物に対して、再びエタノール溶媒を用いた湿式ボールミルにて16時間混合して仮焼後スラリーを得た。
【0065】
得られた仮焼後スラリーを恒温乾燥機にて80℃で12時間乾燥し、仮焼後混合物を得た。
【0066】
前記仮焼後混合物に対し、バインダーとしてポリビニルアルコール溶液を添加し、混合して造粒物を得た。ポリビニルアルコール溶液の添加量は、粉砕物100重量%に対して0.6重量%とした。
【0067】
前記造粒物を直径約23mm、高さ約9mmの円柱形状に成形して成型物を得た。成形方法はCIP成形とした。
【0068】
前記成型物に対し、電気炉を用いて大気雰囲気中、1400℃で2時間焼成して焼結物を得た。さらに、前記焼結物の上面および下面を鏡面研磨して高さ5mmの成膜ターゲットを得た。なお、得られた成膜ターゲットの相対密度が96~98%であることを確認した。
【0069】
上記のようにして得られた成膜用ターゲットを成膜装置に設置し、成膜用ターゲットと対向するように、Si基板を設置した。当該Si基板としては表面に第1電極としてPt膜を有するものを用いた。
【0070】
次に、PLD法で厚さ400nmとなるように金属酸化物薄膜を成膜した。成膜時の雰囲気中の酸素分圧(成膜酸素分圧)を各実施例および比較例ごとに変化させた。具体的には、成膜酸素分圧を表1に示す大きさとした。また、成膜時の温度は700℃とし、金属酸化物薄膜を成膜する段階では雰囲気中に窒素を導入しなかった。
【0071】
なお、実施例4では、雰囲気中に意図的に酸素を導入しなかった。ただし、真空装置の性能上、最大0.001Pa程度の酸素が雰囲気中に存在すると推定される。
【0072】
次に、実施例1~3および比較例1では、窒素ラジカルを金属酸化物薄膜の表面に10分間照射してラジカル窒化処理を行い、A-B-O-N型酸窒化物を有する誘電体薄膜を得た。
【0073】
得られた実施例1~3および比較例1の誘電体薄膜について、ULVAC―PHI, Inc.製PHI Quantera IITMを用いたX線光電子分光法によって、当該誘電体薄膜の表面におけるSr、NおよびOの含有率と、当該誘電体薄膜の内部におけるSr、NおよびOの含有率と、を定量した。また、SrイオンおよびTaイオンの価数をXPSのケミカルシフトから判定し、原料から価数の変化がないことを確認した。具体的には、Srイオンの価数は2で、Taイオンの価数は5であった。また、誘電体薄膜の内部における(o+n)/a、o/aおよびn/aの値はX線光電子分光法で定量した値から算出した。さらに、結果を表2に示す。なお、実施例3および比較例1は誘電体薄膜の少なくとも表面部には相当量のNが存在していることから、誘電体薄膜の表面部から内部へのNの拡散により、誘電体薄膜の内部におけるNの含有量が0.0001mol%以上になっていると推定できる。
【0074】
さらに、誘電体薄膜の表面における(o1+n1)/a1、o1/a1およびn1/a1の値はX線光電子分光法で定量した値から算出した。
【0075】
また、実験例1~3および比較例1の誘電体薄膜のXRDパターンから、実施例1~3および比較例1の誘電体薄膜は全て多結晶膜であることを確認した。すなわち、薄膜が結晶化し、多結晶薄膜となっていることを確認した。
【0076】
また、実施例1~4および比較例1~5の誘電体薄膜のXRDパターンから、各誘電体薄膜の結晶構造がペロブスカイト構造であるか、非ペロブスカイト構造であるかを特定した。結果を表1に示す。
【0077】
続いて、実施例1~4および比較例1~5の各誘電体薄膜に対して蒸着を用いてAg電極を形成し、比誘電率および誘電損失(tanδ)を測定した。比誘電率およびtanδの測定はインピーダンスアナライザー(アジレントテクノロジー社製)4294Aにて、測定電圧:100mV、測定周波数:1kHzで行った。比誘電率が800以上である場合を良好とし、tanδが1未満(100%未満)である場合を良好とし、0.1以下(10%以下)である場合をさらに良好とした。結果を表1に示す。
【0078】
【0079】
【0080】
表1および表2より、実施例1~3および比較例1では、少なくとも誘電体薄膜の表面においてA-B-O-N型酸窒化物が生成していた。そして、誘電体薄膜の内部における(o+n)/aが3.00より小さかった実施例1~3は比誘電率およびtanδが良好な結果となった。これに対し、(o+n)/aが3.00以上であった比較例1は比誘電率が低下した。
【0081】
ラジカル窒化処理を行わなかった比較例2~5はSrTaOxを有する金属酸化物薄膜となり、Nの含有量が0.0001mol%未満であり、比誘電率またはtanδが実施例1~4より劣る結果となった。
【0082】
また、実施例1~4および比較例1の各誘電体薄膜について周波数1MHzで比誘電率を測定した。実施例1~4の各誘電体薄膜の比誘電率は周波数が1MHzに上昇することで大きく減衰した。一方、比較例1の誘電体薄膜の比誘電率は周波数を1MHzに上昇させても大きく減衰しなかった。その結果、周波数1MHzでは比較例1の誘電体薄膜の比誘電率が実施例1~4の各誘電体薄膜の比誘電率よりも大きくなった。
【0083】
また、実施例1~3および比較例1のXRDプロファイルを
図2に示す。なお、
図2のαは実施例1~3のみに概ね共通するピーク位置を示し、
図2のβは実施例1~3と比較例1とで概ね共通するピーク位置を示す。なお、βのうち2θ=65deg近傍にあるピークはAg第2電極のピークである。
【0084】
酸素分圧10Paで成膜した比較例1はペロブスカイト構造を有するSrTaO2Nのピークに酷似したピーク21を有するパターンを示した。これに対し、酸素分圧0.01~1Paで成膜した実施例1~3はペロブスカイト構造を有するSrTaO2Nのピークとは異なるピークを有するパターンを示した。
【0085】
また、実施例1~3のみに共通するピークに関しては、成膜時の酸素分圧が小さいほど高角度側にシフトしていた。すなわち、成膜時の酸素分圧が小さい誘電体薄膜ほど含まれる結晶格子が小さくなった。成膜時の酸素分圧が小さい誘電体薄膜ほど含まれる結晶格子が小さくなるのは、成膜時にOが不足することで生じるO欠陥が多くなるためであると考えられる。そして、成膜時の酸素分圧が低いほど小さい結晶格子にラジカル化した窒素を強制的に導入することになるため、得られる誘電体薄膜における結晶歪が大きくなり、比誘電率が大きくなると考えられる。
【0086】
また、表1の実施例1~3および比較例1(誘電体薄膜が酸窒化物(oxynitride)からなる場合)と、比較例2、4、5(誘電体薄膜が酸化物(oxide)からなる場合)と、について、横軸に酸素分圧(P
O2)、縦軸にtanδを記載したグラフを作成した。結果を
図3に示す。
【0087】
図3より、誘電体薄膜が酸化物からなる場合には成膜時の酸素分圧が低いほど誘電体薄膜のtanδが悪化する。これは、成膜時の酸素分圧が低いほど雰囲気中のOが少なくなり誘電体薄膜にO欠陥が生じやすくなるためである。一方、誘電体薄膜が酸窒化物からなる場合には、同じ酸素分圧で成膜した酸化物からなる誘電体薄膜と比較して、特に酸素分圧が1Pa以下である場合にtanδが著しく改善することがわかる。
【0088】
(実施例5~7)
実施例5~7は、実施例2からラジカル窒化照射時間を長くした点以外は実施例2と同条件で実施した。結果を表3に示す。
【0089】
【0090】
表3より、ラジカル窒化照射時間が長いほど比誘電率が低下した。ラジカル窒化照射時間が長いほど、得られる誘電体薄膜が窒素ラジカルによるダメージを受けるためであると考えられる。
【0091】
また、実施例5~7および比較例1の各誘電体薄膜について周波数1MHzで比誘電率を測定した。実施例5~7の各誘電体薄膜の比誘電率は周波数が1MHzに上昇することで大きく減衰した。一方、比較例1の誘電体薄膜の比誘電率は周波数を1MHzに上昇させても大きく減衰しなかった。その結果、周波数1MHzでは比較例1の誘電体薄膜の比誘電率が実施例5~7の各誘電体薄膜の比誘電率よりも大きくなった。
【0092】
(実施例8~9、比較例6~9)
実施例8、比較例6、比較例7は、成膜用ターゲットとして用いる焼結体をLa2Ti2O7焼結体とした点以外は実施例2、比較例3、比較例5と同条件で実施した。また、実施例9、比較例8、比較例9は、成膜ターゲットとして用いる焼結体をBa2Ta2O7相当の焼結体とした点以外は実施例2、比較例3、比較例5と同条件で実施した。Ba2Ta2O7相当の焼結体は、Ba:Ta:O=2:2:7となるようにBaCO3粉末とTa2O5粉末とを秤量して作製した。「Ba2Ta2O7相当の焼結体」と記載するのは、Ba2Ta2O7の化合物は実在せず、焼結後にBa2Ta2O7の化合物とはなっていないためである。結果を表4に示す。
【0093】
【0094】
表4より、成膜用ターゲットの種類を変化させても同様の傾向を示した。なお、実施例8の誘電体薄膜の結晶構造は、他の実施例の誘電体薄膜の結晶構造とは異なりペロブスカイト構造であった。そして、実施例8の誘電体薄膜は比誘電率およびtanδが良好であった。
【0095】
また、実施例8~9および比較例1の各誘電体薄膜について周波数1MHzで比誘電率を測定した。実施例8~9の各誘電体薄膜の比誘電率は周波数が1MHzに上昇することで大きく減衰した。一方、比較例1の誘電体薄膜の比誘電率は周波数を1MHzに上昇させても大きく減衰しなかった。その結果、周波数1MHzでは比較例1の誘電体薄膜の比誘電率が実施例8~9の各誘電体薄膜の比誘電率よりも大きくなった。
【符号の説明】
【0096】
1・・・薄膜キャパシタ
11・・・基板
12・・・第1電極
13・・・誘電体薄膜
14・・・第2電極
21・・・SrTaO2Nのピークに酷似したピーク