IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ ドクター エンジニール ハー ツェー エフ ポルシェ アクチエンゲゼルシャフトの特許一覧

特許7351593電気トラクションモータの電磁力に影響を及ぼすための装置及び方法
<>
  • 特許-電気トラクションモータの電磁力に影響を及ぼすための装置及び方法 図1
  • 特許-電気トラクションモータの電磁力に影響を及ぼすための装置及び方法 図2
  • 特許-電気トラクションモータの電磁力に影響を及ぼすための装置及び方法 図3
  • 特許-電気トラクションモータの電磁力に影響を及ぼすための装置及び方法 図4
  • 特許-電気トラクションモータの電磁力に影響を及ぼすための装置及び方法 図5
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2023-09-19
(45)【発行日】2023-09-27
(54)【発明の名称】電気トラクションモータの電磁力に影響を及ぼすための装置及び方法
(51)【国際特許分類】
   H02P 21/05 20060101AFI20230920BHJP
   H02P 21/22 20160101ALI20230920BHJP
【FI】
H02P21/05
H02P21/22
【請求項の数】 10
【外国語出願】
(21)【出願番号】P 2021032712
(22)【出願日】2021-03-02
(65)【公開番号】P2021141805
(43)【公開日】2021-09-16
【審査請求日】2021-03-03
(31)【優先権主張番号】10 2020 105 630.3
(32)【優先日】2020-03-03
(33)【優先権主張国・地域又は機関】DE
(73)【特許権者】
【識別番号】510238096
【氏名又は名称】ドクター エンジニール ハー ツェー エフ ポルシェ アクチエンゲゼルシャフト
【氏名又は名称原語表記】Dr. Ing. h.c. F. Porsche Aktiengesellschaft
【住所又は居所原語表記】Porscheplatz 1, D-70435 Stuttgart, Germany
(74)【代理人】
【識別番号】100094525
【弁理士】
【氏名又は名称】土井 健二
(74)【代理人】
【識別番号】100094514
【弁理士】
【氏名又は名称】林 恒徳
(72)【発明者】
【氏名】マクシミリアン バルコー
(72)【発明者】
【氏名】ローベルト ネレス
(72)【発明者】
【氏名】フーゴ コック
(72)【発明者】
【氏名】ヤン ネーゲルクレーマー
【審査官】安池 一貴
(56)【参考文献】
【文献】特開2014-082854(JP,A)
【文献】特開2018-125911(JP,A)
【文献】特開2005-117876(JP,A)
【文献】特開2020-010474(JP,A)
【文献】特開2013-223352(JP,A)
【文献】特開2016-208668(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
H02P 21/05
H02P 21/22
(57)【特許請求の範囲】
【請求項1】
電気トラクションモータ(100)の電磁力に影響を及ぼすための方法であって、
より高次の高調波(336)が、結果の作動変数(uabc)の発生のために、前記電気トラクションモータ(100)の回転速度、前記電気トラクションモータ(100)のトルク、前記電気トラクションモータ(100)における温度、又は前記電気トラクションモータ(100)の三相電流若しくは三相電圧に依存するように決定され、前記高調波が前記電気トラクションモータ(100)のための作動変数(udq)に重畳され(508)、
前記電気トラクションモータ(100)が、前記結果の作動変数(uabc)に依存するように作動させられ(510)、
前記作動変数(udq)、前記高調波(336)、及び前記結果の作動変数(uabc)が作動電流又は作動電圧を特徴付け、
前記作動変数(udq)が、特に、無効にすることができるフィルタ(306)によりフィルタリングされた少なくとも1つの入力電流(idq)に依存するように決定され、前記フィルタは前記高調波の周波数を弱めるように設定された帯域阻止フィルタであり、
前記高調波(336)が、前記作動電流又は前記作動電圧の、前記結果の作動変数(uabc)の基本振動の周波数の特に整数倍である周波数を有し、前記高調波(336)は、異なる次数の複数の高調波を有することを特徴とする、方法。
【請求項2】
前記高調波(336)が、前記高調波(336)の決定のために振幅、位相、及び/又は回転角を前記回転速度、前記トルク、及び/又は前記温度に対応付ける少なくとも1つの特性図に依存するように決定されること(504)を特徴とする、請求項1に記載の方法。
【請求項3】
前記高調波(336)が、前記高調波(336)の決定のための、振幅、位相、及び/又は回転角を前記三相電流若しくは前記三相電圧、前記温度、及び/又は前記回転速度に対応付ける特性図に依存するように決定されること(504)を特徴とする、請求項1に記載の方法。
【請求項4】
前記高調波(336)のための前記振幅、前記位相、及び/又は前記回転角の前記決定が第1のタスクにおいて行われ(504)、前記高調波(336)の発生が第2のタスクにおいて行われること(506)を特徴とする、請求項2又は3に記載の方法。
【請求項5】
前記第1のタスクが前記第2のタスクよりも遅いことを特徴とする、請求項4に記載の方法。
【請求項6】
前記高調波(336)の次数の大きさが、前記電気トラクションモータの極対の数に依存するように決定されること(504)を特徴とする、請求項1~5のいずれか一項に記載の方法。
【請求項7】
前記結果の作動変数(uabc)が、前記トルク及び前記回転速度に依存するように決定されることを特徴とする、請求項1~6のいずれか一項に記載の方法。
【請求項8】
前記高調波(336)のための前記振幅、前記位相、及び/又は前記回転角がリミッタ(330)により制限されることを特徴とする、請求項2又は3に記載の方法。
【請求項9】
前記高調波は、6の整数倍の次数の高調波である、請求項1に記載の方法。
【請求項10】
電気トラクションモータ(100)の電磁力に影響を及ぼすための装置であって、前記装置が、請求項1~9のいずれか一項に記載の方法に従って前記電気トラクションモータ(100)を作動させるように構成されたコントローラ(104)を備えることを特徴とする、装置。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、電気トラクションモータの電磁力に影響を及ぼすための装置及び方法に由来する。
【背景技術】
【0002】
特許文献1は、騒音放射に対して逆にされた極性を通じた騒音放射の減衰のための補正信号が、能動減衰システムを用いて、例えば、圧電アクチュエータを用いて発生される、自動車電気モータを開示している。反対の信号の発生の結果、騒音放射は、自動車の快適性を高めるために、人間の聴覚系にとって知覚可能にならないような仕方でリアルタイムに影響を受ける。特異な事象として同様に発生する極端なピークも、前記方策を用いて等化されることになる。補正信号は、既知の制御信号及び構造反応の「予測」を通じて決定される。
【0003】
特許文献2は、動作騒音を低減するために、PWMモータ制御信号に重畳される追加的な交番電圧信号を提案している。この目的を達成するために、追加の信号は、振動加速度センサ測定値及び音響騒音センサ測定値を含めたアルゴリズムを通じて決定される。
【先行技術文献】
【特許文献】
【0004】
【文献】独国特許出願第公開第102014218880 A1号明細書
【文献】独国特許出願第公開第102009056784 A1号明細書
【発明の概要】
【課題を解決するための手段】
【0005】
独立請求項に記載の方法及び装置は、対照的に改善された手順を示す。
【0006】
電気トラクションモータの電磁力に影響を及ぼすための方法は、より高次の高調波が、結果の作動変数の発生のために、電気トラクションモータの回転速度、電気トラクションモータのトルク、電気トラクションモータにおける温度、又は電気トラクションモータの三相電流若しくは三相電圧に依存するように電気トラクションモータのための作動変数に重畳され、電気トラクションモータが、結果の作動変数に依存するように作動させられ、作動変数、高調波、及び結果の作動変数が作動電流又は作動電圧を特徴付けることを提供する。例えば、d-q電流が三相電流のために考慮される。例えば、d-q電圧が三相電圧のために考慮される。より高次の高調波を通じて、トラクションモータから発出する音響又は振動音響騒音が低減される。重畳を用いなければ、特に、ステータの歯及びロータにおける、結果として生じる半経方向及び/又は接線方向を向いた力が作動電圧を通じて発生される。前記力は、重畳され、結果として生じる力ベクトルを形成する様々な原因を有する。高調波の振幅、位相、及びパイロット制御角を適切に選択した場合には、結果として生じる力を0に低減することができる追加的な力ベクトルが発生される。その結果、電気トラクションモータの騒音が影響を受け、最適化される。
【0007】
高調波は、好ましくは、特に、作動電流又は作動電圧の、作動変数の基本振動の周波数の特に整数倍である周波数を有する。騒音に影響を及ぼすためには、基本振動の整数倍が特に適する。
【0008】
高調波は、高調波の決定のために振幅、位相、及び/又はパイロット制御角を回転速度、トルク、及び/又は温度に対応付ける少なくとも1つの特性図に依存するように決定され得る。一実装形態では、いずれの場合にも3次元である、すなわち、回転速度、トルク、温度の次元を有する、1つは振幅のため、1つは位相のため、及び1つはパイロット制御角のための、3つの特性図を提供することができる。これは高調波の決定を単純化する。
【0009】
高調波は、高調波の決定のための、振幅、位相、及び/又はパイロット制御角を三相電流若しくは三相電圧、温度、及び/又は回転速度に対応付ける特性図に依存するように決定され得る。特に、アプリケーションが、アプリケーション内で変更される回転速度/トルク動作点へのd-q電流又は電圧の対応付けを提供するときには、d-q電流又は電圧への依存が適切である。
【0010】
関数は1つのタスクにおいて実施することができる。しかし、例えば、振幅の決定はよりゆっくりと行うことができ、したがって、CPU負荷を低減することができるため、関数を2つのタスクに分割することが有利になり得る。高調波のための振幅、位相、及び/又はパイロット制御角の決定は、好ましくは第1のタスクにおいて行われ、高調波の発生は第2のタスクにおいて行われる。その結果、作業の分割をアプリケーション内で第1のタスクと第2のタスクとの間で実現することができる。例えば、一方のタスクのみ、又は他方のタスクのみをアプリケーション又は開発において変更することができる。
【0011】
第1のタスクは第2のタスクよりも遅いものであることができる。その結果、高調波の発生のために絶対に必要なステップのみがより速い第2のタスクにおいて実施されるため、コンピューティング資源を節約することができる。
【0012】
高調波の次数の大きさは、好ましくは、トラクションモータの極対の数に依存するように決定される。機械的モータ次数の表面加速度が影響を受けることができるようにするには、同じ機械的周波数における振動が発生されるべきである。電気的システムにおいては、これは、高調波の次数の大きさが、好ましくは、トラクションモータの極対の数に依存するように決定されなければならないことを意味する。高調波の機械的次数Ord_mechは、電気的次数Ord_elに極対の数pを乗算することを通じて決定される:Ord_mech=Ord_el*p。逆に、電気的次数Ord_elが機械的次数Ord_mechから外挿されることも可能である:Ord_el=Ord_mech/p。
【0013】
結果の作動変数は、トルク及び回転速度に依存するように決定される。結果の作動変数は、特に、d-q電流及び回転速度に依存するように決定される。
【0014】
作動変数は、好ましくは、特に、無効にすることができるフィルタによりフィルタリングされた少なくとも1つの入力電流に依存するように決定される。フィルタは、例えば、帯域阻止フィルタ又はノッチフィルタである。フィルタは、特に、回転速度、高調波の次数若しくは周波数、及び/又はPWM基本周波数、又はフィルタ呼び出しのタスクの周波数に依存するように設定される。その結果、フィルタの抑制されるべき周波数は、回転速度、及び/又は高調波の周波数に変動可能なように適合させられる。フィルタはまた、駆動特性又は制御システムへの効果に影響を及ぼすために、オフに切り替えることもできる。例えば、作動変数を決定するPIコントローラの制御偏差の入力におけるd-q電流が、前記関数を通じて重畳される高調波がPIコントローラによる外乱変数として知覚されないようにフィルタリングされる。その結果、基本振動のより安定した制御挙動が達成される。
【0015】
高調波のための振幅、位相、及び/又は、パイロット制御角は、好ましくは、リミッタにより制限される。これは電気トラクションモータのコントローラの安定性を改善する。
【0016】
好ましくは、異なる次数の複数の高調波が発生され、結果の作動変数の発生のために重畳される。これは多次騒音低減をもたらす。
【0017】
装置は、前記方法に従って電気トラクションモータを作動させるように構成されたコントローラを備える。
【0018】
さらなる有利な実施形態が以下の説明及び図面からもたらされる。
【図面の簡単な説明】
【0019】
図1図1は、トラクションモータの部分の概略図を示す。
図2図2は、キャンベル線図の概略図を示す。
図3図3は、トラクションモータのためのコントローラの詳細を示す。
図4図4は、計算のための図を示す。
図5図5は、電気トラクションモータの電磁力に影響を及ぼすための方法におけるステップを示す。
【発明を実施するための形態】
【0020】
図1は、トラクションモータ100の部分の概略図を示す。トラクションモータ100は、特に、三相電流又は三相電圧によって制御され、結果の作動変数106を用いて電気モータ102を作動させるコントローラ104により制御され得る電気モータ102を備える。
【0021】
結果の作動変数106は、三相電圧、特に、d-q電圧、又は三相電流、特に、d-q三相電流であることができる。電気トラクションモータ100の電磁力に影響を及ぼすための結果の作動変数106の決定のための方法が以下の本文において説明されることになる。
【0022】
図1はまた、騒音生成の影響連鎖も示す。
【0023】
本例では、電気トラクションモータ100は、電磁システム108、及び電気トラクションモータの音響特性112に影響を及ぼす構造化された動的システム110を備える。
【0024】
例えば、特性次数を有する電気トラクションモータ100内の電磁力のために、うなった騒音が生じる。
【0025】
図2は、250Nmにおけるトラクションモータ100の始動のキャンベル線図を概略的に示す。前記電気モータに特徴的である次数をキャンベル線図において明瞭に見ることができ、図2においては、24次204、48次206、及び72次208として示されている。
【0026】
電磁力により励振される構造の固有周波数も同様に存在する。したがって、構造伝播及び空気伝播音のスーパーエレベーション(superelevation)が生じる。これは、図2において例として、例えば、210及び212によって示される範囲内において示されている。
【0027】
構造の前記固有周波数の範囲内では、明瞭に知覚可能な騒音が生じる。電気トラクションモータ100の回転速度に応じて、異なるモータ次数が騒音レベルを決定する。
【0028】
以下の説明は24次の例を用いており、他の次数にも同様に適用され得る。電気トラクションモータ100に依存して、特に、永久磁石同期モータの場合には、関連次数は、極対、孔、及び撚り線の数に依存する仕方で異なる。複数の次数を弱めることも同様に可能である。本例では、電気トラクションモータ100は4つの極対の数を有する。したがって、電気的周波数は機械的周波数よりも4倍高い。したがって、図2において示される24次の「機械的」次数204は、電気的システムにおいて、6次の「電気的」次数に対応する。
【0029】
音響的に関連するパワーモードに的を絞って影響を及ぼす、又はそれを低減するために、電気トラクションモータ100のコントローラ内において的を絞って信号を付与することを通じて、電気モータのコントローラの電圧に加えて、すなわち、基準軸(basic shaft)に加えて、例えば、(作動)電圧の交番変数の形態の、24次高調波のための補償が騒音振動ハーシュネスの低減のために信号適用される。このように、例えば、電気トラクションモータ100の電流高調波は、電気トラクションモータ100内で生成された電磁力が構造を音響的に励振しないか、又はそれを励振する程度が著しく弱くなるような仕方で影響を受ける。前記方策の結果、構造伝播及び空気伝播騒音レベルを広い回転速度範囲にわたって10dB超、低減することができる。
【0030】
その結果、支持アームを切り離すための構造的な方策が有利に必要ない。この目的のための追加的重量を回避することができる。電気トラクションモータ100の動作点の音響特性112に関して変更されたデータセットが不要である。
【0031】
図3は、コントローラ104の詳細を概略的に示す。本例では、コントローラ104は、出力段304を有する電流コントローラ302を有する。出力段304は、パルス幅変調(pulse width modulation、PWM)及びインバータのために構成されている。
【0032】
コントローラ104は、フィルタ306、具体的には、帯域阻止フィルタを備える。フィルタ306は、電気トラクションモータ100のフィルタリングされたd-q電流idqを提供するように構成されている。用語d-q電流idqは、d電流及びq電流をまとめて表すために用いられる。帯域阻止フィルタの一実装形態が、d電流のため、及びq電流のための両方のフィルタリングにおいて見いだされる。フィルタ306は無効にする(非活性化する)ことができる。フィルタが無効に(非活性化)されると、フィルタリングされていない電流がその出力に切り替えられる。帯域阻止フィルタのフィルタ係数は、例えば、PWM周波数、及び音響的に知覚可能な振動のための特性周波数、例えば、400Hzに依存するように決定される。帯域阻止フィルタは、同様に、ノッチフィルタとして実施することもできる。フィルタ係数は、できるだけ狭い周波数範囲が顕著な程度に弱められるように設計される。
【0033】
フィルタ306の入力のための電気トラクションモータ100からの三相電流の変換は、電気トラクションモータ100のロータの位相位置に依存するように実施される。本例では、この目的を達成するために、ロータの正確な位相位置を示す電気トラクションモータ100のロータの角度θが決定される。フィルタ306のための入力電流は、本例では、電流iabcに依存し、変換器Tαβ及び後続の変換器T(θ)において角度θに依存するように決定される。
【0034】
コントローラ104は、動作変数、本例では、フィルタ周波数310、PWM周波数312、及び活性化314、すなわち、フィルタが有効にされているか否かに関する情報項目に依存するようにフィルタ306のためのフィルタ係数を指定するように構成された係数指定デバイス308を含む。
【0035】
コントローラ104は、信号線316、及び信号線316を介したフィルタ306の作動のために構成された指定デバイス318を含む。指定デバイス318は、電気トラクションモータ100の回転速度320に依存するようにフィルタ係数310を決定し、それらをフィルタ306に指定する(specify)ように構成されている。本例では、回転速度に依存するように周波数選択が行われる。
【0036】
指定デバイス318は、電気トラクションモータ100の回転速度320、トルク、温度、d-q電圧udq、d-q電流idq、又は活性化314に依存するようにパラメータ322を指定するように構成されている。
【0037】
本例では、振幅324、パイロット制御角326、及び/又は位相328が、回転速度320、トルク、温度、d-q電流idq、又は活性化314に依存するようにパラメータ322として指定される。
【0038】
本例では、振幅324、パイロット制御角326、及び位相328は特性図により指定される。リミッタ330によりパラメータ322を制限し、次に、それらを出力することを提供することができる。
【0039】
次数ベースの励振から周波数ベースの励振への転換の場合には、リミッタ330を、例えば、周波数掃引のための、周波数の変化速度の制限のために構成することができる。周波数の値の範囲の制限を与えることができる。具体的には、最小及び最大周波数の制限を与えることができる。これは、関数を特定の周波数範囲に制限するために、有利である。電流コントローラ302の共振振動の発達が低周波数について生じ得る。状況によっては、制御システムの安定性に影響を及ぼさないよう、関数が無効にされることになるため、過度に高い周波数はもはや構造伝播音に影響を与えない。制御ループの安定性を確実にするためには、振幅UANR及びパイロット制御角γANRの両方の変化速度の制限が有利になり得る。速い変化の場合には、フィルタ306は整定しなければならない。適用の間に誤設定された値を制限するためには、振幅UANR及びパイロット制御角γANRの値の範囲の制限が適切になり得る。過度に高い振幅UANRは、例えば、顕著な振動、又は高電圧システムの電源切断を招き得る。位相328の変化速度の制限を与えることができる。位相328の突然の変化は不安定性を招き得る。位相328の変化速度の制限はこれを回避する。
【0040】
指定デバイス318は次数332の指定のために構成されている。次数332はまた、以下の本文においてμANRによって表される。次数332は、実質的にロータ位置との乗算を通じて高調波336の周波数を決定する:sin(μANR×θ+φANR)。高調波振動の時間的位相位置φANRが、これとは独立して、角度へのφANRの加算を通じて考慮される。
【0041】
コントローラ104は、パラメータ322に依存するように高調波336を決定するように構成された影響デバイス334を含む。本例では、高調波336は、より高い高調波交番変数のための振幅UANR及びパイロット制御角γANRを通じて規定される。
【0042】
影響デバイス334は、本例では、高調波336をd-q電圧の形態で決定するように構成されている。本例では、d作動電圧UANR,d及びq作動電圧UANR,qが、次数μANRと電気トラクションモータ100のロータの角度θとの積に依存するように決定され、この角度はロータの正確な位相位置を指定する。より正確には、この目的を達成するために、前記積と時間的位相位置φANRとの合計が用いられる。
【0043】
本例では、角度θ、すなわち、ロータ位置角に、指定された次数、例えば、6が事前に乗算される。24次の機械的モータ次数を解消するために、極対の数で除算された次数(ここでは、例えば、6)が電気的システムにおいて用いられる。その後、前記角度θ及び位相位置が加算され、合計角度を形成する。本例では、その後、合計角度の正弦が形成される。本例では、これは三角関数を通じて実施される。回転ロータのために、したがって、これは、例えば、1Vの振幅を有する正弦波交番変数をもたらす。次に、前記交番変数に、d作動電圧UANR,d及びq作動電圧UANR,qの両方のための所望の振幅が乗算される。このための振幅は、指定された振幅UANR及びパイロット制御角γANRから得られる。
【0044】
k次の高調波の振幅UANR,k、位相φANR,k、及びパイロット制御角γANR,kは、具体的には、回転速度、トルク、及び温度に依存するように、特性図内に記憶される。代替例として、特性図は、具体的には、電気トラクションモータ100の飽和及び結果の作動電圧uabcの周波数の両方を考慮するために、d-q電流idq、温度、及び回転速度に依存するように記憶され得る。最適な作動電圧又は電流高調波は、具体的には、電流の基本振動振幅、ステータスプライン、磁石の残留磁束密度、及び電気トラクションモータ100の飽和に依存する。振幅UANR,k及びパイロット制御角γANR,kの定義は、k次のためのロータ固定座標系内のポインタダイアグラムから得ることができる。図4に、これが概略的に示されている。時間的位相偏移φANR,kはポインタダイアグラムにおいて示すことができない。
【0045】
様々な次数の高調波336の発生のための同一の構成の複数のサブシステムが存在することができる。その結果、「多次騒音低減」を実現することができる。次数は自由に指定することができる。例えば、6次の電気的次数の、高調波#1のための発生のためのシステムを提供することができる。例えば、12次の電気的次数の、高調波#2のための発生のためのシステムを提供することができる。例えば、18次の電気的次数の、高調波#3のための発生のためのシステムを提供することができる。前記高調波は、加算を通じてd作動電圧UANR,d、及びq作動電圧UANR,qの両方のために重畳される。高調波336の振幅、位相、及びパイロット制御角の設定は、回転速度、トルク、温度、及び/又はd-q電流に依存するように行われる。さらに、極対の数が正確な電気的次数の設定のために考慮される。さらに、個々の次数を有効及び無効にすることができる、すなわち、重畳のために用いるか、又は用いないようにすることができる。
【0046】
電流コントローラ302は、電流コントローラ302の作動変数udqによりd作動電圧UANR,d及びq作動電圧UANR,qの合計に依存するように出力段304を作動させるように構成されている。本例では、前記合計は、結果の作動変数106の決定のために用いられる。本例では、作動変数udqは、PIコントローラ(図3においてPIによって表されている)により制御偏差に依存するように決定される。制御偏差は、本例では、d-q電流idq、及びd-q電流のための基準値idq_refに依存するように形成される。本例では、制御偏差はそれらの差である。
【0047】
電流コントローラ302はカスケード電流制御のために構成することができる。カスケード電流制御の後に、高調波電圧、すなわち、d作動電圧UANR,d及びq作動電圧UANR,qを、電気トラクションモータ100のためのNVHに影響を及ぼすために電流コントローラ302の作動変数udqに加算することができる。本例では、作動電圧uabcは、その結果得られた合計電圧から、変換T-1(θ)及び後続の変換
【数1】
を通じてその都度決定される。それらは図3においてこのように示されている。前記作動電圧uabcを通じて、出力段304が作動させられる。本例では、作動電圧uabcは、出力段304から出力される結果の作動変数106をもたらす。
【0048】
フィルタリングされた電流、すなわち、d-q電流idqは有効(活性化)又は無効(非活性化)にすることができる。フィルタリングされた電流の使用が無効にされると、フィルタリングされていない電流がカスケード電流コントローラへ転送される。
【0049】
指定デバイス318及び係数指定デバイス308は、コントローラ104内の第1のタスクにおいて計算されるソフトウェアモジュールであることができる。本例では、第1のタスクは1msのタスクである。
【0050】
電流コントローラ302及び影響デバイス334は、コントローラ104内の第2のタスクにおいて決定されるソフトウェアモジュールであることができる。本例では、第2のタスクはPWM周波数を用いて計算される。第1のタスクは第2のタスクよりも遅いものであることができる。
【0051】
本例では、帯域阻止フィルタはPWMタスクにおいて計算される。本例では、フィルタ係数は、より遅いタスク、例えば、1ms内で実行される関数から提供される。
【0052】
例えば、振幅、位相、及びパイロット制御角、並びにまた、帯域阻止フィルタの係数の両方の特性図が遅いタスク内に記憶される。例えば、PWM周波数を用いた、最も速いタスクでは、帯域阻止フィルタ306が用いられ、高調波電圧336が発生される。この分割は、例えば、PWRソフトウェアがサプライヤを通じて対応されているが、それにもかかわらず、OEMが、電流コントローラに介入することを必要とせず、ソフトウェアの開発及び適用のための広範なオプションを有することを望む場合に、有利になり得る。このとき、遅いタスクは、例えば、バイパスを経由して変更することができる。たとえ、これが利用されない場合でも、制御ユニットの負荷を低減するために、異なるタスクへの分割は有利になり得る。
【0053】
電気トラクションモータの電磁力に影響を及ぼすための方法が以下の本文において図5に基づいて説明されることになる。
【0054】
ステップ502において、電気トラクションモータ100のロータの角度θ、及びフィルタ306のための入力電流が決定される。
【0055】
その後、ステップ504が実施される。ステップ504において、例えば、高調波336のための振幅、位相、及び/又は、パイロット制御角が決定される。これは第1のタスクにおいて行うことができる。
【0056】
ステップ504において、例えば、高調波336のためのパラメータ322が、電気トラクションモータ100の回転速度、電気トラクションモータ100のトルク、及び電気トラクションモータ100における温度に依存するように、より高い次数の高調波336として発生される。本例では、高調波336は、特に、作動変数uabcの基本振動の周波数の整数倍である周波数において発生される。高調波336のためのパラメータ322は、高調波336の決定のための振幅、位相、及び/又はパイロット制御角を回転速度、トルク、及び温度に対応付ける特性図に依存するように決定することができる。高調波336のためのパラメータ322は、高調波336の決定のための振幅、位相、及び/又はパイロット制御角を三相電流若しくは三相電圧、温度、及び回転速度に対応付ける特性図に依存するように決定することができる。高調波336の次数の大きさは、トラクションモータ100の極対の数に依存するように決定することができる。高調波336のための振幅、位相及び/又は、パイロット制御角はリミッタ330により制限することができる。
【0057】
ステップ506において、高調波336が決定される。本例では、高調波336は、パラメータ322に依存するように決定される。高調波336の発生は第2のタスクにおいて行うことができる。
【0058】
ステップ508において、結果の作動変数uabcの発生のために、電気トラクションモータ100のための作動変数udqにより高い次数の高調波336が重畳される。
【0059】
その後、ステップ510が実施される。
【0060】
ステップ510において、電気トラクションモータ100が、結果の作動変数uabcに依存するように作動させられる。
【0061】
作動変数udq、高調波336、及び結果の作動変数uabcが、本例では、作動電圧をその都度特徴付ける。
【0062】
結果の作動変数uabcは、好ましくは、特に、フィルタ306によりフィルタリングされた入力電流に依存するように決定される。
【符号の説明】
【0063】
100 電気トラクションモータ
336 高調波
図1
図2
図3
図4
図5