(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2023-09-20
(45)【発行日】2023-09-28
(54)【発明の名称】ホログラフィック撮像装置およびホログラフィック撮像方法
(51)【国際特許分類】
G03H 1/04 20060101AFI20230921BHJP
【FI】
G03H1/04
(21)【出願番号】P 2020539595
(86)(22)【出願日】2019-08-29
(86)【国際出願番号】 JP2019033982
(87)【国際公開番号】W WO2020045584
(87)【国際公開日】2020-03-05
【審査請求日】2022-06-29
(31)【優先権主張番号】P 2018160899
(32)【優先日】2018-08-29
(33)【優先権主張国・地域又は機関】JP
(73)【特許権者】
【識別番号】513099603
【氏名又は名称】兵庫県公立大学法人
(74)【代理人】
【識別番号】100084375
【氏名又は名称】板谷 康夫
(74)【代理人】
【識別番号】100125221
【氏名又は名称】水田 愼一
(74)【代理人】
【識別番号】100142077
【氏名又は名称】板谷 真之
(72)【発明者】
【氏名】佐藤 邦弘
(72)【発明者】
【氏名】下田 健作
【審査官】小西 隆
(56)【参考文献】
【文献】国際公開第2014/054776(WO,A1)
【文献】米国特許第06809845(US,B1)
(58)【調査した分野】(Int.Cl.,DB名)
G03H 1/00 - 5/00
G02B 5/18
G02B 5/32
(57)【特許請求の範囲】
【請求項1】
ホログラフィック撮像装置において、
照明された物体から放射される物体光(O)と前記物体光(O)に対するインライン光となるインライン球面波参照光(L)の2つの光
をオフアクシス参照光(R)を用いて個別に2種類のオフアクシスホログラム(I
OR,I
LR)のデータとしてイメージセンサの受光面であるホログラム面において電子的に取得するデータ取得部と、
前記データ取得部によって取得されたデータから前記物体の画像を再生する画像再生部と、を備え、
前記データ取得部は、
キューブ型ビームスプリッタから構成されるビーム結合器を備え、
前記ビーム結合器を透過して前記イメージセンサに入射する光を前記2種類のオフアクシスホログラム(I
OR,I
LR)のデータとして取得し、
前記画像再生部は、
前記2種類のオフアクシスホログラム(I
OR,I
LR)のデータから、前記物体光(O)と前記インライン球面波参照光(L)の両方の情報を含む複素振幅インラインホログラム(J
OL)を前記ホログラム面において生成する複素振幅ホログラム生成部と、
前記ビーム結合器の屈折率を考慮してその内部の伝播を含む光伝播計算を行って前記インライン球面波参照光(L)の光波を表すインライン参照光ホログラム(j
L)を前記ホログラム面において生成する計算参照光ホログラム生成部と、
前記複素振幅インラインホログラム(J
OL)と前記インライン参照光ホログラム(j
L)のデータを用いて前記物体光(O)のホログラムである物体光ホログラム(g)を前記ホログラム面において生成する物体光ホログラム生成部と、を備えることを特徴とするホログラフィック撮像装置。
【請求項2】
前記計算参照光ホログラム生成部は、
前記インライン球面波参照光(L)の光波長(λ)に係数(m)を掛け算して波長を長くした変換波長(mλ)の光について平面波展開法を用いる光伝播計算を行って、前記ホログラム面における球面波の位相(φ
Lm)を算出し、
前記変換波長(mλ)の光について算出された前記位相(φ
Lm)に前記係数(m)を掛け算して得られる位相(mφ
Lm)を前記インライン参照光ホログラム(j
L)の位相として前記インライン参照光ホログラム(j
L)を生成する、ことを特徴とする請求項1に記載のホログラフィック撮像装置。
【請求項3】
前記オフアクシス参照光(R)は、集光点(P1)を有する球面波状の光であり、前記ビーム結合器にその側面から入射され、
前記オフアクシス参照光(R)の集光点(P1)と、前記インライン球面波参照光(L)の集光点(P2)とは光学的に互いに近接している、ことを特徴とする請求項1または請求項2に記載のホログラフィック撮像装置。
【請求項4】
前記オフアクシス参照光(R)の集光点(P1)と前記インライン球面波参照光(L)の集光点(P2)とは、それぞれ前記ビーム結合器に近接しており、前記ホログラフィック撮像装置が顕微鏡として用いられる、ことを特徴とする請求項3に記載のホログラフィック撮像装置。
【請求項5】
前記ビーム結合器は、開口数NAを1に近い大きな値にするため、前記物体光(O)が入射する光軸方向における厚さが、前記オフアクシス参照光(R)が入射される側面方向の厚さよりも薄く、前記オフアクシス参照光(R)の集光点(P1)が前記ビーム結合器の内部にある、ことを特徴とする請求項4に記載のホログラフィック撮像装置。
【請求項6】
前記ビーム結合器は、前記物体を斜め方向から照明する照明光(Q)と前記ビーム結合器とが干渉しないように形成された面取り部を有する、ことを特徴とする請求項4または請求項5に記載のホログラフィック撮像装置。
【請求項7】
前記物体を照明する照明光(Q)は、前記ビーム結合器における前記オフアクシス参照光(R)が入射される側面に対向する側面から前記ビーム結合器に入射されて、前記ホログラフィック撮像装置が反射型の顕微鏡として用いられる、ことを特徴とする請求項4に記載のホログラフィック撮像装置。
【請求項8】
ホログラフィック撮像方法において、
照明された物体から放射され、キューブ型ビームスプリッタから構成されるビーム結合器を直進してイメージセンサに入射する物体光(O)のデータを、前記ビーム結合器に側面から入射しその内部で反射して前記イメージセンサに入射するオフアクシス参照光(R)を用いて、物体光オフアクシスホログラム(I
OR)として取得し、
前記オフアクシス参照光(R)のデータを、前記物体光(O)に対してインラインとなるインライン球面波参照光(L)を用いて、前記イメージセンサによって参照光オフアクシスホログラム(I
LR)として取得し、
前記
物体光オフアクシスホログラム(I
OR
)と前記参照光オフアクシスホログラム(I
LR)のデータから、前記イメージセンサの受光面であるホログラム面において前記物体光の複素振幅インラインホログラム(J
OL)を生成し、
前記インライン球面波参照光(L)の集光点(P2)から放たれる球面波について、前記ビーム結合器の屈折率を考慮して前記ビーム結合器の内部の伝播を含む光伝播計算を行うことにより、前記ホログラム面における光波を表すインライン参照光ホログラム(j
L)を生成し、
前記物体光の複素振幅インラインホログラム(J
OL)のデータと前記インライン参照光ホログラム(j
L)のデータとを用いて前記ホログラム面における前記物体光(O)を表す物体光ホログラム(g)を生成する、ことを特徴とするホログラフィック撮像方法。
【請求項9】
前記インライン参照光ホログラム(j
L)を算出する光伝播計算は、
前記インライン球面波参照光(L)の光波長(λ)に係数(m)を掛け算して波長を長くした変換波長(mλ)の光について平面波展開法を用いる光伝播計算を行って、前記ホログラム面における球面波の位相(φ
Lm)を算出し、
前記変換波長(mλ)の光について算出された前記位相(φ
Lm)に前記係数(m)を掛け算して得られる位相(mφ
Lm)を前記インライン参照光ホログラム(j
L)の位相とする、ことを特徴とする請求項8に記載のホログラフィック撮像方法。
【請求項10】
イメージセンサから前記インライン球面波参照光(L)の集光点(P2)までの距離(ρ)が、
前記物体に替えて、透光板にスケールパターンを有して構成されるターゲットを配置し、前記インライン球面波参照光(L)で照射したときの透過光であるターゲット物体光(O
T)のデータを、前記オフアクシス参照光(R)を用いてターゲットオフアクシスホログラム(I
TR)として取得し、
前記距離(ρ)をパラメータとして、前記インライン参照光ホログラム(j
L)を生成し、
前記ターゲットオフアクシスホログラム(I
TR)と前記参照光オフアクシスホログラム(I
LR)と前記インライン参照光ホログラム(j
L)とを用いて、前記ホログラム面における前記ターゲットの物体光を表すターゲット物体光ホログラム(g
T)を生成し、
前記ターゲット物体光ホログラム(g
T)を光伝播計算によって位置変換して、前記ターゲットの位置における前記ターゲットの画像を再生し、
前記ターゲットの再生画像の寸法が前記ターゲットの寸法と一致するときのパラメータの値として決定され、
前記インライン参照光ホログラム(j
L)の算出に用いられる、ことを特徴とする請求項8または請求項9に記載のホログラフィック撮像方法。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、デジタルホログラフィにおけるホログラフィック撮像装置およびホログラフィック撮像方法に関する。
【背景技術】
【0002】
従来から、反射光や透過光などの光波を解析する技術に、光の強度と位相のデータを併せてホログラムと呼ばれる写真乾板などの記録媒体に記録して解析するホログラフィがある。近年のホログラフィは、受光素子と半導体メモリなどを用いて、光波の強度と位相をデジタルデータとして取得したり、計算機上でホログラムを生成したりして、解析することが行われている。このようなホログラフィは、デジタルホログラフィと呼ばれる。
【0003】
デジタルホログラフィにおいて、ホログラムデータの取得や処理の高速化と高精度化を達成するための種々の技術が提案され、撮像に応用されている。例えば、ワンショットで記録したホログラムデータに空間周波数フィルタリングと空間ヘテロダイン変調とを適用して、物体像再生用の複素振幅インラインホログラムを高速かつ正確に生成するデジタルホログラフィが知られている(例えば、特許文献1参照)。
【0004】
従来の光学顕微鏡の問題を解決するため、ホログラフィを用いることにより、結像レンズを用いることなく大開口数の物体光を正確にワンショット記録する方法、および記録された物体光を平面波展開によって高分解能3次元像を正確に計算機再生する方法が知られている(例えば、特許文献2参照)。この方法によれば、無歪な高分解能3次元動画像を記録し再生できるレンズレス3次元顕微鏡が実現される。このような顕微鏡は、結像レンズを用いないので、従来の光学顕微鏡が有する、媒質や結像レンズの影響を受ける問題を解決できる。
【0005】
また、培養液中細胞や生体組織の内部構造を高分解能で計測するために、反射型レンズレスホログラフィック顕微鏡と波長掃引レーザ光を用いる高分解能断層撮像法が知られている(例えば、特許文献3参照)。
【0006】
さらに、入射方向の異なる照明光を照射した物体から放射される大開口数の物体光を、照明光の入射方向毎にホログラムデータとして記録し、これらの複数の大開口数ホログラムを一つのホログラムに合成して、1を超える合成開口数のもとで物体光を再生する方法が知られている(例えば、特許文献4参照)。この方法によれば、通常の回折限界を超える分解能を持つ超高分解能3次元顕微鏡が実現できる。
【0007】
加えて、ワンショットデジタルホログラフィによる光波の正確な記録と記録光波の平面波展開を用いるホログラフィックエリプソメトリ装置が知られている(例えば、特許文献5参照)。このエリプソメトリ装置によれば、非平行の照明光が含む多数の入射角を有する入射光による反射光のデータを一括してホログラムに記録できるので、入射角に対応する多数の波数ベクトル毎にエリプソメトリ角Ψ,Δを求めることができ、測定効率が向上できる。
【0008】
また、発散ビームを一つのキューブ型のビームスプリッタで分割して照明光と参照光とし、そのビームスプリッタをビーム結合器として用いて、物体光と参照光とを結合するように構成した、レンズレスで小型のホログラフィック顕微鏡が知られている(例えば、特許文献6参照)。
【先行技術文献】
【特許文献】
【0009】
【文献】国際公開第2011/089820号
【文献】国際公開第2012/005315号
【文献】国際公開第2014/054776号
【文献】国際公開第2015/064088号
【文献】国際公開第2018/038064号
【文献】米国特許第8194124号明細書
【発明の開示】
【0010】
上述した特許文献1乃至5に示されるようなホログラフィにおいては、物体光とオフアクシス参照光とをイメージセンサに直接入射させるか、またはプレート型またはペリクル型のビームスプリッタで反射させた物体光と透過させたオフアクシス参照光とをイメージセンサに入射させて、ホログラムを記録している。
【0011】
プレート型またはペリクル型のビームスプリッタをビーム結合器として使うと、伝播方向の異なる参照光と物体光を容易に重ね合わせることができ、参照光の光源を物体から離れた位置に配置できるので、光学系の設計は容易になる。
【0012】
しかしながら、プレート型のビームスプリッタは、プレート内で生じる多重反射光が物体光に重なって記録されてしまうという問題がある。また、ペリクル型のビームスプリッタは、多重反射光の影響を実質的に抑えることができるが、ペリクル(薄膜)が振動することによる影響を受けて、記録ホログラムの品質が低下するという問題がある。また、ペリクル型のビームスプリッタは、破れたり変形したりして高い平面度を得ることが難しい、という問題がある。
【0013】
また、上述した特許文献6に示されるようなホログラフィック顕微鏡においては、キューブ型のビームスプリッタが、単に、多重反射や平面度の問題を回避できる使い勝手が良い光学部品として用いられている。つまり、従来のホログラフィにおいては、キューブ型のスプリッタが空気と異なる屈折率を有することの影響や効果が積極的に考慮されてなく、性能向上の余地がある。
【0014】
本発明は、上記課題を解消するものであって、光学系を構成するキューブ型のビームスプリッタが有する屈折率の影響が考慮され性能が向上されたホログラフィック撮像装置および同装置に用いるデータ処理方法を提供することを目的とする。
【0015】
上記課題を達成するために、本発明のホログラフィック撮像装置は、照明された物体から放射される物体光(O)と該物体光(O)に対するインライン光となるインライン球面波参照光(L)の2つの光をオフアクシス参照光(R)を用いて個別に2種類のオフアクシスホログラム(IOR,ILR)のデータとしてイメージセンサの受光面であるホログラム面において電子的に取得するデータ取得部と、データ取得部によって取得されたデータから物体の画像を再生する画像再生部と、を備え、データ取得部は、キューブ型ビームスプリッタから構成されるビーム結合器を備え、ビーム結合器を透過してイメージセンサに入射する光を前記2種類のオフアクシスホログラム(IOR,ILR)のデータとして取得し、画像再生部は、2種類のオフアクシスホログラム(IOR,ILR)のデータから、物体光(O)とインライン球面波参照光(L)の両方の情報を含む複素振幅インラインホログラム(JOL)をホログラム面において生成する複素
振幅ホログラム生成部と、ビーム結合器の屈折率を考慮してその内部の伝播を含む光伝播計算を行ってインライン球面波参照光(L)の光波を表すインライン参照光ホログラム(jL)をホログラム面において生成する計算参照光ホログラム生成部と、複素振幅インラインホログラム(JOL)とインライン参照光ホログラム(jL)のデータを用いて物体光(O)のホログラムである物体光ホログラム(g)をホログラム面において生成する物体光ホログラム生成部と、を備えることを特徴とする。
【0016】
また、本発明のホログラフィック撮像方法は、照明された物体から放射され、キューブ型ビームスプリッタから構成されるビーム結合器を直進してイメージセンサに入射する物体光(O)のデータを、ビーム結合器に側面から入射しその内部で反射してイメージセンサに入射するオフアクシス参照光(R)を用いて、物体光オフアクシスホログラム(IOR)として取得し、オフアクシス参照光(R)のデータを、物体光(O)に対してインラインとなるインライン球面波参照光(L)を用いて、イメージセンサによって参照光オフアクシスホログラム(ILR)として取得し、物体光オフアクシスホログラム(IOR
)と参照光オフアクシスホログラム(ILR)のデータから、イメージセンサの受光面であるホログラム面において物体光の複素振幅インラインホログラム(JOL)を生成し、インライン球面波参照光(L)の集光点(P2)から放たれる球面波について、ビーム結合器の屈折率を考慮してビーム結合器の内部の伝播を含む光伝播計算を行うことにより、ホログラム面における光波を表すインライン参照光ホログラム(jL)を生成し、物体光の複素振幅インラインホログラム(JOL)のデータとインライン参照光ホログラム(jL)のデータとを用いてホログラム面における物体光(O)を表す物体光ホログラム(g)を生成する、ことを特徴とする。
【0017】
本発明のホログラフィック撮像装置およびホログラフィック撮像方法によれば、複素振幅インラインホログラムJOLから参照光Lの成分を除去するためのインライン参照光ホログラムjLを、ビーム結合器3の屈折率を考慮して光伝播計算を行って生成するので、物体光ホログラムgを精度良く生成することができる。
【図面の簡単な説明】
【0018】
【
図1】(a)は本発明の第1の実施形態に係るホログラフィック撮像装置による物体光オフアクシスホログラムを取得する様子を示す側面図、(b)は同装置による参照光オフアクシスホログラムを取得する様子を示す側面図。
【
図3】第2の実施形態に係るデータ処理方法を示すフローチャート。
【
図4】同処理方法で用いられるビーム結合器を含む光学系および座標系を示す斜視図。
【
図6】同処理方法における球面波光ホログラムの生成方法を示すフローチャート。
【
図7】第3の実施形態に係るホログラフィック撮像装置による物体光オフアクシスホログラムを取得する様子を示す側面図。
【
図8】同装置による参照光オフアクシスホログラムを取得する様子を示す側面図。
【
図9】第4の実施形態に係るホログラフィック撮像装置による物体光オフアクシスホログラムを取得する様子を示す側面図。
【
図10】同装置による参照光オフアクシスホログラムを取得する様子を示す側面図。
【
図11】第5の実施形態に係るホログラフィック撮像装置による物体光オフアクシスホログラムを取得する様子を示す側面図。
【
図12】同装置による参照光オフアクシスホログラムを取得する様子を示す側面図。
【
図13】第6の実施形態に係るホログラフィック撮像装置による物体光オフアクシスホログラムを取得する様子を示す側面図。
【
図14】第7の実施形態に係るホログラフィック撮像装置による物体光オフアクシスホログラムを取得する様子を示す側面図。
【
図15】(a)は第8の実施形態に係るデータ処理方法における処理の対象となるホログラムの部分平面図、(b)は(a)のホログラムにおける空間サンプリング間隔を増やす様子を示す平面図。
【
図16】(a)はホログラムを高速に処理する方法が適用されるホログラムの概念図、(b)は同ホログラムを分割して重ね合わせた概念図、(c)は(b)のホログラムを合成したホログラムの概念図。
【
図17】(a)は単一のホログラムと再生像の概念図、(b)はホログラムを高速に処理する方法の原理を説明するために複数の再生用ホログラムと再生された複数の像とを示す概念図。
【
図18】本発明に係るホログラフィック撮像装置を用いて撮像されたカラー画像。
【
図19】(a)は本発明に係るホログラフィック撮像装置を透過型のホログラフィック顕微鏡として用いて得られたテストターゲットの画像、(b)は(a)の一部を拡大した画像。
【
図20】(a)は比較例として
図19(a)の画像を再生する際にビーム結合器内の光伝播計算を空気中の光伝播計算によって簡略化して得られた画像、(b)は(a)の一部を拡大した画像。
【
図21】同透過型のホログラフィック顕微鏡で得られた乾燥珪藻の光強度画像。
【
図23】(a)は本発明に係るホログラフィック撮像装置を反射型のホログラフィック顕微鏡として用いて得られたテストターゲットの画像、(b)は(a)の一部を拡大した画像。
【発明を実施するための形態】
【0019】
以下、本発明の実施形態に係るホログラフィック撮像装置および同装置に用いるデータ処理方法について、図面を参照して説明する。
【0020】
(第1の実施形態:ホログラフィック撮像装置)
図1(a)(b)、
図2を参照して、第1の実施形態に係るホログラフィック撮像装置1を説明する。
図1(a)(b)に示すように、ホログラフィック撮像装置1は、照明光Qで照明された物体4から放たれる物体光Oのデータを取得して電子的に保存するデータ取得部10と、データ取得部10によって取得されたデータから物体4の画像を再生する画像再生部12と、を備えている。本実施形態のホログラフィック撮像装置1は、長作動距離を有する撮像装置である。
【0021】
データ取得部10は、光強度を電気信号に変換してホログラムデータとして出力するイメージセンサ5と、物体4とイメージセンサ5との間に配置されたビーム結合器3と、光を成形し伝播させる光学系2と、取得されたデータを保存するデータ保存部6と、を有する。ホログラフィック撮像装置1は、データ取得部10および画像再生部12を制御するコンピュータから構成される制御部11と、FFT等の計算用プログラム、制御用データ等を記憶するメモリ11aとを備えている。データ保存部6は、画像再生部12とともに、制御部11に備えられている。以下、各部を説明する。
【0022】
光学系2は、光源が放射するコヒーレント光から照明光Qと、物体光Oに対するインライン光として用いられるインライン球面波参照光Lと、物体光Oに対するオフアクシス光として用いられるオフアクシス参照光Rとを生成し、これらの光と物体光Oとを伝播させる。また、光学系2は、キューブ型のビームスプリッタをビーム結合器3として用いて、物体光Oまたはインライン球面波参照光Lとオフアクシス参照光Rとを合波してイメージセンサ5に入射させる。
【0023】
ビーム結合器3は、透光性ブロックに内部反射鏡30を有し、2つの直角プリズムの45°斜面を接合して構成されている。接合された斜面が半透光の内部反射鏡30となる。内部反射鏡30に対面する一組の平行面の一方の面が物体光Oまたはインライン球面波光Lの入射面31となり、他方の面がイメージセンサ5の受光面すなわちホログラム面50に対向する出射面32となる。また、内部反射鏡30に対面する他の一組の平行面、すなわちビーム結合器3の側面の一つは、オフアクシス参照光Rの入射面となる。ビーム結合器3は、その表面に光反射防止処理層や光吸収処理層を有し、また外光を遮断する暗箱構造を有し、これらによりノイズ光発生や迷光進入が防止される。
【0024】
オフアクシス参照光R用の光学系は、小径の集光レンズ21と大径のコリメータレンズ22を有する。参照光Rは、集光レンズ21で集光点P1に集光された後、コリメータレンズ22を通ってビーム結合器3に入射し、内部反射鏡30で反射してイメージセンサ5に入射する。参照光Rの光軸は、参照光Rをオフアクシスとするために受光素子5の法線に対して傾斜している。参照光Rは、集光点P1を有することにより、球面波状の光となる。
【0025】
インライン球面波参照光L用の光学系は、球面波を生成する集光レンズ23と、集光レンズ23による集光点P2の位置にピンホールを有するピンホール板24とを有する。集光レンズ23の光軸は、受光素子5の中心に向かう光学的な中心軸に一致している。集光レンズ23を通過した光は、ピンホールの位置で集光点P2を形成した後、広がりながら直進して受光素子5に入射する。インライン球面波参照光L用の光学系は、集光点P2の位置にピンホールを有するピンホール板24を備えることにより、インライン球面波参照光Lを、歪やノイズのない球面波として生成する。
【0026】
インライン球面波参照光Lの集光点P2の位置の情報は、インライン球面波参照光Lがビーム結合器3を通過してホログラム面50において形成する光強度分布と位相分布とを計算によって求める際に用いられる重要な情報である。集光点P2の位置の情報は、インライン球面波参照光Lを照明光として用いてスケール板などのホログラムデータを取得し、その画像を再生することによって取得できる。
【0027】
集光点P2は、イメージセンサ5の中心法線上にあることから、インライン球面波参照光Lは、物体光ホログラムと参照光ホログラムとを互いに重ねたときに、物体光Oとインライン関係となる。また、オフアクシス参照光Rは、物体光Oに対してオフアクシスの関係に設定されており、同様に、インライン球面波参照光Lに対してオフアクシスの関係にある。また、オフアクシス参照光Rは、集光点P1を有する球面波状の光であり、オフアクシス参照光Rの集光点P1と、インライン球面波参照光Lの集光点P2とは、光学的に互いに近接するように設定されている。この設定により、参照光ホログラムILRの空間周波数帯域が狭くできる。
【0028】
図2に示すように、ホログラフィック撮像装置1の画像再生部12は、複素振幅ホログラム生成部13と、計算参照光ホログラム生成部14と、物体光ホログラム生成部15と、を有する。複素振幅ホログラム生成部13は、物体光オフアクシスホログラムI
ORと参照光オフアクシスホログラムI
LRのデータから、イメージセンサ5の面であるホログラム面50において物体光の複素振幅インラインホログラムJ
OLを生成する。
【0029】
計算参照光ホログラム生成部14は、インライン球面波参照光Lの集光点P2から放たれる球面波についてビーム結合器3内の伝播を含む光伝播計算を行ってホログラム面50における光波を表すインライン参照光ホログラムjLを生成する。
【0030】
物体光ホログラム生成部15は、物体光の複素振幅インラインホログラムJOLのデータとインライン参照光ホログラムjLのデータとを用いてホログラム面50における物体光ホログラムgを生成し、生成された物体光ホログラムgを光伝播計算によって伝播させて物体4の位置における画像再生用の再生物体光ホログラムhを生成して保存する。
【0031】
次に、ホログラフィック撮像装置1の動作を説明する。
図1(a)の構成において、イメージセンサ5の中心垂線上の前方に配置された物体4に照明光Qが照射され、物体4から物体光Oが放たれる。物体光Oは、イメージセンサ5の中心垂線上における物体表面上の点P0から放射状に拡がって、ビーム結合器3に入射し、側方から入射されるオフアクシス参照光Rと重ね合わされてイメージセンサ5によって受光される。物体光Oと参照光Rとがホログラム面50に形成する干渉縞の光強度分布のデータ、すなわち物体光Oのデータが、イメージセンサ5によって物体光オフアクシスホログラムI
ORとして取得され、データ保存部6に保存される。
【0032】
また、物体4が除かれた状態の、
図1(b)の構成において、インライン球面波参照光Lとオフアクシス参照光Rの干渉縞の光強度分布のデータ、すなわちオフアクシス参照光Rのデータが、イメージセンサ5によって参照光オフアクシスホログラムI
LRとして取得され、データ保存部6に保存される。
【0033】
データ保存部6に保存された物体光オフアクシスホログラムIORと参照光オフアクシスホログラムILRのデータは、画像再生部12によって処理され、物体4の位置における画像再生用の再生物体光ホログラムhが生成される。再生物体光ホログラムhから、例えば、光強度画像|h|2が求められ、表示部16に表示される。表示部16は、液晶表示装置などのFPDであり、画像等を表示する。画像再生部12の各部は、表示部17を除いて、コンピュータ上で動作するプログラムとそのサブルーティン群を含むソフトウエアを用いて構成される。
【0034】
(第2の実施形態:データ処理方法)
図3乃至
図6を参照して、第2の実施形態に係るデータ処理方法を説明する。なお、本方法が適用される装置例として、第1の実施形態の装置(
図1,
図2)をあわせて参照する。本データ処理方法は、長作動距離かつ広視野のホログラフィック撮像装置、高開口数または1を超える合成開口数を有する超高分解能の透過型や反射型の顕微鏡を実現するホログラフィック撮像装置などに適用することができる。
【0035】
図3に示すように、本データ処理方法は、物体光ホログラム取得工程(S1)から再生物体光ホログラム生成工程(S6)までの工程を備えている。
【0036】
物体光ホログラム取得工程(S1)では、照明光Qによって照明された物体4から放射される物体光Oのデータが、オフアクシス参照光Rを用いて物体光オフアクシスホログラムIORとして取得される。物体光Oは、ビーム結合器として用いられるキューブ型のビーム結合器3を直進してイメージセンサ5に入射される。オフアクシス参照光Rは、ビーム結合器3の側面から入射されその内部で反射されてイメージセンサ5に入射する。
【0037】
参照光ホログラム取得工程(S2)では、物体4、照明光Q、または物体光Oがない状態で、イメージセンサ5に入射するオフアクシス参照光Rのデータが、インライン球面波参照光Lを用いて、参照光オフアクシスホログラムILRとして取得される。インライン球面波参照光Lは、物体光Oに対してインラインとなりビーム結合器3を直進してイメージセンサ5に入射する光である。この工程(S2)と上述の工程(S1)とは、逆順で実施してもよい。
【0038】
複素振幅ホログラム生成工程(S3)では、物体光オフアクシスホログラムIORと参照光オフアクシスホログラムILRのデータから、イメージセンサ5の面であるホログラム面50において物体光の複素振幅インラインホログラムJOLが生成される。
【0039】
インライン参照光ホログラム生成工程(S4)では、インライン球面波参照光Lの集光点P2から放たれる球面波について、ビーム結合器3内の伝播を含む光伝播計算が行われて、ホログラム面50における光波を表すインライン参照光ホログラムjLが生成される。
【0040】
物体光ホログラム生成工程(S5)では、物体光の複素振幅インラインホログラムJOLのデータとインライン参照光ホログラムjLのデータとを用いてホログラム面50における物体光ホログラムgが生成される。
【0041】
再生物体光ホログラム生成工程(S6)では、物体光ホログラムgが光伝播計算によって変換され、物体4の位置における画像再生用の再生物体光ホログラムhが生成されて保存される。撮像された物体4の画像は、例えば、再生物体光ホログラムhの絶対値の二乗すなわち|h|2をコンピュータのディスプレイに表示することにより、光強度画像として見ることができる。
【0042】
(ホログラムデータとその処理)
ホログラムデータとその処理を数式表現に基づいて説明する。ホログラムには、オフアクシス参照光R、インライン球面波参照光L、物体光Oなどが関与する。ここで、xyz右手系直交座標系の原点がホログラム面50(イメージセンサ5の受光面)の中央に設定される。ホログラム面50から物体光Oの光源に向かう向きがz軸の正の向きである。位置座標(x,y)を用いて、物体光O(x,y,t)、オフアクシス参照光R(x,y,t)、およびインライン球面波参照光L(x,y,t)を、それぞれ一般的な形で、下式(1)(2)(3)で表す。これらの光は互いにコヒーレントな角周波数ωの光である。各式中の係数、引数、添え字などは、一般的な表現と意味に解釈される。以下の各式において、位置座標(x,y,z)、空間周波数(u,v,w)の明示などは、適宜省略される。
【0043】
【0044】
上式におけるO(x,y,t)とR(x,y,t)が作る合成光の光強度IOR(x,y)、およびL(x,y,t)とR(x,y,t)が作る合成光の光強度ILR(x,y)は、それぞれ下式(4)(5)で表される。これらの光強度IOR,ILRが、イメージセンサ5を通して、ホログラムのデータとして取得される。
【0045】
【0046】
上式(4)(5)において、右辺の第1項は物体光Oまたはインライン球面波参照光Lの光強度成分、第2項はオフアクシス参照光Rの光強度成分である。また、各式の第3項と第4項は、それぞれ物体光Oまたはインライン球面波参照光Lがオフアクシス参照光Rによって変調されて作られる、直接像成分と共役像成分である。
【0047】
なお、上記第3項の直接像成分が、本データ処理方法にとって必要な物体光Oまたは参照光Lの情報すなわち上式(1)(3)のO0exp(iφO)とL0exp(iφL)を含む項である。この第3項の直接像成分は、その物体光Oまたは参照光Lの位相部分[iφO],[iφL]が、これらの光を定義している上式(1)(3)の位相部分[iφO],[iφL]と同じである。他方、第4項の物体光Oまたは参照光Lの位相部分[-iφO],[-iφL]は、これらの光を定義している上式(1)(3)の位相部分[iφO],[iφL]の複素共役になっており、第4項が共役像成分と呼ばれる。
【0048】
オフアクシス参照光Rを用いることにより、そのオフアクシスの効果によって、ホログラムを空間周波数空間において表現したときに直接像成分(第3項)が光強度成分(第1,2項)および共役像成分(第4項)から分離するホログラムを取得できる。空間周波数フィルタリングを適用して上式(4)(5)の第3項のみを取り出すことにより、物体光Oを記録した物体光複素振幅ホログラムJORと、インライン球面波参照光Lを記録した複素振幅ホログラムJLRが、それぞれ下式(6)(7)のように得られる。これらの複素振幅ホログラムは、オフアクシス参照光Rの成分を含むホログラムである。
【0049】
【0050】
空間周波数フィルタリングは、上式(4)(5)を空間周波数空間における表現に変換するフーリエ変換と、バンドパスフィルタによるフィルタリングと、その後の、逆フーリエ変換とによって行われる。なお、受光素子における画素が画素ピッチdで2次元配列されているとすると、受光素子を用いて記録可能なホログラムの最高空間周波数は、空間周波数fs=1/dとなる。
【0051】
上記の式(6)を式(7)で割る除算処理を行うと、式(6)からオフアクシス参照光Rの振幅R0と位相φRとを取り除くことができる。この処理は、位相の引き算を行う処理、すなわち周波数変換を行う処理であり、ヘテロダイン変調の処理である。これにより、インライン球面波参照光Lに対する物体光Oの複素振幅インラインホログラムJOLが下式(8)のように得られる。
【0052】
【0053】
インライン球面波参照光Lは、参照光Rのデータをオフアクシスホログラムである参照光ホログラムILRとして取得して保存するための参照光であり、かつ、ホログラムデータのデジタル処理における基準光としての役割を有する。インライン球面波参照光Lは、参照光Rのデータを含まないホログラムである複素振幅インラインホログラムJOLを生成するために用いられる。
【0054】
参照光ホログラムILRは、例えば物体に対する入射方向θjを変えた照明光Qjによって、各入射方向毎の複数の物体光ホログラムIj
ORのデータを取得する場合、これらのホログラムIj
ORに対して共通のホログラムILRを用いて上式(8)の処理をすることができる。つまり、1枚のオフアクシスホログラムILRを取得し、1枚の複素振幅ホログラムJLRを作成しておけばよい。この場合、複数のホログラムIj
ORの取得に用いられるオフアクシス参照光Rが同じ条件下に維持されている必要がある。
【0055】
(インライン球面波参照光Lの成分と乗算因子)
次に、式(8)において、両辺に乗算因子L0(x,y)exp(i(φL(x,y))を乗じることにより、上式(8)からインライン球面波参照光Lの成分を除去することができ、物体光Oの光波O0(x,y)exp(i(φO(x,y))だけを含んでいるホログラム(物体光ホログラム)を生成できる。このホログラムの用語は、光波を再生するために必要なデータを全て含んでいるという意味で用いられており、以下においても同様の意味で用いられる。インライン球面波参照光Lの振幅L0(x,y)は、緩やかに変化して無視できる場合、残しておくこともできる。
【0056】
上述の乗算因子L0(x,y)exp(i(φL(x,y))は、インライン球面波参照光Lの集光点P2から発せられる球面波が、空気中とビーム結合器3とを伝播し、イメージセンサ5すなわちホログラム面50に到達した光波を表すホログラムであり、これをインライン参照光ホログラムjLと称する。インライン参照光ホログラムjLは、ビーム結合器3を通過した結果、球面波から変形した波面を有する。このホログラムjLは、インライン球面波参照光Lの集光点P2からホログラム面50までの距離ρと、ビーム結合器3の厚寸法Aと、が与えられることにより平面波展開を用いる光伝播計算によって算出できる(後述)。
【0057】
(集光点P2までの距離ρの決定)
インライン参照光ホログラムjLの算出に用いられるイメージセンサからインライン球面波参照光Lの集光点P2までの距離ρは、以下の手順で決定できる。物体に替えて、透光板にスケールパターンを有して構成されるターゲットTを配置し、インライン球面波参照光Lで照射したときの透過光から成るターゲット物体光OTのデータを、オフアクシス参照光Rを用いてターゲットオフアクシスホログラムITRとして取得する。参照光オフアクシスホログラムILRは取得済みとする。
【0058】
距離ρをパラメータとして仮決めして、仮のインライン参照光ホログラムjLを生成する。ターゲットオフアクシスホログラムITRと取得済みの参照光オフアクシスホログラムILRと仮のインライン参照光ホログラムjLとを用いて、ホログラム面50におけるターゲットTの物体光を表すターゲット物体光ホログラムgTを生成する。ターゲット物体光ホログラムgTを光伝播計算によって変換して、ターゲットTの位置においてターゲットTの画像を再生する。ターゲットTの再生画像の寸法がターゲットTの原寸法と一致するときのパラメータの値が、距離ρの値として決定される。画像再生面における再生画像の寸法は、イメージセンサ5、例えばCCDの既知の画素ピッチによって測定できる。
【0059】
(ビーム結合器通過後の球面波の算出)
次に、インライン参照光ホログラムj
Lの生成を説明する。インライン参照光ホログラムj
Lは、
図4、
図5、
図6に示すように、インライン球面波参照光Lの集光点P2の位置からイメージセンサ5の入射面であるホログラム面50に至る光波の光伝播計算を行って、ホログラム面50におけるインライン球面波参照光Lのホログラムとして生成される。光伝播計算は平面波展開を使って行う。集光点P2において参照光Lを平面波展開し、空気中およびビーム結合器3内を伝播させてホログラム面50における各平面波成分を計算し、計算した平面波成分を足し挙げてインライン参照光ホログラムj
Lを求める。
【0060】
図4、
図5に記載の座標系を参照する。集光点P2の位置z=ρのxy平面に、インライン球面波参照光Lの点光源b
0δ(x)δ(y)が存在する。この点光源の空間周波数スペクトルB(u,v)は一定値b
0であり、B(u,v)=b
0である。そこで、平面波の伝播により、z=0のホログラム面50におけるインライン球面波参照光Lのホログラム、すなわちインライン参照光ホログラムj
Lは、下式(9)となる。
【0061】
【0062】
上式(10b)におけるnは、ビーム結合器3の屈折率である。上式(9)は、原点z=0から集光点P2までの距離ρとビーム結合器3の光軸(z軸)方向の厚さ寸法Aの関数になるが、原点からビーム結合器3までの距離には無関係になる。つまり、ビーム結合器3をどの位置に置いても同じ式になる。
【0063】
上式(9)は、原理的な計算式であって、実際の計算には、サンプリング定理を満たす計算点数で光伝播計算を行う必要がある。しかしながら、計算点数が大きくなると、非現実的に長い計算時間になってしまう。そこで、
図6に示すように、近似計算を導入する。
【0064】
光波長λm、画素ピッチd、開口数NAの関係が、λm/(2d)>NAを満たすように、光波長λを、係数m倍して、変換波長λm=mλを生成する(S41)。
【0065】
次に、集光点P2から放たれる変換波長λmの球面波のビーム結合器3内の伝播を含む伝播計算を行い、ホログラム面50における光波を表す変換波長インライン参照光ホログラムjLm=L0m(x,y)exp(iφLm(x,y))を生成する(S42)。
【0066】
次に、変換波長インライン参照光ホログラムjLmの位相成分(expの項)をm乗して、集光点P2から放たれる波長λの球面波のビーム結合器3内の伝播を含む伝播光のホログラム面50における球面波光ホログラムjL=L0m(x,y)[exp(iφLm(x,y))]mを生成する(S43)。従って、インライン参照光ホログラムjLの位相 φL(x,y)=mφLm(x,y)が得られる。
【0067】
上述の光伝播計算において、インライン球面波参照光Lの光波長λに係数mを掛け算して波長を長くした変換波長mλの光について平面波展開法を用いる光伝播計算を行ってホログラム面50における球面波の位相φLmが算出され、変換波長mλの光について算出された位相φLmに係数mを掛け算して得られる位相mφLmがインライン参照光ホログラムjLの位相φLとされている。
【0068】
空気中およびビーム結合器3内における球面波状参照光の伝播を
図5に示す。球面波状の光波の同位相面に沿う振幅はほぼ一定になり、振幅の空間変化は位相成分を表すexp(iφ
Lm(x,y))の空間変化に比べて無視できる。このような球面波状の光に関しては、光波長λの位相成分exp(iφ
L(x,y))は光波長λ
mの位相成分exp(iφ
Lm(x,y))を用いて、下式(11)により得られる。下式(11)による光位相の計算は、ホイヘンスの原理に基づいた波面光学的な近似計算である。
【0069】
【0070】
実際に使用するような光学系における点光源が作る球面波状の光に対してこの近似計算が非常に高い精度で成り立つことは、数値計算可能な光波長に対して光伝播計算を行うことによって確認できる。λ/(2d)>NAを満たす光波長λおよび変換波長λm=mλに対して、光伝播計算を行って位相成分exp(iφL(x,y))および位相成分exp(iφLm(x,y))を求め、両者の間に式(11)の関係が高精度に成り立つことを確かめることができる。また、上式(11)を使って求めた光波長λの光位相分布φL(x,y)を幾何光学的な光路追跡法によって計算した光波長λの光の位相分布と比較することによっても確かめることができる。
【0071】
(物体光ホログラムg(x,y))
式(8)にL0(x,y)exp(i(φL(x,y))を乗じることにより、振幅因子L0(x,y)による振幅変調と、位相因子exp(i(φL(x,y))によるヘテロダイン変調が実行され、イメージセンサ5の表面(ホログラム面、xy平面、または面z=0)における物体光Oの光波を表す物体光ホログラムg(x,y)が下式(12)のように得られる。物体光ホログラムg(x,y)を生成する工程は、物体光Oを再生する工程である。物体光ホログラムg(x,y)の絶対値の2乗|g(x,y)|2をディスプレイに表示して、ホログラム面50における物体光Oの光強度分布を画像として見ることができる。同様に、物体光ホログラムg(x,y)の振幅分布画像や位相分布画像を表示して見ることができる。
【0072】
【0073】
(平面波展開と光伝播計算)
電磁波に関するヘルムホルツ方程式の厳密解である平面波を用いて物体光Oの光波を展開することができ、光を伝播させる光伝播計算をすることができる。この平面波展開は、上式(12)の物体光ホログラムg(x,y)をフーリエ変換することにより実行される。すなわち、フーリエ変換が平面波展開である。平面波展開の結果、物体光Oについての空間周波数スペクトルG(u,v)が下式(13)のように得られる。空間周波数スペクトルG(u,v)は、波数ベクトル(u,v)を有する平面波の複素振幅であり、複素振幅G(u,v)とも称される。また、平面波の伝播よりz=z0の再生面における物体光h(x,y)は、下式(14)によって得られる。
【0074】
【0075】
上式(13)中のu,vは、それぞれx方向とy方向のフーリエ空間周波数である。z方向のフーリエ空間周波数w,wnは、上式(10a)(10b)のように、平面波の分散式(波数と波長の関係式)から求められる。分散式は、(n/λ)2の形で、光路上の屈折率nの情報を含む。
【0076】
(第3の実施形態)
図7、
図8を参照して、第3の実施形態に係るホログラフィック撮像装置1を説明する。本実施形態のホログラフィック撮像装置1は、物体4をビーム結合器3に近接して配置する透過型のホログラフィック顕微鏡を実現する。ホログラフィック撮像装置1は、集光点を有する照明光Qによって物体4を照明するための集光レンズ23をビーム結合器3に近接して備えている。オフアクシス参照光Rの光学系は、集光点P1を形成して球面波状とした参照光Rをビーム結合器3の側面から入射させるため、小径の集光レンズ21と、集光点P1の位置にピンホールを有するピンホール板25とを、ビーム結合器3の側面に近接して備えている。
【0077】
インライン球面波参照光Lの光学系は、集光点P2を形成した後、参照光Lをイメージセンサ5の正面からビーム結合器3に入射させるための集光レンズ23と、集光点P2の位置にピンホールを有するピンホール板24とを備えている。集光レンズ23とピンホール板24には、インライン球面波参照光Lが理想的な球面波光になるように高性能の光学部品で構成される。
【0078】
このホログラフィック撮像装置1の光学系において、オフアクシス参照光Rの集光点P1と、インライン球面波参照光Lの集光点P2とは光学的に互いに近接して配置されている。また、これらの集光点P1,P2と、放射状に放たれる物体光Oの発生点、すなわち観察点とも、互いに近接配置になっている。このような集光点の配置構成は、ホログラフィック顕微鏡として、各光の開口数を大きくすることができる。さらに、イメージセンサ5に形成される干渉縞、従って取得される物体光オフアクシスホログラムIOR、および参照光オフアクシスホログラムILRの空間周波数帯域を狭くすることができる。
【0079】
(第4の実施形態)
図9、
図10を参照して、第4の実施形態に係るホログラフィック撮像装置1を説明する。本実施形態のホログラフィック撮像装置1は、物体4をビーム結合器3に近接して配置する反射型のホログラフィック顕微鏡を実現する。照明光Qの光学系は、反射型の顕微鏡とするため、ビーム結合器3におけるオフアクシス参照光Rが入射される側面の対向側面に、大径の集光レンズ26を有する。照明光Qは、集光レンズ26を通して入射され、ビーム結合器3の内部反射鏡30によって物体4に向けて反射されて、物体4の裏面すなわちイメージセンサ5に対向する面を、イメージセンサ5側から照明する。集光レンズ26は、照明光Qを物体4に向けて集光する。オフアクシス参照光Rとインライン球面波光Lの各光学系は、第3の実施形態と同様である。
【0080】
(第5の実施形態)
図11、
図12を参照して、第5の実施形態に係るホログラフィック撮像装置1を説明する。
図7乃至
図10に示す光学系において屈折率nが大きいビーム結合器を使用すれば、開口数NAを大きくできる。屈折率n=1.5ではおよそNA=0.63、屈折率n=2.0ではおよそNA=0.8まで開口数を大きくできる。さらに大きい開口数NAを得るには、奥行きサイズが小さいビーム結合器を用いる方法が効果的である。本実施形態のホログラフィック撮像装置1は、第3の実施形態に係る透過型のホログラフィック顕微鏡において、開口数NAを1に近い値まで大きくする顕微鏡である。開口数NAを1に近い値まで大きくするため、ビーム結合器3は、イメージセンサ5に対向する2面間の厚さが、他のいずれの2面間の厚さよりも薄くされている。すなわち、奥行きサイズが小さいキューブ型BSが用いられている。
【0081】
また、ビーム結合器3に入射してイメージセンサ5に受光される物体光Oや参照光R,Lがビーム結合器3内を伝播するように、ビーム結合器3の側方寸法が拡大されている。このホログラフィック撮像装置1の光学系は、オフアクシス参照光Rの集光点P1と、インライン球面波参照光Lの集光点P2と、放射状に放たれる物体光Oの発生点とが、光学的に互いに近接するように構成されている。この構成を実現するため、オフアクシス参照光Rの光学系は、オフアクシス参照光Rの集光点P1をビーム結合器3の内部に形成するレンズ27を備えている。このホログラフィック撮像装置1によれば、屈折率n=1.5の場合でも開口数NAを1に近い値まで大きくでき、1に近い値の大きな開口数NAによって、分解能を光の回折限界まで高めることができる。
図11は透過型の光学系を示しているが、
図9に示すような照明光Qで被写体を照明すれば開口数NAが1に近い反射型顕微鏡を実現できる。
【0082】
(第6の実施形態)
図13を参照して、第6の実施形態に係るホログラフィック撮像装置1を説明する。本実施形態のホログラフィック撮像装置1は、第3の実施形態に係る透過型のホログラフィック顕微鏡におけるビーム結合器3が、物体4を斜め照射する照明光Qとビーム結合器3とが干渉しないように形成された、面取り部31aを有するものである。面取り部31aは、例えば、円錐面のように形成してもよく、また、多角錐の平面で形成してもよい。
【0083】
本ホログラフィック撮像装置1は、複数方向からの照明光を用いて得られる空間周波数帯域の異なる複数のホログラムを合成して、1よりも大きな合成開口数を有するホログラムを得て、高分解能化画像を得るために用いられる。そのため、物体4における顕微観察の領域が、イメージセンサ5の正面から集光レンズ23を通して照明する正面照明光Q0、および平行ビーム状に形成された多方向からの斜照明光Qj,j=1,・・,Nによって順次照明される。各照明光Qj,j=0,・・,N毎に、物体光オフアクシシスホログラムIJ
ORが取得される。また、物体4に替えて配置されたピンホール板と、集光レンズ23と、を通して伝播されるインライン球面波光Lによって、参照光オフアクシシスホログラムILRが取得される。これらのホログラムから、デジタルホログラフィを用いて高分解能再生画像が得られる。
【0084】
(第7の実施形態)
図14にしめす第7の実施形態に係るホログラフィック撮像装置1は、第4の実施形態に係る反射型のホログラフィック顕微鏡におけるビーム結合器3が、物体4を斜め照射する照明光Qとビーム結合器3とが干渉しないように形成された、面取り部31aを有するものである。このホログラフィック撮像装置1によれば、第6の実施形態のホログラフィック撮像装置1と同様に、高分解能再生画像が得られる。
【0085】
上述した各実施形態のホログラフィック顕微鏡は、ビーム結合器にイメージセンサとオフアクシス参照光用の光学系を取り付けたコンパクトなホログラム記録部(データ取得部10)に、正確に物体光を再生できる画像再生部12を備えたものである。このようなコンパクトなホログラム記録部は、液浸顕微鏡として用いることが容易であり、液浸状態にして解像度をより向上できる。
【0086】
(第8の実施形態:データ処理)
図15乃至
図17を参照して、物体光ホログラムgと空間サンプリング間隔δについて説明する。上述の各ホログラフィック撮像装置は、球面波状に広がる物体光Oの発生点に近い位置に集光点P1があるオフアクシス参照光Rを用いて、物体光Oを記録している。従って、物体光Oと参照光Rの干渉縞のホログラムは、空間周波数帯域が狭められている。このようなホログラムから、物体光Oのみのホログラムを単独で取り出すと、空間周波数帯域が広くなる。このことから、物体光Oの波面を表す上式(12)の物体光ホログラムg(x,y)は、上式(9)の複素振幅インラインホログラムJ
OL(x,y)に比べて、より広い空間周波数帯域を有することがわかる。
【0087】
物体光ホログラムg(x,y)の空間変化は、ホログラム中心から離れるにつれて大きくなりホログラムの端で最大になる。ホログラムの開口数をNAO、光波長をλとすると物体光ホログラムg(x,y)の最大空間周波数fMは、fM=NAO/λで表される。そして、この広帯域の物体光ホログラムg(x,y)を離散値で表すためには、サンプリング定理の制約から、空間サンプリング間隔δを、例えばデータ補間を用いて、δ=1/(2fM)=λ/(2NAO)以下の値に設定する必要がある。サンプリング定理の制約を打開するために、サンプリング点増加とデータ補完が行われる。狭い帯域の複素振幅インラインホログラムJOLは、受光素子5の画素ピッチdで緩やかに変化するので、データ補間においては3次式を用いた高速計算が可能である。
【0088】
図15(a)(b)は、物体光ホログラムg(x,y)を得るために、データ補間を用いてホログラムの空間サンプリング間隔δを小さくする方法を示す。複素振幅インラインホログラムJ
OLは、結像レンズを用いることなく得られている。従って、空間サンプリング間隔を細分化して光波長程度まで小さくしても歪みは発生しない。そこで、実質的に画素数を増やす画素数増大工程によってサンプリング間隔を小さくすることができる。
【0089】
画素数増大工程において、受光素子5の画素ピッチdに対応する空間サンプリング間隔dを有する複素振幅インラインホログラムJOLに対して、空間サンプリング間隔dを細分化して空間サンプリング間隔δとする。その後、細分化によって生じた新たなサンプリング点に対してデータ補間を行って実質的に画素数を増やす。データ補間の方法として、画像処理における周知の3次式によるデータ補間やsinc関数によるデータ補間を用いることができる。データ補間としてsinc補間を用いれば、3次式を用いた補間に比べて数値計算に時間がかかるが、より正確な結果を得ることができる。
【0090】
複素振幅インラインホログラムJOLに対してデータ補間によって画素数を増やした結果を、改めて複素振幅インラインホログラムJOLとする。なお、受光素子5の画素ピッチdは、画素の配列方向(xy方向)で互いに異なってもよく、空間サンプリング間隔δも画素の配列方向で互いに異なるものとすることができる。画素数を増やした複素振幅インラインホログラムJOLは、画素数増大工程の処理を行わない場合のホログラムに較べて、上述の画素ピッチdと空間サンプリング間隔δとの比に基づいて、歪みなしで倍率d/δ倍に拡大された像、すなわち分解能を高めた像を記録したホログラムとなる。
【0091】
(高速処理)
図16(a)(b)、
図17(a)(b)は、物体光ホログラムg(x,y)を高速に処理する方法を示す。高速フーリエ変換(FFT)を用いてホログラムデータを処理する場合、必要なサンプリング点数が大きくなりすぎると、物体光ホログラムg(x,y)の処理が困難になる。ところで、異なる周波数帯域に記録されたそれぞれの情報は空間的に重ねても失われずに保存される。このことを利用すると、広帯域の大開口数物体光である物体光ホログラムg(x,y)を重ねて、広帯域の微小ホログラム(データ点数の少ないホログラム)を作成することができる。また、ホログラムは、分割した各領域の各々に、光波を再生するための情報を保持している。
【0092】
そこで、
図16(a)に示すように、物体光ホログラムg(x,y)を幅dx,dyの複数枚の微小ホログラムg
iに分割し、
図16(b)(c)に示すように、各微小ホログラムg
iを互いに重ね合わせて合成微小ホログラムΣを生成する。この合成微小ホログラムΣに対して、上式(13)に基づく計算を行えば、計算時間を短縮して複素振幅G(u,v)が得られる。
図17(a)は、幅Dの物体光ホログラムg(x,y)を幅dx,dyの微小ホログラムg
1,g
2,g
3に分割する様子を示す。この物体光ホログラムg(x,y)は、1枚で光波(再生像9)を再生する。
【0093】
このような物体光ホログラムg(x,y)を、
図17(b)に示すように、例えばx方向に幅dxだけずらしながら重ねたホログラムは、幅dxの周期的なホログラムになり、多数の同じ再生像9を幅dxの間隔ごとに再生できる。計算点数は、重ね合わせた微小ホログラムg
iの枚数の逆数分に圧縮される。つまり、n枚重ねると、計算量は、1/nになる。
【0094】
(実施例1:ホログラフィックカメラ)
図18は、
図1(a)(b)の光学系を有するホログラフィック撮像装置を用いて得られたカラー画像である。被写体は、1辺の長さが18mmのサイコロであり、イメージセンサ5から64cmの位置に置かれた。記録ホログラムの開口数NAは、NA=0.017である。光源には青色半導体励起固体レーザ(波長473nm,出力30mW)、緑色半導体励起固体レーザ(波長532nm,出力50mW)、および赤色He-Neレーザ(波長632.8nm,出力10mW)を用いた。
【0095】
イメージセンサは、モノクロカメラリンクCCDカメラを用いた。
図6の画像は、それぞれの波長光に対して、空気中およびキューブ型ビームスプリッタから構成されるビーム結合器3内における光伝播計算を行い、数値計算で求めた青色、緑色、および赤色の再生画像を重ね合わせて再生された。焦点ずれ、色ずれ、および歪の無い高画質のカラー画像が再生された。このことは、青色、緑色、および赤色それぞれの波長光に対して、キューブ型ビームスプリッタを用いた物体光の記録と、空気中およびキューブ型ビームスプリッタ内における光伝播計算と、が正確に行われていることを示している。
【0096】
(実施例2:透過型ホログラフィック顕微鏡)
図19(a)(b)は、
図7、
図8の透過型ホログラフィック顕微鏡の光学系を用いて得られた、USAFテストターゲットの画像である。コヒーレント光源として青色の半導体励起固体レーザ(波長473nm,出力30mW)を用いた。CCDカメラの前方に被写体のUSAFテストターゲットを置いて物体光Oとオフアクシス参照光Rが作る干渉縞を記録した。また、被写体のUSAFテストターゲットを取り除いてインライン球面波参照光Lとオフアクシス参照光Rとが作る干渉縞を記録した。
【0097】
記録した2枚の干渉縞から複素振幅インラインホログラムJOLを生成し、それを16×16分割して256枚の分割記録ホログラムを得た。各分割記録ホログラムに対してデータ補間と空間ヘテロダイン変調を行った後、分割ホログラム(微小ホログラムgi)の重ね合わせを行って、画像再生用の微小ホログラム(合成微小ホログラムΣ)を得た。得られた合成微小ホログラムΣに対し、FFTを用いた数値計算を行って画像を再生した。
【0098】
図19(a)は、合成微小ホログラムΣ、つまり複素振幅インラインホログラムJ
OLから空気中だけでなくキューブスプリッタ内における光伝播計算を行って再生したUSAFテストターゲットの画像である。記録ホログラムの開口数NAは、NA=0.5であり、この開口数に対する理論分解能は0.457μmとなる。
図19(b)は、
図19(a)の部分拡大再生画像である。
【0099】
図19(a)における大きな矩形領域a1、その中の矩形領域a2、さらにその中の矩形領域a3、および、
図19(b)における矩形領域a2,a3の外形には歪みが見られない。すなわち、各矩形領域a1,a2,a3の外形が直線で構成されていることが確認でき、再生画像に歪が生じてないことが分かる。また、
図19(b)における線と線間の幅0.775μmのパターンがはっきりと識別できることから、理論値と同程度の分解能が得られていることが分かる。
【0100】
(比較例)
図20(a)は
図19(a)の比較例として、空気中の光伝播計算のみを行って再生した画像を示し、
図20(b)はその部分拡大画像を示す。光伝播計算の際には、キューブ型ビームスプリッタ内における光伝播をキューブ奥行きの屈折率倍の奥行きを持つ空気中における光伝播で近似して計算を行った。
【0101】
図20(a)を
図19(a)と比較すると、光伝播の近似により、
図20(a)の周辺部に画像の歪と焦点ぼけが確認できる。また、
図20(b)を
図19(b)と比較すると、
図20(b)では分解能の低下と画像のぼけが生じていることが分かる。キューブ型ビームスプリッタ内の光伝播計算の近似によって生じる画像歪や焦点ぼけ、および分解能低下は開口数が大きくなるにつれて顕著になり、大開口物体光を再生するためには、キューブ型ビームスプリッタ内の光伝播計算を正確に行う必要がある。
【0102】
(実施例3:透過型ホログラフィック顕微鏡)
図21は乾燥珪藻の光強度画像、
図22は同光強度画像に対応する位相差画像であり、
図7、
図8の透過型ホログラフィック顕微鏡の光学系を用いて撮像して再生した。記録ホログラムの開口数NAは、NA=0.5である。
図10の位相差画像は、物体光と照明光の位相差を表す画像である。再生された光強度画像と位相差画像から、より細かい試料の構造を観察することができる。
【0103】
(実施例4:反射型ホログラフィック顕微鏡)
図23(a)(b)は、
図9,
図10の反射型ホログラフィック顕微鏡の光学系を用いて得られた、USAFテストターゲットの画像である。記録ホログラムの開口数NAは、NA=0.5であり、理論分解能は0.457μmとなる。また、
図23(b)の部分拡大画像において、矩形領域a1とその中の矩形領域a2に歪みが見られない。すなわち、再生画像に歪が生じてないことが分かる。また、
図23(b)における線と線間の幅0.775μmのパターンがはっきりと識別でき、反射型においても透過型と同程度の分解能が得られていることが分かる。
【0104】
なお、本発明は、上記構成に限られることなく種々の変形が可能である。例えば、上述した各実施形態の構成を互いに組み合わせた構成とすることができる。また、キューブ型のビーム結合器3を、キューブ型無偏向ビーム結合器とし、光学系2に偏向素子を組み入れたホログラフィック撮像装置としてもよい。このようなログラフィック撮像装置によれば、偏光ホログラフィック顕微鏡やエリプソメトリに適用でき、偏光物体光を正確にワンショット記録することができる。
【産業上の利用可能性】
【0105】
従来の技術に対する本発明の新規性と優位性として下記が挙げられる:(1)広範囲に亘る開口の物体光を正確にワンショット記録できる、(2)簡単で安定な構造を持つコンパクトな記録用光学系を構成できる、(3)記録物体光の開口数NAを1に近い値まで大きくできる、(4)同一の光学系を透過型や反射型および偏光型の高分解能ホログラフィック顕微鏡のためのホログラム記録用として利用できる、(5)ビーム結合器表面の光反射防止処理や光吸収処理によって表面反射光や迷光の影響を避けることができる。
【0106】
上記優位性から、本発明は、光学やデジタルホログラフィ、光計測、応用光情報、顕微鏡の分野においてこれらの利点を活かした広い用途に利用できる。また、技術応用の観点からは、精密計測やナノテクノロジ、生体光計測、バイオテクノロジ、医療診断などの分野での利用が考えられる。具体的な利用例として、表面の微小キズやホコリなどの高精度検出と計測、体積中微粒子の精密光計測、培養液中の生体組織や生体細胞の長作動距離広視野高分解能計測または超高分解能計測、低エネルギー照明により生きた生体組織の超高分解能計測、光位相や光偏光を使った透明生体組織の超高分解能計測、反射物体光を使った超高分解能な3次元光計測、などが挙げられる。
【符号の説明】
【0107】
1 ホログラフィック撮像装置
2 光学系
3 ビーム結合器
31a 面取り部
4 物体
5 イメージセンサ
50 ホログラム面
6 データ保存部
10 データ取得部
12 画像再生部
13 複素振幅ホログラム生成部
14 計算参照光ホログラム生成部
15 物体光ホログラム生成部
ILR 参照光オフアクシスホログラム
IOR 物体光オフアクシスホログラム
ITR ターゲットオフアクシスホログラム
jL インライン参照光ホログラム
jLm 変換波長インライン参照光ホログラム
JOL 物体光の複素振幅インラインホログラム
O 物体光
OT ターゲットの物体光
Q 照明光
R オフアクシス参照光
L インライン球面波参照光
P2 インライン球面波参照光の集光点
P1 オフアクシス参照光の集光点
T ターゲット
g 物体光ホログラム
gT ターゲット物体光ホログラム
h 再生物体光ホログラム
m 係数
ρ イメージセンサからインライン球面波参照光の集光点までの距離
φL 位相
φLm 位相
λ 光波長
λm 変換波長