IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ コーア株式会社の特許一覧

<>
  • 特許-チップ抵抗器の製造方法 図1
  • 特許-チップ抵抗器の製造方法 図2
  • 特許-チップ抵抗器の製造方法 図3
  • 特許-チップ抵抗器の製造方法 図4
  • 特許-チップ抵抗器の製造方法 図5
  • 特許-チップ抵抗器の製造方法 図6
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2023-09-20
(45)【発行日】2023-09-28
(54)【発明の名称】チップ抵抗器の製造方法
(51)【国際特許分類】
   H01C 17/242 20060101AFI20230921BHJP
   H01C 17/00 20060101ALI20230921BHJP
【FI】
H01C17/242
H01C17/00 100
【請求項の数】 1
(21)【出願番号】P 2019186096
(22)【出願日】2019-10-09
(65)【公開番号】P2021061368
(43)【公開日】2021-04-15
【審査請求日】2022-09-05
(73)【特許権者】
【識別番号】000105350
【氏名又は名称】KOA株式会社
(74)【代理人】
【識別番号】110000442
【氏名又は名称】弁理士法人武和国際特許事務所
(72)【発明者】
【氏名】松本 健太郎
(72)【発明者】
【氏名】永坂 功
【審査官】小林 大介
(56)【参考文献】
【文献】特開2012-175064(JP,A)
【文献】特開2005-150580(JP,A)
【文献】特開平10-189318(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
H01C 17/00
H01C 17/065
H01C 17/22
H01C 17/242
(57)【特許請求の範囲】
【請求項1】
格子状に延びる複数の1次分割溝と2次分割溝を有し、前記1次分割溝と前記2次分割溝で1つのチップ抵抗器に相当するチップ形成領域が区画された大判基板に対して、前記各チップ形成領域内に前記1次分割溝および前記2次分割溝からそれぞれ離間すると共に、前記2次分割溝の延出方向に沿って所定間隔を存して対向する表電極の対を形成する工程と、前記チップ形成領域内で対向する前記表電極間を接続するように複数の抵抗体を形成する工程と、を備え、
前記表電極は前記1次分割溝を跨いで分断された離間ギャップを有しており、前記離間ギャップを介して隣接する前記表電極と前記抵抗体とが前記2次分割溝の延出方向に沿って交互に配置された抵抗素子群に対して前記抵抗値調整を行う工程において、
前記抵抗素子群の全ての前記表電極に対して、前記離間ギャップを介して隣接する前記表電極に該離間ギャップよりも大きな径寸法を有する電圧測定用プローブを接触させると共に、前記抵抗素子群の両端に位置する前記表電極に通電用プローブをそれぞれ接触させ、
この状態で一対の前記通電用プローブ間に電流を流しつつ前記各電圧測定用プローブで前記抵抗体間の電圧値をそれぞれ測定しながら前記各抵抗体の抵抗値調整を行うことを特徴とするチップ抵抗器の製造方法。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、絶縁基板上に設けられた抵抗体にトリミング溝を形成することで抵抗値が調整されるチップ抵抗器の製造方法に関するものである。
【背景技術】
【0002】
チップ抵抗器は、直方体形状の絶縁基板と、絶縁基板の表面に所定間隔を存して対向配置された一対の表電極と、絶縁基板の裏面に所定間隔を存して対向配置された一対の裏電極と、表電極と裏電極を橋絡する端面電極と、対をなす表電極どうしを橋絡する抵抗体と、抵抗体を覆う保護膜等によって主に構成されている。
【0003】
一般的に、このようなチップ抵抗器を製造する場合、格子状に延びる1次分割溝と2次分割溝が設けられた大判基板を準備し、この大判基板に対して多数個分の表電極や抵抗体や保護膜等を一括して形成した後、この大判基板を1次分割溝と2次分割溝に沿って分割してチップ抵抗器を多数個取りするようにしている。かかるチップ抵抗器の製造過程においては、大判基板の表面における1次分割溝と2次分割溝で区画された各チップ形成領域内に、導電ペーストを印刷・焼成することにより対をなす表電極が形成されると共に、対をなす複数組の表電極間に抵抗ペーストを印刷・焼成することにより多数の抵抗体が形成される。その際、印刷時の位置ずれや滲み、あるいは焼成炉内の温度むら等の影響により、各抵抗体の大きさや膜厚に若干のばらつきを生じることが避け難いため、大判基板の状態で各抵抗体にトリミング溝を形成して所望の抵抗値に設定するという抵抗値調整が行われるようになっている。
【0004】
この抵抗値調整としては、抵抗体の両端部に接続する表電極にそれぞれ測定用プローブを接触させ、この状態で測定用プローブ間の抵抗値を測定しながら、抵抗体にレーザー光を照射してトリミング溝を形成することにより、抵抗体の抵抗値を上昇させるという手法が広く採用されている。ここで、表電極に接触させる測定用プローブはそれ自体に抵抗値を持っているため、抵抗体の抵抗値を正確に測定するためには、この測定用プローブの抵抗値を含まないように、定電流を供給する通電用プローブと電圧降下を検出する電圧測定用プローブとを用い、これら各プローブをそれぞれ表電極に接触させながら抵抗値を測定する、いわゆる4端子法と呼ばれる測定法が有効である。特に、要求される抵抗値が10Ω以下の低抵抗用チップ抵抗器の製造方法においては、抵抗体の抵抗値を正確に測定する上で4端子測定法を用いて抵抗値調整が必要不可欠となる。
【0005】
4端子測定法を用いた抵抗値調整の従来技術として、図5に示すように、抵抗体100と表電極101が交互に配置されて直列接続状態で連なった抵抗素子群に対し、当該抵抗素子群の両端に位置する表電極101に通電用プローブ102を当接させると共に、当該抵抗素子群の全ての表電極101に電圧測定用プローブ103を当接させ、通電用プローブ102に定電流(I)を流しながら各抵抗体100の電極間電圧(V)を測定するという方法が提案されている(特許文献1参照)。
【0006】
このような4端子測定法を用いて抵抗体100の抵抗値調整を行うと、直列接続された抵抗素子群の両端の表電極101間に定電流(I)を流すことによって全ての抵抗体100に当該定電流が流れるため、各々の抵抗体100毎に通電用プローブ102を当接させる必要がなく、また、電圧測定用プローブ103は隣り合う抵抗体100で共通する表電極101に1本あれば足りることになる。したがって、抵抗素子群の全ての表電極101に2本ずつのプローブ102,103を当接させて各々の抵抗体100の抵抗値を測定する4端子測定法に比べると、必要とされるプローブ102,103のトータル本数を減らすことができ、また、電圧測定用プローブ103は隣り合う抵抗体100で共通する表電極101に1本あれば足りるため、広い面積の表電極101に対して電圧測定用プローブ103を容易に接触させることができる。
【先行技術文献】
【特許文献】
【0007】
【文献】特開2005-150580号公報
【発明の概要】
【発明が解決しようとする課題】
【0008】
ところで、図5に示す抵抗体100と表電極101は、格子状に延びる1次分割溝と2次分割溝が設けられた大判基板に対して一括形成されるようになっており、一般的なチップ抵抗器の製造方法では、これら抵抗体100に対して抵抗値調整を行った後、大判基板を1次分割溝と2次分割溝に沿って分割(ブレイク)することで多数のチップ状基板に個片化するようにしている。すなわち、図6に示すように、格子状に延びる1次分割溝105と2次分割溝106が設けられた大判基板104を準備し、この大判基板104の表面における1次分割溝105と2次分割溝106で区画された各チップ形成領域の両端部分に、2次分割溝106と平行かつ1次分割溝105に跨るように導電ペーストを印刷・焼成して表電極101を形成し、また、チップ形成領域内で向かい合う一対の表電極101間に抵抗ペーストを印刷・焼成して抵抗体100を形成するようになっている。
【0009】
しかしながら、1次分割溝105に跨るように印刷した導電ペーストによって表電極101が形成されるため、導電ペーストが1次分割溝105に沿って2次分割溝106の方向に滲み出しやすくなる。その結果、2次分割溝106を介して隣り合う抵抗体100間が1次分割溝105内に滲み出した導電ペーストによって導通(短絡)してしまうことがあり、その場合、抵抗値調整するために測定している抵抗値を正確に測定することができなくなる。特に、チップ抵抗器の小型化に伴って大判基板104におけるチップ形成領域の面積が小さくなると、2次分割溝106を介して隣り合う表電極101間の距離が短くなるため、上記した導電ペーストの滲み出しに起因する短絡の虞が大きくなる。また、抵抗値調整後に大判基板104を1次分割溝105に沿って分割(1次ブレイク)する際に、表電極101が1次分割溝105に跨って形成されているためブレイクしずらくなり、1次分割時に2次分割溝106に沿って不所望に割れてしまったり、1次分割面のブレイク形状が悪化して端面電極の形成に支障を来たす虞があった。
【0010】
本発明は、このような従来技術の実情に鑑みてなされたもので、その目的は、4端子測定法を用いて抵抗値調整を正確かつ容易に実施することができると共に、抵抗値調整後の大判基板を容易にブレイクすることができるチップ抵抗器の製造方法を提供することにある。
【課題を解決するための手段】
【0011】
上記の目的を達成するために、本発明によるチップ抵抗器の製造方法は、格子状に延びる複数の1次分割溝と2次分割溝を有し、前記1次分割溝と前記2次分割溝で1つのチップ抵抗器に相当するチップ形成領域が区画された大判基板に対して、前記各チップ形成領域内に前記1次分割溝および前記2次分割溝からそれぞれ離間すると共に、前記2次分割溝の延出方向に沿って所定間隔を存して対向する表電極の対を形成する工程と、前記チップ形成領域内で対向する前記表電極間を接続するように複数の抵抗体を形成する工程と、を備え、前記表電極は前記1次分割溝を跨いで分断された離間ギャップを有しており、前記離間ギャップを介して隣接する前記表電極と前記抵抗体とが前記2次分割溝の延出方向に沿って交互に配置された抵抗素子群に対して前記抵抗値調整を行う工程において、前記抵抗素子群の全ての前記表電極に対して、前記離間ギャップを介して隣接する前記表電極に該離間ギャップよりも大きな径寸法を有する電圧測定用プローブを接触させると共に、前記抵抗素子群の両端に位置する前記表電極に通電用プローブをそれぞれ接触させ、この状態で一対の前記通電用プローブ間に電流を流しつつ前記各電圧測定用プローブで前記抵抗体間の電圧値をそれぞれ測定しながら前記各抵抗体の抵抗値調整を行うことを特徴としている。
【0012】
このような工程を含むチップ抵抗器の製造方法では、表電極が1次分割溝を跨いで分断された離間ギャップを有しているため、表電極形成用の導電ペーストが1次分割溝を伝わって2次分割溝の方向へ流れ出すことはなく、2次分割溝介して隣接する表電極同士の短絡を防止することができる。
【0013】
そして、離間ギャップを介して隣接する表電極と抵抗体とが2次分割溝の延出方向に沿って交互に配置された抵抗素子群に対して抵抗値調整を行う工程において、抵抗素子群の全ての表電極に対して、離間ギャップを介して隣接する表電極に該離間ギャップよりも大きな径寸法を有する電圧測定用プローブ接触させると共に、抵抗素子群の両端に位置する前記表電極に通電用プローブをそれぞれ接触させ、この状態で一対の通電用プローブ間に電流を流しつつ各電圧測定用プローブで抵抗体間の電圧値をそれぞれ測定することにより、表電極が離間ギャップによって1次分割溝を跨いで分断されていても一対の通電用プローブ間に電流を流すことができ、4端子測定法を用いて抵抗体の抵抗値調整を正確かつ容易に実施することができる。
【0014】
また、1次分割溝内に導電ペーストが入り込まないため、抵抗値調整後に大判基板を1次分割溝に沿って簡単にブレイクすることができ、ブレイク形状の悪化や不所望な2次割れを抑制することができる。
【発明の効果】
【0015】
本発明のチップ抵抗器の製造方法によれば、4端子測定法を用いて抵抗値調整を正確かつ容易に実施することができると共に、抵抗値調整後の大判基板を容易にブレイクすることができる。
【図面の簡単な説明】
【0016】
図1】本発明の実施形態例に係るチップ抵抗器の平面図である。
図2図1のII-II線に沿う断面図である。
図3】該チップ抵抗器の製造工程を示すフローチャートである。
図4】該チップ抵抗器の製造工程で用いられる大判基板の説明図である。
図5】従来例に係るチップ抵抗器の抵抗値調整方法を示す説明図である。
図6】従来例に係るチップ抵抗器の製造工程を示す説明図である。
【発明を実施するための形態】
【0017】
発明の実施の形態について図面を参照して説明すると、図1は本発明の実施形態例に係るチップ抵抗器の平面図、図2図1のII-II線に沿う断面図である。
【0018】
図1図2に示すように、本実施形態例に係るチップ抵抗器10は、直方体形状の絶縁基板1と、絶縁基板1の表面の長手方向両端部に設けられた一対の表電極2と、これら両表電極2の間を橋絡する抵抗体3と、抵抗体3を覆う保護層4と、絶縁基板1の裏面の長手方向両端部に設けられた一対の裏電極5と、絶縁基板1の長手方向両端面に設けられた一対の端面電極6と、これら電極部2,5,6を覆う外部電極7等によって主として構成されている。
【0019】
絶縁基板1は、後述する大判基板を縦横の分割溝(1次分割溝と2次分割溝)に沿って分割して多数個取りされたものであり、大判基板の主成分はアルミナを主成分とするセラミックス基板である。
【0020】
一対の表電極2は銀を主成分とする銀系ペーストをスクリーン印刷して乾燥・焼成したものであり、これら表電極2は所定間隔を存して対向するように絶縁基板1の表面に形成されている。これら表電極2は絶縁基板1の長手方向両端より若干内方に離間した位置に形成されており、表電極2と絶縁基板1の長手方向端面との間には若干の間隙が確保されている。
【0021】
抵抗体3は酸化ルテニウム等の抵抗体ペーストをスクリーン印刷して乾燥・焼成したものであり、この抵抗体3は両端部が表電極2に重なるように矩形状に形成されている。抵抗体3にはトリミング溝7が形成されており、このトリミング溝7によって抵抗体3の抵抗値が所定値になるように調整されている。トリミング溝7はレーザー光の照射によって抵抗体3にできる切込みであり、本実施形態例では、Lカット形状のトリミング溝7を形成して抵抗体3の抵抗値を調整しているが、トリミング溝7の形状はLカット以外のIカット形状等でも良く、また、トリミング溝7の本数は1つに限定されず複数本でも良い。
【0022】
保護層4はアンダーコート層とオーバーコート層の2層構造からなり、アンダーコート層はガラスペーストをスクリーン印刷して乾燥・焼成したものであり、オーバーコート層はエポキシ系樹脂ペーストをスクリーン印刷して加熱硬化(焼付け)したものである。アンダーコート層はトリミング溝7の形成時にレーザーの熱から抵抗体3を保護するものであり、アンダーコート層は抵抗体3を完全に覆い隠せる程度の大きさに形成されている。オーバーコート層はトリミング溝7形成後の抵抗体3を外部環境(湿度や腐食性ガス等)から保護するものであり、オーバーコート層はアンダーコート層を完全に覆い隠せる程度の大きさに形成されている。
【0023】
一対の裏電極5は銀を主成分とする銀系ペーストをスクリーン印刷して乾燥・焼成したものであり、これら裏電極5は表電極2と対応するように絶縁基板1の裏面における長手方向両端部に形成されている。その際、ブレイク性をより向上させるために、裏電極5においても、表電極2と同様に絶縁基板1の長手方向両端より若干内方の離間位置に形成しても良い。
【0024】
一対の端面電極6は、絶縁基板1の端面にNi/Crをスパッタリングしたり、樹脂銀を塗布して加熱硬化したものであり、絶縁基板1の表面と裏面に回り込むように断面コ字状に形成することで、これら端面電極6によって対応する表電極2と裏電極5とが橋絡されている。その後、これら端面電極6の表面はNiメッキ層とSnメッキ層からなる2層構造の外部電極7によって被覆されている。
【0025】
次に、このチップ抵抗器10の製造工程について、図3に示すフローチャートと図4に示す大判基板の説明図を参照しながら説明する。
【0026】
まず、絶縁基板1が多数個取りされる大判基板10Aを準備する(図3のS-1)。図4(a)に示すように、この大判基板10Aの表面には複数本の1次分割溝11と2次分割溝12が格子状に設けられており、両分割溝11,12によって区切られたマス目の1つ1つが1個分のチップ形成領域となっている。図4には複数個分のチップ形成領域に相当する大判基板10Aが代表して示されているが、実際は多数個分のチップ形成領域に相当する大判基板10Aに対して以下に説明する各工程が一括して行われる。
【0027】
すなわち、この大判基板10Aの表面にAgを含有する導電ペーストをスクリーン印刷した後、これを乾燥・焼成することにより、図4(b)に示すように、各チップ形成領域の両端部分に、1次分割溝11から離間すると共に所定間隔を存して対向する複数対の表電極2を形成する(図3のS-2)。これにより、1次分割溝11を介して隣り合う2つの表電極2の間に1次分割溝11の溝幅よりも広い離間ギャップGが確保されるため、導電ペーストが1次分割溝11を伝わって2次分割溝12の方向へ流れ出すことはなくなる。なお、これら表電極2の形成工程と同時あるいは前後して、大判基板10Aの裏面にAg系ペーストをスクリーン印刷した後、これを乾燥・焼成することにより、表電極2に対応する複数対の裏電極(図示せず)を形成する(図3のS-3)。
【0028】
次に、大判基板10Aの表面に酸化ルテニウム等の抵抗体ペーストをスクリーン印刷して乾燥・焼成することにより、図4(c)に示すように、両端部が表電極2に重なる抵抗体3を形成する(図3のS-4)。これにより、大判基板10Aの表面に、離間ギャップGを介して隣接する表電極2と抵抗体3とが2次分割溝12の延出方向に沿って交互に配置された抵抗素子群が多数形成され、図示の例では、離間ギャップGにより分断された10個の表電極2と4つの抵抗体3とによって1つの抵抗素子群が構成されている。しかる後、ガラスペーストをスクリーン印刷して乾燥・焼成することにより、抵抗体3を覆い隠す図示せぬアンダーコート層を形成する(図3のS-5)。
【0029】
次に、図4(d)に示すように、抵抗素子群の全ての表電極2に電圧測定用プローブ13を接触させると共に、抵抗素子群の両端に位置する一対の表電極2に通電用プローブ14をそれぞれ接触させる。ここで、電圧測定用プローブ13の径寸法は離間ギャップGよりも大きめに設定されており、このような電圧測定用プローブ13を離間ギャップGを介して隣接する2つの表電極2に跨って接触させることにより、各表電極2が離間ギャップGによって分断されているのにも関わらず、抵抗素子群の両端に位置する一対の表電極2に接触させた通電用プローブ14間に電流を流すことが可能となる。なお、通電用プローブ14の径寸法については、抵抗素子群の両端に位置する表電極2に接触させることが可能であれば良い。
【0030】
そして、この状態で一対の通電用プローブ14間に定電流を流しながら、対をなす電圧測定用プローブ13を用いて各抵抗体3間の電圧値をそれぞれ測定し、測定した電圧値が所定の値となるようにアンダーコート層の上からレーザー光を照射して抵抗体3にトリミング溝7を形成することにより、各抵抗体3の抵抗値を調整する(図3のS-6)。すなわち、電圧測定用プローブ13は、抵抗体3の電圧値を測定するという本来の機能に加えて、離間ギャップGで分断された表電極2間を導通する機能を併せ持っている。
【0031】
なお、図4(d)には5つの電圧測定用プローブ13と2つの通電用プローブ14の計7つの接触箇所が黒丸で示されているが、実際は不図示のプローブカードに多数の電圧測定用プローブ13とそれらの両端側に位置する一対の通電用プローブ14とが一列に固定されており、これら電圧測定用プローブ13と通電用プローブ14を図中の左右方向に配列された各表電極2に同時に当接するようにしている。そして、この状態で対をなす両端側の通電用プローブ14間に定電流を流すことにより、通電用プローブ14間に配列された全ての抵抗体3に当該定電流を流しつつ、対をなす電圧測定用プローブ13間の電圧値を順次測定することにより、2次分割溝12の延出方向に沿って一列に配置された抵抗素子群の各抵抗体3の抵抗値調整を行った後、プローブカードを図中の下方へ移動し、2次分割溝12を介して隣接する別の抵抗素子群の各抵抗体3に対して上記と同様の抵抗値調整を実行するようにしている。
【0032】
このようにして大判基板10Aに形成された全ての抵抗体3の抵抗値調整を行った後、アンダーコート層を覆うようにエポキシ系樹脂ペーストをスクリーン印刷し、これを加熱硬化して図示せぬオーバーコート層を形成する(図3のS-7)ことにより、アンダーコート層とオーバーコート層の2層構造からなる保護層を形成する。
【0033】
しかる後、大判基板10Aを1次分割溝11に沿って短冊状基板に1次分割する(図3のS-8)。その際、表電極2が1次分割溝11から離間した位置に形成されており、1次分割溝11内に表電極形成用の導電ペーストが入り込んでいないため、大判基板10Aを1次分割溝11に沿って簡単にブレイクすることができ、ブレイク形状の悪化や不所望な2次割れを抑制することができる。
【0034】
次に、この短冊状基板の分割面にNi/Crをスパッタリングしたり、短冊状基板の分割面にAgを含有させた樹脂ペーストを塗布して加熱硬化することにより、短冊状基板の表面と裏面に回り込むように断面コの字状に形成することで、短冊状基板の両端面に表電極2と裏電極5間を導通する端面電極を形成する(図3のS-9)。この時、短冊状基板の長手方向側端部(エッジ部)に表電極2が形成されていないため、1次分割時に表電極2のバリは発生しない。しだって、短冊状基板の長手方向側端部が1次分割後に形成される端面電極にて覆われるため、表電極2のバリの剥がれによる断線が発生しない。
【0035】
次に、短冊状基板を2次分割溝12に沿って複数のチップ状基板に2次分割し(図3のS-10)、これらチップ状基板に対して電解メッキを施してNiメッキ層とSnメッキ層を順次形成する(図3のS-11)。これらNiメッキ層とSnメッキ層により、端面電極の表面を覆う外部電極が形成され、図1図2に示すチップ抵抗器10が多数個取りされる。
【0036】
以上説明したように、本実施形態例に係るチップ抵抗器10の製造方法では、表電極2が大判基板10Aの1次分割溝11を跨いで分断された離間ギャップGを有しているため、表電極形成用の導電ペーストが1次分割溝11を伝わって2次分割溝12の方向へ流れ出すことはなく、2次分割溝12を介して隣接する表電極2同士の短絡を防止することができる。
【0037】
そして、離間ギャップGを介して隣接する表電極2と抵抗体3とが2次分割溝12の延出方向に沿って交互に配置された抵抗素子群に対して抵抗値調整を行う工程において、抵抗素子群の全ての表電極2に離間ギャップGよりも大きな径寸法を有する電圧測定用プローブ13を接触させると共に、抵抗素子群の両端に位置する表電極2に通電用プローブ14をそれぞれ接触させ、この状態で一対の通電用プローブ14間に電流を流しながら、対をなす電圧測定用プローブ13で各抵抗体間の電圧値をそれぞれ測定することにより、4端子測定法を用いて抵抗体3の抵抗値調整を正確かつ容易に実施することができる。しかも、1次分割溝11内に導電ペーストが入り込まないため、抵抗値調整後に大判基板10Aを1次分割溝11に沿って簡単にブレイクすることができ、ブレイク形状の悪化や不所望な2次割れを抑制することができる。
【0038】
なお、上記の実施形態例では、離間ギャップGで分断された10個の表電極2と4つの抵抗体3とを有する抵抗素子群に対して抵抗値調整する場合について説明したが、1つの抵抗素子群が有する表電極や抵抗体の数は上記実施形態例に限定されず、例えば、離間ギャップGで分断された12個の表電極2と5つの抵抗体3とが交互に配置された抵抗素子群であっても良い。
【符号の説明】
【0039】
1 絶縁基板
2 表電極
3 抵抗体
4 保護層
5 裏電極
6 端面電極
7 トリミング溝
10 チップ抵抗器
10A 大判基板
11 1次分割溝
12 2次分割溝
13 電圧測定用プローブ
14 通電用プローブ
G 離間ギャップ
図1
図2
図3
図4
図5
図6