IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ ジョンソン コントロールズ テクノロジー カンパニーの特許一覧

<>
  • 特許-2段階の油原動力エダクタシステム 図1
  • 特許-2段階の油原動力エダクタシステム 図2
  • 特許-2段階の油原動力エダクタシステム 図3
  • 特許-2段階の油原動力エダクタシステム 図4
  • 特許-2段階の油原動力エダクタシステム 図5
  • 特許-2段階の油原動力エダクタシステム 図6
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2023-09-21
(45)【発行日】2023-09-29
(54)【発明の名称】2段階の油原動力エダクタシステム
(51)【国際特許分類】
   F25B 1/053 20060101AFI20230922BHJP
   F25B 1/00 20060101ALI20230922BHJP
   F25B 43/02 20060101ALI20230922BHJP
【FI】
F25B1/053 C
F25B1/00 387F
F25B1/00 396A
F25B43/02 N
【請求項の数】 20
(21)【出願番号】P 2020517153
(86)(22)【出願日】2018-09-21
(65)【公表番号】
(43)【公表日】2020-12-03
(86)【国際出願番号】 US2018052256
(87)【国際公開番号】W WO2019060752
(87)【国際公開日】2019-03-28
【審査請求日】2021-08-30
(31)【優先権主張番号】62/562,895
(32)【優先日】2017-09-25
(33)【優先権主張国・地域又は機関】US
(73)【特許権者】
【識別番号】518010511
【氏名又は名称】ジョンソン コントロールズ テクノロジー カンパニー
【氏名又は名称原語表記】Johnson Controls Technology Company
(74)【代理人】
【識別番号】100083806
【弁理士】
【氏名又は名称】三好 秀和
(74)【代理人】
【識別番号】100095500
【弁理士】
【氏名又は名称】伊藤 正和
(74)【代理人】
【識別番号】100111235
【弁理士】
【氏名又は名称】原 裕子
(72)【発明者】
【氏名】シェーファー、 ブライソン アイ.
(72)【発明者】
【氏名】スネル、 ポール ダブリュー.
【審査官】関口 勇
(56)【参考文献】
【文献】国際公開第02/006740(WO,A1)
【文献】実開昭50-007750(JP,U)
【文献】特表平05-505865(JP,A)
【文献】米国特許出願公開第2016/0047575(US,A1)
【文献】特開2016-194377(JP,A)
【文献】特開昭63-075446(JP,A)
【文献】特表2006-503222(JP,A)
【文献】特開昭60-105873(JP,A)
【文献】米国特許出願公開第2013/0186128(US,A1)
【文献】特開平11-230098(JP,A)
【文献】特開昭63-096450(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
F25B 1/053
F25B 1/00
F25B 43/02
(57)【特許請求の範囲】
【請求項1】
第1のエダクタであって、
圧縮機のプレナムに流体結合され、前記圧縮機の前記プレナムから第1の油と冷媒の混合物を受け取る第1の吸引口と、
油溜めに流体結合され、前記油溜めから第1の原動力流体を受け取る第1の原動力入口と、
前記油溜めに流体結合され、第1の出口混合物を前記油溜めに放出する第1の出口であって、前記第1の出口混合物が、前記第1の油と冷媒の混合物、及び前記第1の原動力流体を含む、第1の出口と
を備える第1のエダクタ、並びに
第2のエダクタであって、
蒸発器に流体結合され、前記蒸発器から第2の油と冷媒の混合物を受け取る第2の吸引口と、
凝縮器に流体結合され、前記凝縮器から第2の原動力流体を受け取る第2の原動力入口と、
前記圧縮機の前記プレナムに流体結合され、第2の出口混合物を前記圧縮機の前記プレナムに放出する第2の出口であって、前記第2の出口混合物が、前記第2の油と冷媒の混合物、及び前記第2の原動力流体を含む、第2の出口と
を備える第2のエダクタ
を備える、チラーアセンブリ用のエダクタシステム。
【請求項2】
前記第1の原動力流体が、加圧された油を含む、請求項1に記載のエダクタシステム。
【請求項3】
前記第2の原動力流体が、加圧された冷媒ガスを含む、請求項1に記載のエダクタシステム。
【請求項4】
前記第1の油と冷媒の混合物中の油の割合が33%から50%の範囲である、請求項1に記載のエダクタシステム。
【請求項5】
前記第2の油と冷媒の混合物中の油の割合が0.5%から2%の範囲である、請求項1に記載のエダクタシステム。
【請求項6】
前記冷媒がR1233zdである、請求項1に記載のエダクタシステム。
【請求項7】
気密シールされた誘導モータによって駆動される遠心圧縮機、
凝縮器、
蒸発器、並びに
油原動力エダクタシステムであって、
油溜めと、
前記遠心圧縮機のプレナムから第1の油と冷媒の混合物を受け取るように構成された第1の吸引口、前記油溜めから第1の原動力流体を受け取るように構成された第1の原動力入口、及び第1の出口を備える第1のエダクタと、
第2の吸引口、前記凝縮器から第2の原動力流体を受け取るように構成された第2の原動力入口、及び第2の出口を備える第2のエダクタと
を備える油原動力エダクタシステムを備え、
前記遠心圧縮機、前記凝縮器、及び前記蒸発器は、閉冷媒ループで接続され
前記遠心圧縮機の前記プレナムが、プレナム領域、及び前記プレナム領域と前記遠心圧縮機のボリュート部分との間に延びる壁を備え、
前記プレナム領域が、前記第2のエダクタの第2の出口から油と冷媒を含む出口混合物を受け取るように構成され、
前記壁が、前記ボリュート部分から前記プレナム領域に熱を伝導して、前記出口混合物中の冷媒の少なくとも一部を蒸発させるように構成される、
チラーアセンブリ。
【請求項8】
記プレナム領域が、前記油溜めから分離している、請求項7に記載のチラーアセンブリ。
【請求項9】
前記第1の油と冷媒の混合物中の油の割合が33%から50%の範囲である、請求項7に記載のチラーアセンブリ。
【請求項10】
前記出口混合物が、第2の出口混合物であり、
前記第1の出口が、第1の出口混合物を前記油溜めに放出するように構成され、前記第1の出口混合物が、前記第1の油と冷媒の混合物、及び前記第1の原動力流体を含む、請求項7に記載のチラーアセンブリ。
【請求項11】
前記第1の原動力流体が、加圧された油を含む、請求項7に記載のチラーアセンブリ。
【請求項12】
前記第2の吸引口が、前記蒸発器から第2の油と冷媒の混合物を受け取るように構成されている、請求項7に記載のチラーアセンブリ。
【請求項13】
前記第2の油と冷媒の混合物中の油の割合が0.5%から2%の範囲である、請求項12に記載のチラーアセンブリ。
【請求項14】
前記第2の出口が、前記出口混合物を前記遠心圧縮機の前記プレナムに放出するように構成され、前記出口混合物が、前記第2の油と冷媒の混合物、及び前記第2の原動力流体を含む、請求項12に記載のチラーアセンブリ。
【請求項15】
前記第2の原動力流体が、加圧された冷媒ガスを含む、請求項7に記載のチラーアセンブリ。
【請求項16】
前記冷媒がR1233zdである、請求項7に記載のチラーアセンブリ。
【請求項17】
モータによって駆動される圧縮機であって、プレナムを備える圧縮機、
凝縮器、
蒸発器、並びに
油原動力エダクタシステムであって、
前記プレナムから分離している油溜めと、
第1のエダクタであって、
前記圧縮機の前記プレナムから第1の油と冷媒の混合物を受け取るように構成された第1の吸引口、
前記油溜めから加圧された油原動力流体を受け取るように構成された第1の原動力入口、及び
前記第1の油と冷媒の混合物及び前記加圧された油原動力流体を含む第1の出口混合物を前記油溜めに放出するように構成された第1の出口、
を備える第1のエダクタと、
第2の吸引口、第2の原動力入口、及び第2の出口を備える第2のエダクタと
を備える油原動力エダクタシステムを備え、
前記圧縮機、前記凝縮器、及び前記蒸発器が、閉冷媒ループで接続される、
チラーアセンブリ。
【請求項18】
前記第2の吸引口が、前記蒸発器から第2の油と冷媒の混合物を受け取るように構成され、前記第2の原動力入口が、前記凝縮器から第2の原動力流体を受け取るように構成され、前記第2の出口が、第2の出口混合物を前記圧縮機の前記プレナムに放出するように構成される、請求項17に記載のチラーアセンブリ。
【請求項19】
前記第2の原動力流体が、加圧された冷媒ガスを含む、請求項18に記載のチラーアセンブリ。
【請求項20】
前記第1の油と冷媒の混合物中の油の割合が33%から50%の範囲であり、前記第2の油と冷媒の混合物中の油の割合が0.5%から2.0%の範囲である、請求項18に記載のチラーアセンブリ。
【発明の詳細な説明】
【技術分野】
【0001】
関連出願の相互参照
本出願は、2017年9月25日に出願された米国仮特許出願第62/562,895号の利益及びそれに付与された優先権を主張するものであり、前記仮特許出願の全開示内容はこれによって参照により完全な形で組み込まれる。
【背景技術】
【0002】
建物は、暖房、換気、及び空調(HVAC)システムを含んでいる場合がある。
【発明の概要】
【課題を解決するための手段】
【0003】
本開示の1つの実践形態は、チラーアセンブリ用のエダクタシステムである。エダクタシステムは、第1のエダクタ及び第2のエダクタを含む。第1のエダクタは、圧縮機のプレナムから第1の油と冷媒の混合物を受け取る第1の吸引口と、油溜めから第1の原動力流体を受け取る第1の原動力入口と、第1の出口混合物を油溜めに放出する第1の出口とを含む。第1の出口混合物は、第1の油と冷媒の混合物及び第1の原動力流体の両方を含む。第2のエダクタは、蒸発器から第2の油と冷媒の混合物を受け取る第2の吸引口と、凝縮器から第2の原動力流体を受け取る第2の原動力入口と、第2の出口混合物を圧縮機のプレナムに放出する第2の出口とを含む。第2の出口混合物は、第2の油と冷媒の混合物及び第2の原動力流体の両方を含む。
【0004】
第1の原動力流体は、加圧された油であり得る。第2の原動力流体は、加圧された冷媒ガスであり得る。第1の油と冷媒の混合物中の油の割合は、33%から50%の範囲であり得る。第2の油と冷媒の混合物中の油の割合は、0.5%から2%の範囲であり得る。冷媒はR1233zdであり得る。
【0005】
本開示の別の実践形態は、チラーアセンブリである。チラーアセンブリは、気密シールされた誘導モータによって駆動される遠心圧縮機と、凝縮器と、蒸発器とを含む。遠心圧縮機、凝縮器、及び蒸発器は、閉冷媒ループで接続される。チラーアセンブリはさらに、油原動力エダクタシステムを含む。油原動力エダクタシステムは、油溜め、第1のエダクタ、及び第2のエダクタを含む。第1のエダクタは、第1の吸引口と、油溜めから第1の原動力流体を受け取るように構成された第1の原動力入口と、第1の出口とを含む。第2のエダクタは、第2の吸引口と、凝縮器から第2の原動力流体を受け取るように構成された第2の原動力入口と、第2の出口とを含む。
【0006】
第1の吸引口は、遠心圧縮機のプレナムから第1の油と冷媒の混合物を受け取ることができる。第1の油と冷媒の混合物中の油の割合は、33%から50%の範囲であり得る。第1の出口は、第1の出口混合物を油溜めに放出することができる。第1の出口混合物は、第1の油と冷媒の混合物及び第1の原動力流体を含むことができる。第1の原動力流体は、加圧された油であり得る。
【0007】
第2の吸引口は、蒸発器から第2の油と冷媒の混合物を受け取ることができる。第2の油と冷媒の混合物中の油の割合は、0.5%から2%の範囲であり得る。第2の出口は、第2の出口混合物を遠心圧縮機のプレナムに放出するように構成することができる。第2の出口混合物は、第2の油と冷媒の混合物及び第2の原動力流体を含むことができる。第2の原動力流体は、加圧された冷媒ガスであり得る。冷媒はR1233zdであり得る。
【0008】
本開示のさらに別の実践形態は、チラーアセンブリである。チラーアセンブリは、モータによって駆動される圧縮機と、凝縮器と、蒸発器とを含む。圧縮機、凝縮器、及び蒸発器は、閉冷媒ループで接続される。チラーアセンブリはさらに、油原動力エダクタシステムを含む。油原動力エダクタシステムは、油溜め、第1のエダクタ、及び第2のエダクタを含む。第1のエダクタは、圧縮機のプレナムから第1の油と冷媒の混合物を受け取るように構成された第1の吸引口と、油溜めから加圧された油原動力流体を受け取るように構成された第1の原動力入口と、油溜めへ第1の出口混合物を放出するように構成された第1の出口とを含む。第2のエダクタは、第2の吸引口、第2の原動力入口、及び第2の出口を含む。
【0009】
第2の吸引口は、蒸発器から第2の油と冷媒の混合物を受け取ることができ、第2の原動力入口は、凝縮器から第2の原動力流体を受け取ることができ、第2の出口は、第2の出口混合物を圧縮機のプレナムに放出することができる。第2の原動力流体は、加圧された冷媒ガスであり得る。第1の油と冷媒の混合物中の油の割合は33%から50%の範囲であり得、第2の油と冷媒の混合物中の油の割合は0.5%から2.0%の範囲であり得る。
【図面の簡単な説明】
【0010】
図1】いくつかの実施形態による、チラーアセンブリの斜視図である。
【0011】
図2】いくつかの実施形態による、図1のチラーアセンブリの立面図である。
【0012】
図3】いくつかの実施形態による、図1のチラーアセンブリで使用される2段階の油原動力エダクタシステムの概略図である。
【0013】
図4】いくつかの実施形態による、図3の2段階システムで利用できるモータ及び圧縮機の断面図である。
【0014】
図5】いくつかの実施形態による、図3の2段階システムで使用される油原動力エダクタの断面図である。
【0015】
図6】いくつかの実施形態による、図3の2段階システムで使用されるガス原動力エダクタの断面図である。
【発明を実施するための形態】
【0016】
本開示は、概して、チラーアセンブリで使用するための2段階の油原動力エダクタシステムに関する。チラーアセンブリは、他の構成要素の中でも、蒸発器、圧縮機、凝縮器、及び膨張装置を閉冷媒ループ内に含み得る。圧縮機は、モータによって駆動されるインペラを含み得、モータは、モータシャフトがインペラを回転及び駆動するときにモータシャフトの位置を維持する油潤滑ベアリングによって支持され得る。モータが気密シールされている場合(例えば、モータが閉冷媒ループ内にあり、気密ハウジングが圧縮機とモータの両方を封入している場合)、ベアリングは内部の油供給システムによって潤滑及び冷却される必要がある。内部の油供給システムは、潤滑油の冷媒への不可避な暴露をもたらす。冷媒中に潤滑油が存在すると、冷媒の熱伝達能力が低下する。一方、潤滑油中に冷媒が存在すると、潤滑油の粘度が低下し、油システムにキャビテーションが発生する可能性がある。したがって、気密シールされた圧縮機アセンブリの油供給システムは、潤滑油と冷媒の混合によって引き起こされる有害な影響を制限するように設計する必要がある。
【0017】
潤滑油は、1つ又は複数のエダクタを使用して内部の油供給システムを通して循環され得る。エダクタは、ジェットポンプとしても知られ、流体を利用してベンチュリ効果の原理に従って別の流体をポンプ送給する作業を実行できる可動部品のないポンプである。ベンチュリ効果は、流体がパイプのくびれた部分を通って流れるときに発生する可能性がある流体圧力の低下(及び対応する速度の増加)である。エダクタを介してポンプ送給される流体は吸引流体と呼ばれ、その作業を行う流体は原動力流体と呼ばれ、液体(例えば、油)又は気体であり得る。システムの複雑さが軽減されるため、及び可動部品がないために信頼性の問題が発生するリスクが低くなるため、チラーアセンブリで機械式ポンプを使用しないことは有益であり得る。
【0018】
エダクタの動作は以下の通りであり得る:加圧された原動力流体が、原動力入口を通ってエダクタに入り、そしてノズルに入る。ノズルは、原動力流体がノズルの先細部分を通過するときに原動力流体を加速する。原動力流体はノズルを出ると、吸引チャンバに入り、そこで吸引流体と混合する。2種類の流体間の摩擦は、混合物をディフューザセクションに押し込み、ディフューザシステムは吸引チャンバ内の圧力を低下させ、追加の吸引流体を吸引口を介してチャンバ内に引き込む。ディフューザセクションは、流体混合物の速度を低下させ、それに応じてエダクタ出口でのその圧力を増加させるように成形することができる。
【0019】
チラーアセンブリは、チラーアセンブリの設置場所の局所的な気象条件及び冷媒の特性を含む様々な要因に依存する冷媒ヘッド圧力で動作する。例えば、典型的な産業用チラーアセンブリのゲージ圧は、最小30psiから最大250psiの範囲であり得る。低ヘッド運転時(例えば、チラーアセンブリで低圧冷媒が使用される場合)、蒸発器と凝縮器の間のゲージ圧力差は20psi以下であり得、その結果、ガス原動力エダクタの性能が大幅に低下する。蒸発器と凝縮器の間のゲージ圧力差が5psiを下回ると、ガス原動力エダクタが機能しなくなる可能性がある。
【0020】
低ヘッド圧状態を克服し、失われた油を取り戻すのに十分な冷媒を移動させるために、大きなエダクタオリフィスを使用することができる。しかしながら、大きなオリフィスを備えたガスエダクタが油溜めに放出されると、油溜めを通る全体的な冷媒の流れが過剰になる可能性がある。油原動力エダクタは、一定の原動力圧で動作するため、ヘッド圧力の不足を克服するのにうまく機能し得るが、それらは冷媒がエダクタのディフューザ部分に入るときの混合衝撃に敏感であり、これはエダクタがチョークする原因となる。油溜めから大量の冷媒負荷を取り除いて、より安定した油吸入条件をもたらすシステムは有用であろう。
【0021】
全体的に図を参照すると、2段階の油原動力エデュタシステムを有するチラーアセンブリが示されている。具体的に図1~2を参照すると、チラーアセンブリ100の例示的な実践形態が示されている。チラーアセンブリ100は、モータ104によって駆動される圧縮機102と、凝縮器106と、蒸発器108とを含むように示されている。冷媒は、蒸気圧縮サイクルにおいてチラーアセンブリ100を通って循環される。チラーアセンブリ100はまた、チラーアセンブリ100内の蒸気圧縮サイクルの動作を制御するための制御パネル114を含むことができる。
【0022】
モータ104は、可変速度ドライブ(VSD)110によって電力を供給され得る。VSD110は、特定の固定ライン電圧及び固定ライン周波数を有する交流(AC)電力をAC電源(図示せず)から受け取り、可変電圧及び周波数を有する電力をモータ104に提供する。モータ104は、VSD110によって電力を供給されることができるよりも任意のタイプの電気モータであり得る。例えば、モータ104は、高速誘導モータであり得る。圧縮機102は、モータ104によって駆動され、蒸発器108から吸入ライン112を介して受け取った冷媒蒸気を圧縮し、冷媒蒸気を放出ライン124を介して凝縮器106に送達する。圧縮機102は、遠心圧縮機、スクリュ圧縮機、スクロール圧縮機、又は任意の他のタイプの適切な圧縮機であり得る。例えば、図4に示される実践形態では、圧縮機102は遠心圧縮機である。
【0023】
蒸発器108は、内部管束と、内部管束にプロセス流体を供給するための供給ライン120と、プロセス流体を除去するための戻りライン122とを含む。供給ライン120及び戻りライン122は、プロセス流体を循環させる導管を介して、HVACシステム内の構成要素(例えば、空調機)と流体連通することができる。プロセス流体は、建物を冷却するためのチルド液体であり、水、エチレングリコール、塩化カルシウムブライン、塩化ナトリウムブライン、又は任意の他の適切な液体であり得るが、これらに限定されない。蒸発器108は、プロセス流体が蒸発器108の管束を通過し、熱を冷媒と交換するときに、プロセス流体の温度を下げるように構成される。冷媒蒸気は、蒸発器108に送達された冷媒液体がプロセス流体と熱を交換し、相変化を受けて冷媒蒸気になることにより、蒸発器108内で形成される。
【0024】
圧縮機102によって凝縮器106に送達された冷媒蒸気は、熱を流体に伝達する。冷媒蒸気は、流体との熱伝達の結果として、凝縮器106内で冷媒液体に凝縮する。凝縮器106からの冷媒液体は、膨張装置を通って流れ、蒸発器108に戻り、チラーアセンブリ100の冷媒サイクルを完了する。凝縮器106は、凝縮器106とHVACシステムの外部構成要素(例えば、冷却塔)との間で流体を循環させるための供給ライン116及び戻りライン118を含む。戻りライン118を介して凝縮器106に供給された流体は、凝縮器106内の冷媒と熱を交換し、供給ライン116を介して凝縮器106から除去されて、サイクルを完了する。凝縮器106を通って循環する流体は、水又は他の任意の適切な液体であり得る。
【0025】
いくつかの実施形態では、冷媒は、400kPa未満又は約58psiの動作圧力を有する。さらなる実施形態では、冷媒はR1233zdである。R1233zdは、商業用チラーアセンブリで使用されている他の冷媒と比較して、地球温暖化係数(GWP)が低い不燃性フッ素化ガスである。GWPは、1トンの二酸化炭素の排出と比較して、1トンのガスの排出が所与の期間に吸収するエネルギー量を定量化することにより、様々なガスの地球温暖化影響の比較を可能にするために開発されたメトリックである。
【0026】
ここで図3を参照すると、例示的な2段階の油原動力エダクタシステムの概略図が描かれている。2段階システムは、油原動力エダクタ202とガス原動力エダクタ204の両方を含むことができる。システムは、以下のように動作することができる:油と冷媒の混合物が、ガス原動力エダクタ204によって凝縮器108から吸引され得る。油及び冷媒混合物ライン208は、重量基準で0.5~2%の油と98~99.5%の冷媒の範囲を有する混合物を搬送することができる。ガス原動力エダクタ204を介して吸引力を生成する原動力流体は、凝縮器106から供給された高圧の冷媒ガス206であり得る。
【0027】
ライン210を経由してガス原動力エダクタ204を出た後、油と冷媒の混合物は、圧縮機102のプレナム領域220に推進され得る。プレナム領域220は、チラーアセンブリ100における最低圧力領域の1つであり、(以下の図4を参照してさらに詳細に示される)圧縮機の放出又はボリュート部分と壁を共有し得る。いくつかの実施形態では、プレナム領域220と放出部分との間の壁は、鋳鉄から作製されてもよい。低圧と、壁を横切ってプレナム領域200に伝導される熱との組み合わせにより、油と冷媒の混合物中の冷媒の一部が圧縮機のプレナム領域220でボイルオフし得る。冷媒の蒸発による油濃度の増加に加えて、プレナム領域220は、油滴の自然な収集器として機能し得る。油滴は、油と冷媒の混合物と混ざり、油と冷媒の混合物中の相対的な油濃度をさらに高め得る。例えば、いくつかの実施形態では、プレナム領域220に収集された高濃度の油混合物は、33~50%の油及び50~67%の冷媒の範囲を有し得る。
【0028】
高濃度油混合物は、プレナム領域220からライン222を介して油原動力エダクタ202の吸引口に放出され得る。高濃度油混合物は、ライン218を介して送達された高圧原動力油によって油原動力エダクタ202を通して推進され得る。油原動力エダクタ202は、放出ライン212を介して高濃度油混合物を油溜め214に放出し得る。
【0029】
油溜め214は、潤滑油の収集のためのリザーバとして機能し得、水中油ポンプ216を含み得る。水中油ポンプ216は、油溜め214中に収集された周囲の油によって生成された吸引を利用することによって油溜め214から加圧潤滑油を放出するように構成することができる。様々な実施形態では、油ポンプ216は、チラー動作中に常に動作するように構成することができ、冷媒のヘッド圧力に関係なく一定の圧力で動作し得、その結果、安定した原動力流体が油原動力エダクタ202に供給される。油溜め214から放出された油は、2つの別個の経路に沿って発散する前に、フィルタ228を通過し得る。加圧油の第1の部分は、モータ油ドレンライン226により油溜め214に戻る前にモータ104の回転構成要素を潤滑する目的でモータ104に送達される。上述のように、加圧油の第2の部分は、ライン222を経由してプレナム領域220を出て、高濃度の油及び冷媒の混合物の原動力流体として機能するように油原動力エダクタ202に送達される。
【0030】
2段階の油原動力エダクタシステムは、油溜め214を圧縮機102に流体的に結合する油溜めベントライン224を含むことがさらに示される。油溜めベントライン224は、油溜め214から冷媒蒸気を放出するように構成され得る。高圧冷媒と比較して、低圧冷媒(例えばR1233zd)は、油溜め214と油ポンプ216の最適な動作を保証するために、油溜め214から大量の冷媒を排出する必要がある。油原動力エダクタ202からの高濃度油混合物をライン212を介して油溜め214に供給することにより、油溜め214に供給される冷媒の量は最小化され、油溜めベントライン224のサイズ(例えば直径)は、対応して最小化され得る。
【0031】
次に図4を参照すると、いくつかの実施形態による、図3の2段階システムで利用できる圧縮機102及びモータ104の断面図が示されている。上述したように、モータ104は気密シールされた高速誘導モータであり、圧縮機102は遠心圧縮機である。他の実施形態では、チラーアセンブリ100は、異なるタイプのモータ及び/又はタイプの圧縮機を含み得る。
【0032】
圧縮機102は、プレナム領域220を含む。プレナム領域220は、圧縮機102の放出又はボリュート部分230から熱を受け取り、したがって、ガス原動力エダクタ204から放出され且つライン210を使用して受け取られる油と冷媒の混合物中の過剰な冷媒をボイルオフさせるのに便利な領域を提供し得る。熱は、鋳鉄から作製され得るプレナム壁232によって伝導され得る。他の実施形態では、プレナム壁232を含む圧縮機102の構成要素は、別の適切な材料から作製されてもよい。プレナム領域220で過剰な冷媒がボイルオフされた後、得られた油と冷媒の混合物は、ライン222を使用して圧縮機102から放出することができる。図4に示す圧縮機102とモータ104のアセンブリは、2つのベントラインを含むことがさらに示されている。油溜めベントライン224は、過剰な冷媒蒸気を油溜めからプレナム領域220に放出することができ、一方、モータハウジングベントライン234は、過剰な冷媒蒸気をモータ104のハウジングから蒸発器に放出することができる。
【0033】
図5は、図3の2段階システムで使用することができる油原動力エダクタ202の断面図である。油原動力エダクタ202は、原動力入口302、吸引口304、及びディフューザ出口306を含むように示されている。原動力入口302は、ライン218を介して油溜め214から高圧油を受け取り、一方、吸引口304は、ライン222を介して圧縮機プレナム220から高濃度の油と冷媒の混合物を受け取る。いくつかの実践形態では、ライン222を介して受け取られた高濃度の油と冷媒の混合物は、33~50%の油と50~67%の冷媒の範囲を含む。続いて、ディフューザ出口306は、高濃度の油と冷媒の混合物と原動力油を放出し、ライン212を介して油溜め214に戻す。
【0034】
図6は、図3の2段階システムで使用することができるガス原動力エダクタ204の断面図である。図5を参照して上に記載した油原動力エダクタ202と同様に、ガス原動力エダクタ204は、原動力入口402、吸引口404、及びディフューザ出口406を含む。原動力入口402は、ライン206を介して凝縮器106から高圧冷媒ガスを受け取り、一方、吸引口404は、ライン208を介して蒸発器108から油と冷媒の混合物を受け取る。上述のように、いくつかの実施態様では、ライン208を介して受け取った油と冷媒の混合物は、0.5~2%の油と98~99.5%の冷媒の範囲を含む。その後、ディフューザ出口406は、油と冷媒の混合物及び凝縮器ガスを、ライン210を介して圧縮機プレナム220に放出する。
【0035】
様々な例示的な実施形態に示されるようなシステム及び方法の構築及び配置は、例示に過ぎない。本開示では少数の実施形態のみを詳細に記載してきたが、多くの修正が可能である(例えば、様々な要素のサイズ、寸法、構造、形状及び比率、パラメータの値、取り付け配置、材料の使用、色、向き等のバリエーション)。例えば、要素の位置を逆にするか、別の方法で変化させることができ、離散した要素又は位置の性質又は数を変更又は変化させることができる。したがって、全てのそのような修正は、本開示の範囲内に含まれることが意図されている。任意のプロセス又は方法ステップの順番又は順序は、代替の実施形態に従って変えるか、順序付けし直すことができる。本開示の範囲から逸脱することなく、例示的な実施形態の設計、動作条件、及び配置において、他の置換、修正、変更、及び省略を行うことができる。
図1
図2
図3
図4
図5
図6