(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2023-09-22
(45)【発行日】2023-10-02
(54)【発明の名称】部品実装機、ノズルのブロー圧較正方法
(51)【国際特許分類】
H05K 13/04 20060101AFI20230925BHJP
【FI】
H05K13/04 B
(21)【出願番号】P 2019212108
(22)【出願日】2019-11-25
【審査請求日】2022-06-14
(73)【特許権者】
【識別番号】000010076
【氏名又は名称】ヤマハ発動機株式会社
(74)【代理人】
【識別番号】100105935
【氏名又は名称】振角 正一
(74)【代理人】
【識別番号】100136836
【氏名又は名称】大西 一正
(72)【発明者】
【氏名】寺田 和広
【審査官】森林 宏和
(56)【参考文献】
【文献】特開2017-092188(JP,A)
【文献】特開2016-198858(JP,A)
【文献】国際公開第2018/135346(WO,A1)
【文献】特開2018-133438(JP,A)
【文献】特開2008-004793(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
H05K 13/00 - 13/08
(57)【特許請求の範囲】
【請求項1】
中空部を囲む本体と、L個(Lは2以上の整数)の作業位置に対応して設けられたL個の正圧導入孔とを有し、前記正圧導入孔が前記本体を貫通して前記中空部に開口するハウジングと、
所定の回転中心の周りで前記ハウジングに対して回転可能に前記中空部内に配置され、円周状に配列されたM個(MはLより大きい整数)のノズルを保持するノズルホルダーと、
正圧を出力する正圧源と、
前記L個の正圧導入孔に対応して設けられ、それぞれ対応する前記正圧導入孔と前記正圧源とを接続するL個の正圧導入経路と、
前記正圧導入経路から前記正圧導入孔に流入する気体の圧力および流量の一方の対象値の前記L個の正圧導入孔の間における差を調整する調整部と
を備え、
前記ノズルホルダーには、前記M個のノズルに対応して設けられたM個の正圧連通路が設けられ、
前記ノズルホルダーが回転することで、前記M個のノズルのうち、前記L個の作業位置に位置するL個のノズルが切り換わり、
前記M個の正圧連通路のうち、前記L個の作業位置に位置する前記L個のノズルに対応するL個の正圧連通路の開口が前記L個の正圧導入孔の開口と対向して、前記L個のノズルと前記L個の正圧入力孔とが連通する部品実装機。
【請求項2】
前記L個の正圧導入孔のうち、一の正圧導入孔が設けられた前記本体の内壁と前記ノズルホルダーとの間の隙間が、他の正圧導入孔が設けられた前記本体の内壁と前記ノズルホルダーとの間の隙間より狭く、
前記調整部は、前記一の正圧導入孔に流入する気体の前記対象値を、前記他の正圧導入孔に流入する気体の前記対象値より小さくする請求項1に記載の部品実装機。
【請求項3】
Lは2である請求項2に記載の部品実装機。
【請求項4】
前記調整部は、制御弁によって前記対象値を減少させる制御機構を有し、
前記制御機構は、前記L個の正圧導入経路のうち、前記正圧源と前記一の正圧導入孔とを接続する一の正圧導入経路にのみ設けられ、前記正圧源から前記一の正圧導入経路に流入する気体の前記対象値と比べて、前記一の正圧導入経路から前記正圧導入孔に流入する気体の前記対象値を、前記制御弁によって減少させることで、前記一の正圧導入孔に流入する気体の前記対象値を、前記他の正圧導入孔に流入する気体の前記対象値より小さくする請求項3に記載の部品実装機。
【請求項5】
前記制御機構は、前記一の正圧導入経路から分岐する気体排出経路を有し、
前記制御弁は、前記気体排出経路を流れる気体の流量を調整する流量調整弁であり、
前記調整部は、前記流量調整弁を開いて前記気体排出経路を介して前記一の正圧導入経路から気体を排出することで、前記一の正圧導入孔に流入する気体の流量を、前記他の正圧導入孔に流入する気体の流量より小さくする請求項4に記載の部品実装機。
【請求項6】
前記制御弁は、前記一の正圧導入経路に設けられた減圧弁であり、
前記調整部は、前記正圧源から出力された正圧を前記減圧弁によって減圧してから、前記一の正圧導入孔に供給することで、前記一の正圧導入孔に流入する気体の圧力を、前記他の正圧導入孔に流入する気体の圧力より小さくする請求項4に記載の部品実装機。
【請求項7】
MはLの5倍以上である請求項1ないし6のいずれか一項に記載の部品実装機。
【請求項8】
中空部を囲む本体と、L個(Lは2以上の整数)の作業位置に対応して設けられたL個の正圧導入孔とを有し、前記正圧導入孔が前記本体を貫通して前記中空部に開口するハウジングに対して、所定の回転中心の周りで回転可能に前記中空部内に配置されたノズルホルダーに保持される、円周状に配列されたM個(MはLより大きい整数)のノズルのうち、L個のノズルを前記L個の作業位置に位置させる工程と、
前記L個の正圧導入孔に対応して設けられ、それぞれ対応する前記正圧導入孔と正圧を出力する正圧源とを接続するL個の正圧導入経路から前記L個の正圧導入孔に気体を流入させつつ、前記正圧導入孔に流入する気体の圧力および流量の一方の対象値の前記L個の正圧導入孔の間における差を変更する工程と、
前記M個のノズルに対応して前記ノズルホルダーに設けられたM個の正圧連通路のうち、前記L個の作業位置に位置する前記L個のノズルに対応するL個の正圧連通路の開口が前記L個の正圧導入孔の開口と対向して、前記L個のノズルと前記L個の正圧入力孔とが連通することで、前記L個のノズルから噴出する気体のブロー圧を検出する工程と、
前記L個の正圧導入孔の間における前記対象値の差を、前記ブロー圧に基づき設定する工程と
を備えるノズルのブロー圧較正方法。
【発明の詳細な説明】
【技術分野】
【0001】
この発明は、いわゆるロータリー型の実装ヘッドにおいて円周状に配列された複数のノズルに正圧を供給する技術に関する。
【背景技術】
【0002】
特許文献1には、円周状に配列された複数のノズルを備えたロータリー型の実装ヘッドが記載されている。この実装ヘッドは、ノズルに負圧を供給することで、ノズルに部品を吸着する。また、部品を基板に実装する際には、ノズルに正圧を供給することで、ノズルから部品を離脱させる。具体的には、
図41に示されるように、エア供給源とノズルとが互いに接続されており、エア供給源とノズルとの接続経路に可変絞り弁が設けられている。そして、絞り弁の開度に応じた正圧がノズルに供給される。
【先行技術文献】
【特許文献】
【0003】
【発明の概要】
【発明が解決しようとする課題】
【0004】
ところで、ロータリーヘッドは、円周状に配列された複数のノズルを保持するノズルホルダーを、ハウジングに設けられた中空部に配置することで構成することができる。かかる構成では、ノズルホルダーには、複数のノズルに対応して複数の正圧連通路が設けられる一方、ハウジングには、所定個数(例えば、2個)の作業位置に対応して所定個数の正圧導入孔が貫通する。そして、複数の正圧連通路のうち、作業位置に位置するノズルに対応する正圧連通路の開口が正圧導入孔の開口と対向して、作業位置のノズルとハウジングの正圧入力孔とが連通する。これによって、正圧導入孔からノズルホルダーの正圧連通路を介してノズルに正圧を供給することができる。
【0005】
ところで、上記構成を具備するロータリーヘッドでは、ハウジングの中空部に対してノズルホルダーが偏心して配置される場合がある。このような場合、ハウジングの内壁とノズルホルダーの外壁との間の隙間の大きさが、各正圧導入孔によって異なるため、隙間から漏れる気体の量が各正圧導入孔で異なって、各ノズルから噴出する気体の流量・圧力がばらつく。その結果、全てのノズルにおいて部品の離脱に適したノズルからの気体の噴出を実現することが難しかった。
【0006】
かかる問題に対しては、例えば特許文献1に示される絞り弁を利用できる。ただし、このような絞り弁をノズル毎に設けるとなると、構成要素の増大やコストアップを招いてしまう。この点において、特許文献1は改善の余地があった。
【0007】
この発明は上記課題に鑑みなされたものであり、構成要素の増大やコストアップを抑えつつ、部品の離脱に適した気体の噴出をノズルにより実行可能とする技術の提供を目的とする。
【課題を解決するための手段】
【0008】
本発明に係る部品実装機は、中空部を囲む本体と、L個(Lは2以上の整数)の作業位置に対応して設けられたL個の正圧導入孔とを有し、正圧導入孔が本体を貫通して中空部に開口するハウジングと、所定の回転中心の周りでハウジングに対して回転可能に中空部内に配置され、円周状に配列されたM個(MはLより大きい整数)のノズルを保持するノズルホルダーと、正圧を出力する正圧源と、L個の正圧導入孔に対応して設けられ、それぞれ対応する正圧導入孔と正圧源とを接続するL個の正圧導入経路と、正圧導入経路から正圧導入孔に流入する気体の圧力および流量の一方の対象値のL個の正圧導入孔の間における差を調整する調整部とを備え、ノズルホルダーには、M個のノズルに対応して設けられたM個の正圧連通路が設けられ、ノズルホルダーが回転することで、M個のノズルのうち、L個の作業位置に位置するL個のノズルが切り換わり、M個の正圧連通路のうち、L個の作業位置に位置するL個のノズルに対応するL個の正圧連通路の開口がL個の正圧導入孔の開口と対向して、L個のノズルとL個の正圧入力孔とが連通する。
【0009】
このように構成された本発明(部品実装機)では、円周状に配列されたM個のノズルを保持するノズルホルダーが、ハウジングに設けられた中空部に配置される。ノズルホルダーには、M個のノズルに対応してM個の正圧連通路が設けられる一方、ハウジングには、L個(LはMより小さい2以上の整数)の作業位置に対応してL個の正圧導入孔が貫通する。そして、M個の正圧連通路のうち、L個の作業位置に位置するL個のノズルに対応するL個の正圧連通路の開口がL個の正圧導入孔の開口と対向して、作業位置のL個のノズルとハウジングのL個の正圧入力孔とが連通する。これによって、L個の正圧導入孔からノズルホルダーのL個の正圧連通路を介してL個のノズルに正圧を供給することができる。
【0010】
また、本発明では、正圧導入経路から正圧導入孔に流入する気体の圧力および流量の一方の対象値のL個の正圧導入孔の間における差が調整部により調整される。そのため、ハウジングの中空部に対してノズルホルダーが偏心して配置されて、ハウジングの内壁とノズルホルダーの外壁との間の隙間の大きさが各正圧導入孔によって異なったとしても、各ノズルから噴出する気体の流量・圧力を揃えて、部品の離脱に適したノズルからの気体の噴出を実現することができる。しかも、調整部は、対象値の差の調整を、M個のノズルの全てを対象にするのではなく、M個のノズルのうちのL個のノズルを対象にして行うため、少ない構成要素で調整部を構成することができる。こうして、本発明では、構成要素の増大やコストアップを抑えつつ、部品の離脱に適した気体の噴出をノズルにより実行することが可能となっている。
【0011】
また、L個の正圧導入孔のうち、一の正圧導入孔が設けられた本体の内壁とノズルホルダーとの間の隙間が、他の正圧導入孔が設けられた本体の内壁とノズルホルダーとの間の隙間より狭く、調整部は、一の正圧導入孔に流入する気体の対象値を、他の正圧導入孔に流入する気体の対象値より小さくするように、部品実装機を構成してもよい。かかる構成では、L個の正圧導入孔のうちの任意の一の正圧導入孔が設けられた本体の内壁とノズルホルダーとの間の隙間と、当該一の正圧導入孔と異なる他の正圧導入孔が設けられた本体の内壁とノズルホルダーとの間の隙間との違いに応じて、一の正圧導入孔に流入する気体の対象値が、他の正圧導入孔に流入する気体の対象値より小さく設定されている。その結果、L個の作業位置に位置するL個のノズルから噴出される気体の流量・圧力を揃えて、部品の離脱に適した気体の噴出をノズルにより実行することができる。
【0012】
なお、本体とノズルホルダーとの隙間の差は、公差によって生じた差と、意図的に生じさせた差とを含む。後者の場合には、一の正圧導入孔が設けられた本体の内壁とノズルホルダーとの間の隙間が、他の正圧導入孔が設けられた本体の内壁とノズルホルダーとの間の隙間より狭くなるように、本体およびノズルホルダーが設計される。
【0013】
また、Lは2であるように、部品実装機を構成してもよい。かかる構成では、対象値の差の調整を2個のノズルに対象を限定して行うこととなる。したがって、構成要素の増大やコストアップをより確実に抑えることができる。
【0014】
また、調整部は、制御弁によって対象値を減少させる制御機構を有し、制御機構は、L個の正圧導入経路のうち、正圧源と一の正圧導入孔とを接続する一の正圧導入経路にのみ設けられ、正圧源から一の正圧導入経路に流入する気体の対象値と比べて、一の正圧導入経路から正圧導入孔に流入する気体の対象値を、制御弁によって減少させることで、一の正圧導入孔に流入する気体の対象値を、他の正圧導入孔に流入する気体の対象値より小さくするように、部品実装機を構成してもよい。かかる構成では、正圧導入経路から正圧導入孔に流入する気体の圧力および流量の一方の対象値の2個の正圧導入孔の間における差を、単一の制御弁によって調整することができる。したがって、構成要素の増大やコストアップを最低限に抑えることができる。
【0015】
また、制御機構は、一の正圧導入経路から分岐する気体排出経路を有し、制御弁は、気体排出経路を流れる気体の流量を調整する流量調整弁であり、調整部は、流量調整弁を開いて気体排出経路を介して一の正圧導入経路から気体を排出することで、一の正圧導入孔に流入する気体の流量を、他の正圧導入孔に流入する気体の流量より小さくするように、部品実装機を構成してもよい。かかる構成では、正圧導入経路から正圧導入孔に流入する気体の流量の2個の正圧導入孔の間における差を、単一の流量調整弁によって調整することができる。したがって、構成要素の増大やコストアップを最低限に抑えることができる。
【0016】
また、制御弁は、一の正圧導入経路に設けられた減圧弁であり、調整部は、正圧源から出力された正圧を減圧弁によって減圧してから、一の正圧導入孔に供給することで、一の正圧導入孔に流入する気体の圧力を、他の正圧導入孔に流入する気体の圧力より小さくするように、部品実装機を構成してもよい。かかる構成では、正圧導入経路から正圧導入孔に流入する気体の圧力の2個の正圧導入孔の間における差を、単一の減圧弁によって調整することができる。したがって、構成要素の増大やコストアップを最低限に抑えることができる。
【0017】
また、MはLの5倍以上であるように、部品実装機を構成してもよい。かかる構成では、対象値の差の調整を実行するノズルの個数(=L)を、ノズルの総数(=M)の5分の1以下に限定することができる。したがって、構成要素の増大やコストアップをより確実に抑えることができる。
【0018】
本発明に係るノズルのブロー圧較正方法は、中空部を囲む本体と、L個(Lは2以上の整数)の作業位置に対応して設けられたL個の正圧導入孔とを有し、正圧導入孔が本体を貫通して中空部に開口するハウジングに対して、所定の回転中心の周りで回転可能に中空部内に配置されたノズルホルダーに保持される、円周状に配列されたM個(MはLより大きい整数)のノズルのうち、L個のノズルをL個の作業位置に位置させる工程と、L個の正圧導入孔に対応して設けられ、それぞれ対応する正圧導入孔と正圧を出力する正圧源とを接続するL個の正圧導入経路からL個の正圧導入孔に気体を流入させつつ、正圧導入孔に流入する気体の圧力および流量の一方の対象値のL個の正圧導入孔の間における差を変更する工程と、M個のノズルに対応してノズルホルダーに設けられたM個の正圧連通路のうち、L個の作業位置に位置するL個のノズルに対応するL個の正圧連通路の開口がL個の正圧導入孔の開口と対向して、L個のノズルとL個の正圧入力孔とが連通することで、L個のノズルから噴出する気体のブロー圧を検出する工程と、L個の正圧導入孔の間における対象値の差を、ブロー圧に基づき設定する工程とを備える。
【0019】
このように構成された本発明(ノズルのブロー圧較正方法)では、ハウジングに設けられたL個の正圧導入孔から作業位置のL個のノズルに気体を流入させつつ、正圧導入孔に流入する気体の圧力および流量の一方の対象値のL個の正圧導入孔の間における差が変更される。こうして対象値の差を変更しつつ、L個のノズルから噴出する気体のブロー圧を検出し、L個の正圧導入孔の間における対象値の差をこのブロー圧に基づき設定する。したがって、部品実装においては、このノズルのブロー圧較正方法で設定された対象値の差に応じて、L個の正圧導入孔へ供給される気体の対象値を調整することで、作業位置のL個のノズルから噴出する気体のブロー圧を揃えることができる。すなわち、対象値の差の調整を、M個のノズルの全てを対象にするのではなく、M個のノズルのうちのL個のノズルを対象にして行えば足りるため、少ない構成要素でノズルのブロー圧を揃えることができる。こうして、本発明では、構成要素の増大やコストアップを抑えつつ、部品の離脱に適した気体の噴出をノズルにより実行することが可能となっている。
【発明の効果】
【0020】
以上のように、本発明によれば、構成要素の増大やコストアップを抑えつつ、部品の離脱に適した気体の噴出をノズルにより実行することが可能となる。
【図面の簡単な説明】
【0021】
【
図1】本発明に係る部品実装機を模式的に示す部分平面図。
【
図3】
図2のロータリーヘッドを部分的に拡大して示す斜視図。
【
図4】
図2のロータリーヘッドの内部構成を示す斜視図。
【
図5】
図2のロータリーヘッドの断面を示す断面図。
【
図6】
図2のロータリーヘッドを部分的に拡大して示す断面図。
【
図7】ロータリーヘッドに正圧を供給する正圧供給機構の第1例を模式的に示す図。
【
図8】
図7に示す正圧供給機構におけるノズルのブロー圧較正方法の第1例を示すフローチャート。
【
図9】
図7に示す正圧供給機構におけるノズルのブロー圧較正方法の第2例を示すフローチャート。
【
図10】ロータリーヘッドに正圧を供給する正圧供給機構の第2例を模式的に示す図。
【
図11】
図10に示す正圧供給機構におけるノズルのブロー圧較正方法の第1例を示すフローチャート。
【
図12】
図10に示す正圧供給機構におけるノズルのブロー圧較正方法の第2例を示すフローチャート。
【
図13】ロータリーヘッドに正圧を供給する正圧供給機構の第3例を模式的に示す図。
【
図14】ロータリーヘッドに正圧を供給する正圧供給機構の第4例を模式的に示す図。
【発明を実施するための形態】
【0022】
図1は本発明に係る部品実装機を模式的に示す部分平面図である。同図および以下の図では、互いに直交するX方向、Y方向およびZ方向を適宜示す。ここで、X方向およびY方向は水平方向であり、Z方向は鉛直方向である。
図1に示すように、部品実装機1は、基台11の上に設けられた一対のコンベア12、12を備える。そして、部品実装機1は、コンベア12によりX方向(基板搬送方向)の上流側から実装処理位置(
図1の基板Bの位置)に搬入した基板Bに対して部品を実装し、部品実装を完了した基板Bをコンベア12により実装処理位置からX方向の下流側へ搬出する。
【0023】
部品実装機1では、Y方向に延びる一対のY軸レール21、21と、Y方向に延びるY軸ボールネジ22と、Y軸ボールネジ22を回転駆動するY軸モーターMyとが設けられ、X方向に延びるX軸レール23が一対のY軸レール21、21にY方向に移動可能に支持された状態でY軸ボールネジ22のナットに固定されている。X軸レール23には、X方向に延びるX軸ボールネジ24と、X軸ボールネジ24を回転駆動するX軸モーターMxとが取り付けられており、ロータリーヘッド3がX軸レール23にX方向に移動可能に支持された状態でX軸ボールネジ24のナットに固定されている。したがって、Y軸モーターMyによりY軸ボールネジ22を回転させてロータリーヘッド3をY方向に移動させ、あるいはX軸モーターMxによりX軸ボールネジ24を回転させてロータリーヘッド3をX方向に移動させることができる。
【0024】
一対のコンベア12、12のY方向の両側それぞれでは、2つの部品供給部28がX方向に並んでいる。各部品供給部28に対しては、複数のテープフィーダー281がピッチPでX方向に並んで着脱可能に装着されており、各テープフィーダー281には、集積回路、トランジスター、コンデンサー等の小片状の部品E(チップ電子部品)を所定間隔おきに収納したテープが巻かれたリールが配置されている。そして、テープフィーダー281は、テープを基板B側に間欠的に送り出すことによって、基板B側の先端の部品供給位置に部品Eを供給する。
【0025】
ロータリーヘッド3は、ノズルN(
図4、
図5)により、部品Eの吸着・実装を行う。つまり、ロータリーヘッド3はテープフィーダー281の上方へ移動して、テープフィーダー281により供給された部品Eを吸着する。具体的には、ロータリーヘッド3は、部品Eに当接するまでノズルNを下降させた後にノズルN内に負圧を発生させつつノズルNを上昇させることで、部品Eを吸着する。続いて、ロータリーヘッド3は実装処理位置の基板Bの上方に移動して基板Bに部品Eを実装する。具体的には、ロータリーヘッド3は、部品Eが基板Bに当接するまでノズルNを下降させた後にノズルN内に正圧を発生させることで、部品Eを実装する。部品Eの実装後は、ロータリーヘッド3はノズルNを上昇させる。
【0026】
図2はロータリーヘッドの外観構成を示す斜視図であり、
図3は
図2のロータリーヘッドを部分的に拡大して示す斜視図であり、
図4は
図2のロータリーヘッドの内部構成を示す斜視図であり、
図5は
図2のロータリーヘッドの断面を示す断面図であり、
図6は
図2のロータリーヘッドを部分的に拡大して示す断面図である。
【0027】
ロータリーヘッド3はZ方向に平行に延びるメインロッド31と、メインロッド31の下端に支持されたシャフトホルダー32とを有する。メインロッド31およびシャフトホルダー32は、これらの中心を通るZ方向に平行な回転軸Caを中心に回転可能に支持されており、回転モーター(図示せず)の駆動力を受けて回転する。
【0028】
図6に示すように、ロータリーヘッド3は、シャフトホルダー32を側方(水平方向)から囲むハウジング36を有する。ハウジング36は、ハウジング本体361と、ハウジング本体361の内側に形成されてハウジング本体361をZ方向に貫通する中空部362を有する。ハウジング本体361の内周面(換言すれば、中空部362の外周面)と、ハウジング本体361の外周面とは、Z方向に平行な直線を共通の中心とする円筒形状を有し、Z方向からの平面視においてハウジング本体361は円環形状を有する。これに対して、シャフトホルダー32の外周壁は、回転軸Caを中心とした円筒形状を有する。この際、中空部362の円筒形状の径よりも、シャフトホルダー32の円筒形状の径は僅かに短く、シャフトホルダー32は、中空部362に嵌入する。こうして中空部362内に配置されたシャフトホルダー32は、回転軸Caを中心にハウジング本体361に対して回転可能である。
【0029】
このシャフトホルダー32は、回転軸Caを中心とする円周状に等角度(20度)を空けて配列されたM個のシャフト挿入孔321を有する。ここで、Mは、ロータリーヘッド3に装着されるノズルNの個数に相当する3以上の整数であり、ここの例ではM=18である。シャフト挿入孔321はZ方向に貫通し、ノズルシャフト33はシャフト挿入孔321に挿入された状態でシャフトホルダー32により支持される。こうして、シャフトホルダー32により支持された18個のノズルシャフト33が、回転軸Caを中心とする円周状に等角度(20度)を空けて並ぶ。したがって、シャフトホルダー32が回転軸Caを中心に回転すると、18個のノズルシャフト33が一体的に回転軸Caを中心に回転する。
【0030】
各ノズルシャフト33は、Z方向に延設された昇降ロッド331と、シャフトホルダー32に取り付けられたスプラインシャフト332とを有する。スプラインシャフト332は、シャフト挿入孔321に挿入された状態でシャフトホルダー32に取り付けられている。スプラインシャフト332には、Z方向に貫通するロッド挿入孔が設けられており、昇降ロッド331はロッド挿入孔に挿入される。また、ノズルシャフト33は、昇降ロッド331に外嵌されたコイルスプリング333を有し、コイルスプリング333がスプラインシャフト332に対して昇降ロッド331を上方に付勢する。こうして、昇降ロッド331はスプラインシャフト332およびコイルスプリング333によって昇降可能に支持される。かかる昇降ロッド331の下端は、シャフトホルダー32の下方に位置し、当該下端にノズルNが取り付けられている。
【0031】
ノズルシャフト33は、その中心線に一致する回転軸Cbを中心に回転可能にシャフトホルダー32に支持されている。具体的には、ノズルシャフト33のスプラインシャフト332は、シャフトホルダー32に対して回転軸Cbを中心に回転可能である。このスプラインシャフト332は、回転軸Cbを中心とする回転方向において昇降ロッド331を拘束しており、スプラインシャフト332と昇降ロッド331とは、回転軸Cbを中心に一体的に回転する。このスプラインシャフト332は、回転軸Cbを中心とする被駆動ギア332bをシャフトホルダー32の上方に有し、被駆動ギア332bに加わるトルクに応じて、昇降ロッド331を伴って回転する。
【0032】
かかる構成では、18個のノズルシャフト33が、それぞれの被駆動ギア332bにトルクが加わると、それぞれの回転軸Cbを中心に回転する。これに対して、ロータリーヘッド3は、18個のノズルシャフト33を駆動・回転させる駆動ギア34を有する。駆動ギア34は、回転軸Caを中心とし、シャフトホルダー32の上方に配置されている。この駆動ギア34は、ベアリング35を介してメインロッド31に外嵌しており、回転モーター(図示せず)の駆動力を受けると、回転軸Caを中心に回転する。これに対して、18個のノズルシャフト33にそれぞれ設けられた18個の被駆動ギア332bは、駆動ギア34の周縁に沿って円周状に配列され、駆動ギア34に外側から噛み合う。したがって、駆動ギア34の回転によって18個の被駆動ギア332bが駆動されて、18個のノズルシャフト33は、それぞれの回転軸Cbを中心に回転する。
【0033】
また、ロータリーヘッド3は、メインロッド31を回転させることで、回転軸Caを中心にシャフトホルダー32に伴って18個のノズルシャフト33を回転させることができる。これに対して、ロータリーヘッド3は、回転軸Caを中心に180度の回転角度を空けて設けられて、X方向にピッチPで並ぶL個の作業位置Sl、Srを有する。ここで、Lは、作業位置の個数に相当するM未満かつ2以上の整数であり、ここの例ではL=2である。したがって、ロータリーヘッド3は、18個のノズルシャフト33(換言すれば、18個のノズルN)のうち、2個の作業位置Sl、Srに位置する2個のノズルシャフト33を、18個のノズルシャフト33を回転させることで切り換えることができる。なお、Lが2より大きい場合には、L個の作業位置の間隔は、180度ではなく、Lの値に応じて変わる。例えば、L=3の場合には、3個の作業位置の間隔を120度(360度/3)にするとよい。
【0034】
さらに、18個のノズルシャフト33のうち、2個の作業位置Sl、Srに位置する2個のノズルシャフト33を選択的に昇降させることができる。つまり、ロータリーヘッド3は、2個の作業位置Sl、Srに対応して、2個の昇降機構51を有する。2個の昇降機構51の構成は共通するため、ここでは、作業位置Slに対応する1個の昇降機構51について説明を行う。
【0035】
昇降機構51は、作業位置Slに位置するノズルシャフト33の昇降ロッド331の上端に上方から対向するカムフォロア52と、カムフォロア52を昇降させる昇降部材53とを有し、リニアモーターによって昇降部材53をZ方向に駆動することで、昇降部材53に伴ってカムフォロア52を昇降させる。カムフォロア52が
図5に示す高さに位置する場合には、カムフォロア52は、作業位置Slのノズルシャフト33の昇降ロッド331から上方に離間する。その結果、作業位置Slにおいて、昇降ロッド331は、コイルスプリング333による上方への付勢力に従って最高点に位置して、当該昇降ロッド331に取り付けられたノズルNは上昇位置に位置する。一方、カムフォロア52が
図5に示す高さから下降すると、カムフォロア52は、ノズルシャフト33の昇降ロッド331に上方から当接して、コイルスプリング333の付勢力に抗して昇降ロッド331を押し下げる。その結果、作業位置Slにおいて、昇降ロッド331は、最高点から下降して、当該昇降ロッド331に取り付けられたノズルNは、上昇位置より低い下降位置に位置する。
【0036】
かかるロータリーヘッド3は、作業位置Sl、Srにおいて下降位置に位置するノズルNに負圧を供給することで、ノズルNにより部品Eを吸着する。ちなみに、上述の通り、2個の作業位置Sl、Srと、2個のテープフィーダー281とは、同じピッチPでX方向に並ぶため、2個の作業位置Sl、Srに位置する2個のノズルNは、2個のテープフィーダー281から部品Eを同時に吸着できる。また、ロータリーヘッド3は、作業位置Sl、Srにおいて下降位置に位置するノズルNに正圧を供給することで、部品EをノズルNから下方へ離脱させて、基板Bに実装する。続いては、ノズルNに負圧・正圧を供給する構成について説明する。
【0037】
ロータリーヘッド3は、18個のノズルシャフト33に対応して18個の圧力切換機構4を有する。18個の圧力切換機構4は、シャフトホルダー32に取り付けられて、シャフトホルダー32に伴って回転軸Caを中心に回転する。これら18個の圧力切換機構4は、18個のノズルシャフト33の外側において、回転軸Caを中心として円周状に等角度(20度)を空けて並び、各圧力切換機構4は対応するノズルシャフト33の下端に取り付けられたノズルNに供給される圧力を、負圧と正圧との間で切り換える。
【0038】
圧力切換機構4は、Z方向に延設されたバルブスプール41と、バルブスプール41を収容するスリーブ42とを有する。スリーブ42は、その上端にフランジ421を有し、シャフトホルダー32で上方に開口する取付孔322に挿入されたスリーブ42のフランジ421がシャフトホルダー32の上面に係合する。こうして、スリーブ42は、シャフトホルダー32に支持される。バルブスプール41は、スリーブ42において上方に開口する収容孔に挿入され、スリーブ42に対してZ方向に可動である。このバルブスプール41は、その上端部分に係合部411を有する。そして、後述する昇降機構のカムフォロアが係合部411に係合しつつ昇降することで、バルブスプール41が昇降して、ノズルNに供給される圧力が切り換えられる。
【0039】
具体的には、
図6に示すように、スリーブ42は、負圧が入力される負圧入力ポート42aと、正圧が入力される正圧入力ポート42bとを有する。スリーブ42の内部は、中空に形成されており、対応するノズルシャフト33の下端に取り付けられたノズルNに連通する。したがって、負圧入力ポート42aからスリーブ42の内部に入力された負圧および正圧入力ポート42bからスリーブ42の内部に入力された正圧は、それぞれ当該ノズルNに供給される。
【0040】
これに対して、メインロッド31の内部には、Z方向に延設された負圧供給経路31aが設けられるとともに、シャフトホルダー32の内部には、18個の圧力切換機構4に対応する18個の負圧分岐経路32aが設けられている。18個の負圧分岐経路32aは、回転軸Caを中心とする放射状に設けられ、対応する圧力切換機構4の負圧入力ポート42aと負圧供給経路31aとを連通させる。したがって、18個のスリーブ42の負圧入力ポート42aには、それぞれに対応する負圧分岐経路32aを介して負圧供給経路31aから負圧が供給される。
【0041】
また、シャフトホルダー32の内部には、18個の圧力切換機構4に対応する18個の正圧入力孔32bが設けられている。各正圧入力孔32bは、対応する圧力切換機構4のスリーブ42の正圧入力ポート42bと、シャフトホルダー32の外周面との間で水平方向に延設され、シャフトホルダー32の外周面で開口する。一方、ロータリーヘッド3は、2個の作業位置Sl、Srに対応して2個の圧力切換位置Cl、Crを有し、ハウジング36のハウジング本体361には、2個の圧力切換位置Cl、Crに対応して2個の正圧導入孔Hl、Hrが水平方向に貫通して、中空部362に対して開口する。そして、18個の圧力切換機構4のうち、2個の圧力切換位置Cl、Crに位置する2個の圧力切換機構4(換言すれば、2個の作業位置Sl、Srに位置するノズルシャフト33に対応する2個の圧力切換機構4)の正圧入力ポート42bが正圧入力孔32bを介して正圧導入孔Hl、Hrに対向・連通する。
【0042】
また、ロータリーヘッド3は、2個の正圧導入孔Hl、Hrに対応して2本の正圧導入管61r、61l(正圧導入経路)を有し、正圧導入管61r、61lのそれぞれは対応する正圧導入孔Hl、Hrに接続されて、正圧導入孔Hl、Hrに正圧を供給する。こうして、正圧導入孔Hl、Hrに供給された正圧は、圧力切換位置Cl、Crに位置する圧力切換機構4の正圧入力ポート42bに供給される。
【0043】
かかる構成では、圧力切換位置Cl、Crに位置する圧力切換機構4のバルブスプール41を、負圧供給位置haに位置させると、バルブスプール41が負圧入力ポート42aを開くとともに正圧入力ポート42bを閉じる。その結果、負圧供給経路31aがスリーブ42の内部を介して作業位置Sl、SrのノズルNに連通して、これらのノズルNに負圧が供給される。また、圧力切換位置Cl、Crに位置する圧力切換機構4のバルブスプール41を負圧供給位置haより低い正圧供給位置hbに位置させると、バルブスプール41が負圧入力ポート42aを閉じるとともに正圧入力ポート42bを開く。その結果、正圧導入孔Hl、Hrがスリーブ42の内部を介して作業位置Sl、SrのノズルNに連通して、これらのノズルNに正圧が供給される。
【0044】
そして、ロータリーヘッド3は、2個の圧力切換位置Cl、Crに対応して2個の昇降機構55を有し、各昇降機構55は、2個の圧力切換位置Cl、Crのうち対応する一方に位置する圧力切換機構4のバルブスプール41を負圧供給位置haと正圧供給位置hbとの間で昇降させる。2個の昇降機構55の構成は共通するため、ここでは、圧力切換位置Clに対応する1個の昇降機構55について説明を行う。
【0045】
昇降機構55は、圧力切換位置Clに位置する圧力切換機構4のバルブスプール41の係合部411に対向するカムフォロア56を有する。この係合部411は、上下に配置された一対の対向部412を有し、Z方向において、カムフォロア56はこれら対向部412の間に位置して、上下の対向部412それぞれに対向する。さらに、昇降機構55は、カムフォロア56を昇降させる昇降部材57を有し、リニアモーターによって昇降部材57をZ方向に駆動することで、昇降部材57に伴ってカムフォロア56を昇降させる。
【0046】
つまり、カムフォロア56を上昇させると、一対の対向部412のうち、上側の対向部412をカムフォロア56が下方から押し上げて、バルブスプール41を負圧供給位置haに位置させる。また、カムフォロア56を下降させると、一対の対向部412のうち、下側の対向部412をカムフォロア56が上方から押し下げて、バルブスプール41を正圧供給位置hbに位置させる。
【0047】
続いては、部品実装機1において、ロータリーヘッド3のハウジング本体361に開口する2個の正圧導入孔Hl、Hrに正圧を供給する機構について、
図7を用いて説明する。ここで、
図7はロータリーヘッドに正圧を供給する正圧供給機構の第1例を模式的に示す図である。なお、以下の説明では、圧力切換位置Cr、Clの2個のバルブスプール41はそれぞれ正圧供給位置Hbに位置しており、作業位置Sl、Srの2個のノズルNはそれぞれ正圧導入孔Hl、Hrに連通している状況を前提とする。
【0048】
図7に示すように、部品実装機1が備える正圧供給機構6は、ロータリーヘッド3のハウジング本体361の外周面で開口する2個の正圧導入孔Hl、Hrにそれぞれ接続された上述の2本の正圧導入管61l、61rを有する。さらに、正圧供給機構6は、正圧を出力する正圧源62を有し、2本の正圧導入管61l、61rは、共通の正圧源62と、それぞれに接続された正圧導入孔Hl、Hrとの間で延設されている。
【0049】
これら正圧導入管61l、61rに対する構成は共通するため、1本の正圧導入管61lに対する構成について説明する。正圧導入管61lに対しては、正圧源62と正圧導入孔Hlとの間において、開閉バルブ63が介挿されている。したがって、開閉バルブ63を開くことで、正圧導入管61lによって正圧源62と正圧導入孔Hlとを連通させて、正圧導入孔Hlに正圧を供給できる。一方、開閉バルブ63を閉じることで、正圧源62と正圧導入孔Hlとを遮断して、正圧導入孔Hlへの正圧の供給を停止できる。なお、ここでは、開閉バルブ63が開いている状況を前提として説明を行う。
【0050】
さらに、正圧導入管61lに対しては、気体排出機構64が設けられている。この気体排出機構64は、開閉バルブ63と正圧導入孔Hlとの間で、正圧導入管61lから分岐する気体排出管641と、気体排出管641に取り付けられた流量調整弁642とを有する。この流量調整弁642は、気体排出管641から外部へ排出される気体(空気)の流量を調整する。したがって、流量調整弁642が開くと、正圧源62から正圧導入管61lを介して正圧導入孔Hlへ向かう気体の一部は、気体排出管641および流量調整弁642を介して正圧導入管61lから排出される。また、正圧導入管61lから排出される気体の流量は、流量調整弁642の開度を上げるのに伴って増大する。その結果、流量調整弁642の開度を上げるのに伴って、正圧導入管61lから気体排出管641および流量調整弁642を介して排出される気体の流量が増大するとともに、正圧導入孔Hlに流入する気体の流量が減少する。
【0051】
上述の通り、正圧導入孔Hlが開口するハウジング本体361の内部(中空部362)には、シャフトホルダー32が位置する。このシャフトホルダー32には、上述の正圧入力孔32bやスリーブ42でそれぞれ構成された18個の正圧連通路Tが18個のノズルNに対応して設けられており、各正圧連通路Tは対応するノズルNに連通する。そして、18個のノズルNのうち、作業位置Slに位置するノズルNに連通する正圧連通路Tの開口Oiが正圧導入孔Hlの開口Ooに水平方向から対向し、正圧導入孔Hlと作業位置Slに位置するノズルNとが連通する。その結果、正圧導入管61lを介して正圧源62から正圧導入孔Hlに供給された正圧が、作業位置Slに位置するノズルNに供給される。
【0052】
同様に、18個のノズルNのうち、作業位置Srに位置するノズルNに連通する正圧連通路Tの開口Oiが正圧導入孔Hrの開口Ooに水平方向から対向し、正圧導入孔Hrと作業位置Srに位置するノズルNとが連通する。その結果、正圧導入管61rを介して正圧源62から正圧導入孔Hrに供給された正圧が、作業位置Srに位置するノズルNに供給される。
【0053】
ところで、
図7の例では、中空部362の円筒形状の中心線と、シャフトホルダー32の回転軸Caとがずれた結果、例えば、中空部362の円筒形状の中心線に対してシャフトホルダー32の回転軸Caが
図7において僅かに左にずれた結果、正圧導入孔Hl側のハウジング本体361の内周面とシャフトホルダー32の外周面との間の隙間Δlが、正圧導入孔Hr側のハウジング本体361の内周面とシャフトホルダー32の外周面との間の隙間Δrよりも狭くなっている。このような場合、正圧導入孔Hlから中空部362に流入した空気が隙間Δlから逃げる流量よりも、正圧導入孔Hrから中空部362に流入した空気が隙間Δrから逃げる流量が多くなる。そのため、正圧導入孔Hl、Hrに供給される気体の流量・正圧が同じであると、作業位置SlのノズルNから噴出する気体のブロー圧に比較して、作業位置SrのノズルNから噴出する気体のブロー圧が小さくなる。このようなブロー圧のばらつきの結果、ブロー圧の大きいノズルNは部品Eを吹き飛ばしてしまう一方、ブロー圧の小さいノズルNからは部品Eが的確に離脱しないといった状況が起こりうる。このように、ノズルNから部品Eを確実に離脱させつつ部品Eを吹き飛ばすことのない、適切な気体の噴出を各ノズルNに対して実行することが難しい場合があった。
【0054】
そこで、正圧供給機構6は、正圧導入管61rに対して設けられた流量調整弁642の開度より、正圧導入管61lに対して設けられた流量調整弁642の開度を大きくすることで、正圧導入管61rから気体排出管641を介して排出する気体の流量(ゼロを含む)より、正圧導入管61lから気体排出管641を介して排出する気体の流量を多くする。すなわち、正圧導入管61lから正圧導入孔Hlに流入する気体の流量が、正圧導入管61rから正圧導入孔Hrに流入する気体の流量より小さくなるように、これらの流量の間に差が設定されている。これによって、作業位置Slに位置するノズルNから噴出される気体のブロー圧と、作業位置Srに位置するノズルNから噴射される気体のブロー圧との差が抑制される。
【0055】
以上のように構成された実施形態では、円周状に配列された18個(M個)のノズルNを保持するシャフトホルダー32(ノズルホルダー)が、ハウジング36に設けられた中空部362に配置される。シャフトホルダー32には、18個のノズルNに対応して18個の正圧連通路Tが設けられる一方、ハウジング36には、2個(L個)の作業位置Sl、Srに対応して2個の正圧導入孔Hl、Hrが貫通する。そして、18個の正圧連通路Tのうち、2個の作業位置Sl、Srに位置する2個のノズルNに対応する2個の正圧連通路Tの開口Oiが2個の正圧導入孔Hl、Hrの開口Ooと対向して、作業位置Sl、Srの2個のノズルNとハウジング36の2個の正圧導入孔Hl、Hrとが連通する。これによって、2個の正圧導入孔Hl、Hrからシャフトホルダー32の2個の正圧連通路Tを介して2個のノズルNに正圧を供給することができる。
【0056】
また、この実施形態(
図7の第1例)では、正圧導入管61l、61r(正圧導入経路)から正圧導入孔Hl、Hrに流入する気体の流量の2個(L個)の正圧導入孔Hl、Hrの間における差が正圧供給機構6(調整部)により調整される。そのため、ハウジング36の中空部362に対してシャフトホルダー32が偏心して配置されて、ハウジング36の内周面とシャフトホルダー32の外周面との間の隙間Δl、Δrの大きさが各正圧導入孔Hl、Hrによって異なったとしても、各ノズルNから噴出する気体の流量を揃えて、部品Eの離脱に適したノズルNからの気体の噴出を実現することができる。しかも、正圧供給機構6は、気体の流量の差の調整を、18個(M個)のノズルNの全てを対象にするのではなく、18個のノズルNのうちの作業位置Sl、Srの2個(L個)のノズルNを対象にして行えば足りるため、少ない構成要素で正圧供給機構6を構成することができる。こうして、この実施形態では、構成要素の増大やコストアップを抑えつつ、部品Eの離脱に適した気体の噴出をノズルNにより実行することが可能となっている。
【0057】
つまり、この実施形態では、2個の作業位置Sl、Srが設けられている点に注目して、気体の流量差の調整を、2個の作業位置Sl、Srの2個のノズルNに対象を限定して行う。したがって、構成要素の増大やコストアップをより確実に抑えることができる。
【0058】
また、2個の正圧導入孔Hl、Hrのうち、一方の正圧導入孔Hl側のハウジング本体361の内壁とシャフトホルダー32との間の隙間Δlが、他方の正圧導入孔Hr側のハウジング本体361の内壁とシャフトホルダー32との間の隙間Δrより狭い。これに対応して、正圧供給機構6は、一方の正圧導入孔Hlに流入する気体の流量を、他方の正圧導入孔Hrに流入する気体の流量より小さくしている。つまり、これらの隙間Δl、Δrの違いに応じて、一方の正圧導入孔Hlに流入する気体の流量が、他方の正圧導入孔Hrに流入する気体の流量より小さく設定されている。その結果、2個の作業位置Sl、Srに位置する2個のノズルNから噴出される気体の流量を一致させて、部品Eの離脱に適した気体の噴出をノズルNにより実行することができる。
【0059】
また、ノズルNの個数(=M)は作業位置Sl、Srの個数(=L)の5倍以上である。かかる構成では、気体の流量の差の調整を実行するノズルNの個数(=L)を、ノズルNの総数(=M)の5分の1以下に限定することができる。したがって、構成要素の増大やコストアップをより確実に抑えることができる。
【0060】
図8は
図7に示す正圧供給機構におけるノズルのブロー圧較正方法の第1例を示すフローチャートである。このノズルのブロー圧較正方法は、部品実装機1での部品実装の開始前に、例えば作業者によって実行される。
【0061】
ステップS101では、作業位置Sl、SrのそれぞれにノズルNを位置させて、作業位置Sl、Srの2個のノズルNから気体を噴出させる。このステップS101は、作業位置Sl、SrにいずれのノズルNも位置しない状態でステップS102以後が実行されるのを防止するものであり、18個のノズルNのうちの何れか2個のノズルNを作業位置Sl、Srに位置させればよい。また、ノズルのブロー圧較正方法の開始前から、作業位置Sl、SrのそれぞれにノズルNが位置する場合には、当該方法の開始時点でステップS101が実行・完了されたと見なす。
【0062】
ステップS102では、正圧供給機構6の2個の流量調整弁642のそれぞれを全閉にする(すなわち、開度をゼロにする)。そして、作業位置SlのノズルNから噴出される気体のブロー圧(風圧)と、作業位置SrのノズルNから噴出される気体のブロー圧とをそれぞれ検出する(ステップS103)。例えば、2個の作業位置Sl、Srに位置する2個のノズルNに対応する2個の正圧連通路Tに、図示しない検出器が設けられており、ステップS103の検出はこの検出器により実行される。
【0063】
かかる検出結果に基づき、ステップS104では、2個の作業位置Sl、Srに位置する2個のノズルNのうち、最高ブロー圧で気体を噴出したノズルNに連通する正圧連通経路(正圧連通経路61l、61rの一方)に接続された流量調整弁642を徐々に開く開動作が開始される。ここでは、隙間Δlが隙間Δrより狭いため、作業位置SlのノズルNのブロー圧が作業位置SrのノズルNのブロー圧より高くなる。したがって、作業位置SlのノズルNに連通する正圧導入管61lに接続された流量調整弁642に対して開動作が開始される。
【0064】
かかる開動作の開始・実行に伴って、正圧導入管61lから気体排出管641および流量調整弁642を介して排出される気体の流量が増大するとともに、正圧導入管61lから正圧導入孔Hlに流入する気体の流量が減少する。その結果、作業位置SlのノズルNから噴出される気体の流量が減少して、作業位置SlのノズルNから噴出される気体のブロー圧と、作業位置SrのノズルNから噴出される気体のブロー圧との差(ブロー圧の差)が縮まる。そこで、ステップS105では、このブロー圧の差を監視しつつ、これが許容範囲内に収まったかを確認する。そして、ブロー圧の差が許容範囲内に収まると(ステップS105で「YES」)、作業位置SlのノズルNに連通する正圧導入管61lに接続された気体排出管641に設けられた流量調整弁642に対する開動作が停止される(ステップS106)。これによって、開動作が停止した時点における開度に、各流量調整弁642の開度が設定される。
【0065】
このノズルのブロー圧較正方法では、ハウジング36に設けられた2個(L個)の正圧導入孔Hl、Hrから作業位置Sl、Srの2個のノズルNに気体を流入させつつ(ステップS101、S102)、正圧導入孔Hl、Hrに流入する気体の流量の2個の正圧導入孔Hl、Hrの間における差が変更される(ステップS104)。こうして気体の流量の差を変更しつつ、2個のノズルから噴出する気体のブロー圧を検出し(ステップS104、S105)、2個の正圧導入孔Hl、Hrの間における気体の流量の差をこのブロー圧に基づき設定する(ステップS105、S106)。したがって、部品実装においては、このノズルのブロー圧較正方法で設定された気体の流量の差が生じるように、2個の正圧導入孔Hl、Hrへ供給される気体の流量が調整されるため、作業位置Sl、Srの2個のノズルNから噴出する気体のブロー圧を揃えることができる。すなわち、気体の流量の差の調整を、18個(M個)のノズルNの全てを対象にするのではなく、18個のノズルのうちの2個のノズルNを対象にして行えば足りるため、少ない構成要素でノズルNのブロー圧を揃えることができる。こうして、構成要素の増大やコストアップを抑えつつ、部品Eの離脱に適した気体の噴出をノズルNにより実行することが可能となっている。
【0066】
図9は
図7に示す正圧供給機構におけるノズルのブロー圧較正方法の第2例を示すフローチャートである。このノズルのブロー圧較正方法は、部品実装機1での部品実装の開始前に、例えば作業者によって実行される。
【0067】
ステップS201では、作業位置Sl、SrのそれぞれにノズルNを位置させる。ステップS202では、正圧供給機構6の2個の流量調整弁642のそれぞれを全開にする(すなわち、開度を最大にする)。そして、作業位置SlのノズルNから噴出される気体のブロー圧と、作業位置SrのノズルNから噴出される気体のブロー圧とをそれぞれ検出する(ステップS203)。
【0068】
かかる検出結果に基づき、ステップS204では、2個の作業位置Sl、Srに位置する2個のノズルNのうち、最低ブロー圧で気体を噴出したノズルNに連通する正圧連通経路(正圧連通経路61l、61rの一方)に接続された流量調整弁642を徐々に閉じる閉動作が開始される。ここでは、隙間Δrが隙間Δlより広いため、作業位置SrのノズルNのブロー圧が作業位置SlのノズルNのブロー圧より低くなる。したがって、作業位置SrのノズルNに連通する正圧導入管61rに接続された流量調整弁642に対して閉動作が開始される。
【0069】
かかる閉動作の開始・実行に伴って、正圧導入管61rから気体排出管641および流量調整弁642を介して排出される気体の流量が減少するとともに、正圧導入管61rから正圧導入孔Hrに流入する気体の流量が増大する。その結果、作業位置SrのノズルNから噴出される気体の流量が増大して、作業位置SrのノズルNから噴出される気体のブロー圧と、作業位置SlのノズルNから噴出される気体のブロー圧との差(ブロー圧の差)が縮まる。そこで、ステップS205では、このブロー圧の差を監視しつつ、これが許容範囲内に収まったかを確認する。そして、ブロー圧の差が許容範囲内に収まると(ステップS205で「YES」)、作業位置SrのノズルNに連通する正圧導入管61rに設けられた流量調整弁642に対する閉動作が停止される(ステップS206)。これによって、閉動作が停止した時点における開度に、各流量調整弁642の開度が設定される。
【0070】
このノズルのブロー圧較正方法では、ハウジング36に設けられた2個(L個)の正圧導入孔Hl、Hrから作業位置Sl、Srの2個のノズルNに気体を流入させつつ(ステップS201、S202)、正圧導入孔Hl、Hrに流入する気体の流量の2個の正圧導入孔Hl、Hrの間における差が変更される(ステップS204)。こうして気体の流量の差を変更しつつ、2個のノズルから噴出する気体のブロー圧を検出し(ステップS204、S205)、2個の正圧導入孔Hl、Hrの間における気体の流量の差をこのブロー圧に基づき設定する(ステップS205、S206)。したがって、部品実装においては、このノズルのブロー圧較正方法で設定された気体の流量の差が生じるように、2個の正圧導入孔Hl、Hrへ供給される気体の流量が調整されるため、作業位置Sl、Srの2個のノズルNから噴出する気体のブロー圧を揃えることができる。すなわち、気体の流量の差の調整を、18個(M個)のノズルNの全てを対象にするのではなく、18個のノズルのうちの2個のノズルNを対象にして行えば足りるため、少ない構成要素でノズルNのブロー圧を揃えることができる。こうして、構成要素の増大やコストアップを抑えつつ、部品Eの離脱に適した気体の噴出をノズルNにより実行することが可能となっている。
【0071】
図10はロータリーヘッドに正圧を供給する正圧供給機構の第2例を模式的に示す図である。
図10の第2例と
図7の第1例との違いは、気体排出機構64に代えて減圧弁65(レギュレーター)が正圧導入管61l、61rのそれぞれに設けられている点である。ここでは、第1例との差異点を中心に説明を行うこととし、第1例との共通点は相当符号を付して適宜説明を省略する。また、第1例と同様に、正圧導入管61l、61rに対する構成は共通するため、1本の正圧導入管61lに対する構成について説明する。
【0072】
つまり、第2例では、正圧導入管61lに対しては、正圧源62と開閉バルブ63との間において、減圧弁65が設けられている。この減圧弁65は、正圧源62から出力された正圧を減圧した出力圧を開閉バルブ63側(換言すれば、正圧導入孔Hl側)へ出力する。また、減圧弁65による減圧量、換言すれば出力圧は、変更・設定可能である。したがって、減圧弁65の出力圧の減少に伴って、正圧導入管61lから正圧導入孔Hlへ流入する気体の正圧が減少する。
【0073】
また、
図10の例においても、
図7の例と同様に、正圧導入孔Hl側のハウジング本体361の内周面とシャフトホルダー32の外周面との間の隙間Δlが、正圧導入孔Hr側のハウジング本体361の内周面とシャフトホルダー32の外周面との間の隙間Δrよりも狭くなっている。そのため、ノズルNから部品Eを確実に離脱させつつ部品Eを吹き飛ばすことのない、適切な気体の噴出を各ノズルNに対して実行することが難しい場合があった。
【0074】
そこで、正圧供給機構6は、正圧導入管61rに対して設けられた減圧弁65の出力圧より、正圧導入管61lに対して設けられた減圧弁65の出力圧を低く設定(換言すれば、減圧量を大きく設定)することで、正圧導入管61lから正圧導入孔Hlに流入する気体の正圧が、正圧導入管61rから正圧導入孔Hrに流入する気体の正圧より小さくなるように、これらの正圧の間に差が設定されている。これによって、作業位置Slに位置するノズルNから噴出される気体のブロー圧と、作業位置Srに位置するノズルNから噴射される気体のブロー圧との差が抑制される。
【0075】
以上に説明するように、この実施形態(
図10の第2例)では、正圧導入管61l、61r(正圧導入経路)から正圧導入孔Hl、Hrに流入する気体の正圧の2個(L個)の正圧導入孔Hl、Hrの間における差が正圧供給機構6(調整部)により調整される。そのため、ハウジング36の中空部362に対してシャフトホルダー32が偏心して配置されて、ハウジング36の内周面とシャフトホルダー32の外周面との間の隙間Δl、Δrの大きさが各正圧導入孔Hl、Hrによって異なったとしても、各ノズルNから噴出する気体の正圧を揃えて、部品Eの離脱に適したノズルNからの気体の噴出を実現することができる。しかも、正圧供給機構6は、気体の正圧の差の調整を、18個(M個)のノズルNの全てを対象にするのではなく、18個のノズルNのうちの作業位置Sl、Srの2個(L個)のノズルNを対象にして行えば足りるため、少ない構成要素で正圧供給機構6を構成することができる。こうして、この実施形態では、構成要素の増大やコストアップを抑えつつ、部品Eの離脱に適した気体の噴出をノズルNにより実行することが可能となっている。
【0076】
つまり、この実施形態では、2個の作業位置Sl、Srが設けられている点に注目して、気体の正圧差の調整を、2個の作業位置Sl、Srの2個のノズルNに対象を限定して行う。したがって、構成要素の増大やコストアップをより確実に抑えることができる。
【0077】
また、2個の正圧導入孔Hl、Hrのうち、一方の正圧導入孔Hl側のハウジング本体361の内壁とシャフトホルダー32との間の隙間Δlが、他方の正圧導入孔Hr側のハウジング本体361の内壁とシャフトホルダー32との間の隙間Δrより狭い。これに対応して、正圧供給機構6は、一方の正圧導入孔Hlに流入する気体の正圧を、他方の正圧導入孔Hrに流入する気体の正圧より小さくしている。つまり、これらの隙間Δl、Δrの違いに応じて、一方の正圧導入孔Hlに流入する気体の正圧が、他方の正圧導入孔Hrに流入する気体の正圧より小さく設定されている。その結果、2個の作業位置Sl、Srに位置する2個のノズルNから噴出される気体の正圧を揃えて、部品Eの離脱に適した気体の噴出をノズルNにより実行することができる。
【0078】
また、ノズルNの個数(=M)は作業位置Sl、Srの個数(=L)の5倍以上である。かかる構成では、気体の正圧の差の調整を実行するノズルNの個数(=L)を、ノズルNの総数(=M)の5分の1以下に限定することができる。したがって、構成要素の増大やコストアップをより確実に抑えることができる。
【0079】
図11は
図10に示す正圧供給機構におけるノズルのブロー圧較正方法の第1例を示すフローチャートである。このノズルのブロー圧較正方法は、部品実装機1での部品実装の開始前に、例えば作業者によって実行される。
【0080】
ステップS301では、作業位置Sl、SrのそれぞれにノズルNを位置させる。ステップS302では、正圧供給機構6の2個の減圧弁65のそれぞれの出力圧を最高に設定する(すなわち、減圧量を最低に設定する)。そして、作業位置SlのノズルNから噴出される気体のブロー圧と、作業位置SrのノズルNから噴出される気体のブロー圧とをそれぞれ検出する(ステップS303)。
【0081】
かかる検出結果に基づき、ステップS304では、2個の作業位置Sl、Srに位置する2個のノズルNのうち、最高ブロー圧で気体を噴出したノズルNに連通する正圧連通経路(正圧連通経路61l、61rの一方)に設けられた減圧弁65の出力圧の減少が開始される。ここでは、隙間Δlが隙間Δrより狭いため、作業位置SlのノズルNのブロー圧が作業位置SrのノズルNのブロー圧より高くなる。したがって、作業位置SlのノズルNに連通する正圧導入管61lに設けられた減圧弁65の出力圧が徐々に減少されることとなる。
【0082】
かかる減圧弁65の出力圧の減少に伴って、正圧導入管61lから正圧導入孔Hlに流入する気体の正圧が減少する。その結果、作業位置SlのノズルNから噴出される気体の正圧が減少して、作業位置SlのノズルNから噴出される気体のブロー圧と、作業位置SrのノズルNから噴出される気体のブロー圧との差(ブロー圧の差)が縮まる。そこで、ステップS305では、このブロー圧の差を監視しつつ、これが許容範囲内に収まったかを確認する。そして、ブロー圧の差が許容範囲内に収まると(ステップS305で「YES」)、作業位置SlのノズルNに連通する正圧導入管61lに設けられた減圧弁65の出力圧の減少が停止される(ステップS306)。これによって、出力圧の減少が停止された時点における出力圧に、各減圧弁65の出力圧が設定される。
【0083】
このノズルのブロー圧較正方法では、ハウジング36に設けられた2個(L個)の正圧導入孔Hl、Hrから作業位置Sl、Srの2個のノズルNに気体を流入させつつ(ステップS301、S302)、正圧導入孔Hl、Hrに流入する気体の正圧の2個の正圧導入孔Hl、Hrの間における差が変更される(ステップS304)。こうして気体の正圧の差を変更しつつ、2個のノズルから噴出する気体のブロー圧を検出し(ステップS304、S305)、2個の正圧導入孔Hl、Hrの間における気体の正圧の差をこのブロー圧に基づき設定する(ステップS305、S306)。したがって、部品実装においては、このノズルのブロー圧較正方法で設定された気体の正圧の差が生じるように、2個の正圧導入孔Hl、Hrへ供給される気体の正圧が調整されるため、作業位置Sl、Srの2個のノズルNから噴出する気体のブロー圧を揃えることができる。すなわち、気体の正圧の差の調整を、18個(M個)のノズルNの全てを対象にするのではなく、18個のノズルのうちの2個のノズルNを対象にして行えば足りるため、少ない構成要素でノズルNのブロー圧を揃えることができる。こうして、構成要素の増大やコストアップを抑えつつ、部品Eの離脱に適した気体の噴出をノズルNにより実行することが可能となっている。
【0084】
図12は
図10に示す正圧供給機構におけるノズルのブロー圧較正方法の第2例を示すフローチャートである。このノズルのブロー圧較正方法は、部品実装機1での部品実装の開始前に、例えば作業者によって実行される。
【0085】
ステップS401では、作業位置Sl、SrのそれぞれにノズルNを位置させる。ステップS402では、正圧供給機構6の2個の減圧弁65のそれぞれの出力圧を最低に設定する(すなわち、減圧量を最高に設定する)。そして、作業位置SlのノズルNから噴出される気体のブロー圧と、作業位置SrのノズルNから噴出される気体のブロー圧とをそれぞれ検出する(ステップS403)。
【0086】
かかる検出結果に基づき、ステップS404では、2個の作業位置Sl、Srに位置する2個のノズルNのうち、最低ブロー圧で気体を噴出したノズルNに連通する正圧連通経路(正圧連通経路61l、61rの一方)に設けられた減圧弁65の出力圧の増加が開始される。ここでは、ここでは、隙間Δrが隙間Δlより広いため、作業位置SrのノズルNのブロー圧が作業位置SlのノズルNのブロー圧より低くなる。したがって、作業位置SrのノズルNに連通する正圧導入管61rに設けられた減圧弁65の出力圧が徐々に増加されることとなる。
【0087】
かかる減圧弁65の出力圧の増加に伴って、正圧導入管61rから正圧導入孔Hrに流入する気体の正圧が増加する。その結果、作業位置SrのノズルNから噴出される気体の正圧が増加して、作業位置SrのノズルNから噴出される気体のブロー圧と、作業位置SlのノズルNから噴出される気体のブロー圧との差(ブロー圧の差)が縮まる。そこで、ステップS405では、このブロー圧の差を監視しつつ、これが許容範囲内に収まったかを確認する。そして、ブロー圧の差が許容範囲内に収まると(ステップS405で「YES」)、作業位置SrのノズルNに連通する正圧導入管61rに設けられた減圧弁65の出力圧の増加が停止される(ステップS406)。これによって、出力圧の減少が停止された時点における出力圧に、各減圧弁65の出力圧が設定される。
【0088】
このノズルのブロー圧較正方法では、ハウジング36に設けられた2個(L個)の正圧導入孔Hl、Hrから作業位置Sl、Srの2個のノズルNに気体を流入させつつ(ステップS401、S402)、正圧導入孔Hl、Hrに流入する気体の正圧の2個の正圧導入孔Hl、Hrの間における差が変更される(ステップS404)。こうして気体の正圧の差を変更しつつ、2個のノズルから噴出する気体のブロー圧を検出し(ステップS404、S405)、2個の正圧導入孔Hl、Hrの間における気体の正圧の差をこのブロー圧に基づき設定する(ステップS405、S406)。したがって、部品実装においては、このノズルのブロー圧較正方法で設定された気体の正圧の差が生じるように、2個の正圧導入孔Hl、Hrへ供給される気体の正圧が調整されるため、作業位置Sl、Srの2個のノズルNから噴出する気体のブロー圧を揃えることができる。すなわち、気体の正圧の差の調整を、18個(M個)のノズルNの全てを対象にするのではなく、18個のノズルのうちの2個のノズルNを対象にして行えば足りるため、少ない構成要素でノズルNのブロー圧を揃えることができる。こうして、構成要素の増大やコストアップを抑えつつ、部品Eの離脱に適した気体の噴出をノズルNにより実行することが可能となっている。
【0089】
図13はロータリーヘッドに正圧を供給する正圧供給機構の第3例を模式的に示す図である。
図13の第3例は、
図7の第1例から、正圧導入管61rに対して設けられた気体排出機構64を排除した点で異なり、その他の点で
図7の第1例と共通する。したがって、第1例との差異点を中心に説明することとし、第1例との共通点は相当符号を付して適宜説明を省略する。
【0090】
つまり、
図13の第3例では、正圧導入孔Hl、Hrのうち、シャフトホルダー32に対する隙間Δl、Δrが狭い方の正圧導入孔Hlに接続された正圧導入管61lに対してのみ気体排出機構64が設けられ、広いほうの正圧導入孔Hrに接続された正圧導入管61rに対しては気体排出機構64が設けられない。
【0091】
そして、正圧供給機構6は、正圧導入管61lに対して設けられた流量調整弁642を開くことで、正圧導入管61lから気体排出管641を介して気体を排出する。これによって、正圧導入管61lから正圧導入孔Hlに流入する気体の流量が、正圧導入管61rから正圧導入孔Hrに流入する気体の流量より小さくなるように、これらの流量の間に差が設定されている。その結果、作業位置Slに位置するノズルNから噴出される気体のブロー圧と、作業位置Srに位置するノズルNから噴射される気体のブロー圧との差が抑制される。
【0092】
つまり、正圧供給機構6は、流量調整弁642(制御弁)によって流量を減少させる気体排出機構64を有する。気体排出機構64は、2個(L個)の正圧導入管61l、61r(正圧導入経路)のうち、正圧源62と正圧導入孔Hl(一方の正圧導入孔)とを接続する正圧導入管61l(一方の正圧導入経路)にのみ設けられ、正圧源62から正圧導入管61lに流入する気体の流量と比べて、正圧導入管61lから正圧導入孔Hlに流入する気体の流量を、流量調整弁642によって減少させる。これによって、正圧導入孔Hlに流入する気体の流量を、正圧導入孔Hrに流入する気体の流量より小さくする。かかる構成では、正圧導入管61l、61rから正圧導入孔Hl、Hrに流入する気体の流量の2個の正圧導入管61l、61rの間における差を、単一の流量調整弁642によって調整することができる。したがって、構成要素の増大やコストアップを最低限に抑えることができる。
【0093】
図14はロータリーヘッドに正圧を供給する正圧供給機構の第4例を模式的に示す図である。
図14の第4例は、
図10の第2例から、正圧導入管61rに対して設けられた減圧弁65を排除した点で異なり、その他の点で
図10の第2例と共通する。したがって、第2例との差異点を中心に説明することとし、第2例との共通点は相当符号を付して適宜説明を省略する。
【0094】
つまり、
図14の第4例では、正圧導入孔Hl、Hrのうち、シャフトホルダー32に対する隙間Δl、Δrが狭い方の正圧導入孔Hlに接続された正圧導入管61lに対してのみ減圧弁65が設けられ、広いほうの正圧導入孔Hrに接続された正圧導入管61rに対しては減圧弁65が設けられない。
【0095】
そして、正圧供給機構6は、正圧導入管61lに対して設けられた減圧弁65によって、正圧源62から出力された正圧を減圧した出力圧を正圧導入孔Hlに供給する。これによって、正圧導入管61lから正圧導入孔Hlに流入する気体の正圧が、正圧導入管61rから正圧導入孔Hrに流入する気体の正圧より小さくなるように、これらの正圧の間に差が設定されている。その結果、作業位置Slに位置するノズルNから噴出される気体のブロー圧と、作業位置Srに位置するノズルNから噴射される気体のブロー圧との差が抑制される。
【0096】
つまり、正圧供給機構6は、減圧弁65(制御弁、制御機構)によって正圧を減少させる。減圧弁65は、2個(L個)の正圧導入管61l、61r(正圧導入経路)のうち、正圧源62と正圧導入孔Hl(一方の正圧導入孔)とを接続する正圧導入管61l(一方の正圧導入経路)にのみ設けられ、正圧源62から正圧導入管61lに流入する気体の正圧と比べて、正圧導入管61lから正圧導入孔Hlに流入する気体の正圧を、減圧弁65によって減少させる。これによって、正圧導入孔Hlに流入する気体の正圧を、正圧導入孔Hrに流入する気体の正圧より小さくする。かかる構成では、正圧導入管61l、61rから正圧導入孔Hl、Hrに流入する気体の正圧の2個の正圧導入管61l、61rの間における差を、単一の減圧弁65によって調整することができる。したがって、構成要素の増大やコストアップを最低限に抑えることができる。
【0097】
このように上記実施形態では、部品実装機1が本発明の「部品実装機」の一例に相当し、シャフトホルダー32が本発明の「ノズルホルダー」の一例に相当し、ハウジング36が本発明の「ハウジング」の一例に相当し、ハウジング本体361が本発明の「本体」の一例に相当し、中空部362が本発明の「中空部」の一例に相当し、正圧導入管61lおよび正圧導入管61rのそれぞれが本発明の「正圧導入経路」の一例に相当し、正圧源62が本発明の「正圧源」の一例に相当し、気体排出機構64が本発明の「調整部」および「制御機構」の一例に相当し、気体排出管641が本発明の「気体排出経路」の一例に相当し、流量調整弁642が本発明の「制御弁」および「流量調整弁」の一例に相当し、減圧弁65が本発明の「調整部」、「制御機構」、「制御弁」および「減圧弁」の一例に相当し、正圧導入孔Hlおよび正圧導入孔Hrがそれぞれ本発明の「正圧導入孔」の一例に相当し、ノズルNが本発明の「ノズル」の一例に相当し、開口Oiが本発明の「開口」の一例に相当し、開口Ooが本発明の「開口」の一例に相当し、作業位置Slおよび作業位置Srがそれぞれ本発明の「作業位置」の一例に相当し、正圧連通路Tが本発明の「正圧連通路」の一例に相当し、隙間Δlが本発明の「隙間」の一例に相当し、隙間Δrが本発明の「隙間」の一例に相当する。
【0098】
なお、本発明は上記実施形態に限定されるものではなく、その趣旨を逸脱しない限りにおいて上述したものに対して種々の変更を加えることが可能である。例えば、ノズルNの個数(=M)は18個に限られない。
【0099】
また、作業位置Sl、Srの個数(=L)は2個に限られず、3個以上でも構わない。
【0100】
また、正圧供給機構6の構成を適宜省略してもよい。例えば、開閉バルブ63を設ける必要は必ずしもない。
【0101】
また、気体排出機構64あるいは減圧弁65を設ける場所は、上記の例に限られない。
【符号の説明】
【0102】
1…部品実装機
32…シャフトホルダー(ノズルホルダー)
36…ハウジング
361…ハウジング本体(本体)
362…中空部
61l…正圧導入管(正圧導入経路)
61r…正圧導入管(正圧導入経路)
62…正圧源
64…気体排出機構(調整部、制御機構)
641…気体排出管(気体排出経路)
642…流量調整弁(制御弁、流量調整弁)
65…減圧弁(調整部、制御機構、制御弁、減圧弁)
Hl…正圧導入孔
Hr…正圧導入孔
N…ノズル
Oi…開口
Oo…開口
Sl…作業位置
Sr…作業位置
T…正圧連通路
Δl…隙間
Δr…隙間