(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2023-09-26
(45)【発行日】2023-10-04
(54)【発明の名称】双方向無線給電装置
(51)【国際特許分類】
H02J 50/12 20160101AFI20230927BHJP
H02J 50/80 20160101ALI20230927BHJP
H02J 7/00 20060101ALI20230927BHJP
H02M 7/48 20070101ALI20230927BHJP
【FI】
H02J50/12
H02J50/80
H02J7/00 301D
H02M7/48 A
(21)【出願番号】P 2019183023
(22)【出願日】2019-10-03
【審査請求日】2022-07-22
(31)【優先権主張番号】P 2018207094
(32)【優先日】2018-11-02
(33)【優先権主張国・地域又は機関】JP
(73)【特許権者】
【識別番号】000004606
【氏名又は名称】ニチコン株式会社
(73)【特許権者】
【識別番号】503420833
【氏名又は名称】学校法人常翔学園
(74)【代理人】
【識別番号】110000475
【氏名又は名称】弁理士法人みのり特許事務所
(72)【発明者】
【氏名】大森 英樹
(72)【発明者】
【氏名】津野 眞仁
(72)【発明者】
【氏名】山口 雅史
【審査官】清水 祐樹
(56)【参考文献】
【文献】特開2012-065484(JP,A)
【文献】米国特許出願公開第2012/0169131(US,A1)
【文献】米国特許第08947041(US,B2)
【文献】米国特許出願公開第2018/0054090(US,A1)
【文献】KURODA, Kodai et al.,A wireless V2H apparatus with a new SiC-MOSFET and unipue bidirectional controlled single-ended conv,2017 IEEE 3rd International Future Energy Electronics Conference and ECCE Asia,IEEE,2017年,pp.298-303,
(58)【調査した分野】(Int.Cl.,DB名)
H02J 50/00 - 50/90
H02J 7/00 - 7/12
H02J 7/34 - 7/36
H02M 7/42 - 7/98
B60L 1/00 - 3/12
B60L 7/00 - 13/00
B60L 15/00 - 58/40
(57)【特許請求の範囲】
【請求項1】
第1直流電源に接続される第1給電装置と、
第2直流電源に接続される第2給電装置と、
前記第1給電装置および前記第2給電装置を制御する制御部と、を備え、
前記第1給電装置と前記第2給電装置との間で電力の伝送を行う双方向無線給電装置であって、
前記第1給電装置は、
第1伝送コイルと、
前記第1伝送コイルに直列接続された第1スイッチング素子と、
前記第1伝送コイルおよび前記第1スイッチング素子の少なくとも一方に並列接続された第1共振コンデンサと、を備え、
前記第2給電装置は、
第2伝送コイルと、
前記第2伝送コイルに直列接続された第2スイッチング素子と、
前記第2伝送コイルおよび前記第2スイッチング素子の少なくとも一方に並列接続された第2共振コンデンサと、を備え、
前記制御部は、
前記第1スイッチング素子が零電圧スイッチング動作を行うように、前記第1伝送コイルおよび前記第1共振コンデンサによる共振電圧に同期して前記第1スイッチング素子のターンオンを制御する第1ターンオン制御回路と、
前記第2スイッチング素子が零電圧スイッチング動作を行うように、前記第2伝送コイルおよび前記第2共振コンデンサによる共振電圧に同期して前記第2スイッチング素子のターンオンを制御する第2ターンオン制御回路と、
前記第1スイッチング素子のスイッチングと前記第2スイッチング素子のスイッチングとが所定の位相差を持つように制御する相互位相シフト制御回路と、を備え
、
前記第1ターンオン制御回路は、前記第1スイッチング素子のターンオンから所定時間経過後に前記第1スイッチング素子をターンオフさせ、
前記相互位相シフト制御回路は、
前記第2給電装置から前記第2直流電源への出力を検知する検知回路と、
前記電力が所定の目標値となるように、前記出力に応じた信号値と前記目標値に応じた基準信号値との差分に基づいて、前記位相差の制御指令を生成する比較回路と、
前記制御指令に基づいて、前記第1スイッチング素子のターンオフと前記第2スイッチング素子のターンオフとが前記位相差を持つように、前記第2スイッチング素子をターンオフさせるための制御信号を生成するターンオフ位相差制御回路と、を備え、
前記第2ターンオン制御回路は、前記制御信号に応じて前記第2スイッチング素子をターンオフさせる
ことを特徴とする双方向無線給電装置。
【請求項2】
前記位相差は、45度~315度である
ことを特徴とする請求項
1に記載の双方向無線給電装置。
【請求項3】
第1直流電源に接続される第1給電装置と、
第2直流電源に接続される第2給電装置と、
前記第1給電装置および前記第2給電装置を制御する制御部と、を備え、
前記第1給電装置と前記第2給電装置との間で電力の伝送を行う双方向無線給電装置であって、
前記第1給電装置は、
第1伝送コイルと、
前記第1伝送コイルに直列接続された第1スイッチング素子と、
前記第1伝送コイルおよび前記第1スイッチング素子の少なくとも一方に並列接続された第1共振コンデンサと、を備え、
前記第2給電装置は、
第2伝送コイルと、
前記第2伝送コイルに直列接続された第2スイッチング素子と、
前記第2伝送コイルおよび前記第2スイッチング素子の少なくとも一方に並列接続された第2共振コンデンサと、を備え、
前記制御部は、
前記第1スイッチング素子が零電圧スイッチング動作を行うように、前記第1伝送コイルおよび前記第1共振コンデンサによる共振電圧に同期して前記第1スイッチング素子のターンオンを制御する第1ターンオン制御回路と、
前記第2スイッチング素子が零電圧スイッチング動作を行うように、前記第2伝送コイルおよび前記第2共振コンデンサによる共振電圧に同期して前記第2スイッチング素子のターンオンを制御する第2ターンオン制御回路と、
前記第1スイッチング素子のスイッチングと前記第2スイッチング素子のスイッチングとが所定の位相差を持つように制御する相互位相シフト制御回路と、を備え
前記第1ターンオン制御回路は、前記第1スイッチング素子のターンオンから所定時間経過後に前記第1スイッチング素子をターンオフさせ、
前記相互位相シフト制御回路は、
直接的または間接的に前記位相差を検知する位相差検出器と、
直接的または間接的に前記位相差の目標値を指令する位相差指令器と、
前記位相差検出器の検出値と前記位相差指令器の前記目標値とを比較して前記位相差の帰還制御を行う帰還制御部と、
前記帰還制御部の出力に応じて前記第2スイッチング素子の導通時間を変化させる
ための制御信号を生成する導通時間可変部と、を備え
、
前記第2ターンオン制御回路は、前記制御信号に応じて前記第2スイッチング素子をターンオフさせる
ことを特徴とす
る双方向無線給電装置。
【請求項4】
前記位相差検出器は伝送電力を検出することによって間接的に前記位相差を検出し、
前記位相
差指令器は伝送電力を指令することによって間接的に前記目標値を指令する
ことを特徴とする請求項
3に記載の双方向無線給電装置。
【請求項5】
前記相互位相シフト制御回路は、前記第1伝送コイルの電圧の変化を磁気的または電界的に非接触で検知する検知素子を備える
ことを特徴とする請求項1に記載の双方向無線給電装置。
【請求項6】
前記相互位相シフト制御回路は、前記第1給電装置の動作周波数が所定の値になるように前記第1スイッチング素子の導通時間を制御する導通時間制御回路を備える
ことを特徴とする請求項1に記載の双方向無線給電装置。
【請求項7】
前記相互位相シフト制御回路は、前記第1スイッチング素子のスイッチングのタイミングを光または電波で送信するタイミング送信回路と、前記タイミング送信回路から送信された光または電波を受信するタイミング受信回路と、を備える
ことを特徴とする請求項1に記載の双方向無線給電装置。
【請求項8】
第1直流電源に接続される第1給電装置と、
第2直流電源に接続される第2給電装置と、
前記第1給電装置および前記第2給電装置を制御する制御部と、を備え、
前記第1給電装置と前記第2給電装置との間で電力の伝送を行う双方向無線給電装置であって、
前記第1給電装置は、
第1伝送コイルと、
前記第1伝送コイルに直列接続された第1スイッチング素子と、
前記第1伝送コイルおよび前記第1スイッチング素子の少なくとも一方に並列接続された第1共振コンデンサと、を備え、
前記第2給電装置は、
第2伝送コイルと、
前記第2伝送コイルに直列接続された第2スイッチング素子と、
前記第2伝送コイルおよび前記第2スイッチング素子の少なくとも一方に並列接続された第2共振コンデンサと、を備え、
前記制御部は、
前記第1スイッチング素子が零電圧スイッチング動作を行うように、前記第1伝送コイルおよび前記第1共振コンデンサによる共振電圧に同期して前記第1スイッチング素子のターンオンを制御する第1ターンオン制御回路と、
前記第2スイッチング素子が零電圧スイッチング動作を行うように、前記第2伝送コイルおよび前記第2共振コンデンサによる共振電圧に同期して前記第2スイッチング素子のターンオンを制御する第2ターンオン制御回路と、
前記第1スイッチング素子のスイッチングと前記第2スイッチング素子のスイッチングとが所定の位相差を持つように制御する相互位相シフト制御回路と、を備え
前記第1ターンオン制御回路は、前記第1スイッチング素子のターンオンから所定時間経過後に前記第1スイッチング素子をターンオフさせ、
前記第2スイッチング素子は、トランジスタと、前記トランジスタに逆並列接続された逆並列ダイオードとを含み、
前記相互位相シフト制御回路は、
直接的または間接的に前記位相差を検知する位相差検出器と、
直接的または間接的に前記位相差の目標値を指令する位相差指令器と、
前記位相差検出器の検出値と前記位相差指令器の前記目標値とを比較して前記位相差の帰還制御を行う帰還制御部と、
前記第2伝送コイルを流れる電流のゼロクロス点を検出する共振電流検知器と、
前記共振電流検知器の検出結果および前記帰還制御部の出力に応じて、前記逆並列ダイオードがターンオフした後の前記トランジスタのオン時間を制御する
ための制御信号を生成する導通時間可変部と、を備え
、
前記第2ターンオン制御回路は、前記制御信号に応じて前記第2スイッチング素子をターンオフさせる
ことを特徴とす
る双方向無線給電装置。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、双方向無線給電装置に関する。
【背景技術】
【0002】
電気自動車やプラグインハイブリッド車等の電動車の電力と住宅や配電系の電力とを双方向につないで相互融通する従来のV2H(Vehicle to Home)システムあるいはV2G(Vehicle to Grid)システムは、電力消費や自然エネルギー発電の平準化に有用であるが、給電装置と電動車とをケーブルで接続する必要があるため手間がかかる。
【0003】
特許文献1に記載の双方向無線給電装置は、コイルによる磁界の結合を利用して電力伝送を行うため、ケーブル接続が不要になる。しかしながら、特許文献1に記載の双方向無線給電装置は、各給電装置が複数のパワー半導体で動作するブリッジコンバータで構成されているため、高価で大型になるという問題がある。
【0004】
一方、非特許文献1に記載の双方向無線給電装置は、各給電装置が単一のパワー半導体で動作する1石式コンバータで構成されているため、特許文献1に記載の双方向無線給電装置に比べ、大幅な低コスト化および小型化を図ることができる。
【先行技術文献】
【特許文献】
【0005】
【非特許文献】
【0006】
【文献】大森英樹、外7名“A Wireless V2H Apparatus with a New SiC-MOSFET and Unique Bidirectional Controlled Single-Ended Converter”、[online]、2017年7月27日、IEEE、[平成30年10月24日検索]、インターネット<URL: https://umexpert.um.edu.my/file/publication/00005361_159948_71519.pdf>
【発明の概要】
【発明が解決しようとする課題】
【0007】
しかしながら、非特許文献1に記載の双方向無線給電装置は、実用化のために2つの問題がある。1つは、回路ばらつきに対する伝送特性の安定性であって、伝送コイルや共振キャパシタにおいて通常起こり得る定数バラツキに対して大幅に伝送電力が変動するため、量産性や互換性が問題になる。
【0008】
もう1つは、伝送電力の制御性であって、1石式コンバータは周波数を変えて伝送電力を可変する周波数制御方式になるが、国際規格などで定められた基準周波数帯は一般に十分広くはないので、所定の伝送電力可変範囲を得られないことが問題になる。
【0009】
本発明は上記事情に鑑みてなされたものであって、その課題とするところは、装置の低コスト化および小型化を実現しつつ、伝送特性の安定性および伝送電力の制御性を向上させた双方向無線給電装置を提供することにある。
【課題を解決するための手段】
【0010】
上記課題を解決するために、本発明に係る双方向無線給電装置は、
第1直流電源に接続される第1給電装置と、
第2直流電源に接続される第2給電装置と、
前記第1給電装置および前記第2給電装置を制御する制御部と、を備え、
前記第1給電装置と前記第2給電装置との間で電力の伝送を行う双方向無線給電装置であって、
前記第1給電装置は、
第1伝送コイルと、
前記第1伝送コイルに直列接続された第1スイッチング素子と、
前記第1伝送コイルおよび前記第1スイッチング素子の少なくとも一方に並列接続された第1共振コンデンサと、を備え、
前記第2給電装置は、
第2伝送コイルと、
前記第2伝送コイルに直列接続された第2スイッチング素子と、
前記第2伝送コイルおよび前記第2スイッチング素子の少なくとも一方に並列接続された第2共振コンデンサと、を備え、
前記制御部は、
前記第1スイッチング素子が零電圧スイッチング動作を行うように、前記第1伝送コイルおよび前記第1共振コンデンサによる共振電圧に同期して前記第1スイッチング素子のターンオンを制御する第1ターンオン制御回路と、
前記第2スイッチング素子が零電圧スイッチング動作を行うように、前記第2伝送コイルおよび前記第2共振コンデンサによる共振電圧に同期して前記第2スイッチング素子のターンオンを制御する第2ターンオン制御回路と、
前記第1スイッチング素子のスイッチングと前記第2スイッチング素子のスイッチングとが所定の位相差を持つように制御する相互位相シフト制御回路と、を備えたことを特徴とする。
【0011】
この構成によれば、第1給電装置が第1スイッチング素子で動作する1石式コンバータで構成され、第2給電装置が第2スイッチング素子で動作する1石式コンバータで構成されるため、装置の低コスト化および小型化を実現することができる。
【0012】
さらに、この構成によれば、第1スイッチング素子および第2スイッチング素子が零電圧スイッチング動作を行い、かつ第1スイッチング素子のスイッチングと第2スイッチング素子のスイッチングとが所定の位相差を持つように制御されるため、伝送特性の安定性および伝送電力の制御性を向上させることができる。
【0013】
上記双方向無線給電装置において、
前記相互位相シフト制御回路は、前記第1スイッチング素子のターンオフと前記第2スイッチング素子のターンオフとが前記位相差を持つように制御することが好ましい。
【0014】
上記双方向無線給電装置において、
前記位相差は、45度~315度であることが好ましい。
【0015】
上記双方向無線給電装置において、
前記相互位相シフト制御回路は、
直接的または間接的に前記位相差を検知する位相差検出器と、
直接的または間接的に前記位相差の目標値を指令する位相差指令器と、
前記位相差検出器の検出値と前記位相差指令器の前記目標値とを比較して前記位相差の帰還制御を行う帰還制御部と、
前記帰還制御部の出力に応じて前記第2スイッチング素子の導通時間を変化させる導通時間可変部と、を備えるよう構成できる。
【0016】
上記双方向無線給電装置において、
前記位相差検出器は伝送電力を検出することによって間接的に前記位相差を検出し、
前記位相指令器は伝送電力を指令することによって間接的に前記目標値を指令するよう構成できる。
【0017】
上記双方向無線給電装置において、
前記相互位相シフト制御回路は、前記第1伝送コイルの電圧の変化を磁気的または電界的に非接触で検知する検知素子を備えるよう構成できる。
【0018】
上記双方向無線給電装置において、
前記相互位相シフト制御回路は、前記第1給電装置の動作周波数が所定の値になるように前記第1スイッチング素子の導通時間を制御する導通時間制御回路を備えるよう構成できる。
【0019】
上記双方向無線給電装置において、
前記相互位相シフト制御回路は、前記第1伝送コイルと前記第2伝送コイルとの間の伝送電力が所定の値になるように前記位相差を制御するよう構成できる。
【0020】
上記双方向無線給電装置において、
前記相互位相シフト制御回路は、前記第1スイッチング素子のスイッチングのタイミングを光または電波で送信するタイミング送信回路と、前記タイミング送信回路から送信された光または電波を受信するタイミング受信回路と、を備えるよう構成できる。
【0021】
上記双方向無線給電装置において、
前記第2スイッチング素子は、トランジスタと、前記トランジスタに逆並列接続された逆並列ダイオードとを含み、
前記相互位相シフト制御回路は、
直接的または間接的に前記位相差を検知する位相差検出器と、
直接的または間接的に前記位相差の目標値を指令する位相差指令器と、
前記位相差検出器の検出値と前記位相差指令器の前記目標値とを比較して前記位相差の帰還制御を行う帰還制御部と、
前記第2伝送コイルを流れる電流のゼロクロス点を検出する共振電流検知器と、
前記共振電流検知器の検出結果および前記帰還制御部の出力に応じて、前記逆並列ダイオードがターンオフした後の前記トランジスタのオン時間を制御する導通時間可変部と、を備えるよう構成できる。
【発明の効果】
【0022】
本発明によれば、装置の低コスト化および小型化を実現しつつ、伝送特性の安定性および伝送電力の制御性を向上させた双方向無線給電装置を提供することができる。
【図面の簡単な説明】
【0023】
【
図1】第1実施形態に係る双方向無線給電装置を示す図である。
【
図2】第1実施形態に係る双方向無線給電装置の各部のタイミングチャートである。
【
図3】位相差、伝送電力および動作周波数の関係を示す図である。
【
図4】第2実施形態に係る双方向無線給電装置を示す図である。
【
図5】第2実施形態に係る双方向無線給電装置の動作原理図である。
【
図6】第3実施形態に係る双方向無線給電装置を示す図である。
【
図7】第3実施形態に係る双方向無線給電装置の各部のタイミングチャートである。
【発明を実施するための形態】
【0024】
以下、添付図面を参照して、本発明に係る双方向無線給電装置の実施形態について説明する。
【0025】
[第1実施形態]
図1に、本発明の第1実施形態に係る双方向無線給電装置1Aを示す。双方向無線給電装置1Aは、第1直流電源2に接続された第1給電装置10と、第2直流電源3に接続された第2給電装置20と、制御部30とを備え、第1直流電源2と第2直流電源3との間で電力の授受を行う。
【0026】
第1直流電源2は、第1電池E1と、第1コンデンサC3と、第1コイルL3とを備える。第1電池E1は、例えば、家庭に設置された蓄電池である。第1コンデンサC3は、一端が第1コイルL3を介して第1電池E1の高電位側に接続され、他端が第1電池E1の低電位側に接続される。
【0027】
第2直流電源3は、第2電池E2と、第2コンデンサC4と、第2コイルL4とを備える。第2電池E2は、例えば、電動車に搭載された蓄電池である。第2コンデンサC4は、一端が第2コイルL4を介して第2電池E2の高電位側に接続され、他端が第2電池E2の低電位側に接続される。
【0028】
第1給電装置10は、第1伝送コイルL1と、IGBT(絶縁ゲートトランジスタ)で構成された第1スイッチング素子SW1と、第1共振コンデンサC1と、を備える1石式コンバータである。第1伝送コイルL1は、一端が第1コイルL3を介して第1電池E1の高電位側に接続され、他端が第1スイッチング素子SW1の電流路を介して第1電池E1の低電位側に接続される。第1共振コンデンサC1は、第1伝送コイルL1および第1スイッチング素子SW1の少なくとも一方(本実施形態では、第1伝送コイルL1)に並列接続される。
【0029】
第2給電装置20は、第2伝送コイルL2と、IGBT(絶縁ゲートトランジスタ)で構成された第2スイッチング素子SW2と、第2共振コンデンサC2と、を備える1石式コンバータである。第2伝送コイルL2は、一端が第2コイルL4を介して第2電池E2の高電位側に接続され、他端が第2スイッチング素子SW2の電流路を介して第2電池E2の低電位側に接続される。第2共振コンデンサC2は、第2伝送コイルL2および第2スイッチング素子SW2の少なくとも一方(本実施形態では、第2伝送コイルL2)に並列接続される。
【0030】
第1伝送コイルL1と第2伝送コイルL2とは、0.5以下の結合係数で磁気結合している。また、第1スイッチング素子SW1および第2スイッチング素子SW2について、本実施形態では、IGBTを用いているが、MOSFETやバイポーラトランジスタなど自己ターンオフ機能を持つスイッチング素子を用いてもよい。
【0031】
制御部30は、第1ターンオン制御回路(31,32)と、第2ターンオン制御回路(33,34)と、相互位相シフト制御回路(35~39)とを備える。
【0032】
第1ターンオン制御回路は、第1共振電圧検知回路31と、第1同期回路32とを備える。第1共振電圧検知回路31は、第1伝送コイルL1(第1共振コンデンサC1)の両端電圧VR1を測定することで、第1伝送コイルL1および第1共振コンデンサC1による第1共振電圧を検出するよう構成される。第1同期回路32は、第1スイッチング素子SW1が零電圧スイッチング動作を行うように、第1共振電圧に同期して第1スイッチング素子SW1のターンオンを制御するよう構成される。
【0033】
第2ターンオン制御回路は、第2共振電圧検知回路33と、第2同期回路34とを備える。第2共振電圧検知回路33は、第2伝送コイルL2(第2共振コンデンサC2)の両端電圧VR2を測定することで、第2伝送コイルL2および第2共振コンデンサC2による第2共振電圧を検出するよう構成される。第2同期回路34は、第2スイッチング素子SW2が零電圧スイッチング動作を行うように、第2共振電圧に同期して第2スイッチング素子SW2のターンオンを制御するよう構成される。
【0034】
相互位相シフト制御回路は、タイミング送信回路35と、タイミング受信回路36と、検知回路37と、比較回路38と、ターンオフ位相差制御回路39とを備える。
【0035】
タイミング送信回路35は、第1スイッチング素子SW1のスイッチングのタイミング信号を光または電波で送信するよう構成される。タイミング受信回路36は、タイミング送信回路から送信されたタイミング信号を受信するよう構成される。本実施形態では、タイミング送信回路35が発光ダイオードを含み、タイミング受信回路36がフォトトランジスタを含む。
【0036】
検知回路37は、第2給電装置20と第2直流電源3との間を流れる電流を検出し、検出結果に応じた信号(例えば、電圧信号)を比較回路38に出力するよう構成される。
【0037】
比較回路38は、第1伝送コイルL1と第2伝送コイルL2との間の伝送電力が所定の目標値となるように、位相差の制御指令値を出力するよう構成される。比較回路38は、例えば、差動増幅器を含み、差動増幅器の反転入力端子に伝送電力の目標値に応じた基準電圧Vrefが入力され、差動増幅器の非反転入力端子に検知回路37からの信号が入力される。比較回路38は、両者の差分に応じた信号を、位相差の制御指令値としてターンオフ位相差制御回路39に出力する。
【0038】
ターンオフ位相差制御回路39は、タイミング受信回路36の出力および比較回路38の出力に基づいて、第1スイッチング素子SW1のターンオフと第2スイッチング素子SW2のターンオフとが所定の位相差を持つように、第2同期回路34に制御信号を出力する(位相シフト制御)。第2同期回路34は、この制御信号に応じて第2スイッチング素子SW2をターンオフさせる。
【0039】
次に、
図2を参照して、双方向無線給電装置1Aの制御について説明する。
図2において、(A)は第1スイッチング素子SW
1の両端電圧V
SW1の波形、(B)は第1スイッチング素子SW
1を流れる電流I
SW1の波形、(C)は第1伝送コイルL
1の両端電圧V
R1の波形、(D)は第1スイッチング素子SW
1のゲート電圧V
g1の波形、(E)は第2スイッチング素子SW
2のゲート電圧V
g2の波形、(F)は第2伝送コイルL
2の両端電圧V
R2の波形、(G)は第2スイッチング素子SW
2を流れる電流I
SW2の波形、(H)は第2スイッチング素子SW
2の両端電圧V
SW2の波形である。
【0040】
第1スイッチング素子SW1がOFFの期間TOFF1では、第1伝送コイルL1の両端電圧VR1は、第1伝送コイルL1と第1共振コンデンサC1による第1共振電圧が発生している。
【0041】
第1スイッチング素子SW1の両端電圧VSW1は共振の弧を描き、緩やかに上昇した後、緩やかに下降して零に達する。時刻t1において電圧VSW1が零に達すると、第1スイッチング素子SW1を構成する第1逆並列ダイオードD1が自動的に導通し、第1スイッチング素子SW1が導通状態になる。
【0042】
電圧VR1が零と交差するゼロクロス点t0を第1共振電圧検知回路31が検出すると、第1共振電圧検知回路31に接続された第1同期回路32は、第1共振電圧のゼロクロス点t0に同期した時刻t2に、第1スイッチング素子SW1のゲート電圧Vg1をローレベルからハイレベルに切り替えて第1スイッチング素子SW1を構成する第1トランジスタQ1を導通させる。すなわち、第1同期回路32は、第1スイッチング素子SW1が零電圧スイッチング動作を行うようにターンオンさせる。
【0043】
ここで、第1スイッチング素子SW1の両端電圧VSW1は、負荷(例えば、第1直流電源2)の状態によっては振幅が小さくなり零に達しない場合があるが、第1伝送コイルL1の両端電圧VR1の波形は振幅の大きさに関わらず零と交差する。そこで、本実施形態では、第1共振電圧検知回路31がゼロクロス点t0を検出する構成をとっている。
【0044】
また、第1スイッチング素子SW1の零電圧スイッチング動作を実現するためには、時刻t1に第1スイッチング素子SW1をターンオンさせてもよいが、時刻t1は負荷の状態によってタイミングがずれることがある。そこで、本実施形態では、時刻t1よりも後の時刻t2において第1スイッチング素子SW1をターンオンさせることで、若干の余裕を持たせている。
【0045】
第1スイッチング素子SW1が導通している期間TON1では第1伝送コイルL1に第1電池E1の直流電圧が印加されている状態になるので、第1スイッチング素子SW1を流れる電流ISW1は直線的に増大する。電流ISW1が負から正に転流すると第1逆並列ダイオードD1に流れていた電流はスムーズに第1トランジスタQ1に流れ、第1スイッチング素子SW1の導通状態が継続する。
【0046】
第1同期回路32は、予め設定された時間TON1が経過した時刻t6において、スイッチング素子SW1のゲート電圧Vg1をハイレベルからローレベルに切り替えて、第1トランジスタQ1を遮断させる。これにより、第1スイッチング素子SW1がターンオフし、第1伝送コイルL1に蓄えられていた電流が第1共振コンデンサC1に流れ込んで共振状態となり、発振が継続する。
【0047】
第2スイッチング素子SW2がOFFの期間TOFF2では、第2伝送コイルL2の両端電圧VR2は、第2伝送コイルL2と第2共振コンデンサC2による第2共振電圧が発生している。
【0048】
第2スイッチング素子SW2の両端電圧VSW2は共振の弧を描き、緩やかに上昇した後、緩やかに下降して零に達する。時刻t4において電圧VSW2が零に達すると、第2スイッチング素子SW2を構成する第2逆並列ダイオードD2が自動的に導通し、第2スイッチング素子SW2が導通状態になる。
【0049】
電圧VR2が零と交差するゼロクロス点t3を第2共振電圧検知回路33が検出すると、第2共振電圧検知回路33に接続された第2同期回路34は、第2共振電圧のゼロクロス点t3に同期した時刻t5に、第2スイッチング素子SW2のゲート電圧Vg2をローレベルからハイレベルに切り替えて第2スイッチング素子SW2を構成する第2トランジスタQ2を導通させる。すなわち、第2同期回路34は、第2スイッチング素子SW2が零電圧スイッチング動作を行うようにターンオンさせる。
【0050】
第2スイッチング素子SW2が導通している期間TON2では第2伝送コイルL2に第2電池E2の直流電圧が印加されている状態になるので、第2スイッチング素子SW2を流れる電流ISW2は直線的に増大する。電流ISW2が負から正に転流すると第2逆並列ダイオードD2に流れていた電流はスムーズに第2トランジスタQ2に流れ、第2スイッチング素子SW2の導通状態が継続する。
【0051】
時刻t6において、第1スイッチング素子SW1のゲート電圧Vg1がハイレベルからローレベルに転じて第1スイッチング素子SW1がターンオフすると、タイミング送信回路35からタイミング受信回路36にタイミング信号が送られる。
【0052】
タイミング受信回路36に接続されたターンオフ位相差制御回路39は、時刻t6から位相シフト時間Tφだけ遅れた時刻t7において、第2同期回路34が第2スイッチング素子SW2のゲート電圧Vg2をハイレベルからローレベルに切り替えて第2スイッチング素子SW2をターンオフさせるように、第2同期回路34に制御信号を出力する。第2スイッチング素子SW2がターンオフすると、第2伝送コイルL2に蓄えられた電流は第2共振コンデンサC2に流れ込んで共振状態となり、発振が継続する。
【0053】
本実施形態によれば、以上の動作により、第1スイッチング素子SW1および第2スイッチング素子SW2はスイッチング損失の小さい零電圧スイッチングを維持しつつ、第2スイッチング素子SW2のターンオフの位相を第1スイッチング素子SW1のターンオフの位相よりも時間Tφだけ(位相角でφ=2πTφ/To(To:動作周期)だけ)シフトさせることができる。
【0054】
結局、本実施形態に係る双方向無線給電装置1Aによれば、第1給電装置10が第1スイッチング素子SW1で動作する1石式コンバータで構成され、第2給電装置20が第2スイッチング素子SW2で動作する1石式コンバータで構成されるため、複数のパワー半導体を用いるブリッジコンバータ式双方向給電装置と比較すると、装置の低コスト化および小型化を実現することができる。
【0055】
加えて、本実施形態に係る双方向無線給電装置1Aによれば、回路定数ばらつきによる伝送電力変動の主要な原因である第1給電装置10と第2給電装置20との伝送電力の位相差を、ターンオフ位相差制御回路39の位相シフト制御によって補償する結果、極めて小さな変動となり十分な量産性や互換性を得ることができる。すなわち、本実施形態によれば、伝送特性の安定性を向上させることができる。
【0056】
図3に、位相差、伝送電力および動作周波数の関係を示す。実線は伝送電力(左軸)、破線は動作周波数(右軸)である。同図から分かるように、本実施形態によれば、動作周波数がほぼ一定のまま、伝送電力を0から最大値(
図3では、4.8kW)まで制御できる。すなわち、本実施形態によれば、伝送電力の制御性を向上させることができる。
【0057】
また、
図3から分かるように、位相シフト制御する位相範囲は全伝送電力範囲を双方向に制御でき、45度から315度は位相差に対して伝送電力の変化が緩やかであるので安定して制御しやすい。特に、本実施形態のように、第1スイッチング素子SW
1のターンオフを検知してから時間T
φだけ遅延を与えて第2スイッチング素子SW
2をターンオフさせる瞬時制御の場合は、0度近辺や負の位相差の領域は制御できない領域になるが、45度から315度ならば全域(全伝送電力範囲)を安定して制御することができる。さらに、所望の動作点で安定して制御する観点からは、60度から300度の位相範囲で位相シフト制御することが好ましい。
【0058】
[第2実施形態]
図4に、本発明の第2実施形態に係る双方向無線給電装置1Bを示す。双方向無線給電装置1Bは、第1直流電源2に接続された第1給電装置10と、第2直流電源3に接続された第2給電装置20と、制御部40とを備え、第1直流電源2と第2直流電源3との間で電力の授受を行う。
【0059】
第1直流電源2、第1給電装置10、第2直流電源3および第2給電装置20の構成は、第1実施形態と共通しているので、ここでは説明を省略する。
【0060】
制御部40は、第1ターンオン制御回路(31,32)と、第2ターンオン制御回路(33,34)と、相互位相シフト制御回路(41~44)とを備える。第1ターンオン制御回路(31,32)および第2ターンオン制御回路(33,34)は、第1実施形態と共通している。
【0061】
第1ターンオン制御回路は、第1共振電圧検知回路31と、第1同期回路32とを備える。第1共振電圧検知回路31は、第1伝送コイルL1の両端電圧VR1を測定することで、第1伝送コイルL1および第1共振コンデンサC1による第1共振電圧を検出するよう構成される。第1同期回路32は、第1スイッチング素子SW1が零電圧スイッチング動作を行うように、第1共振電圧に同期して第1スイッチング素子SW1のターンオンを制御するとともに、予め設定された所定の導通時間TON1を維持するよう構成される。
【0062】
第2ターンオン制御回路は、第2共振電圧検知回路33と、第2同期回路34とを備える。第2共振電圧検知回路33は、第2伝送コイルL2の両端電圧VR2を測定することで、第2伝送コイルL2および第2共振コンデンサC2による第2共振電圧を検出するよう構成される。第2同期回路34は、第2スイッチング素子SW2が零電圧スイッチング動作を行うように、第2共振電圧に同期して第2スイッチング素子SW2のターンオンを制御するよう構成される。
【0063】
相互位相シフト制御回路は、位相差検出器41と、位相差指令器42と、差動増幅器43(本発明の「帰還制御部」に相当)と、導通時間可変部44とを備える。
【0064】
位相差検出器41は、第1伝送コイルL
1と第2伝送コイルL
2との間の伝送電力を検出することによって、間接的に位相差を検出するよう構成される。伝送電力は位相差と相関があるため(
図3参照)、伝送電力によって位相差を間接的に検出、制御することができる。なお、位相差検出器41に代えて、直接的に位相差を検出するよう構成された位相差検出器を用いてもよい。
【0065】
位相差指令器42は、第1伝送コイルL1と第2伝送コイルL2との間の伝送電力の目標値を指令することによって、間接的に位相差の目標値を指令するよう構成される。なお、位相差指令器42に代えて、直接的に位相差の目標値を指令するよう構成された位相差指令器を用いてもよい。
【0066】
差動増幅器43は、位相差検出器41により検出された検出値と位相差指令器42により指令された目標値とを比較し、位相差の帰還制御を行うよう構成される。本実施形態では、差動増幅器43の非反転入力端子に検出値が入力され、反転入力端子に目標値が入力される。差動増幅器43は、両者の差分に応じた信号を、位相差の制御指令値として導通時間可変部44に出力する。
【0067】
導通時間可変部44は、差動増幅器43から入力された信号に応じて第2同期回路34を制御し、第2スイッチング素子SW2の導通時間を変化させる。具体的には、導通時間可変部44は、第1スイッチング素子SW1のターンオフと第2スイッチング素子SW2のターンオフとが所定の位相差を持つように、第2同期回路34に制御信号を出力する(位相シフト制御)。第2同期回路34は、この制御信号に応じて第2スイッチング素子SW2をターンオフさせる。
【0068】
図5に、双方向無線給電装置1Bの動作原理図を示す。双方向無線給電装置1Bは、第1演算部51と、フィルタ部52と、第2演算部53と、ゲイン設定部54と、電圧制御発信部55とで表すことができる。
【0069】
第1演算部51は、位相差検出器41を表し、伝送電力から求めた第1給電装置10側の位相Φ1および第2給電装置20側の位相Φ2の位相差ΔΦを算出する。伝送電力以外のものから求めた第1給電装置10側の位相Φ1および第2給電装置20側の位相Φ2の位相差ΔΦを算出してもよい。フィルタ部52、すなわち伝達関数F(S)は、位相差検出器41に含まれるシステム安定化のためのローパスフィルタを表す。
【0070】
第2演算部53は、フィルタ部52の出力と位相差指令ΔΦrとの差分を算出する。第2演算部53は差動増幅器43を表し、位相差指令ΔΦrは位相差指令器42から出力される位相差の目標値を表す。ゲイン設定部54、すなわちKのブロックは、制御ループ全体のゲインを集約したものを表す。
【0071】
電圧制御発信部55、すなわち1/Sのブロックは、導通時間可変部44、第2同期回路34および第2給電装置20を集約したものを表す。電圧制御発信部55は、第2スイッチング素子SW2の導通時間が変化する結果、動作周波数が変化する電圧制御発信器となるので、動作位相に対しては積分器として働く。
【0072】
図5から、第2給電装置20の位相Φ
2は次式で表すことができる。
【数1】
【0073】
(1)式から分かるように、双方向無線給電装置1Bは、定常的には第2給電装置20側の位相Φ2と第1給電装置10側の位相Φ1との位相差ΔΦが位相差指令ΔΦr(位相差の目標値)になるように動作する。
【0074】
本実施形態に係る双方向無線給電装置1Bは、第1実施形態のような瞬時制御でないので応答に遅延があるが、第1実施形態のタイミング送信回路35およびタイミング受信回路36が不要になるので、低コストであり、外乱ノイズに強い。
【0075】
[第3実施形態]
図6に、本発明の第3実施形態に係る双方向無線給電装置1Cを示す。双方向無線給電装置1Cは、第1直流電源2に接続された第1給電装置10と、第2直流電源3に接続された第2給電装置20と、制御部60とを備え、第1直流電源2と第2直流電源3との間で電力の授受を行う。
【0076】
第1直流電源2、第1給電装置10、第2直流電源3および第2給電装置20の構成は、第2実施形態と共通しているので、ここでは説明を省略する。
【0077】
制御部60は、第1ターンオン制御回路(31,32)と、第2ターンオン制御回路(33,34)と、相互位相シフト制御回路(41~43,61~63)とを備える。第1ターンオン制御回路(31,32)および第2ターンオン制御回路(33,34)の構成は、第2実施形態と共通している。
【0078】
相互位相シフト制御回路は、位相差検出器41と、位相差指令器42と、差動増幅器43と、共振電流検知素子61と、共振電流検知回路62と、導通時間可変部63とを備える。位相差検出器41、位相差指令器42および差動増幅器43の構成は、第2実施形態と共通している。
【0079】
共振電流検知素子61および共振電流検知回路62は、本発明の「共振電流検知器」に相当する。共振電流検知素子61は、第2伝送コイルL2を流れる電流を検出し、検出結果を共振電流検知回路62に出力する。共振電流検知回路62は、共振電流検知素子61の検出結果に基づいて第2伝送コイルL2を流れる電流のゼロクロス点を検出し、検出結果(ゼロクロス信号)を導通時間可変部63に出力する。
【0080】
少なくとも第2スイッチング素子SW2が導通している期間は、第2伝送コイルL2を流れる電流と第2スイッチング素子SW2を流れる電流ISW2とが等しくなる。このため、第2伝送コイルL2を流れる電流のゼロクロス点を検出することは、第2スイッチング素子SW2の電流ISW2のゼロクロス点を検出することと同じである。
【0081】
第2スイッチング素子SW2では、電流ISW2がゼロクロス点に達すると、第2逆並列ダイオードD2がターンオフし、第2逆並列ダイオードD2に流れていた電流は第2トランジスタQ2に流れる。すなわち、電流ISW2のゼロクロス点は、第2逆並列ダイオードD2がターンオフするタイミングである。なお、第2逆並列ダイオードD2は、第2トランジスタQ2の内蔵(寄生)ダイオード、または第2トランジスタQ2とは独立したダイオードである。
【0082】
導通時間可変部63は、第2逆並列ダイオードD2がターンオフした後の第2トランジスタQ2のオン時間を制御するよう構成される。導通時間可変部63には、共振電流検知回路62からゼロクロス信号が入力されるとともに、差動増幅器43から位相差の制御指令値(より詳しくは、位相差と相関がある伝送電力の制御指令値)に関する信号が入力される。制御指令値は、位相差検出器41により検出された検出値を位相差指令器42により指令された目標値に近づけるための(帰還制御のための)指令値である。
【0083】
導通時間可変部63は、これらの信号に基づいて、第2逆並列ダイオードD2がターンオフした後の第2トランジスタQ2のオン時間を算出する。また、導通時間可変部63は、当該オン時間が経過した時点で第2トランジスタQ2をターンオフさせるためのタイミング信号を生成する。タイミング信号は、第2同期回路34に出力される。
【0084】
第2同期回路34は、タイミング信号に基づいて、第2トランジスタQ2をターンオフさせる。これにより、第1スイッチング素子SW1のターンオフと第2スイッチング素子SW2のターンオフとが所定の位相差を持つ位相シフト制御が実行される。
【0085】
図7に、双方向無線給電装置1Cの各部のタイミングチャートを示す。
図7において、(A)~(H)の各波形は
図2と同様の信号を示したものであり、(I)の波形は第2トランジスタQ
2のオン時間を制御するためのタイミング信号T
MOSの波形である。
【0086】
時刻t4において電圧VSW2が零に達すると、第2スイッチング素子SW2の第2逆並列ダイオードD2がターンオンし、第2スイッチング素子SW2が導通状態になる。第2スイッチング素子SW2が導通している期間TON2は、第2スイッチング素子SW2の電流ISW2は直線的に増大する。
【0087】
時刻t5’において電流ISW2が零に達すると、第2逆並列ダイオードD2がターンオフし、第2逆並列ダイオードD2に流れていた電流は第2トランジスタQ2に流れる。制御部60では、共振電流検知回路62が導通時間可変部63にゼロクロス信号を出力する。
【0088】
導通時間可変部63は、ゼロクロス信号と差動増幅器43から入力された制御指令値に関する信号とに基づいて、第2逆並列ダイオードD2がターンオフした後の第2トランジスタQ2のオン時間Tを算出し、オン時間Tに関するタイミング信号TMOSを生成する。導通時間可変部63は、生成したタイミング信号TMOSを第2同期回路34に出力する。
【0089】
第2同期回路34は、時刻t
7においてタイミング信号T
MOSがハイレベルからローレベルに切り替わるタイミングで、第2トランジスタQ
2のゲート電圧V
g2をハイレベルからローレベルに切り替えて、第2トランジスタQ
2をターンオフさせる。以降の制御は、
図2と同様である。
【0090】
本実施形態に係る双方向無線給電装置1Cは、第2実施形態と同様に、タイミング送信回路35およびタイミング受信回路36が不要になるので、低コストであり、外乱ノイズに強い。
【0091】
さらに、本実施形態に係る双方向無線給電装置1Cは、第2逆並列ダイオードD2がターンオフした後の第2トランジスタQ2のオン時間を制御するので、第2スイッチング素子SW2のオン時間(導通時間)を制御する通常の方法と比較すると、第2給電装置20を安定に制御することができる。
【0092】
第2スイッチング素子SW2のオン時間を制御する方法は、第2逆並列ダイオードD2のオン時間と第2トランジスタQ2のオン時間との和を制御することになる。この場合、ある1つの和に対して、第2逆並列ダイオードD2のオン時間と第2トランジスタQ2のオン時間との組み合わせは複数存在するので、第2トランジスタQ2のオン時間を一意に定めることができない。
【0093】
例えば、導通時間可変部63が第2スイッチング素子SW2のオン時間を算出し、第2スイッチング素子SW2が当該オン時間に従ってターンオフしたとしても、第2トランジスタQ2のオン時間が適正範囲から外れている場合は、第2給電装置20の動作は不安定になる。第2給電装置20の動作が不安定になると、第1給電装置10と第2給電装置20との位相差が不安定になり、第2スイッチング素子SW2に過大な電圧が発生したり、過大な電流が流れたりする。
【0094】
一方、本実施形態では、導通時間可変部63は、第2逆並列ダイオードD2がターンオフした後の第2トランジスタQ2のオン時間Tを算出するので、オン時間Tを一意に定めることができる。したがって、本実施形態では、第2トランジスタQ2のオン時間Tを位相差の目標値(伝送電力の目標値)に応じた適正範囲に収めることができ、第2給電装置20を安定に制御することができる。
【0095】
[変形例]
以上、本発明に係る双方向無線給電装置の実施形態について説明したが、本発明は上記実施形態に限定されるものではない。
【0096】
例えば、第1実施形態において、タイミング送信回路35およびタイミング受信回路36は省略してもよい。
【0097】
第1実施形態において、タイミング送信回路35およびタイミング受信回路36の代わりに、第1伝送コイルL1の電圧の変化を磁気的または電界的に非接触で検知する検知素子を用いてもよい。上記検知素子は、ノイズの影響を受けにくくするために、第2伝送コイルL2の中央部で巻線のない場所に設置することが好ましい。
【0098】
第1実施形態では、第1スイッチング素子SW1の導通時間TON1を固定値にしているが、これに代えて、第1スイッチング素子SW1の導通時間制御回路を設け、導通時間制御回路により第1給電装置10の動作周波数が所定の値になるように第1スイッチング素子SW1の導通時間を制御してもよい。
【0099】
第1および第2実施形態では、第1スイッチング素子SW1のターンオフと第2スイッチング素子SW2のターンオフとが所定の位相差を持つように制御しているが、第1スイッチング素子SW1のターンオンと第2スイッチング素子SW2のターンオンとが所定の位相差を持つように制御してもよい。すなわち、本発明の相互位相シフト制御回路は、第1スイッチング素子SW1のスイッチングと第2スイッチング素子SW2のスイッチングとが所定の位相差を持つように制御する構成をとることができる。但し、ターンオンのタイミングでは第1および第2スイッチング素子SW1、SW2がぞれぞれ零電圧スイッチング動作を行うように位相差を制御する必要があるのに対し、ターンオフのタイミングではそのような制約がない分、位相差の制御の自由度が高く、所望の電力を伝送する観点からは第1スイッチング素子SW1のターンオフと第2スイッチング素子SW2のターンオフとが所定の位相差を持つように制御することが好ましい。
【0100】
第1実施形態における制御部30は、第1給電装置10から第2給電装置20への電力伝送を行うための相互位相シフト制御回路(35~39)を備えているが、第2給電装置20から第1給電装置10への電力伝送を行うための相互位相シフト制御回路をさらに備えていてもよい。
【0101】
同様に、第2実施形態における制御部40および第3実施形態における制御部60は、第2給電装置20から第1給電装置10への電力伝送を行うための相互位相シフト制御回路をさらに備えていてもよい。
【0102】
また、第1~第3実施形態の双方向無線給電装置1A~1Cは、第1給電装置10と第2給電装置20との間で双方向の電力伝送を行う無線給電装置として構成されているが、第1給電装置10と第2給電装置20との間で片方向の電力伝送を行う無線給電装置として用いることができる。
【符号の説明】
【0103】
1A,1B,1C 双方向無線給電装置
2 第1直流電源
3 第2直流電源
10 第1給電装置
20 第2給電装置
30,40,60 制御部
31 第1共振電圧検知回路
32 第1同期回路
33 第2共振電圧検知回路
34 第2同期回路
35 タイミング送信回路
36 タイミング受信回路
37 検知回路
38 比較回路
39 ターンオフ位相差制御回路
41 位相差検出器
42 位相差指令器
43 差動増幅器
44 導通時間可変部
51 第1演算部
52 フィルタ部
53 第2演算部
54 ゲイン設定部
55 電圧制御発信部
61 共振電流検知素子
62 共振電流検知回路
63 導通時間可変部