IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ ストライカー・コーポレイションの特許一覧

特許7356523手術ナビゲーションのための障害物回避技法
<>
  • 特許-手術ナビゲーションのための障害物回避技法 図1
  • 特許-手術ナビゲーションのための障害物回避技法 図2
  • 特許-手術ナビゲーションのための障害物回避技法 図3
  • 特許-手術ナビゲーションのための障害物回避技法 図4
  • 特許-手術ナビゲーションのための障害物回避技法 図5
  • 特許-手術ナビゲーションのための障害物回避技法 図6
  • 特許-手術ナビゲーションのための障害物回避技法 図7
  • 特許-手術ナビゲーションのための障害物回避技法 図8
  • 特許-手術ナビゲーションのための障害物回避技法 図9
  • 特許-手術ナビゲーションのための障害物回避技法 図10
  • 特許-手術ナビゲーションのための障害物回避技法 図11
  • 特許-手術ナビゲーションのための障害物回避技法 図12
  • 特許-手術ナビゲーションのための障害物回避技法 図13
  • 特許-手術ナビゲーションのための障害物回避技法 図14
  • 特許-手術ナビゲーションのための障害物回避技法 図15
  • 特許-手術ナビゲーションのための障害物回避技法 図16
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2023-09-26
(45)【発行日】2023-10-04
(54)【発明の名称】手術ナビゲーションのための障害物回避技法
(51)【国際特許分類】
   A61B 34/10 20160101AFI20230927BHJP
【FI】
A61B34/10
【請求項の数】 28
(21)【出願番号】P 2021578151
(86)(22)【出願日】2020-07-02
(65)【公表番号】
(43)【公表日】2022-09-05
(86)【国際出願番号】 US2020040717
(87)【国際公開番号】W WO2021003401
(87)【国際公開日】2021-01-07
【審査請求日】2022-03-02
(31)【優先権主張番号】62/870,284
(32)【優先日】2019-07-03
(33)【優先権主張国・地域又は機関】US
(73)【特許権者】
【識別番号】506410062
【氏名又は名称】ストライカー・コーポレイション
(74)【代理人】
【識別番号】100099623
【弁理士】
【氏名又は名称】奥山 尚一
(74)【代理人】
【識別番号】100125380
【弁理士】
【氏名又は名称】中村 綾子
(74)【代理人】
【識別番号】100142996
【弁理士】
【氏名又は名称】森本 聡二
(74)【代理人】
【識別番号】100166268
【弁理士】
【氏名又は名称】田中 祐
(74)【代理人】
【識別番号】100168642
【弁理士】
【氏名又は名称】関谷 充司
(74)【代理人】
【識別番号】100169018
【弁理士】
【氏名又は名称】網屋 美湖
(74)【代理人】
【氏名又は名称】有原 幸一
(72)【発明者】
【氏名】マラコブスキー,ドナルド・ダブリュー.
(72)【発明者】
【氏名】ボス,ジョセフ
(72)【発明者】
【氏名】デルーカ,リチャード・トーマス
【審査官】山口 賢一
(56)【参考文献】
【文献】特表2019-501718(JP,A)
【文献】米国特許出願公開第2016/0191887(US,A1)
【文献】特表2019-523664(JP,A)
【文献】国際公開第2017/205351(WO,A1)
【文献】特表2018-506352(JP,A)
【文献】米国特許出願公開第2017/0189125(US,A1)
【文献】米国特許出願公開第2016/0242858(US,A1)
(58)【調査した分野】(Int.Cl.,DB名)
A61B 34/10
A61B 34/20
A61B 34/30
(57)【特許請求の範囲】
【請求項1】
外科的環境にある第1のオブジェクトの位置を検出するように構成されたローカライザと、
前記第1のオブジェクトの近傍の表面の実深度マップを生成するように構成された視覚デバイスと、
前記ローカライザ及び前記視覚デバイスに結合されたコントローラであって、前記コントローラが、
前記第1のオブジェクトに対応する仮想モデルにアクセスすることと、
共通座標系で前記ローカライザと前記視覚デバイスとの位置関係を特定することと、
前記ローカライザによって検出された前記第1のオブジェクトの前記位置、前記仮想モデル、及び前記位置関係に基づいて、前記視覚デバイスの予想深度マップを生成することと、
前記実深度マップと前記予想深度マップとの比較を行うことと、
前記比較に基づいて、前記実深度マップのうち前記予想深度マップと一致しない部分を特定することと、
前記部分に基づいて第2のオブジェクトを認識することと
を行うように構成される、前記コントローラと
を備える、ナビゲーションシステム。
【請求項2】
前記コントローラは、前記ローカライザによって検出された前記第1のオブジェクトの前記位置前記視覚デバイスによって生成された前記実深度マップにおける前記第2のオブジェクトの場所、及び前記共通座標系における前記ローカライザと前記視覚デバイスとの間の前記位置関係に基づいて、前記共通座標系における前記第1のオブジェクトに対する前記第2のオブジェクトの位置を特定するように構成される、請求項1に記載のナビゲーションシステム。
【請求項3】
前記第1のオブジェクトは、手術計画に従って治療すべき患者組織の標的体積を画定しており、前記コントローラは、
前記共通座標系における前記標的体積に対する前記第2のオブジェクトの前記位置と前記手術計画と、に基づいて、前記第2のオブジェクトが、前記手術計画に従って前記標的体積を治療するための手術具の計画された軌道に対する障害物であるかどうかを判定することと、
前記第2のオブジェクトが前記障害物であると判定したことに応答して、前記手術計画を修正すること、及び/又は通知をトリガすること、及び/又は手術ナビゲーションを停止することと、
を行うように構成される、請求項2に記載のナビゲーションシステム。
【請求項4】
前記第1のオブジェクトにトラッカが結合されて、前記第1のオブジェクトと前記トラッカの位置関係が固定されており、前記コントローラは、
前記ローカライザを介して、前記ローカライザに固有の第1の座標系で前記トラッカの位置を検出することと、
前記第1の座標系における前記トラッカの前記位置、及び前記第1の座標系における前記トラッカと前記第1のオブジェクトとの位置関係に基づいて、前記第1の座標系における前記仮想モデルの位置を特定することと、
前記第1の座標系における前記仮想モデルの前記位置、及び、前記視覚デバイスに固有の第2の座標系における前記ローカライザと前記視覚デバイスとの位置関係に基づいて、前記第1の座標系における前記仮想モデルの前記位置を、前記第2の座標系における前記仮想モデルの位置に変換することと、
前記第2の座標系における前記仮想モデルの前記位置に基づいて、前記予想深度マップを生成することと、
を行うように構成される、請求項1~3のいずれか1項に記載のナビゲーションシステム。
【請求項5】
前記コントローラは、
前記実深度マップ及び前記予想深度マップの対応する画像構成要素の各対について前記実深度マップの深度と前記予想深度マップの深度との差分を示す差分深度マップを生成することと、
前記差分深度マップのうち、閾値深度よりも大きい絶対深度を示す第1のセクションを決定することと、
前記実深度マップのうち、前記差分深度マップの前記第1のセクションに対応する第2のセクションを前記部分として特定することと、
を行うように構成されることにより、前記実深度マップと前記予想深度マップとの比較を行い、前記比較に基づいて、前記部分を特定するように構成される、請求項1~4のいずれか1項に記載のナビゲーションシステム。
【請求項6】
前記閾値深度は前記差分をフィルタ処理するためにゼロより大きい、請求項5に記載のナビゲーションシステム。
【請求項7】
前記コントローラは、前記差分深度マップの前記第1のセクションのサイズが最小サイズ閾値よりも大きいかどうかを判定すること、をさらに行うように構成され
前記コントローラが、前記第1のセクションの前記サイズが前記最小サイズ閾値よりも大きいと判定したことに応答して、前記第2のセクションを前記部分として特定する、請求項5又は請求項6に記載のナビゲーションシステム。
【請求項8】
前記コントローラは、前記部分と一致する所定のプロファイルに関連したオブジェクトを前記第2のオブジェクトとして特定するように構成されることにより、前記部分に基づいて前記第2のオブジェクトを認識する、請求項1~7のいずれか1項に記載のナビゲーションシステム。
【請求項9】
前記コントローラは、前記実深度マップに描かれた、前記第2のオブジェクトに対応する特徴的な配列の位置が、前記視覚デバイスによって後で生成される追加の実深度マップで変化しているかどうかを監視することにより、前記第2のオブジェクトの移動を追跡するように構成される、請求項1~8のいずれか1項に記載のナビゲーションシステム。
【請求項10】
前記コントローラは、前記共通座標系の前記第2のオブジェクトの表面に対応する仮想境界を生成するように構成されるとともに手術計画に従って治療すべき患者組織の標的体積を治療するための手術具の計画された軌道が前記仮想境界と衝突するかどうかを判定するように構成される、請求項1~9のいずれか1項に記載のナビゲーションシステム。
【請求項11】
前記コントローラは、前記仮想モデル、前記ローカライザによって検出された前記第1のオブジェクトの前記位置、及び共通座標系での前記ローカライザと前記視覚デバイスとの前記位置関係に基づいて、前記実深度マップを関心領域にトリミングするように構成され、前記コントローラは、前記トリミングされた実深度マップと前記予想深度マップとを比較するように構成されることにより、前記実深度マップと前記予想深度マップとの比較を行う、請求項1~10のいずれか1項に記載のナビゲーションシステム。
【請求項12】
前記コントローラは、
前記ローカライザ及び前記視覚デバイスの視界内の表面に光のパターンを投影することと、
前記ローカライザに固有の第1の座標系における前記パターンの位置を示す位置特定データを、前記ローカライザを用いて生成することと、
前記視覚デバイスによって生成された前記パターンを示す較正深度マップを受け取ることと、
前記較正深度マップに基づいて、前記視覚デバイスに固有の第2の座標系における前記パターンの位置を特定することと、
前記第1の座標系における前記パターンの前記位置と前記第2の座標系における前記パターンの前記位置とに基づいて、前記共通座標系における前記ローカライザと前記視覚デバイスとの前記位置関係を特定することと、
を行うように構成されることにより、前記共通座標系における前記ローカライザと前記視覚デバイスとの前記位置関係を特定するように構成される、請求項1~11のいずれか1項に記載のナビゲーションシステム。
【請求項13】
前記ローカライザは、第1のスペクトル帯の光を検出することで、前記第1のオブジェクトの前記位置を検出するように構成されており、前記視覚デバイスは、第2のスペクトル帯の光を検出することで、前記第1のオブジェクトの近傍の前記表面の前記実深度マップを生成するように構成されており、前記第1のスペクトル帯は前記第2のスペクトル帯とは異なる、請求項1~12のいずれか1項に記載のナビゲーションシステム。
【請求項14】
請求項1~13のいずれか1項に記載のナビゲーションシステムで利用されるロボットマニピュレータであって、前記ロボットマニピュレータは、手術具を支持し、複数のリンクと、前記リンクを動かして前記手術具を動かすように構成された複数のアクチュエータとを備え、前記ロボットマニピュレータは、前記手術具が前記第2のオブジェクトを回避するように制御される、前記ロボットマニピュレータ。
【請求項15】
外科的環境にある第1のオブジェクトの位置を検出するように構成されたローカライザと、前記第1のオブジェクトの近傍の表面の実深度マップを生成するように構成された視覚デバイスと、前記ローカライザ及び前記視覚デバイスに結合されたコントローラと、を含むナビゲーションシステムの作動方法であって、前記方法は、
前記コントローラが、前記第1のオブジェクトに対応する仮想モデルにアクセスすることと、
前記コントローラが、共通座標系で前記ローカライザと前記視覚デバイスとの位置関係を特定することと、
前記コントローラが、前記ローカライザによって検出された前記第1のオブジェクトの前記位置、前記仮想モデル、及び前記位置関係に基づいて、前記視覚デバイスの予想深度マップを生成することと、
前記コントローラが、前記実深度マップと前記予想深度マップとの比較を行うことと、
前記コントローラが、前記比較に基づいて、前記実深度マップのうち前記予想深度マップと一致しない部分を特定することと、
前記コントローラが、前記部分に基づいて第2のオブジェクトを認識することと
を含む、前記方法。
【請求項16】
前記コントローラが、前記ローカライザによって検出された前記第1のオブジェクトの前記位置前記視覚デバイスによって生成された前記実深度マップにおける前記第2のオブジェクトの場所、及び前記共通座標系における前記ローカライザと前記視覚デバイスとの間の前記位置関係に基づいて、前記共通座標系における前記第1のオブジェクトに対する前記第2のオブジェクトの位置を特定することをさらに含む、請求項15に記載の方法。
【請求項17】
前記第1のオブジェクトは、手術計画に従って治療すべき患者組織の標的体積を画定しており、
前記コントローラが、前記共通座標系における前記標的体積に対する前記第2のオブジェクトの前記位置と前記手術計画とに基づいて、前記第2のオブジェクトが、前記手術計画に従って前記標的体積を治療するための手術具の計画された軌道に対する障害物であるかどうかを判定することと、
前記コントローラが、前記第2のオブジェクトが前記障害物であると判定したことに応答して、前記手術計画を修正すること、及び/又は通知をトリガすること、及び/又は手術ナビゲーションを停止することと、
をさらに含む、請求項16に記載の方法。
【請求項18】
前記第1のオブジェクトにトラッカが結合されて、前記第1のオブジェクトと前記トラッカの位置関係が固定されており、
前記コントローラが、前記ローカライザを介して、前記ローカライザに固有の第1の座標系で前記トラッカの位置を検出することと、
前記コントローラが、前記第1の座標系における前記トラッカの前記位置、及び前記第1の座標系における前記トラッカと前記第1のオブジェクトとの位置関係に基づいて、前記第1の座標系における前記仮想モデルの位置を特定することと、
前記コントローラが、前記第1の座標系における前記仮想モデルの前記位置、及び、前記視覚デバイスに固有の第2の座標系における前記ローカライザと前記視覚デバイスとの位置関係に基づいて、前記第1の座標系における前記仮想モデルの前記位置を、前記第2の座標系における前記仮想モデルの位置に変換することと、
前記コントローラが、前記第2の座標系における前記仮想モデルの前記位置に基づいて、前記予想深度マップを生成することと、
をさらに含む、請求項15~17のいずれか1項に記載の方法。
【請求項19】
前記コントローラが前記部分を特定することは、
前記コントローラが、前記実深度マップ及び前記予想深度マップの対応する画像構成要素の各対について前記実深度マップの深度と前記予想深度マップの深度との差分を示す差分深度マップを生成することと、
前記コントローラが、前記差分深度マップのうち、閾値深度よりも大きい絶対深度を示す第1セクションを決定することと、
前記コントローラが、前記実深度マップのうち、前記差分深度マップの前記第1のセクションに対応する第2のセクションを前記部分として特定することと
を含む、請求項15~18のいずれか1項に記載の方法。
【請求項20】
前記閾値深度は前記差分をフィルタ処理するためにゼロより大きい、請求項19に記載の方法。
【請求項21】
前記コントローラが前記差分深度マップの前記第1のセクションのサイズが最小サイズ閾値よりも大きいかどうかを判定することと、
前記コントローラが、前記第1のセクションのサイズが前記最小サイズ閾値よりも大きいと判定したことに応答して、前記第2のセクションを前記部分として特定することと
を含む、請求項19又は請求項20に記載の方法。
【請求項22】
前記コントローラが、前記部分に基づいて前記第2のオブジェクトを認識することは、前記コントローラが、前記部分と一致する所定のプロファイルに関連したオブジェクトを前記第2のオブジェクトとして特定することを含む、請求項15~21のいずれか1項に記載の方法。
【請求項23】
前記コントローラが、前記実深度マップに描かれた、前記第2のオブジェクトに対応する特徴的な配列の位置が、前記視覚デバイスによって後で生成される追加の実深度マップで変化しているかどうかを監視することにより、前記第2のオブジェクトの移動を追跡することをさらに含む、請求項15~22のいずれか1項に記載の方法。
【請求項24】
前記コントローラが、前記共通座標系の前記第2のオブジェクトの表面に対応する仮想境界を生成手術計画に従って治療すべき患者組織の標的体積を治療するための手術具の計画された軌道が前記仮想境界と衝突するかどうかを判定することをさらに含む、請求項15~23のいずれか1項に記載の方法。
【請求項25】
前記コントローラが、前記仮想モデル、前記ローカライザによって検出された前記第1のオブジェクトの前記位置、及び共通座標系での前記ローカライザと前記視覚デバイスとの前記位置関係に基づいて、前記実深度マップを関心領域にトリミングすることをさらに含み、前記コントローラが前記実深度マップと前記予想深度マップとの比較を行うことは、前記トリミングされた実深度マップと前記予想深度マップとを比較することを含む、請求項15~24のいずれか1項に記載の方法。
【請求項26】
前記コントローラが、前記共通座標で前記ローカライザと前記視覚デバイスとの前記位置関係を特定することは、
前記コントローラが、前記ローカライザ及び前記視覚デバイスの視界内の表面に光のパターンを投影することと、
前記コントローラが、前記ローカライザに固有の第1の座標系における前記パターンの位置を示す位置特定データを、前記ローカライザを用いて生成することと、
前記コントローラが、前記視覚デバイスによって生成された前記パターンに対応する較正深度マップを受け取ることと、
前記コントローラが、前記較正深度マップに基づいて、前記視覚デバイスに固有の第2の座標系における前記パターンの位置を特定することと、
前記コントローラが、前記第1の座標系における前記パターンの前記位置と前記第2の座標系における前記パターンの前記位置とに基づいて、前記共通座標系における前記ローカライザと前記視覚デバイスとの前記位置関係を特定することと
を含む、請求項15~25のいずれか1項に記載の方法。
【請求項27】
前記ローカライザが、第1のスペクトル帯の光を検出することで、前記第1のオブジェクトの前記位置を検出することと、
前記視覚デバイスが、前記第1のスペクトル帯とは異なる第2のスペクトル帯の光を検出することで、前記第1のオブジェクトの近傍の前記表面の前記実深度マップを生成することと
をさらに含む、請求項15~26のいずれか1項に記載の方法。
【請求項28】
1つ以上のプロセッサによって実行されるとき、請求項15~27のいずれか1項に記載の方法を実施するように構成された命令が格納された非一時的なコンピュータ可読媒体を含む、コンピュータプログラム製品。
【発明の詳細な説明】
【技術分野】
【0001】
関連出願の相互参照
本出願は、2019年7月3日に出願された米国仮特許出願第62/870,284号に対する優先権及びこの仮出願の全ての利益を主張するものであり、この仮出願の内容を全体として参照により本明細書に組み込む。
【0002】
本開示は、一般に手術ナビゲーションシステムに関する。
【背景技術】
【0003】
手術ナビゲーションシステムは、治療のために患者の組織の標的体積に対する手術器具の位置を特定することを支援するものである。外科処置中に、治療対象の標的体積が、避けるべき傷つきやすい解剖構造や手術具にしばしば隣接して位置することがある。これらの隣接した解剖構造の、取り付けられたトラッカを用いての追跡は、構造の柔軟性のために難しいことが多い。さらに、標的体積に隣接した各オブジェクトにトラッカを取り付けると、手術作業空間が混雑し、手術ナビゲーションシステムのコスト及び複雑さが増大する。
【発明の概要】
【0004】
第1の態様では、第1のオブジェクトを検出するように構成されたローカライザと、第1のオブジェクトの近傍の表面の実深度マップを生成するように構成された視覚デバイスと、ローカライザ及び視覚デバイスに結合されたコントローラであって、コントローラが、第1のオブジェクトに対応する仮想モデルにアクセスすることと、共通座標系でローカライザと視覚デバイスとの位置関係を特定することと、第1のオブジェクトの検出位置、仮想モデル、及び位置関係に基づいて、視覚デバイスの予想深度マップを生成することと、予想深度マップと一致しない実深度マップの部分を特定することと、特定された部分に基づいて第2のオブジェクトを認識することとを行うように構成される、コントローラと、を備えるナビゲーションシステムが提供される。
【0005】
第2の態様では、ロボットマニピュレータが第1の態様のナビゲーションシステムとともに利用され、ロボットマニピュレータは、手術具を支持し、複数のリンクと、リンクを動かして手術具を動かすように構成された複数のアクチュエータとを備え、ロボットマニピュレータは、第2のオブジェクトを回避するように制御される。
【0006】
第3の態様では、ナビゲーションシステムを動作させる方法が提供され、ナビゲーションは、第1のオブジェクトの位置を検出するように構成されたローカライザと、第1のオブジェクトの近傍の表面の実深度マップを生成するように構成された視覚デバイスと、ローカライザ及び視覚デバイスに結合されたコントローラとを含み、本方法は、第1のオブジェクトに対応する仮想モデルにアクセスすることと、共通座標系でローカライザと視覚デバイスとの位置関係を特定することと、第1のオブジェクトの検出位置、仮想モデル、及び位置関係に基づいて、視覚デバイスの予想深度マップを生成することと、予想深度マップと一致しない実深度マップの部分を特定することと、特定された部分に基づいて第2のオブジェクトを認識することとを含む。
【0007】
第4の態様では、1つ以上のプロセッサによって実行されるとき、第3の態様の方法を実施するように構成された命令が格納された非一時的なコンピュータ可読媒体を含む、コンピュータプログラム製品が提供される。
【0008】
上記の態様のいずれかに関する一実施態様によれば、ローカライザは、第1のオブジェクトに関連する光学的特徴を検出するように構成された光学ローカライザ、第1のオブジェクトに関連する電磁的特徴を検出するように構成された電磁ローカライザ、任意のトラッカを有するか又は有しない第1のオブジェクトを検出するように構成された超音波ローカライザ、第1のオブジェクトに関連する慣性特徴を検出するように構成された慣性ローカライザ、又は前述の任意の組合せであるように構成される。
【0009】
上記の態様のいずれかに関する一実施態様によれば、第1のオブジェクトは、患者の解剖学的構造又は骨、ロボットマニピュレータ、手持ち器具、ロボットマニピュレータに取り付けられたエンドエフェクタ又はツール、外科用テーブル、移動カート、患者が載せられ得る手術台、イメージングシステム、開創器、又は前述の任意の組み合わせなどの手術室内の機器のいずれかであってもよく、これらに限定されない。
【0010】
上記の態様のいずれかに関する一実施態様によれば、視覚デバイスは、ローカライザ、ローカライザとは別のユニット、ナビゲーションシステムのカメラユニット、調整可能なアーム、ロボットマニピュレータ、エンドエフェクタ、手持ちツール、天井に取り付けられたブームなどの手術用ブームシステム、肢保持装置、又は前述の任意の組み合わせのいずれかと結合されている。
【0011】
上記の態様のいずれかに関する一実施態様によれば、第1のオブジェクトの近くの表面は、第1のオブジェクトに隣接する表面、第1のオブジェクトからある距離だけ離れた表面、第1のオブジェクトに触れる表面、第1のオブジェクトの上に直接ある表面、第1のオブジェクトの近くの環境にある表面、第1のオブジェクトの後ろ又は周囲の環境にある表面、第1のオブジェクトの閾値距離内、ローカライザの視野内、又は前述の任意の組合せであり得る。
【0012】
上記の態様のいずれかに関する一実施態様によれば、第2のオブジェクトは、周囲の軟組織などの患者の解剖学的構造の第2の部分、ロボットマニピュレータ、ロボットマニピュレータの1つ以上のアーム、第2のロボットマニピュレータ、手持ち器具、ロボットマニピュレータ又は手持ち器具に取り付けられたエンドエフェクタ又はツール、外科用テーブル、移動カート、患者が載せられ得る手術台、イメージングシステム、開創器、追跡デバイス本体などの手術室内の機器(ただし、これらに限定されない)、手術室にいる人間の身体部分、又は前述の任意の組み合わせ、のいずれかを含む、障害物を形成し得るオブジェクトであり得る。
【0013】
上記の態様のいずれかに係る一実施態様によれば、コントローラは、1つ以上のコントローラ又は制御システムであり得る。一実施態様によれば、コントローラは、共通座標系における第1のオブジェクトに対する第2のオブジェクトの位置を特定するように構成される。一実施態様によれば、コントローラは、第1のオブジェクトの検出された位置、実深度マップにおける第2のオブジェクトの場所、及び位置関係に基づいて、そのように特定する。
【0014】
一実施態様によれば、第1のオブジェクトは、手術計画に従って治療すべき患者組織の標的体積を画定する。一実施態様によれば、コントローラは、共通座標系における標的体積に対する第2のオブジェクトの位置と手術計画とに基づいて、第2のオブジェクトが、手術計画に従って標的体積を治療することに対する障害物であるかどうかを判定するように構成される。一実施態様によれば、第2のオブジェクトが手術計画にとっての障害物であると判定することに応答して、コントローラは、手術計画を修正すること、及び/又は通知をトリガすること、及び/又は手術ナビゲーションを停止することを行うように構成される。
【0015】
一実施態様によれば、トラッカは、第1のオブジェクトに結合される。一実施態様によれば、コントローラは、ローカライザを介して、ローカライザに特定的な第1の座標系でトラッカの位置を検出するように構成される。一実施態様によれば、コントローラは、第1の座標系におけるトラッカの検出位置、及び第1の座標系におけるトラッカと第1のオブジェクトとの位置関係に基づいて、第1の座標系における仮想モデルの位置を特定することができる。一実施態様によれば、コントローラは、第1の座標系での仮想モデルの位置と、第2の座標系でのローカライザと視覚デバイスとの位置関係とに基づいて、第1の座標系における仮想モデルの位置を、視覚デバイスに特定的な第2の座標系における仮想モデルの位置に変換する。一実施態様によれば、コントローラは、第2の座標系での仮想モデルの位置に基づいて、予想深度マップを生成することができる。
【0016】
一実施態様によれば、コントローラは、実深度マップと予想深度マップとを比較するように構成されることにより、予想深度マップに一致しない実深度マップの部分を特定するように構成される。いくつかの実施態様では、コントローラは、実深度マップと予想深度マップとの差分を計算する。一実施態様によれば、コントローラは、差分の第1のセクションが閾値深度よりも大きい絶対深度を示すかどうかを判定する。一実施態様によれば、コントローラは、差分の第1のセクションが閾値深度よりも大きい絶対深度を示すと判定することに応答して、差分の第1のセクションに対応する実深度マップの第2のセクションを部分として特定する。一実施態様によれば、閾値深度はゼロではない。
【0017】
一実施態様によれば、コントローラは、予想深度マップと一致しない実深度マップの部分を特定するように構成される。いくつかの実施態様では、コントローラは、第1のセクションのサイズが最小サイズ閾値よりも大きいかどうかを判定するように構成されることによって、これを行う。いくつかの実施態様では、コントローラは、第1のセクションのサイズが最小サイズ閾値よりも大きいと判定することに応答して、第2のセクションを部分として特定する。
【0018】
一実施態様によれば、コントローラは、特定された部分を第2のオブジェクトに対応する所定のプロファイルと一致させるように構成されることにより、特定された部分に基づいて第2のオブジェクトを認識するように構成される。
【0019】
一実施態様によれば、実深度マップの部分は、第2のオブジェクトに対応し、実深度マップの第1の位置に配置された特徴の配列を含む。一実施態様によれば、コントローラは、特徴の配列が、第1の位置とは異なる第2の位置に移動するかどうかを監視することにより、第2のオブジェクトの移動を追跡するように構成される。一実施態様によれば、コントローラは、視覚デバイスによって続いて生成される追加の実深度マップにおいて、そのようなものを監視する。
【0020】
一実施態様によれば、コントローラは、共通座標系の第2のオブジェクトに対応する仮想境界を生成するように構成される。一実施態様によれば、仮想境界は、制約を提供する。いくつかの実施例では、制約は、手術具、ロボットマニピュレータ、ロボット手持ち手術装置の作業端、イメージングデバイス、又は手術室内の他の任意の可動装置などのオブジェクトの動きに関するものである。いくつかの実施例では、制約は、キープアウト境界又はキープイン境界である。
【0021】
一実施態様によれば、コントローラは、仮想モデル、第1のオブジェクトの検出位置、及び共通座標系でのローカライザと視覚デバイスとの位置関係に基づいて、実深度マップを関心領域にトリミングするように構成される。いくつかの実施態様では、コントローラは、トリミングされた実深度マップを比較するように構成されることにより、実深度マップを比較するように構成される。
【0022】
一実施態様によれば、コントローラは、視覚デバイスの視界内にあり、任意選択でローカライザの視界内にもある表面上にパターンを投影するように構成されることにより、共通座標系におけるローカライザと視覚デバイスとの位置関係を特定するように構成される。いくつかの実施態様では、コントローラは、ローカライザに特定的な第1の座標系におけるパターンの位置を示すローカライザを用いて位置特定データを生成する。いくつかの実施態様では、コントローラは、視覚デバイスによって生成された投影パターンを示す較正深度マップを受け取る。いくつかの実施態様では、コントローラは、較正深度マップに基づいて、視覚デバイスに特定的な第2の座標系における投影パターンの位置を特定する。いくつかの実施態様では、コントローラは、第1の座標系におけるパターンの位置と第2の座標系におけるパターンの位置とに基づいて、共通座標系におけるローカライザと視覚デバイスとの位置関係を特定する。いくつかの実施態様では、コントローラは、第1のスペクトル帯で動作して、第1のオブジェクトの位置を検出するように構成されており、視覚デバイスは、第2のスペクトル帯で動作して、第1のオブジェクトの近傍の表面の実深度マップを生成するように構成されており、第1のスペクトル帯は第2のスペクトル帯とは異なる。
【0023】
上記の態様のいずれかを完全に又は部分的に組み合わせることができる。上記の態様のいずれかを完全に又は部分的に組み合わせることができる。
【0024】
上記の概要は、本明細書で論じられる本発明の特定の態様に関する基本的な理解を与えるために、本発明のいくつかの態様を簡単に概説したものである場合がある。本概要は、本発明の広範囲に及ぶ全体像を提供することを意図したものではなく、全ての重要要素もしくは決定的要素を明らかにすること、又は本発明の範囲を明確化することを意図したものでもない。本概要の唯一の目的は、以下に示す詳細な説明の導入として、いくつかの概念を単純化した形で提示することにある。
【図面の簡単な説明】
【0025】
図1】ローカライザ及び視覚デバイスを含む手術ナビゲーションシステムの斜視図である。
図2図1の手術ナビゲーションシステムを制御するための制御システムの概略図である。
図3図1の手術ナビゲーションシステムで使用される座標系の斜視図である。
図4】トラッカをベースにした位置特定及び機械視覚を用いて標的部位の一例をナビゲートする方法のフローチャートである。
図5】標的部位、例えば、外科処置中に治療される解剖学的構造の一例の説明図である。
図6図5の標的部位内のオブジェクトに対応する仮想モデルの位置の説明図である。
図7図6の仮想モデルに基づく予想深度マップの説明図である。
図8図1の視覚デバイスで取り込まれた実深度マップの説明図である。
図9】関心領域にトリミングされた図8の実深度マップの説明図である。
図10図7の予想深度マップと図9の実深度マップとの差分の説明図である。
図11図9の実深度マップ内で特定された外科用開創器に対応する仮想モデルの説明図である。
図12図9の実深度マップ内で特定された靭帯に対応する仮想モデルの説明図である。
図13図9の実深度マップ内で特定された表皮組織に対応する仮想モデルの説明図である。
図14】共通座標系における図6及び図11図13の仮想モデルの説明図である。
図15図1の視覚デバイスで後に取り込まれた実深度マップの説明図である。
図16図15の実深度マップに基づいて位置決めを更新した図14の仮想モデルの説明図である。
【発明を実施するための形態】
【0026】
図1は、患者を治療するための手術システム10を示す。手術システム10は、医療施設の手術室などの外科的環境に設置され得る。手術システム10は、手術ナビゲーションシステム12及びロボットマニピュレータ14を含むことができる。ロボットマニピュレータ14は、手術器具16に結合され得、患者組織の標的体積を治療するために、外科医及び/又は手術ナビゲーションシステム12の指示などで手術器具16を操作するように構成され得る。例えば、手術ナビゲーションシステム12により、ロボットマニピュレータ14が、他の医療用具及び隣接した解剖構造など、標的体積に隣接する他のオブジェクトを避けながら患者組織の標的体積を切除するように、手術器具16を操作することができる。あるいは、外科医が、手術ナビゲーションシステム12からの誘導を受けながら、手術器具16を手動で保持し、操作することができる。いくつかの非限定的な実施例として、手術器具16は、バーリング器具、電気手術器具、超音波器具、リーマ、インパクタ、又は矢状面鋸であってもよい。
【0027】
外科処置中に、手術ナビゲーションシステム12は、トラッカをベースにした位置特定と機械視覚との組み合わせを使用して、手術作業空間内の着目したオブジェクトの位置(場所及び向き)を追跡することができる。外科処置のための手術作業空間は、治療される患者組織の標的体積と、治療に対する障害物が存在する可能性がある治療される標的体積のすぐ周囲の領域とを含むものと考えられ得る。被追跡オブジェクトには、患者の解剖構造、治療すべき解剖構造の標的体積、手術器具16などの手術器具、及び外科医の手又は指などの外科的身体の解剖構造が含まれ得るが、これらに限定されない。追跡される患者の解剖構造及び標的体積には、靭帯、筋肉、及び皮膚などの軟組織が含まれ得、骨などの硬組織が含まれ得る。追跡される手術器具には、外科処置中に使用される開創器、切断工具、及び廃棄物処理デバイスが含まれ得る。
【0028】
手術作業空間内の着目したオブジェクトにトラッカを固定することで、手術ナビゲーションシステム12が手術作業空間内のそのようなオブジェクトの位置を判定するための正確かつ効率的な機構を提供することができる。処置中に、トラッカは、特定の非可視光帯域(例えば、赤外線、紫外線)などで既知の信号パターンを生成し得る。手術ナビゲーションシステム12は、特定の非可視光帯域内の信号を検出することに特化し、この帯域外の光信号を無視するローカライザを含むことができる。ローカライザが、所与のトラッカに関連した信号パターンを検出することに応答して、手術ナビゲーションシステム12は、パターンが検出された角度に基づいて、ローカライザに対するトラッカの位置を判定することができる。そして、手術ナビゲーションシステム12は、判定されたトラッカの位置と、オブジェクトとトラッカとの一定の位置関係とに基づいて、トラッカが取り付けられているオブジェクトの位置を割り出すことができる。
【0029】
上記のトラッカは、手術ナビゲーションシステム12が、手術作業空間内の骨及び手術器具などの硬組織オブジェクトを正確かつ効率的に追跡することを可能にし得るが、これらのトラッカは、一般に、皮膚及び靭帯などの軟組織オブジェクトの追跡には適していない。具体的には、軟組織オブジェクトの柔軟な性質のために、外科処置の過程で軟組織オブジェクト全体とトラッカとの位置関係を一定に保つことが難しい。さらに、外科処置に関わるいくつかの患者組織及び器具のそれぞれにトラッカを取り付けると、手術作業空間が混雑してナビゲーションが困難となり、手術ナビゲーションシステム12のコスト及び複雑さが増大する。そのために、トラッカをベースにした位置特定に加えて、手術ナビゲーションシステム12は、外科処置中に手術作業空間内のオブジェクトを追跡するために、機械視覚を実装することもできる。
【0030】
具体的には、ローカライザ及び取り付けられたトラッカを使用して手術作業空間内のオブジェクトの位置を検出することに加えて、手術ナビゲーションシステム12は、作業空間(本明細書では標的部位とも呼ばれる)内の表面の深度マップを生成するように構成された視覚デバイスを含んでもよい。標的部位は、様々な異なるオブジェクト又は部位である可能性がある。一実施例では、標的部位は、治療又は組織切除を必要とする解剖学的構造の一部(例えば、骨)などの手術部位である。他の実施例では、標的部位は、ロボットマニピュレータ、ロボットマニピュレータに取り付けられたエンドエフェクタもしくはツール、外科用テーブル、移動カート、患者を載せることができる手術台、イメージングシステム、又はこれらに類するものなど、手術室内の機器であることが可能である。
【0031】
手術ナビゲーションシステム12はまた、共通座標系でのローカライザと視覚デバイスとの位置関係を特定するように構成され得、ローカライザ、オブジェクトに対応する仮想モデル、及び位置関係を使用して、標的部位内のオブジェクトの検出位置に基づいて、視覚デバイスの予想深度マップを生成するように構成され得る。その後、手術ナビゲーションシステム12は、予想深度マップを視覚デバイスによって生成された実深度マップと比較し、その比較に基づいて、推定深度マップに一致しない実深度マップの部分を特定するように構成されてもよい。次に、手術ナビゲーションシステム12は、特定された部分に基づいて標的部位にあるオブジェクトを特定し、そのオブジェクトが現在の手術計画にとって障害物であるかどうかを判定するように構成されてもよい。
【0032】
手術ナビゲーションシステム12は、外科医を支援するために、外科処置中に追跡されるオブジェクトの相対位置を表示してもよい。手術ナビゲーションシステム12は、ロボットマニピュレータ14及び/又は手術器具16の動きを、被追跡オブジェクトに関連する仮想境界に対し制御及び/又は制約することもできる。例えば、手術ナビゲーションシステム12は、被追跡オブジェクトに基づいて、治療すべき患者組織の標的体積と手術作業空間内の潜在的障害物とを特定してもよい。その結果、手術ナビゲーションシステム12は、手術具(例えば、手術器具16のエンドエフェクタEA)が、治療すべき患者組織の標的体積を越えて何かに接触することを制限し、患者の安全性及び手術の正確性を向上させることができる。手術ナビゲーションシステム12はまた、他のオブジェクトとの意図的でない接触によって生じ、その結果、標的部位に望ましくない破片がもたらされる可能性もある、手術器具への損傷を無くすことができる。
【0033】
図1に示されるように、手術ナビゲーションシステム12は、ローカライザ18及びナビゲーションカート組立体20を含むことができる。ナビゲーションカート組立体20は、本明細書に記載される手術ナビゲーションシステム12の機能、特徴、及び処理を実施するように構成されたナビゲーションコントローラ22を収容することができる。具体的には、ナビゲーションコントローラ22は、本明細書に記載されるナビゲーションコントローラ22及び手術ナビゲーションシステム12の機能、特徴、及び処理を実施するようにプログラムされたプロセッサ23を含むことが可能である。例えば、プロセッサ23は、ローカライザ18から受け取った光学ベース信号を、手術作業空間内のトラッカに取り付けられたオブジェクトの位置を示すローカライザデータに変換するようにプログラムされてもよい。
【0034】
ナビゲーションコントローラ22は、手術ナビゲーションシステム12のユーザインターフェース24と作動的に通信し得る。ユーザインターフェース24は、手術ナビゲーションシステム12及びナビゲーションコントローラ22とのユーザインタラクションを促進し得る。例えば、ユーザインターフェース24は、ナビゲーションコントローラ22などからの情報をユーザに提供する1つ以上の出力デバイスを含むことができる。出力デバイスには、手術作業空間を含む滅菌野の外側に位置しているように適合させたディスプレイ25が含まれ得、滅菌野の内側に位置しているように適合させたディスプレイ26が含まれ得る。ディスプレイ25、26は、ナビゲーションカート組立体20に調節可能であるように取り付けられてもよい。ユーザインターフェース24はまた、手術ナビゲーションシステム12へのユーザ入力を可能にする1つ以上の入力デバイスを含むことができる。入力デバイスには、ユーザによってインタラクトされて、手術パラメータを入力し、ナビゲーションコントローラ22の態様を制御することができるキーボード、マウス、及び/又はタッチスクリーン28が含まれ得る。入力デバイスには、音声認識技術によるユーザ入力を可能にするマイクロフォンが含まれることもある。
【0035】
ローカライザ18は、オブジェクトに取り付けられたトラッカの位置などを検出することにより、手術作業空間内のトラッカに取り付けられた1つ以上のオブジェクトの位置を検出するように構成され得る。具体的には、ローカライザ18は、手術ナビゲーションシステム12のナビゲーションコントローラ22に結合され得、手術作業空間内の1つ以上のトラッカの位置を示す光学ベース信号を生成し、これをナビゲーションコントローラ22に伝達してもよい。その場合、ナビゲーションコントローラ22は、光学ベース信号と、オブジェクトとトラッカとの一定の位置関係とに基づいて、手術作業空間内のトラッカに取り付けられたオブジェクトの位置を示すローカライザデータを生成するように構成されてもよい。ローカライザ18で追跡される標的部位内のオブジェクトを、本明細書では「局所オブジェクト」と称することがある。
【0036】
ローカライザ18は、少なくとも2つの光学センサ32を収容するアウタケーシング30を有し得る。光学センサ32のそれぞれは、赤外線又は紫外線など、トラッカに固有の特定の非可視光帯域の信号を検出するように適合させることができる。図1は、複数の光学センサ32を備えた単一のユニットとしてローカライザ18を図示しているが、代替の実施例では、ローカライザ18は手術作業空間の周りに配置された別個のユニットを含み、それぞれが別個のアウタケーシング及び1つ以上の光学センサ32を備えてもよい。
【0037】
光学センサ32は、1次元又は2次元の電荷結合デバイス(CCD)であってもよい。例えば、アウタケーシング30は、手術作業場のトラッカの位置を三角法で測定するための2つの2次元CCDを収容してもよく、又は手術作業場のトラッカの位置を三角法で測定するための3つの1次元CCDを収容してもよい。追加又は代替として、ローカライザ18は、相補型金属酸化膜半導体(CMOS)アクティブピクセルなどの他の光センシング技術を採用してもよい。
【0038】
いくつかの実施態様では、ナビゲーションシステム及び/又はローカライザ18は、電磁気(EM)をベースにしている。例えば、ナビゲーションシステムは、ナビゲーションコントローラ22、及び/又は別のコンピューティングデバイス、コントローラなどに結合されたEMトランシーバを含むことができる。ここで、トラッカは、それに取り付けられるEM構成要素(例えば、各種磁気トラッカ、電磁トラッカ、誘導トラッカなど)を含むことができ、これはパッシブなものであってもよく、又は能動的に通電されるものであってもよい。EMトランシーバはEM場を生成し、EM構成要素は、被追跡状態がナビゲーションコントローラ22に伝達される(又は読み取られる)ように、EM信号に応答する。ナビゲーションコントローラ22は、受信したEM信号を分析して、関係のある状態をそれに関連付けることができる。ここでも、EMをベースにしたナビゲーションシステムの実施形態は、本明細書で説明されるアクティブなマーカベースのナビゲーションシステムとは異なる構造的構成を有し得ることが理解されよう。
【0039】
他の実施態様では、ナビゲーションシステム及び/又はローカライザ18は、それに関連する場所データを判定するために、必ずしもトラッカをオブジェクトに固定する必要がない、1つ以上のタイプのイメージングシステムに基づくことが可能である。例えば、被追跡状態(例えば、位置、向きなど)が超音波画像に基づいてナビゲーションコントローラ22に伝達される(又は読み取られる)ような、超音波画像(例えば、被追跡オブジェクトの特定の既知の構造的特徴、被追跡オブジェクトに固定されたマーカ又はステッカなど)の取得を容易にする、超音波ベースのイメージングシステムを提供することが可能である。超音波画像は、2D、3D、又はそれらの組み合わせであってもよい。ナビゲーションコントローラ22は、超音波画像をほぼリアルタイムで処理して、被追跡状態を判定することができる。超音波イメージングデバイスは、任意の好適な構成を有することができ、図1に示すカメラユニットとは異なるものであってもよい。さらなる実施例として、被追跡状態がX線像に基づいてナビゲーションコントローラ22に伝達される(又は読み取られる)ような、放射線不透過性マーカ(例えば、被追跡オブジェクトに取り付けられる既知の構造的特徴を有するステッカ、タグなど)のX線像の取得を容易にする、蛍光透視法ベースのイメージングシステムを提供することが可能である。ナビゲーションコントローラ22は、X線像をほぼリアルタイムで処理して、被追跡状態を判定することができる。同様に、被追跡状態がデジタル画像に基づいてナビゲーションコントローラ22に伝達される(又は読み取られる)ような、特定の既知のオブジェクトのデジタル画像、ビデオなどを(例えば、被追跡オブジェクト又はその構造的な構成要素もしくは特徴の仮想表現との比較に基づいて)取得すること、及び/又はマーカ(例えば、被追跡オブジェクトに取り付けられるステッカ、タグなど)のデジタル画像、ビデオなどを取得することを容易にする、他のタイプの光学ベースのイメージングシステムを提供することが可能である。ナビゲーションコントローラ22は、デジタル画像をほぼリアルタイムで処理して、被追跡状態を判定することができる。
【0040】
したがって、同一又は異なるタイプの複数のイメージングシステムを含む様々なタイプのイメージングシステムが、本開示の範囲から逸脱することなく、ナビゲーションシステムの一部を形成し得ることが理解されよう。当業者であれば、ナビゲーションシステム及び/又はローカライザ18は、本明細書に具体的に記載されていない他の任意の好適な構成要素又は構造を有し得ることを理解するであろう。例えば、ナビゲーションシステムは、慣性追跡を単独で、又は追跡技法の任意の組み合わせを利用することができる。さらに、図1に示されるナビゲーションシステムに関連する技法、方法、及び/又は構成要素のいずれも、様々な方法で実装することができ、本開示によって他の構成が企図される。
【0041】
ローカライザ18は、理想的には障害物がない手術作業空間及び標的体積を視野に入れた光学センサ32を選択的に配置するために、調節可能なアームに取り付けられてもよい。ローカライザ18は、回転ジョイントを中心に回転することにより、少なくとも1つの自由度で調節可能であってもよく、2つ以上の自由度について調節可能であってもよい。
【0042】
上記のとおり、ローカライザ18は、本明細書でトラッカとも呼ばれる複数の追跡デバイスと連携して、トラッカが取り付けられた手術作業空間内のオブジェクトの位置を判定することができる。一般に、各トラッカが取り付けられるオブジェクトは、固く柔軟性がないために、オブジェクトの動きにより、オブジェクトとトラッカとの位置関係が変化することはあり得ず、又は変化しにくい可能性がある。言い換えれば、手術作業空間内のオブジェクトの位置変化にかかわらず、手術作業空間内のトラッカとトラッカが取り付けられているオブジェクトとの関係は固定されたままであり得る。例えば、トラッカは、患者の骨、ならびに開創器及び手術器具16などの手術器具に、しっかりと取り付けることが可能である。このようにして、ローカライザ18を使用して手術作業空間におけるトラッカの位置を判定することに応答して、ナビゲーションコントローラ22は、トラッカの判定された位置に基づいて、トラッカが取り付けられているオブジェクトの位置を割り出すことができる。
【0043】
例えば、治療すべき標的体積が患者の膝部分に位置するときは、トラッカ34を患者の大腿骨Fにしっかりと取り付けることができ、トラッカ36を患者の脛骨Tにしっかりと取り付けることができ、トラッカ38を手術器具16にしっかりと取り付けることができる。トラッカ34、36は、参照により本明細書に組み込まれる米国特許第7,725,162号に示されるようにして、大腿骨F及び脛骨Tに取り付けてもよい。トラッカ34、36はまた、参照により本明細書に組み込まれる「Navigation Systems and Methods for Indicating and Reducing Line-of-Sight Errors」と題する、2014年1月16日に出願された米国特許出願公開第2014/0200621号に示されるもののように搭載することもできる。トラッカ38は、製造時に手術器具16に組み込んでもよく、又は外科処置の準備として手術器具16に別途取り付けてもよい。
【0044】
手術システム10を使用する外科処置の開始より前に、手術器具16によって治療すべき患者組織の標的体積を画定する解剖構造、及び/又はその標的体積に隣接する解剖構造など、目的とする解剖学的構造に対して術前画像が生成されてもよい。例えば、治療すべき患者組織の標的体積が患者の膝部分のときは、患者の大腿骨F及び脛骨Tの術前画像を撮影してもよい。これらの画像は、患者の解剖学的構造のMRIスキャン、放射線スキャン、又はコンピュータ断層撮影(CT)スキャンに基づく場合があり、解剖構造の仮想モデルを構築するために使用される場合がある。解剖構造の各仮想モデルは、解剖構造の全体又は少なくとも一部を表すデータ、及び/又は治療すべき解剖構造の標的体積を表すデータを含む3次元モデル(例えば、点群、メッシュ、CAD)を含むことができる。これらの仮想モデルは、外科処置に先立って、ナビゲーションコントローラ22に提供され、保存されてもよい。
【0045】
術前画像の撮影に加えて、又はその撮影の代わりに、運動学的研究、骨トレース及び他の方法から手術室で治療の計画を立てることができる。このような同じ方法を使用して、上記の仮想モデルを生成することもできる。
【0046】
外科処置より前に、対象となっている患者の解剖構造に対応する仮想モデルに加えて、ナビゲーションコントローラ22は、手術作業空間に存在する可能性がある手術器具及びその他のオブジェクト(例えば、外科医の手及び/又は指)など、外科処置にとって関心がある他の被追跡オブジェクトの仮想モデルを受け取り、保存することができる。ナビゲーションコントローラ22はまた、トラッカとトラッカに固定されたオブジェクトとの位置関係、ローカライザ18と視覚デバイスとの位置関係、及び手術計画など、外科処置に特有の手術データを受け取り、保存することもできる。手術計画により、外科処置に関与する患者の解剖構造を特定することができ、外科処置で使われている器具を特定することができ、外科処置中の器具の計画された軌道及び患者組織の計画された移動を規定することができる。
【0047】
外科処置の間に、ローカライザ18の光学センサ32は、トラッカ34、36、38から非可視光帯域(例えば、赤外線又は紫外線)などの光信号を検出することができ、検出された光信号に基づいてローカライザ18に対するトラッカ34、36、38の位置を示す光学ベース信号をナビゲーションコントローラ22へ出力することができる。そしてナビゲーションコントローラ22は、判定されたトラッカ34、36、38の位置と、トラッカ34、36、38とオブジェクトとの既知の位置関係とに基づいて、ローカライザ18に対するトラッカ34、36、38に固定されたオブジェクトの位置を示すローカライザデータを生成することができる。
【0048】
ローカライザ18によって提供されるトラッカベースのオブジェクト追跡を補完するために、手術ナビゲーションシステム12は、視覚デバイス40を含むこともできる。視覚デバイス40は、手術作業空間部位の3次元画像をリアルタイムで生成可能であってもよい。トラッカ34、36、38から伝送される非可視光信号の位置を検出して特定することに限定され得るローカライザ18とは異なり、視覚デバイス40は、深度マップの形式などで、視覚デバイス40の視野内にある標的体積の内部及び周囲の表面の3次元画像を生成するように構成されてもよい。視覚デバイス40は、1つ以上の画像センサ42と光源44とを含むことができる。画像センサ42のそれぞれは、CMOSセンサであってもよい。
【0049】
例えば、視覚デバイス40は、赤外線光又は紫外線光などの非可視光で手術作業空間内の露出表面を照らすことにより、手術作業空間の深度マップを生成することができる。その場合、表面は非可視光を反射し返し、非可視光は視覚デバイス40の1つ以上の画像センサ42によって検出され得る。非可視光の伝送から視覚デバイス40による検出までの飛行時間に基づいて、視覚デバイス40は、視覚デバイス40と手術作業空間の露出表面の上のいくつかの点との間の距離を判定することができる。その結果、視覚デバイス40は、視覚デバイス40と各表面点との間の距離及び角度を示す深度マップを生成してもよい。あるいは視覚デバイス40は、例えば構造化光投影、レーザ測距、又は立体視などであり、限定されるものではない、他のモダリティを利用して、深度マップを生成してもよい。
【0050】
ローカライザ18と同様に、外科処置より前に、視覚デバイス40は、好ましくは障害物のない手術作業空間を視野に入れて配置され得る。視覚デバイス40は、図1に示されるように、ローカライザ18と一体にされてもよい。あるいは、視覚デバイス40を別個の調節可能なアームに取り付けて、視覚デバイス40をローカライザ18とは別に配置してもよい。視覚デバイス40は、例えば、「Systems and Methods for Identifying and Tracking Physical Objects During a Robotic Surgical Procedure」と題する米国特許10,531,926(この米国特許の内容を全体として参照により本明細書に組み込む)などに記載されているように、ロボットマニピュレータ14に直接取り付けることもできる。視覚デバイス40はまた、ナビゲーションコントローラ22と作動的に通信し得る。
【0051】
上記のように、ナビゲーションコントローラ22は、ローカライザ18を用いて生成されたトラッカベースの位置特定データ、及び視覚デバイス40によって生成された深度マップに基づいて、手術作業空間内のオブジェクトを追跡し障害物を特定するように構成され得る。具体的には、視覚デバイス40が手術作業空間の深度マップを生成するのと同時に、ローカライザ18は、ローカライザ18に対する手術作業空間のトラッカに固定されたオブジェクトの位置を示すローカライザデータを生成するのに用いられる光学ベースのデータを生成してもよい。したがって、視覚デバイス40によって生成された深度マップと、ローカライザ18で生成されたローカライザデータとは、時間的にインターリーブされてもよい。言い換えれば、ローカライザ18で生成されたローカライザデータの各インスタンスは、視覚デバイス40によって生成された異なる深度マップに時間的に関連付けられ得、その結果、ローカライザデータに示されたオブジェクトの位置と、関連付けられた深度マップにおけるそれらのオブジェクトの位置とは、外科処置の間中の同じ瞬間に対応する。
【0052】
ローカライザデータを判定することに応答して、ナビゲーションコントローラ22は、視覚デバイス40によって取り込まれ、位置特定データに関連付けられることになる予想深度マップを生成するように構成されてもよい。予想深度マップとは、トラッカに固定されたオブジェクトのみが手術作業空間に存在すると仮定して、ローカライザデータと時間的に関連付けられた、視覚デバイス40によって生成されると予想される深度マップであり得る。ナビゲーションコントローラ22は、ローカライザデータに示される手術作業空間内のトラッカに固定されたオブジェクトの検出位置、オブジェクトに対応する仮想モデル、及びローカライザ18と視覚デバイス40との位置関係に基づいて予想深度マップを判定するように構成されてもよい。
【0053】
その後、ナビゲーションコントローラ22は、ローカライザデータと時間的に関連付けられた、視覚デバイス40によって生成された実深度マップを取得することができ、予想深度マップに一致しない実深度マップの部分を特定することができる。次いでナビゲーションコントローラ22は、特定された部分に基づいて、治療すべき患者組織の標的体積に隣接するトラッカに固定されたオブジェクト以外のオブジェクトなど、手術作業空間内のオブジェクトを特定することができ、そのようないずれかのオブジェクトが現在の手術の軌道に障害をもたらすかどうかを判定することができる。
【0054】
手術器具16は、ロボットマニピュレータ14のエンドエフェクタの一部を形成してもよい。ロボットマニピュレータ14は、ベース46と、ベース46から延在するいくつかのリンク48と、ベース46に対して手術器具16を移動させるためのいくつかの能動ジョイントとを含み得る。リンク48は、図1に示すシリアルアーム構造、パラレルアーム構造(例えば図3に示す)、又は他の好適な構造を形成してもよい。ロボットマニピュレータ14は、ユーザがロボットマニピュレータ14のエンドエフェクタを把持して(例えば、直接、又はロボットマニピュレータ14のアクティブ駆動を引き起こす力/トルクセンサ測定を介して)手術器具16の移動を起こさせる手動モードで動作する能力を含むことができる。ロボットマニピュレータ14はまた、手術器具16が、予め定められたツール経路に沿ってロボットマニピュレータ14によって動かされる半自律モードを含むことができる(例えば、ロボットマニピュレータ14の能動ジョイントは、ユーザからエンドエフェクタへの力/トルクを必要とせずに手術器具16を移動させるように動作される)。半自律モードでの動作の例が、参照により本明細書に援用される、Bowling,et alに対する米国特許第9,119,655号に記載されている。ローカライザ18によるベース46の移動を追跡するために、ロボットマニピュレータ14のベース46に別個のトラッカを取り付けてもよい。
【0055】
手術ナビゲーションシステム12と同様に、ロボットマニピュレータ14は、本明細書に記載されるロボットマニピュレータ14の処理、より詳細にはマニピュレータコントローラ50の処理を実施するようにプログラムされたプロセッサ52を含むマニピュレータコントローラ50を収容し得る。例えば、プロセッサ52は、手術ナビゲーションシステム12の指示などで、リンク48の移動によって手術器具16の動作及び移動を制御するようにプログラムされてもよい。
【0056】
外科処置中に、マニピュレータコントローラ50は、ナビゲーションコントローラ22から受け取ったナビゲーションデータなどに基づいて、手術器具16が移動されるべき所望の場所を判定するように構成され得る。この判定と、手術器具16の現在の位置に関する情報とに基づいて、マニピュレータコントローラ50は、手術器具16を現在の位置から所望の位置に再配置するためにリンク48のそれぞれが動かされる必要がある範囲を判定するように構成されてもよい。リンク48がどこに再配置されるべきかを示すデータは、ロボットマニピュレータ14の能動ジョイントを制御するジョイントモータコントローラ(例えば、各モータを制御するためのもの)に転送され得る。そのようなデータを受け取ることに応答して、ジョイントモータコントローラは、データに従ってリンク48を動かし、その結果として手術器具16を所望の位置に動かすように構成され得る。
【0057】
ここで図2を参照すると、ローカライザ18及び視覚デバイス40は、それぞれローカライザコントローラ62及び視覚コントローラ64を含むことができる。ローカライザコントローラ62は、ローカライザ18の光学センサ32と、かつナビゲーションコントローラ22と通信可能に結合され得る。外科処置中に、ローカライザコントローラ62は、光学センサ32を動作させて、光学センサ32にトラッカ34、36、38から受信した光信号を示す光学ベースのデータを生成させるように構成され得る。
【0058】
トラッカ34、36、38は、光信号を光学センサ32に送信するための少なくとも3つのアクティブマーカをそれぞれが有するアクティブトラッカであってもよい。トラッカ34、36、38は、内蔵電池によって電力を供給されてもよく、又はナビゲーションコントローラ22を介して電力を受け取るためにリード線を有していてもよい。各トラッカ34、36、38のアクティブマーカは、赤外線又は紫外線などの光を送出する発光ダイオード(LED)65であってもよい。トラッカ34、36、38のそれぞれは、トラッカ34、36、38のLED65とナビゲーションコントローラ22とに接続されたトラッカコントローラ66を含むこともできる。トラッカコントローラ66は、ナビゲーションコントローラ22などの指示で、トラッカ34、36、38のLED65が発光するレート及び順序を制御するように構成されてもよい。例えば、トラッカ34、36、38のトラッカコントローラ66は、ナビゲーションコントローラ22によるトラッカ34、36、38の区別を容易にするために、各トラッカ34、36、38のLED65を異なるレート及び/又は時間で発光させることができる。
【0059】
光学センサ32のサンプリングレートは、光学センサ32が、順次発光するLED65から光信号を受信するレートである。光学センサ32は、100Hz以上、又はより好ましくは300Hz以上、又は最も好ましくは500Hz以上のサンプリングレートを有することができる。例えば、光学センサ32は、8000Hzのサンプリングレートを有してもよい。
【0060】
トラッカ34、36、38は、アクティブトラッカではなく、ローカライザ18から発せられた光(例えば、光源44(図1)から発せられた光)を反射する反射物などのパッシブマーカ(図示せず)を含むパッシブトラッカであってもよい。そして、その反射光を光学センサ32によって受光してもよい。
【0061】
光学センサ32がトラッカ34、36、38から光信号を受信することに応答して、光学センサ32は、トラッカ34、36、38のローカライザ18に対する位置を示すとともに、それに対応して、トラッカ34、36、38にしっかりと取り付けられたオブジェクトのローカライザ18に対する位置を示す光学ベースのデータを、ローカライザコントローラ62に出力し得る。具体的には、各光学センサ32は、トラッカ34、36、38からの光信号を検出し、それに応じて各光信号が検出されたセンサ領域内の位置を示す1次元又は2次元のセンサ領域を含み得る。所与のセンサ領域内の各光信号の検出位置は、センサ領域を含む光学センサ32により光信号が受信される角度に基づくことができ、同様に、手術作業空間における光信号の発生源の位置に対応することができる。
【0062】
したがって、トラッカ34、36、38からの光信号の受信に応答して、各光学センサ32は、光信号が検出された光学センサ32のセンサ領域内の位置を示す光学ベースのデータを生成することができる。光学センサ32は、そのような光学ベースのデータをローカライザコントローラ62に伝えることができ、次いでローカライザコントローラ62は、その光学ベースのデータをナビゲーションコントローラ22に伝えることができる。次に、ナビゲーションコントローラ22は、光学ベースのデータに基づいて、ローカライザ18に対するトラッカ34、36、38の位置を示すトラッカ位置データを生成し得る。例えば、ナビゲーションコントローラ22は、光学ベースのデータに基づいて、ローカライザ18に対するLED65の位置を三角法で測定してもよく、トラッカ34、36、38とマーカとの間の保存された位置関係を適用して、測定されたLED65のローカライザ18に対する位置を判定し、ローカライザ18に対するトラッカ34、36、38の位置を判定してもよい。
【0063】
その後、ナビゲーションコントローラ22は、トラッカ位置データに基づいて、トラッカ34、36、38にしっかりと取り付けられたオブジェクトのローカライザ18に対する位置を示すローカライザデータを生成することができる。具体的には、ナビゲーションコントローラ22は、トラッカ34、36、38とトラッカ34、36、38が取り付けられているオブジェクトとの保存された位置関係を取得することができ、これらの位置関係をトラッカ位置データに適用して、トラッカ34、36、38に固定されているオブジェクトのローカライザ18に対する位置を判定することができる。あるいは、ローカライザコントローラ62は、受信した光学ベースのデータに基づいて、トラッカ位置データ及び/又はローカライザデータを判定するように構成することができ、トラッカ位置データ及び/又はローカライザデータをナビゲーションコントローラ22に伝送して、さらに処理してもよい。
【0064】
視覚コントローラ64は、視覚デバイス40の光源44及び1つ以上の画像センサ42と、かつナビゲーションコントローラ22と通信可能に結合され得る。ローカライザコントローラ62によりローカライザ18が、手術作業空間におけるトラッカ34、36、38の位置を示す光学ベースのデータを生成するのと同時に、視覚コントローラ64により視覚デバイス40が、手術作業空間の露出表面の深度マップを生成することができる。具体的には、視覚コントローラ64が、画像センサ42に深度マップの基礎となる画像データを生成させることができ、その画像データに基づいて深度マップを生成することができる。その後、視覚コントローラ64は、さらなる処理のために、深度マップをナビゲーションコントローラ22に転送し得る。あるいは、視覚コントローラ64は、画像データをナビゲーションコントローラ22に伝えることができ、次いでナビゲーションコントローラ22は、受け取った画像データに基づいて深度マップを生成してもよい。
【0065】
一般に、視覚デバイス40によって生成された深度マップは、視覚デバイス40と視覚デバイス40の視野内にある表面との間の距離を示し得る。言い換えれば、深度マップは、視覚デバイス40の視点からの手術作業空間内の表面のトポグラフィを示すことができる。視覚デバイス40によって生成された各深度マップは、視覚デバイス40の画像フレームを形成する複数の画像構成要素を含み得る。画像構成要素のそれぞれは、深度マップのピクセルに類似したものであってもよく、視覚デバイス40の中心から視覚デバイスの視野内にある表面上の点までのベクトルを定め得る。例えば、視覚デバイス40の画像フレーム内の画像構成要素の場所は、画像構成要素によって定められたベクトルの水平成分及び垂直成分に対応してもよく、画像構成要素の色は、画像構成要素によって定められたベクトルの深度成分に対応してもよい。一実施例を挙げると、視覚デバイス40により近い手術作業空間内の表面点を表す画像構成要素は、視覚デバイス40からより遠い表面点を表す画像構成要素よりも明るい色を有し得る。
【0066】
視覚デバイス40は、1つ以上の深度センサ68を含む深度カメラであってもよい。深度センサ68は、深度センサ68の視野内の表面に反射される非可視光などの光を検出するように適合されてもよい。外科処置中に、視覚コントローラ64により光源44は、赤外線光又は紫外線光などの非可視光で標的部位を照らすようにしてもよい。その場合、深度センサ68は、標的部位の表面からの非可視光の反射を検出することができ、これにより視覚コントローラ64は深度マップを生成することが可能になり得る。
【0067】
例えば、視覚コントローラ64は、視覚デバイス40と種々の点との間の距離に対応し得る、光源44から送出された光が標的部位内の露出表面上の点に反射する時間に基づいて深度マップを生成してもよい(すなわち、飛行時間法)。次に、視覚コントローラ64は、これらの判定された距離を利用して、深度マップを生成することができる。代替の実施例として、光源44は、既知の構造化非可視光パターンを手術部位の露出表面に投射してもよい。その後、深度センサ68は、標的部位内の表面のトポグラフィに基づいて歪んでいる可能性がある既知のパターンの反射を検出し得る。したがって、視覚コントローラ64は、既知のパターンと、深度センサ68によって検出された歪んだパターンのバージョンとの比較に基づいて、標的部位の深度マップを生成するように構成されてもよい。
【0068】
あるいは、視覚デバイス40は、1つ以上のRGBセンサ70を含むRGBカメラであってもよい。RGBセンサ70は、標的部位における露出表面のカラー画像を生成するように構成され得、視覚コントローラ64は、そのカラー画像に基づいて深度マップを生成するように構成されてもよい。
【0069】
例えば、上記の構造化光方法論と同様に、視覚コントローラ64は、光源44に、標的部位における色から外れた色などで、既知の構造化光パターンを標的部位に投影させるように構成されてもよい。次に、RGBセンサ70は、標的部位のRGB画像を生成することができ、この画像は、標的部位の表面トポグラフィに基づいて、既知の構造化光パターンの歪んだバージョンを表し得る。視覚コントローラ64は、パターン認識、エッジ検出、及び色認識などを用いて、RGB画像から既知の構造化光パターンの歪んだバージョンを抽出することができ、既知の構造化光パターンと抽出された歪んだバージョンとの比較に基づいて、深度マップを判定してもよい。
【0070】
さらなる代替として、視覚デバイス40は、立体視の原理を用いて標的部位の深度マップを生成するように構成されてもよい。より詳細には、複数の深度センサ68又はRGBセンサ70などの複数の画像センサ42が、異なる角度からの標的部位の視野を有するように配置され得る。視覚コントローラ64は、各画像センサ42に、異なる角度からの標的部位の画像を同時に生成させるように構成され得る。例えば、画像センサ42が深度センサ68である場合、視覚コントローラ64は、光源44に、非可視光のパターンで標的部位の露出表面を照らさせるように構成され得、深度センサ68のそれぞれが、露出表面に反射された非可視光のパターンを異なる角度から撮像してもよい。次に、視覚コントローラ64は、各画像における表面点の位置と画像センサ42間の既知の位置関係とに基づいて、標的部位における表面上の点の視覚デバイス40に対する3次元位置を判定してもよい。その後、視覚コントローラ64は、判定された3次元位置に基づいて深度マップを生成することができる。
【0071】
外科手術中にローカライザ18と視覚デバイス40との間の干渉を減らすために、ローカライザ18と視覚デバイス40とは、異なるスペクトル帯で動作して標的部位内のオブジェクトの位置を検出するように構成されてもよい。追加又は代替として、視覚デバイス40が非可視光帯域で動作するときなど、視覚デバイス40が光源44を使用して標的部位における露出表面を照らすとき、ローカライザ18は、視覚デバイス40の光源44がローカライザ18から見えないように、十分に短い時間的露光レートで動作するように構成されてもよい。
【0072】
上記のとおり、ナビゲーションコントローラ22は、ローカライザ18を使用して生成されたローカライザデータに基づいて予想深度マップを計算すること、及び予想深度マップを視覚デバイス40によって生成された実深度マップと比較することにより、手術部位内の治療すべき患者組織の標的体積に隣接するオブジェクトを判定することなど、本明細書に記載されたナビゲーションコントローラ22の機能、特徴、及び処理を行うようにプログラムされたプロセッサ23を含むことができる。プロセッサ23に加えて、ナビゲーションコントローラ22は、それぞれプロセッサ23に動作可能なように結合されたメモリ72及び不揮発性ストレージ74を含むことができる。
【0073】
プロセッサ23は、マイクロプロセッサ、マイクロコントローラ、デジタル信号プロセッサ、マイクロコンピュータ、中央処理装置、フィールドプログラマブルゲートアレイ、プログラマブル論理デバイス、ステートマシン、論理回路、アナログ回路、デジタル回路、又はメモリ72に保存された動作命令に基づいて信号(アナログ又はデジタル)を操作する他の任意のデバイスから選択された1つ以上のデバイスを含んでもよい。メモリ72は、リードオンリーメモリ(ROM)、ランダムアクセスメモリ(RAM)、揮発性メモリ、不揮発性メモリ、スタティックランダムアクセスメモリ(SRAM)、ダイナミックランダムアクセスメモリ(DRAM)、フラッシュメモリ、キャッシュメモリ、又は情報を保存できる他の任意のデバイスを含むが、これらに限定されない、単一のメモリデバイス又は複数のメモリデバイスを含んでもよい。不揮発性ストレージ74は、ハードドライブ、光学ドライブ、テープドライブ、不揮発性ソリッドステートデバイス、又は情報を永続的に保存できる他の任意のデバイスなどの1つ以上の永続的データストレージデバイスを含んでもよい。
【0074】
不揮発性ストレージ74は、位置特定エンジン76、変換エンジン78、視覚エンジン80、及び手術ナビゲータ81などのソフトウェアを保存することができる。ソフトウェアは、Java、C、C++、C#、Objective C、Fortran、Pascal、Java Script、Python、Perl、及びPL/SQLを、単独で又は組み合わせて含むが、これらに限定されない、様々なプログラミング言語及び/又は技術からコンパイル又は解釈されるコンピュータ実行可能命令によって具現化され得る。
【0075】
プロセッサ23は、不揮発性ストレージ74に保存されたソフトウェアの制御下で動作することができる。具体的には、プロセッサ23は、メモリ72に読み込んでソフトウェアのコンピュータ実行可能命令を実行することにより、アクティブな実行プロセスとしてソフトウェアを実行するように構成され得る。プロセッサ23によって実行されると、コンピュータ実行可能命令は、プロセッサ23に、本明細書に記載されたナビゲーションコントローラ22の構成された機能、特徴、及び処理を実施させるように構成され得る。したがって、本ソフトウェアは、プロセッサ23の実行時に、本明細書に記載されたナビゲーションコントローラ22の処理をナビゲーションコントローラ22のプロセッサ23に実施させるようにソフトウェアのコンピュータ実行可能命令が構成されることにより、本明細書に記載されたナビゲーションコントローラ22の機能、特徴、及び処理をナビゲーションコントローラ22に実施させるように構成され得る。
【0076】
ナビゲーションコントローラ22の不揮発性ストレージ74は、ナビゲーションコントローラ22の動作を容易にするデータを保存することもできる。具体的には、ナビゲーションコントローラ22のソフトウェアは、不揮発性ストレージ74に保存されたデータにアクセスし、そのデータに基づいて本明細書で説明されるナビゲーションコントローラ22の機能、特徴、及び処理を実施するように構成され得る。
【0077】
例えば、限定するものではないが、不揮発性ストレージ74に保存されるデータには、モデルデータ82、変換データ83、及び手術計画84が含まれ得る。モデルデータ82は、上記のように、外科医の手又は指などの潜在的障害物の仮想モデル、及び外科処置で使用されている手術器具の仮想モデルを含む、外科処置にとって関心がある解剖構造の仮想モデルを含み得る。変換データ83は、本明細書における位置関係を含むことができ、これにより、トラッカ34、36、38、又はローカライザ18、又は視覚デバイス40など、あるデバイスに対する手術作業空間内のオブジェクトの位置を、別のデバイスに対するオブジェクトの位置へ変換することが可能になり得る。例えば、変換データ83は、トラッカ34、36、38とトラッカ34、36、38にしっかりと取り付けられたオブジェクトとの一定の位置関係、及びローカライザ18と視覚デバイス40との位置関係を定めてもよい。手術計画84により、外科処置に関与する患者の解剖構造の標的体積を特定することができ、外科処置で使われている器具を特定することができ、外科処置中の器具の計画された軌道及び患者組織の計画された移動を規定することができる。
【0078】
ナビゲーションコントローラ22上で動作するソフトウェアを再び参照すると、位置特定エンジン76は、ローカライザ18の光学センサ32によって生成された光学ベースのデータなどに基づいて、トラッカ34、36、38にしっかりと取り付けられたオブジェクトのローカライザ18に対する位置を示す位置特定データを生成するように構成され得る。変換エンジン78は、変換データ83によって表される位置関係などに基づいて、手術システム10の1つのデバイスに対するオブジェクトの位置を、手術システム10の別のデバイスに対するオブジェクトの位置に変換するように構成され得る。視覚エンジン80は、位置特定エンジン76によって生成された位置特定データと変換データ83とに基づいて予想深度マップを生成し、この予想深度マップを視覚デバイス40によって生成された実深度マップと比較して、手術作業空間内のオブジェクトを特定し追跡するように構成され得る。手術ナビゲータ81は、視覚エンジン80によって判定された特定及び追跡に基づいて手術ガイダンスを提供するように構成され得る。これらのソフトウェア構成要素の機能の詳細については、後ほど詳しく説明する。
【0079】
図示していないが、マニピュレータコントローラ50、ローカライザコントローラ62、及び視覚コントローラ64のそれぞれは、そのコンピュータ実行可能命令の実行時に、本明細書に記載されたコントローラの機能、特徴、及び処理を実施するように構成されたデータ及びソフトウェアを含むプロセッサ、メモリ、及び不揮発性ストレージを含むこともできる。
【0080】
手術システム10の実施例を図1に示し、さらに詳細を図2に示しているが、本実施例は限定することを意図していない。実際には、手術システム10は、より多くの構成要素又はより少ない構成要素を有していてもよく、代替の構成要素及び/又は実施態様を使用してもよい。例えば、ローカライザエンジン76の全て又は一部は、ローカライザコントローラ62によって実施されてもよい。一実施例を挙げると、ローカライザコントローラ62は、モデルデータ82に基づいて、トラッカ34、36、38にしっかりと取り付けられたオブジェクトの位置を示すローカライザデータを生成するように構成されてもよい。
【0081】
図3は、手術システム10と共に使用される様々なオブジェクト及びデバイスの座標系を示す。ナビゲーションコントローラ22は、変換エンジン78などを介して、ナビゲーションコントローラ22に保存された変換データ83において定められる位置関係などに基づいて、ある座標系におけるオブジェクトの位置を別の座標系におけるオブジェクトの位置に変換するように構成されてもよい。そのような変換は、ナビゲーションコントローラ22が共通座標系に対して手術システム10内のオブジェクトを追跡することを可能にし得る。さらに、この変換は、視覚エンジン80などを介して、ナビゲーションコントローラ22が、位置特定エンジン76によって生成された位置特定データに基づいて視覚デバイス40によって生成されることになる予想深度マップを計算し、視覚デバイス40によって生成された実深度マップと予想深度マップとの比較に基づいてオブジェクトを特定し追跡することを可能にし得る。非限定的な一実施例として、変換データ83によって定められ、座標系間の変換を可能にする位置関係のそれぞれは、変換データ83によって定められる変換行列によって表されてもよい。
【0082】
ナビゲーションコントローラ22は、ローカライザ座標系LCLZを基準にして、トラッカ34、36、38に取り付けられた標的部位内のオブジェクトなど、標的部位内のオブジェクトを追跡するように構成され得る。ローカライザ座標系LCLZは、原点及び向きを含むことができ、これらは手術作業空間に対するx軸、y軸、及びz軸の位置によって定められ得る。ローカライザ座標系LCLZは、ローカライザ18に固定され、ローカライザ18を中心とすることができる。具体的には、ローカライザ18の中心点が、ローカライザ座標系LCLZの原点を定めてもよい。ローカライザデータは、上記のように、ローカライザ18を用いて判定されたローカライザ18に対するオブジェクトの位置を示すことができ、ローカライザ座標系LCLZにおけるそのようなオブジェクトの位置を同様に示すことができる。
【0083】
この処置を通して、ローカライザ座標系LCLZを既知の位置に保持することが1つの目標である。ローカライザ18が手術要員によって不注意でぶつけられたときに起こり得るような、ローカライザ座標系LCLZの突然の又は予期せぬ移動を検出するために、加速度計がローカライザ18に取り付けられてもよい。ローカライザ座標LCLZの検出された移動に応答して、ナビゲーションコントローラ22は、手術ナビゲータ81などを介して、ユーザインターフェース24によって外科医に対して警告を提示すること、手術ナビゲーションを停止すること、及び/又は手術システム10が較正し直されるまで、マニピュレータコントローラ50に手術器具16の移動を停止させる信号をマニピュレータコントローラ50へ伝達するように構成されてもよい。
【0084】
手術システム10によって追跡される各オブジェクトは、オブジェクトに固定されオブジェクトを中心とする、ローカライザ座標系LCLZとは別の独自の座標系を有することもできる。例えば、トラッカ34、36、38は、それぞれ骨トラッカ座標系BTRK1、骨トラッカ座標系BTRK2、及び器具トラッカ座標系TLTR内に固定され、その中心に置かれてもよい。患者の大腿骨Fは、大腿骨座標系FBONE内に固定され、その中心に置かれてもよく、患者の脛骨Tは、脛骨座標系TBONE内に固定され、中心が定められてもよい。外科処置より前に、大腿骨F、脛骨T、及び手術器具16などの各被追跡オブジェクトの術前画像及び/又は仮想モデルは、オブジェクトの座標系における定位置に従って、例えばオブジェクトの座標系にマッピングされ、その座標系内に固定されるなどにより、オブジェクトにマッピングされてもよい。
【0085】
外科処置の初期段階を通して、トラッカ34、36は、それぞれ患者の大腿骨F及び脛骨Tにしっかりと取り付けられ得る。そして、座標系FBONE及びTBONEの位置を、それぞれ座標系BTRK1及びBTRK2にマッピングすることができる。例えば、参照により本明細書に組み込まれるMalackowski et al.に対する米国特許第7,725,162号などに開示されている、独自のトラッカPTを有するポインタ器具P(図1)を使用して、大腿骨座標系FBONE及び脛骨座標系TBONEを、それぞれ骨トラッカ座標系BTRK1及びBTRK2へ位置合わせをしてもよい。大腿骨座標系FBONEと骨トラッカ座標系BTRK1との一定の位置関係、及び脛骨座標系TBONEと骨トラッカ座標系BTRK2との一定の位置関係を、変換データ83としてナビゲーションコントローラ22に保存することができる。
【0086】
大腿骨F及び脛骨Tとそれらのトラッカ34、36との一定の空間的関係が与えられると、変換エンジン78などを介して、ナビゲーションコントローラ22は、大腿骨座標系FBONEにおける大腿骨Fの位置を、骨トラッカ座標系BTRK1における大腿骨Fの位置に変換することができ、脛骨座標系TBONEにおける脛骨Tの位置を、骨トラッカ座標系BTRK2における脛骨Tの位置に変換することができる。このようにして、ローカライザ18を用いて位置特定座標系LCLZにおけるトラッカ34、36の位置を判定することにより、ナビゲーションコントローラ22は、それぞれ位置特定座標系LCLZにおける大腿骨座標系FBONEの位置及び脛骨座標系TBONEの位置を判定することができ、それに対応して、それぞれ位置特定座標系LCLZにおける大腿骨F及び脛骨Tの位置を判定することができる。
【0087】
同様に、手術器具16の治療端は、その座標系EAPP内に固定され、その中心に置かれ得る。座標系EAPPの原点は、例えば、外科用切削バーの重心に固定されてもよい。座標系EAPPの位置と、それに対応して手術器具16の治療端の位置とは、処置が開始する前に、トラッカ38の器具トラッカ座標系TLTR内に固定されてもよい。座標系EAPPと器具トラッカ座標系TLTRとの一定の位置関係はまた、変換データ83としてナビゲーションコントローラ22に保存されてもよい。このようにして、ローカライザ18を用いて位置特定座標系LCLZにおける器具トラッカ座標系TLTRの位置を判定することにより、変換エンジン78などを介して、ナビゲーションコントローラ22は、器具トラッカ座標系TLTRと座標系EAAPとの位置関係に基づいて位置特定座標系LCLZにおける座標系EAPPの位置を判定することができ、それに対応して、位置特定座標系LCLZにおける手術器具16の治療端の位置を判定することができる。
【0088】
視覚デバイス40は、同様に、視覚座標系VIS内に固定され、その中心に置かれ得る。視覚座標系VISの原点は、視覚デバイス40の重心に相当してもよい。視覚デバイス40によって生成された各実深度マップは、上記のように、視覚デバイス40に対する標的部位内の露出表面の位置を示すことができ、座標系VISにおける露出表面の位置を同様に示すことができる。
【0089】
図1などに示されるように、視覚デバイス40がローカライザ18と一体化されているときには、視覚座標系VISとローカライザ座標系LCLZとは等価であるとみなされ得る。言い換えれば、ローカライザ座標系LCLZ内のオブジェクト又は座標系の位置が、視覚座標系VIS内のオブジェクト又は座標系の位置に非常に近いか又は等しいので、変換は必要ない。あるいは、視覚座標系VISは、視覚デバイス40がローカライザ18と一体化されているときには、ローカライザ座標系LCLZ内に固定され得、逆の場合も同様であるので、視覚座標系VISとローカライザ座標系LCLZとの位置関係、及びそれに対応して視覚デバイス40とローカライザ18との位置関係は、手術システム10の製造中に決定され得、変換データ83としてナビゲーションコントローラ22内に工場で記憶されてもよい。
【0090】
視覚デバイス40がローカライザ18から分離しているとき、視覚デバイス40は、視覚座標系VISとローカライザ座標系LCLZとの位置関係、及びそれに対応して、視覚デバイス40とローカライザ18との位置関係を確立するために、視覚デバイス40のハウジングに堅固に取り付けられたトラッカ(図示せず)を含むことができる。ナビゲーションコントローラ22には、トラッカの座標系と視覚座標系VISとの位置関係が変換データ83として予め登録されていてもよい。このようにして、ローカライザ18を用いて位置特定座標系LCLZにおけるトラッカの座標系の位置を判定することにより、ナビゲーションコントローラ22は、トラッカの座標系と視覚座標系VISとの保存されている位置関係に基づいて、位置特定座標系LCLZにおける視覚座標系VISの位置を判定することができ、それに対応して、ローカライザ座標系LCLZにおける視覚デバイス40の位置を判定することができる。さらに、それに対応して、ナビゲーションコントローラ22は、ローカライザ座標系LCLZ及び視覚座標系VISにおけるローカライザ18に対する視覚デバイス40の位置を判定することができる。
【0091】
あるいは、ナビゲーションコントローラ22は、標的部位に挿入され、ローカライザ18及び視覚デバイス40の両方によって検出可能な共通の光パターンに基づいて、ローカライザ共通座標系LCLZと視覚座標系VISとの位置関係を特定するように構成されてもよい。例えば、ローカライザ18及び視覚デバイス40が標的部位を視野に入れて配置された後に、非可視光などの光のパターンが標的部位に投影されてもよく、その標的部位が、その光のパターンをローカライザ18及び視覚デバイス40へ反射し返してもよい。ナビゲーションコントローラ22は、視覚デバイス40の光源44に、この光パターンを標的部位に投影させてもよく、又は別の光プロジェクタ(図示せず)を使用して光パターンを投影させてもよい。さらなる実施例として、ローカライザ18及び視覚デバイス40によって検出可能な光のパターンを送出するように構成されたマーカを有する、トラッカ、又はポインタPT(図1)などの他の物理デバイスを、標的部位内に、かつローカライザ18及び視覚デバイス40の視野内に配置してもよい。
【0092】
ナビゲーションコントローラ22は、ローカライザエンジン76などを介して、ローカライザ18を用いて、ローカライザ18に特化したローカライザ座標系LCLZにおける光パターンの位置を示す位置特定データを生成するように構成され得る。ナビゲーションコントローラ22はまた、視覚デバイス40から光パターンを示す較正深度マップを受け取ることができ、変換エンジン78などを介して、視覚座標系VISにおける光パターンの位置を較正深度マップに基づいて特定するように構成されてもよい。そして、ナビゲーションコントローラ22は、変換エンジン78などを介して、回帰アルゴリズムなどを用いて、位置特定座標系LCLZ及び視覚座標系LCLZにおける投影パターンの判定された位置に基づいて、位置特定座標系LCLZと視覚座標系LCLZとの位置関係を判定するように構成されてもよい。
【0093】
図4は、トラッカをベースにした位置特定と機械視覚とを用いて、手術作業空間内のオブジェクトを追跡し、オブジェクトが手術計画を妨害するかどうかを判定するための方法100を示す。方法100は、手術ナビゲーションシステム12によって、より詳細には、ナビゲーションコントローラ22によって実行され得る。
【0094】
ブロック102では、共通座標系におけるローカライザ18と視覚デバイス40との位置関係を特定することができる。具体的には、変換エンジン78などを介して、ナビゲーションコントローラ22は、上記の方法のいずれかを用いて、ローカライザ18と視覚デバイス40との位置関係を特定し、それに対応してローカライザ座標系LCLZと視覚座標系VISとの位置関係を特定するように構成してもよい。例えば、視覚デバイス40にトラッカを固定してもよく、又はローカライザ18及び視覚デバイス40の両方によって検出可能な標的部位に光パターンを配置してもよい。あるいは、製造時にローカライザ18が視覚デバイス40と一体化されるか、又は別の方法で視覚デバイス40に対して固定されるときには、製造時に位置関係を決定し、ナビゲーションコントローラ22に変換データ83として予め記憶してもよい。
【0095】
ブロック104では、変換データ83などに基づいて、標的部位内の1つ以上のオブジェクトに対応する仮想モデルにアクセスすることができる。変換データ83は、トラッカ34、36、38などのトラッカが取り付けられる標的部位内のオブジェクトを示すことができる。ナビゲーションコントローラ22は、トラッカに取り付けられたオブジェクトのそれぞれについて仮想モデルを取得するように構成してもよい。いくつかの例では、これらの取得された仮想モデルの1つ以上が、外科処置中に処理されることになる標的体積を画定することもできる。
【0096】
図5は、膝関節置換術を受けている患者の標的部位200を示す。標的部位200は、手術器具(例えば、手術器具16)で除去すべき骨組織の標的体積202を含み得る、患者の大腿骨Fの一部を含むことができる。標的部位200は、靭帯204及び表皮組織206など、標的体積202に隣接する軟組織をさらに含むことができる。標的部位200は、表皮組織206を引き込み、患者の大腿骨Fへのアクセスを提供するように配置された開創器208などの手術具を含むこともできる。標的部位200は、さらに、患者の大腿骨Fにしっかりと取り付けられたトラッカ209を含んでもよい。したがって、ナビゲーションコントローラ22は、モデルデータ82から大腿骨Fに対応する仮想モデルを取得することができ、その例が図6に示されている。
【0097】
再び図4を参照すると、ブロック106では、標的部位内のトラッカに取り付けられたオブジェクトの位置を、ローカライザ18を使用して検出することができる。具体的には、ローカライザ18を、上記のように、ローカライザ座標系LCLZにおける各トラッカ座標系の位置を示し、それに対応して各トラッカの位置を示す光学ベースのデータを生成するように構成してもよい。そして、ナビゲーションコントローラ22は、位置特定エンジン76などを介して、例えばトラッカ及びそれらの座標系の検出位置、ならびに変換データ83に示されるトラッカとオブジェクトとの位置関係などに基づいて、ローカライザ座標系LCLZにおける、トラッカに取り付けられたオブジェクトの座標系の位置を特定し、それに対応してオブジェクトの位置を特定するように構成してもよい。トラッカに取り付けられた各オブジェクトの仮想モデルは、変換データ83内のオブジェクトの座標系にマッピングすることができるので、ナビゲーションコントローラ22は、同様に、オブジェクトが取り付けられたトラッカの検出位置、及びトラッカとオブジェクトとの位置関係に基づいて、トラッカに取り付けられた各オブジェクトの仮想モデルのローカライザ座標系LCLZにおける位置を特定することができる。
【0098】
図6は、図5の標的部位200の続きを示し、標的部位200内でトラッカ209に取り付けられ得る、患者の大腿骨Fに対応し得る仮想モデル210を示す。仮想モデル210は、ローカライザ18で決定されたローカライザ座標系LCLZにおけるトラッカ209及び大腿骨Fの位置に応じて、ローカライザ座標系LCLZ内に配置されてもよい。仮想モデル210は、治療中に大腿骨Fから切除されることになる仮想標的体積212を画定することができ、これは図5に示す標的体積202に対応し得る。
【0099】
ブロック108では、例えば、アクセスされた仮想モデル、ローカライザ座標系LCLZにおける仮想モデルに対応するオブジェクトの検出位置、及び共通座標系におけるローカライザ18と視覚デバイス40との位置関係などに基づいて、予想深度マップを生成する。上記のとおり、ローカライザ座標系LCLZにおける仮想モデルの位置は、ローカライザ18を用いて決定されたローカライザ座標系LCLZにおけるオブジェクトの位置に対応することができる。ナビゲーションコントローラ22は、視覚エンジン80などを介して、共通座標系におけるローカライザ18と視覚デバイス40との位置関係、及びそれに対応してローカライザ座標系LCLZと視覚座標系VISとの位置関係に基づいて、ローカライザ座標系LCLZにおける仮想モデルの位置を視覚座標系VISにおける仮想モデルの位置へ変換するように構成してもよい。
【0100】
その後、ナビゲーションコントローラ22は、視覚座標系VISにおける仮想モデルの位置に基づいて、予想深度マップを生成することができる。上記のように、視覚デバイス40によって生成された深度マップは、標的部位内のブ露出したオジェクト表面の視覚デバイス40に対する位置(例えば、深度及び場所)を示し得る。視覚座標系VISにおける仮想モデルの位置は、仮想モデルによって表されるオブジェクト表面の視覚デバイス40に対する位置を直ちに示すことができ、視覚座標系VIS内に固定することができる。したがって、ナビゲーションコントローラ22は、標的部位に他のオブジェクトが全く無いと仮定して、視覚エンジン80などを介して、視覚座標系VISにおける仮想モデルの判定された位置に基づいて、標的部位を視野に入れた視覚デバイス40が生成されると予想される深度マップをシミュレートするように構成されてもよい。
【0101】
図7は、図6の仮想モデル210に基づいて生成され得る予想深度マップを示す。図7の予想深度マップは、靭帯204、表皮組織206、開創器208、及びトラッカ209などの他のオブジェクトが標的部位に存在しないと仮定して、視覚座標系VISにおける仮想モデル210の変換された位置に従って、患者の大腿骨Fの視覚デバイス40によって生成されると予想される深度マップをシミュレートすることができる。図7の予想深度マップはまた、より詳細に後述するが、関心領域にトリミングされている場合がある。
【0102】
ブロック110では、視覚デバイス40によって取り込まれた実深度マップを受け取ることができる。具体的には、ブロック106において、ローカライザ18が、標的部位内のトラッカに取り付けられたオブジェクトの位置を示すローカライザデータを生成するのと同時に、視覚デバイス40が上記のように標的部位の深度マップを生成し得る。このようにして、深度マップは、位置特定データと時間的にインターリーブされてもよく、位置特定データに基づいて生成された推定深度マップとも時間的にインターリーブされてもよい。言い換えれば、実深度マップ及び予想深度マップは両方とも、外科処置中の実質的に同一時点における標的部位を表すことができる。
【0103】
図8は、図5に描かれた標的部位200を視野に入れた視覚デバイス40によって生成され得る深度マップを示しており、分かりやすくするためにトラッカ209が除去されている。深度マップは、ピクセルに類似して、マトリクス状に配列され、深度マップの画像フレームを形成する、いくつかの画像構成要素を含むことができる。ボックス214は、画像構成要素の1つの例を強調するために、図示された深度マップ上に人為的に配置されたものである。深度マップ画像フレームにおける各画像構成要素の場所は、視覚デバイス40の中心視点からの水平距離及び垂直距離を表し得、各画像構成要素の輝度は、画像構成要素によって表されるオブジェクト表面点の視覚デバイス40からの距離に対応し得る。図示の例では、明るい画像構成要素は、視覚デバイス40に近い標的部位の表面点を表し、暗い画像構成要素は、視覚デバイス40から遠い標的部位の表面点を表す。
【0104】
ブロック112では、実深度マップは、ブロック104においてアクセスされた仮想モデル、ローカライザ座標系LCLZにおける仮想モデルに対応するオブジェクトの検出位置、及び共通座標系におけるローカライザ18と視覚デバイス40との位置関係などに基づいて、外科処置のための関心領域(ROI)にトリミングすることができる。以下にさらに詳細に説明するように、実深度マップを予想深度マップと比較して、標的部位内のオブジェクトを特定し、そのようないずれかのオブジェクトが標的部位内の標的体積の治療を妨害する可能性があるかどうかを判定することができる。比較される実深度マップ及び予想深度マップの寸法が大きいほど、比較に必要とされる計算量が多くなる。したがって、ナビゲーションコントローラ22は、視覚エンジン80などを介して、比較された深度画像の寸法を減らすために、視覚座標系VISにおける仮想モデルの位置に基づいて、実深度マップをROIにトリミングするように構成されてもよい。上記のように、視覚座標系VISにおける仮想モデルの位置は、決定されたオブジェクトローカライザ座標系LCLZの位置と、共通座標系におけるローカライザ18と視覚デバイス40との位置関係とに基づいて決定されてもよい。
【0105】
例えば、ブロック104においてアクセスされた仮想モデルは、外科処置の間に治療すべき標的体積を画定し得る。したがって、視覚座標系VISにおける仮想モデルの位置は、視覚座標系VISにおける標的体積の位置を示すことができ、それに対応して、視覚デバイス40によって生成された実深度マップにおける標的体積の位置を示すことができる。ナビゲーションコントローラ22は、視覚エンジン80などを介して、実深度マップをトリミングして、視覚座標系VISにおける標的体積の位置から閾値距離よりも大きい任意の領域を除去するように構成してもよい。追加又は代替として、視覚エンジン80などを介して、ナビゲーションコントローラ22は、ユーザが選択した形状又は処置に特定的な形状を実深度マップ内の標的体積の位置の中心に合わせ、実深度マップの形状外の領域を除去するように構成してもよい。ナビゲーションコントローラ22は、予想深度マップの計算中又は計算後などに、予想深度マップの寸法及び形状を、トリミングされた実深度マップの寸法及び形状に収めるように構成してもよい。
【0106】
図9は、図6の大腿骨Fに対応する仮想モデル210に基づいてROIにトリミングされた図8の実深度マップを示す。仮想モデル210は、外科処置中に治療すべき標的体積202に対応する仮想標的体積212を画定し得る。ナビゲーションコントローラ22は、実深度マップでの標的体積の位置を示し得る、視覚座標系VISにおける標的体積の決定された位置に基づいて、例えば、深度マップにおける標的体積の中心に選択された形状を置き、その形状の外側の深度マップの領域を除去することなどにより、図8の実深度マップをトリミングすることができる。図7の予想深度マップも同様に、トリミングされた実深度マップの寸法及び形状に収められる。
【0107】
ブロック114及びブロック116では、予想深度マップに一致しない深度マップの部分を特定する。具体的には、ブロック114では、実深度マップと予想深度マップとの差分を計算することなどにより、実深度マップを予想深度マップと比較することができる。ナビゲーションコントローラ22は、視覚エンジン80などを介して、予想深度マップ及び実深度マップ内の各対応する画像構成要素のペアでの深度の差分を計算することにより、予想深度マップと実際の深度との差分を計算するように構成してもよい。予想深度マップ及び実深度マップ内の対応する画像構成要素のペアは、各深度マップの画像構成要素を同じ水平方向の場所及び垂直方向の場所に含むことができる。ブロック112において実深度マップがROIにトリミングされたと仮定すれば、ブロック114で比較される深度マップはトリミングされた深度マップであってもよい。
【0108】
実深度マップと推定深度との差分は、例えば、取り付けられたトラッカを使用して適切に追跡されていないか、又は追跡できないオブジェクト(例えば、軟組織、外科医の手)など、標的部位内に、まだ特定されておらず、追跡されていないオブジェクトがあることを示している可能性がある。この差分は、差分深度マップによって表すことができ、差分深度マップの各画像構成要素は、差分深度マップ内の画像構成要素と同じ水平位置及び垂直位置で実深度マップ及び予想深度マップ内に位置する対応する画像構成要素について計算された深度の差を示す。図10は、図9の実深度マップと図7の予想深度マップとの間で計算された差分深度マップを示す図である。
【0109】
同じ深度を示す実深度マップ及び予想深度マップからの対応する画像構成要素は、深度差がゼロとなり、トラッカ及びローカライザ18などを使用して以前に特定され追跡されたオブジェクトに対応する可能性がある。ゼロ深度差は、差分の深度マップでは、最大輝度を有する、又はゼロ深度に特有の色及び/又は色相を有する、画像構成要素によって表され得る。図10の差分深度マップでは、領域216、218、及び220は、ゼロの深度差を有する実深度マップ及び予想深度マップからの対応する画像構成要素を表す。
【0110】
同じ深度を示さない実深度マップ及び予想深度マップの対応する画像構成要素は、ゼロでない深度差となり、トラッカ及びローカライザ18などを使用して以前に特定されておらず追跡されていないオブジェクトに対応する可能性がある。ゼロでない深度差は、差分の深度マップでは、最大輝度よりも小さい輝度の画像構成要素、又はゼロ深度に特有の色及び/又は色相とは異なる色の画像構成要素を用いて表され得る。図10の差分深度マップでは、領域216、218、及び210に隣接するより暗い領域は、深度差がゼロでない実深度マップ及び予想深度マップの対応する画像構成要素を表す。
【0111】
ブロック116では、計算した差分を、1つ以上のオブジェクト閾値に基づいてフィルタ処理することができる。オブジェクト閾値は、ノイズ又は無視できる較正の不正確さに起因するゼロでない差分と、標的部位内の追加オブジェクトの存在に起因するゼロでない差分とを区別するように設計することができる。オブジェクト閾値は、限定されないが、閾値深度及び/又は最小サイズ閾値を含み得、これらのそれぞれは非ゼロであり得る。
【0112】
一実施例を挙げると、差分深度マップの1つ以上の非ゼロセクションのそれぞれについて、ナビゲーションコントローラ22は、非ゼロセクションが深度閾値よりも大きい絶対深度を示すかどうかを判定するように構成してもよい。具体的には、差分深度マップは、1つ以上の非ゼロセクションを含み、非ゼロセクションのそれぞれは、それぞれが非ゼロの深度差を示す連続した画像構成要素の集合を含み得る。差分深度マップの非ゼロセクションは、非ゼロセクションの各画像構成要素によって示される非ゼロ深度差の大きさ(符号は参照しない)が深度閾値よりも大きい場合、深度閾値よりも大きい絶対深度を有すると見なされ得る。差分の非ゼロセクションが閾値深度よりも大きい絶対深度を示すと判定することに応答して、ナビゲーションコントローラ22は、例えば、実深度マップのセクションが、差分深度マップでの非ゼロセクションと実深度マップにおいて同じ水平位置及び垂直位置にあることなどにより、推定深度マップに一致しない実深度マップの部分として、差分の非ゼロセクションに対応する実深度マップのセクションを特定するように構成してもよい。
【0113】
さらなる実施例として、差分の各非ゼロセクションについて、ナビゲーションコントローラ22は、非ゼロセクションのサイズ(例えば、面積)が最小サイズ閾値よりも大きいかどうかを判定するように構成してもよい。非ゼロセクションのサイズが最小サイズ閾値よりも大きいと判定することに応答して、ナビゲーションコントローラ22は、視覚エンジン80などを介して、例えば、実深度マップのセクションが、差分深度マップでの非ゼロセクションと実深度マップにおいて同じ水平位置及び垂直位置にあることなどにより、予想深度マップに一致しない実深度マップの部分として、差分の非ゼロセクションに対応する実深度マップのセクションを特定するように構成してもよい。
【0114】
別の実施例では、ナビゲーションコントローラ22は、非ゼロセクションのサイズが最小サイズ閾値よりも大きく、非ゼロセクションが閾値深度よりも大きい絶対深度を示すと判定することに応答して、推定深度マップに一致しない実深度マップの部分として、差分の非ゼロセクションに対応する実深度マップのセクションを特定するように構成してもよい。
【0115】
ブロック118では、フィルタ処理された差分に基づいて、標的部位にオブジェクトが存在するかどうかの判定を行うことができる。具体的には、視覚エンジン80などを介して、ナビゲーションコントローラ22は、予想深度マップと一致しない実深度マップの部分が特定されたかどうかを判定するように構成してもよい。特定されていない場合(ブロック118の「No」分岐)、方法100はブロック106に戻って、ローカライザ18を使用して、トラッカが取り付けられたオブジェクトの位置を再び検出することができる。特定されたならば(ブロック118の「Yes」分岐)、方法100はブロック120に進み、予想深度マップに一致しない実深度マップの部分に機械視覚技法を適用することにより、標的部位内のオブジェクトを認識することができる。
【0116】
ブロック120では、視覚エンジン80などを介して、ナビゲーションコントローラ22は、機械視覚技法を、予想深度マップに一致しない実深度マップの特定された部分に適用して、特定された部分から標的部位内のオブジェクトを認識するように構成してもよい。例えば、限定するものではないが、ナビゲーションコントローラ22は、パターン認識、エッジ検出、色認識、波長分析、画像構成要素強度分析(例えば、ピクセル又はボクセル強度分析)、深度分析、及び機械学習を通じて生成された測定基準を利用して、実深度マップの特定された部分で表されるオブジェクトの間をセグメント化するように構成してもよい。いくつかの実施例として、エッジによって分けられた特定部分の領域、異なる規則的なパターンを有する領域、異なるカラーパレットを有する領域、及び/又は異なる深度範囲を示す領域は、異なるオブジェクトに対応し得る。さらなる実施例として、標的部位内の異なるオブジェクト(例えば、異なる組織)の表面は、視覚デバイス40によって反射されて検出される信号において、異なる波長及び/又は異なる強度を生じさせる可能性がある。視覚デバイス40は、実深度マップの画像構成要素ごとにそのような情報を出力するように構成してもよく、この情報に基づいて、ナビゲーションコントローラ22は、実深度マップの特定された部分にわたって生じる様々な波長及び/又は信号強度に基づいて、特定された部分における異なるオブジェクトをセグメント化するように構成してもよい。ナビゲーションコントローラ22が、機械視覚を用いて特定された部分に複数のオブジェクトを発見できない場合には、ナビゲーションコントローラ22は、特定された部分全体を標的部位内の単一のオブジェクトと見なすように構成してもよい。
【0117】
加えて又は代わりに、ナビゲーションコントローラ22は、視覚エンジン80などを介して、ナビゲーションコントローラ22に保存されたモデルデータ82などに基づいて、実際の深度の特定された部分におけるオブジェクトを特定するように構成してもよい。特定は、例えば、オブジェクトを靭帯、開創器、表皮組織などと特定することなど、オブジェクトの種類を記述する実深度マップで表される各オブジェクトのラベルを特定することができるという点で、特定はセグメント化とは異なり得る。標的部位における各オブジェクトを特定すると、視覚エンジン80などを介して、ナビゲーションコントローラ22が、オブジェクトの表面だけとは対照的にオブジェクト全体をモデル化し、外科処置中のオブジェクトの動き及び他の反応をより良く予測することが可能になる可能性があり、これにより、ナビゲーションコントローラ22の手術ナビゲータ81が、ますます情報に基づいたナビゲーション決定を行うことができるようになる可能性がある。
【0118】
上記のように、ナビゲーションコントローラ22に保存されたモデルデータ82は、標的部位に潜在的に存在するオブジェクトに対応する3次元モデルを定義することができる。モデルデータ82はまた、標的部位に潜在的に存在する様々なオブジェクトに対する所定のプロファイルを定義することもでき、各プロファイルは、実深度マップからオブジェクトを特定する際にナビゲーションコントローラ22を支援する、オブジェクトに特定的な1つ以上の特徴を定めるものである。例えば、所与のオブジェクトのプロファイルは、限定されるものではないが、カラーパレット、波長範囲、信号強度範囲、距離又は深度範囲、面積、体積、形状、偏光、及びオブジェクトに対応する学習又は統計モデルからのディープメトリック出力の1つ以上を含んでもよい。所与のオブジェクトのプロファイルはまた、上記の患者スキャンから生成されたものなど、オブジェクトの3次元モデルを含んでいてもよい。
【0119】
したがって、ナビゲーションコントローラ22は、実深度マップの特定された部分に基づいて、特定された部分の少なくとも一部を、予め定義されたプロファイルの1つ、すなわちオブジェクトに対応する予め定義されたプロファイルと一致させることにより、推定深度マップに一致しないオブジェクトを特定するように構成してもよい。そして、ナビゲーションコントローラ22は、プロファイルに対応する特定のオブジェクトとして、実深度マップの特定された部分の少なくとも一部にラベルを付けるように構成してもよく、その結果、これはローカライザオブジェクトに隣接すると見なされ得る。
【0120】
代替実施例では、ユーザは、ナビゲーションコントローラ22によってセグメント化された特定された部分のオブジェクトを手動で選択するために、及び/又は選択されたオブジェクトに対する予め定義されたプロファイルを選択するために、ユーザインターフェース24とインタラクトすることができる。ユーザはまた、ユーザインターフェース24とインタラクトして、特定された部分などにおける実深度マップによって表されるオブジェクトを手動でトレースすること、及び/又はトレースされたオブジェクトのための予め定義されたプロファイルを選択することができる。その後、ナビゲーションコントローラ22は、選択された、セグメント化されたオブジェクト、又はトレースされたオブジェクトに、選択された予め定義されたプロファイルに対応するラベルを付け、それに応じて、選択されたオブジェクト、又はトレースされたオブジェクトを追跡するように構成してもよい。
【0121】
ブロック122では、実深度マップから認識された各オブジェクトの位置を、視覚座標系VIS又はローカライザ座標系LCLZなど、局所オブジェクトと共通の座標系で判定することができる。例えば、視覚エンジン80などを介して、ナビゲーションコントローラ22は、深度マップから認識された各オブジェクトの位置と、局所オブジェクトによって定義され得る標的体積に対する共通座標系における各局所オブジェクトの位置とを判定するように構成することができ、ナビゲーションコントローラ22が、認識オブジェクト及び/又は局所オブジェクトのいずれかが、標的体積を治療するための障害となるかどうかを判定することができるようにする。
【0122】
ナビゲーションコントローラ22は、ローカライザ18を用いたローカライザ座標系LCLZにおける局所オブジェクトの検出された場所、実深度マップにおける認識オブジェクトの場所、及びナビゲーションコントローラ22に保存されている変換データ83によって定義され得る、共通座標系におけるローカライザ18と視覚デバイス40との位置関係に基づいて、局所オブジェクトに対する各認識オブジェクトの位置を判定するように構成してもよい。上記のとおり、実深度マップにおける認識オブジェクトの位置は、視覚座標系VISにおける認識オブジェクトの位置を示すことができる。例えば、認識オブジェクトを形成する実深度マップの各画像構成要素は、視覚デバイス40の中心視点から視覚座標系VISにおける位置までのベクトルを表し得る。実深度マップの画像フレームにおける各画像構成要素の位置は、ベクトルの水平成分及び垂直成分を示してもよく、各画像構成要素によって示される深度は、ベクトルの深度成分を表してもよい。
【0123】
したがって、ナビゲーションコントローラ22は、実深度マップにおけるオブジェクトの位置に基づいて、視覚座標系VISにおける各認識オブジェクトの位置を判定してもよく、次に、ローカライザ18と視覚デバイス40との位置関係、視覚座標系VISにおける各認識オブジェクトの位置、及び/又はローカライザ座標系LCLZにおける各局所オブジェクトの位置を使用して、共通座標系における局所オブジェクトに対しての各認識オブジェクトの位置を判定するように構成してもよい。
【0124】
ブロック124では、実深度マップから認識されたオブジェクト、及びローカライザ18で局所化されたオブジェクトを含む各被追跡オブジェクトに対して、共通座標系におけるオブジェクトの判定された位置などに基づいて、共通座標系において、オブジェクトに対応する仮想境界を生成することができる。具体的には、視覚エンジン80などを介して、ナビゲーションコントローラ22は、共通座標系において仮想境界を生成して、手術器具16などの手術具の動きに対して制約を与えるように構成してもよい。この目的のために、ナビゲーションコントローラ22はまた、ローカライザ18などを用いて、共通座標系における手術器具16の移動を追跡するように構成してもよい。ナビゲーションコントローラ22によって生成される仮想境界は、傷つきやすい解剖構造及び他の手術具を含む他のオブジェクトによって空間が占められる可能性があるため、手術器具16が中に又は近くに移動すべきではない共通座標系の領域を画定することができる。
【0125】
例えば、ナビゲーションコントローラ22は、共通座標系における局所オブジェクトの判定された位置に従って、局所オブジェクトごとに記憶された3次元仮想モデルを共通座標系に挿入するように構成してもよい。ナビゲーションコントローラ22に保存されたモデルデータ82が、実深度マップの特定された部分から認識された所与のオブジェクトに対する3次元仮想モデルを定義するとき、ナビゲーションコントローラ22は、共通座標系における所与の認識オブジェクトの判定された位置に従って、3次元仮想モデルを共通座標系に挿入するように構成してもよい。追加又は代替として、モデルデータ82は、実深度マップの特定された部分から認識された所与のオブジェクトに対する1つ以上の基本幾何学的形状(例えば、球、円筒、ボックス)を示してもよい。この場合、ナビゲーションコントローラ22は、実深度マップによって示されるオブジェクトの表面トポグラフィに基づいて、示された基本幾何学的形状をサイズ調整及び/又は配置し、サイズ調整及び/又は配置された基本幾何学的形状を、共通座標系における所与のオブジェクトの判定された位置に従って、共通座標系に挿入するように構成してもよい。追加又は代替として、例えば、実深度マップの特定された部分から認識された所与のオブジェクトに対して仮想モデル又は基本幾何学的形状が示されていないときなどでは、ナビゲーションコントローラ22は、実深度マップに示されたオブジェクトの表面トポグラフィに基づいてメッシュ境界を構築し、共通座標系における所与のオブジェクトの判定された位置に従って、メッシュ境界を共通座標系に挿入するように構成してもよい。
【0126】
さらなる実施例として、上記の技法の1つ以上に加えて、又はその代わりに、ナビゲーションコントローラ22は、共通座標系における所与のオブジェクトの判定された位置に従って、共通座標系に力粒子を挿入することにより、共通座標系における所与のオブジェクトの境界を近似するように構成してもよい。具体的には、ナビゲーションコントローラ22は、認識オブジェクトの表面上の様々な点を選択し、共通座標系における様々な点の判定された位置で、共通座標系に力粒子を配置するように構成してもよい。力粒子のそれぞれは、共通座標系で力粒子の近傍を移動する他のオブジェクトが、所定の距離内に入ることなどによって、反発するように構成してもよい。したがって、共通座標系における手術器具16の追跡移動の間、力粒子は手術器具16を反発させ、それによって手術器具16が、力粒子によって構成されるオブジェクトに衝突することを防止することができる。認識オブジェクトの表面全体を表す仮想境界ではなく、認識オブジェクトの表面上の様々な点に対応する力粒子を共通座標系に挿入することで、比較的少ない処理帯域幅と少ないデータ量とを使用して、オブジェクトの仮想境界を生成することをもたらし得る。
【0127】
例として、図11図13は、図10に示される差分に基づいて図7の予想深度マップに一致しない図9の実深度マップの特定された部分から認識された標的部位200(図5)内のオブジェクトに対応する共通座標系内の仮想境界を示す。具体的には、図11は、標的部位200の開創器208に対応し、実深度マップに描かれた開創器仮想モデルを共通座標系で示した図、図12は、標的部位200の靭帯204に対応し、実深度マップに描かれた靭帯仮想モデルを共通座標系で示した図、図13は、標的部位200の表皮組織206に対応し、実深度マップに描かれた表皮組織仮想モデルを共通座標系で示した図である。代替実施例として、標的部位200における靭帯204の仮想境界は、共通座標系における靭帯204の判定された位置に従って共通座標系に挿入される円柱などの基本幾何学的オブジェクトの形態であってもよく、標的部位200における表皮組織206の仮想境界は、共通座標系における表皮組織206の判定された位置で共通座標系に挿入されるメッシュ面又は力粒子の形態であってもよい。
【0128】
図14は、実深度マップから認識されたオブジェクトと、ローカライザ18で局所化された患者の大腿骨Fとの相対位置を共通座標系で示す。具体的には、図は、図11図13の仮想モデルと、図6に例示された患者の大腿骨Fの仮想モデル210とを含むものである。外科処置の間、ナビゲーションコントローラ22は、例えば手術ナビゲータ81などを介して、共通座標系における手術器具16の現在の位置に、手術器具16に対する画像又は仮想モデルと共に図14のイラストを表示し、ローカライザ18で追跡されるなど、手術器具16を標的体積202に導く際に外科医を支援するように構成され得る。
【0129】
ブロック126では、被追跡オブジェクト及び/又は手術計画84に基づいて、潜在的障害物が標的部位に存在するかどうかの判定を行うことができる。具体的には、手術ナビゲータ81などを介して、ナビゲーションコントローラ22は、実深度マップを形成する認識されたオブジェクトなどの被追跡オブジェクトの1つが、共通座標系における標的体積に対するオブジェクトの位置及び手術計画84に基づいて、手術計画84にとって障害となるかどうかを判定するように構成してもよい。例えば、手術計画84は、標的体積を治療するための共通座標系を通る手術器具16の計画された軌道を定義することができる。計画された軌道が被追跡オブジェクトのための仮想境界の1つとの衝突を引き起こす場合、ナビゲーションコントローラ22は、障害物が存在すると判定するように構成されてもよい。
【0130】
障害物が存在すると判定することに応答して(ブロック126の「Yes」分岐)、ブロック128において、改善措置がトリガされることがある。手術ナビゲータ81などを介して、ナビゲーションコントローラ22は、いくつかの利用可能なアクションのうちの1つ以上を実行することにより、改善措置をトリガするように構成されてもよい。一実施例を挙げると、オブジェクトが手術計画84にとって障害物であると判定することに応答して、ナビゲーションコントローラ22は、障害物を回避するために手術計画84を変更するように構成されてもよい。例えば、ナビゲーションコントローラ22は、障害物を回避するために手術器具16の軌道を変更し、変更された手術計画84をマニピュレータコントローラ50に伝送して実施するように構成されてもよい。別の実施例として、ナビゲーションコントローラ22は、障害物が取り除かれたことが、ナビゲーションコントローラ22によって検出されるまで、手術ナビゲーションシステム12によって提供される手術ガイダンス及びロボットマニピュレータ14の移動を停止するように構成され得る。ナビゲーションコントローラ22は、手術ナビゲーションシステム12のユーザインターフェース24を介して、障害物のアラーム及び/又は通知をトリガするように構成してもよい。さらなる実施例として、障害の原因となるオブジェクトが軟組織と特定されたとき、ナビゲーションコントローラ22は、ユーザインターフェース24を介して軟組織ガイダンスを提供するように構成してもよい。例えば、ナビゲーションコントローラ22は、障害を引き起こしている軟組織オブジェクトの、標的部位における他のオブジェクトに対する位置を図示し、障害物を取り除くために軟組織を移動させるための提案を提供するように構成してもよい。ナビゲーションコントローラ22は、軟組織ガイダンスを提供しながら、共通座標系における軟組織の位置を監視し続け、障害物の脅威が取り除かれたときにユーザに通知を行うように構成されてもよい。
【0131】
改善措置のトリガ及び/又は克服(ブロック128)に続いて、又は障害物が識別されないことに応答して(ブロック126の「No」分岐)、ブロック130では、実深度から認識されたオブジェクトの移動が視覚デバイス40を用いて追跡されてもよい。具体的には、視覚エンジン80などを介して、ナビゲーションコントローラ22は、視覚デバイス40によってその後生成される追加の実深度マップにおいて認識されたオブジェクトに対応する実深度マップの部分の状態を監視するように構成されることにより、各認識オブジェクトの動きを追跡するように構成してもよい。続いて生成された実深度マップごとに予想深度マップを生成すること、予想深度マップと続く実深度マップとの差分を計算すること、及び保存されたプロファイルを差分に一致させることをするのではなく、続いて生成された深度マップで、以前に認識されたオブジェクトに対応すると判定された実深度マップの部分に対する変化に焦点を当てることにより、ナビゲーションコントローラ22は、認識されたオブジェクトの移動を、ゆくゆくはスピードを上げて監視できる可能性がある。
【0132】
より詳細には、認識されたオブジェクトに対応する実深度マップの各部分は、オブジェクトに特有の特徴の配列を示し、実深度マップの特定の位置に配置され得る。例えば、限定はしないが、特徴の配列は、オブジェクトに特有の幾何学的関係を有する頂点の配列、オブジェクトに特有の幾何学的関係を有するエッジ又はラインの配列、あるいはオブジェクトに特有の相対的及び幾何学的関係を有する深度の配列であり得る。さらに、オブジェクトの特徴の配列と、オブジェクトの他の部分との空間的関係が固定されていてもよい。
【0133】
したがって、ナビゲーションコントローラ22は、実深度におけるオブジェクトに特有の特徴の配列が、実深度マップにおける配置の位置と異なる追加の深度マップにおける位置に移動するかどうかを監視することにより、実深度マップから認識されるオブジェクトの移動を監視するように構成してもよい。移動する場合、ナビゲーションコントローラ22は、追加深度マップにおけるオブジェクトに対応する特徴の配列の新しい位置に基づいて、共通座標系におけるオブジェクトの新しい位置を決定し、それに応じて共通座標系におけるオブジェクトに関連する仮想境界を更新するように構成してもよい。所与のオブジェクトの動きを監視するための特徴の配列は、オブジェクトのモデルデータ82に示されていてもよく、又はユーザインターフェース24を用いて実深度マップのオブジェクトに対応する部分の点を選択することにより、ユーザが手動で設定してもよい。
【0134】
例えば、図15は、図9に例示された実深度マップが生成された後に、視覚デバイス40によって続いて生成される追加の実深度マップを例示する。図15の追加深度マップの開創器208(図5)を表す部分の位置は、図9の深度マップのこの部分の位置と異なっており、開創器208が移動したことを示す。ナビゲーションコントローラ22は、開創器208を表す部分にあり、開創器208の残りの部分に対して位置的に固定されている特定の特徴の配列の、以前の実深度マップに対する追加の深度マップにおける変化した位置を監視することにより、開創器208の係る動きを追跡するように構成してもよい。例えば、ナビゲーションコントローラ22は、開創器208のヘッドとボディとの間の頂点222の配列の位置の変化について、追加の深度マップを監視してもよい。
【0135】
頂点222の配列の位置の変化を判定することに応答して、ナビゲーションコントローラ22は、図15の追加の深度マップにおける頂点222の配列の更新された位置と、頂点222の配列と残りの開創器208との一定の位置関係とに基づいて、共通座標系における開創器208の更新された位置を判定するように構成してもよい。その後、ナビゲーションコントローラ22は、更新された位置に基づいて、共通座標系における開創器208に関連する仮想境界を調節するように構成され得る。図16は、図15の追加の深度マップに描かれた頂点222の配列の新しい位置に応じて、共通座標系における開創器208の仮想境界、すなわち開創器208に対応する仮想モデルの位置を更新した図である。
【0136】
本明細書では、機械視覚とトラッカベースの位置特定との組み合わせを使用して、手術作業空間内のオブジェクトを追跡するためのシステム及び方法を開示する。筋肉、皮膚、及び靭帯などの軟組織は柔軟な性質を持つため、通常、トラッカをベースにした位置特定は軟組織の追跡に適しているとは言えない。したがって、手術ナビゲーションシステムは、トラッカをベースにした位置特定を使用して手術作業空間内の剛性のオブジェクトの位置を検出することに加えて、手術作業空間内の露出表面の深度マップを生成するように構成された視覚デバイスを含むことができる。本手術ナビゲーションシステムは、位置特定を用いた標的部位におけるオブジェクトの検出位置、オブジェクトに対応する仮想モデル、及び共通座標系におけるローカライザと視覚デバイスとの位置関係に基づいて、視覚デバイスの予想深度マップを生成するようにさらに構成され得る。次に、本手術ナビゲーションシステムは、推定深度マップに一致しない実深度マップの部分を特定し、特定された部分に基づいて、標的部位の軟組織を含むオブジェクトを認識するように構成されてもよい。そして、本手術ナビゲーションシステムは、オブジェクトが現在の手術計画の障害となるかどうかを判定するように構成することができる。
【0137】
一般に、本発明の実施形態を実施するために実行されるルーチンは、オペレーティングシステムの一部として実装されるか、特定のアプリケーション、コンポーネント、プログラム、オブジェクト、モジュール、又は命令のシーケンスとして実装されるか、あるいはそのサブセットであるかにかかわらず、本明細書では「コンピュータプログラムコード」、又は単に「プログラムコード」と呼ぶことがある。プログラムコードは、典型的には、コンピュータ内の様々なメモリ及び記憶装置に様々なタイミングで常駐し、コンピュータ内の1つ以上のプロセッサによって読み出され実行されるとき、そのコンピュータに、本発明の実施形態の様々な態様を具現化する動作及び/又は要素を実行するために必要な動作を実行させるコンピュータ可読命令を含む。本発明の実施形態の動作を実行するためのコンピュータ可読プログラム命令は、例えば、アセンブリ言語、又は1つ以上のプログラミング言語の任意の組み合わせで記述されたソースコード又はオブジェクトコードであってもよい。
【0138】
本明細書に記載された様々なプログラムコードは、本発明の特定の実施形態においてそれが実装される範囲内で、アプリケーションに基づいて識別され得る。しかし、以下に示す特定のプログラム命名法は、単に便宜のために使用されるものであり、したがって、本発明は、そのような命名法によって特定され、及び/又は暗示される任意の特定の用途における使用のみに限定されるべきではないことを理解されたい。さらに、コンピュータプログラムをルーチン、手順、方法、モジュール、オブジェクトなどに編成することができる概して無限数の方法、ならびに典型的なコンピュータ内に常駐する様々なソフトウェア層(例えば、オペレーティングシステム、ライブラリ、API、アプリケーション、アプレットなど)の間でプログラム機能を割り当てることができる様々な方法を前提とすれば、本発明の実施形態は、本明細書に記載されるプログラム機能の特定の編成及び割り当てに限定されないことが理解されよう。
【0139】
本書に記載されたいずれかのアプリケーション/モジュールに具現化されたプログラムコードは、個別に又は集合的に、様々な異なる形態のプログラム製品として配布することが可能である。特に、プログラムコードは、プロセッサに本発明の実施形態の態様を実行させるためのコンピュータ可読プログラム命令をその媒体上に有するコンピュータ可読記憶媒体を用いて配布してもよい。
【0140】
本質的に非一時的であるコンピュータ可読記憶媒体は、コンピュータ可読命令、データ構造、プログラムモジュール、又は他のデータなどの情報を記憶するための任意の方法又は技術で実装された揮発性及び不揮発性、ならびに取り外し可能及び不可能な有形媒体を含むことができる。コンピュータ可読記憶媒体は、さらに、RAM、ROM、消去可能プログラマブル読み出し専用メモリ(EPROM)、電気的消去可能プログラマブル読み出し専用メモリ(EEPROM)、フラッシュメモリ又は他の固体メモリ技術、ポータブルコンパクトディスク読み出し専用メモリ(CD-ROM)、又は他の光学ストレージ、磁気カセット、磁気テープ、磁気ディスクストレージ又は他の磁気ストレージデバイス、又は所望の情報を記憶するために使用することができ、かつコンピュータによって読み出すことができる任意の他の媒体を含むことができる。コンピュータ可読記憶媒体は、一過性の信号(例えば、電波もしくは他の伝搬電磁波、導波管などの伝送媒体を通って伝搬する電磁波、又はワイヤを通って伝送される電気信号)そのものとして解釈されるべきではない。コンピュータ可読プログラム命令は、コンピュータ可読記憶媒体からコンピュータ、別の種類のプログラム可能なデータ処理装置、もしくは別の装置にダウンロードされてもよく、又はネットワークを介して外部のコンピュータもしくは外部の記憶装置にダウンロードされてもよい。
【0141】
コンピュータ可読媒体に記憶されたコンピュータ可読プログラム命令は、コンピュータ、他のタイプのプログラム可能なデータ処理装置、又は他の装置が特定の方法で機能するように指示するために使用され、コンピュータ可読媒体に記憶された命令が、フローチャート、シーケンス図、及び/又はブロック図に指定された機能、行為、及び/又は動作を実施する命令を含む製造品を製造するようにしてもよい。コンピュータプログラム命令は、汎用コンピュータ、専用コンピュータ、又は他のプログラム可能なデータ処理装置の1つ以上のプロセッサに提供され、1つ以上のプロセッサを介して実行される命令が、フローチャート、シーケンス図、及び/又はブロック図に指定された機能、行為、及び/又は動作を実行するために一連の計算を行わせるように、機械を製造することができる。
【0142】
特定の代替実施形態では、フローチャート、シーケンス図、及び/又はブロック図に指定された機能、行為、及び/又は動作は、本発明の実施形態と一致して、並べ替えられ、連続的に処理され、及び/又は同時に処理されてもよい。さらに、フローチャート、シーケンス図、及び/又はブロック図のいずれもが、本発明の実施形態と一致する図示されたブロックよりも多いブロック、又は少ないブロックを含むことができる。
【0143】
本明細書で使用される用語は、特定の実施形態を説明することのみを目的としており、本発明の実施形態を限定することを意図するものではない。本明細書で使用するとき、単数形の「a」、「an」、及び「the」は、文脈上明らかに他を示す場合を除き、複数形も含むことを意図している。本明細書で使用する場合、用語「備える(comprises)」及び/又は「備えている(comprising)」は、記載された機能、整数、ステップ、動作、要素、及び/又は構成要素の存在を指定するが、1つ以上の他の機能、整数、ステップ、動作、要素、構成要素、及び/又はそれらのグループの存在又は追加を排除するものではないことが更に理解されよう。さらに、詳細な説明又は特許請求の範囲のいずれかに、用語「含む(includes)」、「有している(having)」、「有する(has)」、「備える(with)」、「からなる(comprised of)」、又はその変形が使用されている限り、そのような用語は、用語「含んでいる(comprising)」と同様に包括的であることを意図している。
【0144】
本発明の全ては、様々な実施形態の説明によって示されており、これらの実施形態は、かなり詳細に説明されてきたが、添付の特許請求の範囲の範囲を、そのような詳細に制限すること、又はいかなる方法によっても制限することは、本出願人の意図ではない。さらなる利点及び変更は、当業者には容易に理解されるであろう。したがって、本発明のより広い態様は、具体的な詳細、代表的な装置及び方法、ならびに図示及び説明された例示的な実施例に限定されない。したがって、本出願人の一般的な発明概念の趣旨又は範囲から逸脱することなく、そのような詳細から逸脱することができる。
なお、上記の実施形態から把握し得る技術的思想について、その態様を以下に記載する。
[態様1]
第1のオブジェクトの位置を検出するように構成されたローカライザと、
前記第1のオブジェクトの近傍の表面の実深度マップを生成するように構成された視覚デバイスと、
前記ローカライザ及び前記視覚デバイスに結合されたコントローラであって、前記コントローラが、
前記第1のオブジェクトに対応する仮想モデルにアクセスすることと、
共通座標系で前記ローカライザと前記視覚デバイスとの位置関係を特定することと、
前記第1のオブジェクトの前記検出位置、前記仮想モデル、及び前記位置関係に基づいて、前記視覚デバイスの予想深度マップを生成することと、
前記予想深度マップと一致しない前記実深度マップの部分を特定することと、
前記特定された部分に基づいて第2のオブジェクトを認識することと
を行うように構成される、前記コントローラと
を備える、ナビゲーションシステム。
[態様2]
前記コントローラは、前記第1のオブジェクトの前記検出位置、前記実深度マップにおける前記第2のオブジェクトの場所、及び前記位置関係に基づいて、前記共通座標系における前記第1のオブジェクトに対する前記第2のオブジェクトの位置を特定するように構成される、態様1に記載のナビゲーションシステム。
[態様3]
前記第1のオブジェクトは、手術計画に従って治療すべき患者組織の標的体積を画定しており、前記コントローラは、
前記共通座標系における前記標的体積に対する前記第2のオブジェクトの前記位置と前記手術計画と、に基づいて、前記第2のオブジェクトが、前記手術計画に従って前記標的体積を治療することに対する障害物であるかどうかを判定することと、
前記第2のオブジェクトが前記手術計画にとっての障害物であると判定することに応答して、前記手術計画を修正すること、及び/又は通知をトリガすること、及び/又は手術ナビゲーションを停止することと、
を行うように構成される、態様2に記載のナビゲーションシステム。
[態様4]
前記第1のオブジェクトにトラッカが堅固に結合されており、前記コントローラは、
前記ローカライザを介して、前記ローカライザに特定的な第1の座標系で前記トラッカの位置を検出することと、
前記第1の座標系における前記トラッカの前記検出位置、及び前記第1の座標系における前記トラッカと前記第1のオブジェクトとの位置関係に基づいて、前記第1の座標系における前記仮想モデルの位置を特定することと、
前記第1の座標系での前記仮想モデルの前記位置と、第2の座標系での前記ローカライザと前記視覚デバイスとの位置関係とに基づいて、前記第1の座標系における前記仮想モデルの前記位置を、前記視覚デバイスに特定的な前記第2の座標系における前記仮想モデルの位置に変換することと、
前記第2の座標系での前記仮想モデルの前記位置に基づいて、前記予想深度マップを生成することと、
を行うように構成される、態様1~3のいずれか1項に記載のナビゲーションシステム。
[態様5]
前記コントローラは、
前記実深度マップと前記予想深度マップとの差分を計算することと、
前記差分の第1のセクションが閾値深度よりも大きい絶対深度を示すかどうかを判定することと、
前記差分の前記第1のセクションが閾値深度よりも大きい絶対深度を示すと判定することに応答して、前記差分の前記第1のセクションに対応する前記実深度マップの第2のセクションを前記部分として特定することと、
を行うように構成されることにより、前記予想深度マップと一致しない前記実深度マップの部分を特定するように構成される、態様1~4のいずれか1項に記載のナビゲーションシステム。
[態様6]
前記閾値深度はゼロではない、態様5に記載のナビゲーションシステム。
[態様7]
前記コントローラは、
前記第1のセクションのサイズが最小サイズ閾値よりも大きいかどうかを判定することと、
前記第1のセクションの前記サイズが前記最小サイズ閾値よりも大きいと前記判定することに応答して、前記第2のセクションを前記部分として特定することと、
を行うように構成されることにより、前記予想深度マップと一致しない前記実深度マップの前記部分を特定するように構成される、態様5又は態様6に記載のナビゲーションシステム。
[態様8]
前記コントローラは、前記特定された部分を前記第2のオブジェクトに対応する所定のプロファイルと一致させるように構成されることにより、前記特定された部分に基づいて前記第2のオブジェクトを認識するように構成される、態様1~7のいずれか1項に記載のナビゲーションシステム。
[態様9]
前記実深度マップの前記部分は、前記第2のオブジェクトに対応し、前記実深度マップの第1の位置に配置された特徴の配列を含み、前記コントローラは、前記特徴の配列が、前記視覚デバイスによって後で生成される追加の実深度マップでの前記第1の位置とは異なる第2の位置に移動するかどうかを監視することにより、前記第2のオブジェクトの移動を追跡するように構成される、態様1~8のいずれか1項に記載のナビゲーションシステム。
[態様10]
前記コントローラは、前記共通座標系の前記第2のオブジェクトに対応する仮想境界を生成するように構成され、前記仮想境界は手術具の動きに対して制約を与える、態様1~9のいずれか1項に記載のナビゲーションシステム。
[態様11]
前記コントローラは、前記仮想モデル、前記第1のオブジェクトの前記検出位置、及び共通座標系での前記ローカライザと前記視覚デバイスとの前記位置関係に基づいて、前記実深度マップを関心領域にトリミングするように構成され、前記コントローラは、前記トリミングされた実深度マップを比較するように構成されることにより、前記実深度マップを比較するように構成される、態様1~10のいずれか1項に記載のナビゲーションシステム。
[態様12]
前記コントローラは、
前記ローカライザ及び前記視覚デバイスの視界内の表面にパターンを投影することと、
前記ローカライザに特定的な第1の座標系における前記パターンの位置を示す前記ローカライザを用いて位置特定データを生成することと、
前記視覚デバイスによって生成された前記投影パターンを示す較正深度マップを受け取ることと、
前記較正深度マップに基づいて、前記視覚デバイスに特定的な第2の座標系における前記投影パターンの位置を特定することと、
前記第1の座標系における前記パターンの前記位置と前記第2の座標系における前記パターンの前記位置とに基づいて、前記共通座標系における前記ローカライザと前記視覚デバイスとの前記位置関係を特定することと、
を行うように構成されることにより、前記共通座標系における前記ローカライザと前記視覚デバイスとの前記位置関係を特定するように構成される、態様1~11のいずれか1項に記載のナビゲーションシステム。
[態様13]
前記ローカライザは、第1のスペクトル帯で動作して、前記第1のオブジェクトの前記位置を検出するように構成されており、前記視覚デバイスは、第2のスペクトル帯で動作して、前記第1のオブジェクトの近傍の前記表面の前記実深度マップを生成するように構成されており、前記第1のスペクトル帯は前記第2のスペクトル帯とは異なる、態様1~12のいずれか1項に記載のナビゲーションシステム。
[態様14]
態様1~13のいずれか1項に記載のナビゲーションシステムで利用されるロボットマニピュレータであって、前記ロボットマニピュレータは、手術具を支持し、複数のリンクと、前記リンクを動かして前記手術具を動かすように構成された複数のアクチュエータとを備え、前記ロボットマニピュレータは、前記第2のオブジェクトを回避するように制御される、前記ロボットマニピュレータ。
[態様15]
第1のオブジェクトの位置を検出するように構成されたローカライザと、前記第1のオブジェクトの近傍の表面の実深度マップを生成するように構成された視覚デバイスと、前記ローカライザ及び前記視覚デバイスに結合されたコントローラとを含むナビゲーションシステムを動作させる方法であって、前記方法は、
前記第1のオブジェクトに対応する仮想モデルにアクセスすることと、
共通座標系で前記ローカライザと前記視覚デバイスとの位置関係を特定することと、
前記第1のオブジェクトの前記検出位置、前記仮想モデル、及び前記位置関係に基づいて、前記視覚デバイスの予想深度マップを生成することと、
前記予想深度マップと一致しない前記実深度マップの部分を特定することと、
前記特定された部分に基づいて第2のオブジェクトを認識することと
を含む、前記方法。
[態様16]
前記第1のオブジェクトの前記検出位置、前記実深度マップにおける前記第2のオブジェクトの場所、及び前記位置関係に基づいて、前記共通座標系における前記第1のオブジェクトに対する前記第2のオブジェクトの位置を特定することをさらに含む、態様15に記載の方法。
[態様17]
前記第1のオブジェクトは、手術計画に従って治療すべき患者組織の標的体積を画定しており、
前記共通座標系における前記標的体積に対する前記第2のオブジェクトの前記位置と前記手術計画とに基づいて、前記第2のオブジェクトが、前記手術計画に従って前記標的体積を治療することに対する障害物であるかどうかを判定することと、
前記第2のオブジェクトが前記手術計画にとっての障害物であると判定することに応答して、前記手術計画を修正すること、及び/又は通知をトリガすること、及び/又は手術ナビゲーションを停止することと、
をさらに含む、態様16に記載の方法。
[態様18]
前記第1のオブジェクトにトラッカが堅固に結合されており、
前記ローカライザを介して、前記ローカライザに特定的な第1の座標系で前記トラッカの位置を検出することと、
前記第1の座標系における前記トラッカの前記検出位置、及び前記第1の座標系における前記トラッカと前記第1のオブジェクトとの位置関係に基づいて、前記第1の座標系における前記仮想モデルの位置を特定することと、
前記第1の座標系での前記仮想モデルの前記位置と、第2の座標系での前記ローカライザと前記視覚デバイスとの位置関係とに基づいて、前記第1の座標系における前記仮想モデルの前記位置を、前記視覚デバイスに特定的な前記第2の座標系における前記仮想モデルの位置に変換することと、
前記第2の座標系での前記仮想モデルの前記位置に基づいて、前記予想深度マップを生成することと、
をさらに含む、態様15~17のいずれか1項に記載の方法。
[態様19]
前記予想深度マップと一致しない前記実深度マップの部分を特定することは、
前記実深度マップと前記予想深度マップとの差分を計算することと、
前記差分の第1のセクションが閾値深度よりも大きい絶対深度を示すかどうかを判定することと、
前記差分の前記第1のセクションが閾値深度よりも大きい絶対深度を示すと判定することに応答して、前記差分の前記第1のセクションに対応する前記実深度マップの第2のセクションを前記部分として特定することと
を含む、態様15~18のいずれか1項に記載の方法。
[態様20]
前記閾値深度はゼロではない、態様19に記載の方法。
[態様21]
前記予想深度マップと一致しない前記実深度マップの部分を特定することは、
前記第1のセクションのサイズが最小サイズ閾値よりも大きいかどうかを判定することと、
前記第1のセクションの前記サイズが前記最小サイズ閾値よりも大きいと前記判定することに応答して、前記第2のセクションを前記部分として特定することと
を含む、態様19又は態様20に記載の方法。
[態様22]
前記特定された部分に基づいて前記第2のオブジェクトを認識することは、前記特定された部分を前記第2のオブジェクトに対応する所定のプロファイルと一致させることを含む、態様15~21のいずれか1項に記載の方法。
[態様23]
前記実深度マップの前記部分は、前記第2のオブジェクトに対応し、前記実深度マップの第1の位置に配置された特徴の配列を含み、前記コントローラは、前記特徴の配列が、前記視覚デバイスによって後で生成される追加の実深度マップでの前記第1の位置とは異なる第2の位置に移動するかどうかを監視することにより、前記第2のオブジェクトの移動を追跡するように構成される、態様15~22のいずれか1項に記載の方法。
[態様24]
前記共通座標系の前記第2のオブジェクトに対応する仮想境界を生成することをさらに含み、前記仮想境界は手術具の動きに対して制約を与える、態様15~23のいずれか1項に記載の方法。
[態様25]
前記仮想モデル、前記第1のオブジェクトの前記検出位置、及び共通座標系での前記ローカライザと前記視覚デバイスとの前記位置関係に基づいて、前記実深度マップを関心領域にトリミングすることをさらに含み、前記実深度マップを比較することは、前記トリミングされた実深度マップを比較することを含む、態様15~24のいずれか1項に記載の方法。
[態様26]
前記共通座標で前記ローカライザと前記視覚デバイスとの前記位置関係を特定することは、
前記ローカライザ及び前記視覚デバイスの視界内の表面にパターンを投影することと、
前記ローカライザに特定的な第1の座標系における前記パターンの位置を示す前記ローカライザを用いて位置特定データを生成することと、
前記視覚デバイスによって生成された前記投影パターンに対応する較正深度マップを受け取ることと、
前記較正深度マップに基づいて、前記視覚デバイスに特定的な第2の座標系における前記投影パターンの位置を特定することと、
前記第1の座標系における前記パターンの前記位置と前記第2の座標系における前記パターンの前記位置とに基づいて、前記共通座標系における前記ローカライザと前記視覚デバイスとの前記位置関係を特定することと
を含む、態様15~25のいずれか1項に記載の方法。
[態様27]
前記ローカライザを第1のスペクトル帯で動作させて、前記第1のオブジェクトの前記位置を検出することと、
前記視覚デバイスを第2のスペクトル帯で動作させて、前記第1のオブジェクトの近傍の前記表面の前記実深度マップを生成することであって、前記第2のスペクトル帯は、前記第1のスペクトル帯とは異なる、前記生成することと、
をさらに含む、態様15~26のいずれか1項に記載の方法。
[態様28]
1つ以上のプロセッサによって実行されるとき、態様15~27のいずれか1項に記載の方法を実施するように構成された命令が格納された非一時的なコンピュータ可読媒体を含む、コンピュータプログラム製品。
図1
図2
図3
図4
図5
図6
図7
図8
図9
図10
図11
図12
図13
図14
図15
図16