(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2023-09-27
(45)【発行日】2023-10-05
(54)【発明の名称】プログラム、情報処理装置、および情報処理方法
(51)【国際特許分類】
G16H 50/30 20180101AFI20230928BHJP
A61B 5/08 20060101ALI20230928BHJP
A61B 5/11 20060101ALI20230928BHJP
【FI】
G16H50/30
A61B5/08
A61B5/11
(21)【出願番号】P 2023509559
(86)(22)【出願日】2022-08-02
(86)【国際出願番号】 JP2022029579
(87)【国際公開番号】W WO2023026785
(87)【国際公開日】2023-03-02
【審査請求日】2023-02-09
(31)【優先権主張番号】P 2021137935
(32)【優先日】2021-08-26
(33)【優先権主張国・地域又は機関】JP
【早期審査対象出願】
(73)【特許権者】
【識別番号】520513875
【氏名又は名称】株式会社CaTe
(74)【代理人】
【識別番号】110002815
【氏名又は名称】IPTech弁理士法人
(72)【発明者】
【氏名】寺嶋 一裕
【審査官】鹿谷 真紀
(56)【参考文献】
【文献】特開2014-023550(JP,A)
【文献】特開2017-217298(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
G16H 10/00-80/00
A61B 5/08
A61B 5/11
(57)【特許請求の範囲】
【請求項1】
コンピュータを、
ユーザの外観の写ったユーザ動画を取得する手段、
前記ユーザ動画に基づく
データと前記ユーザの健康状態に関するデータとを含む入力データに推定モデルを適用することで、前記ユーザの呼吸運動に伴う換気指標に関する推定を行う手段
として機能させ
るプログラム。
【請求項2】
前記推定モデルは、被験者の外観の写った被験者動画に関するデータを含む入力データと、当該入力データの各々に関連付けられた正解データとを含む教師データセットを用いた教師あり学習により作成された学習済みモデル、または当該学習済みモデルの派生モデルもしくは蒸留モデルに相当する、
請求項1に記載のプログラム。
【請求項3】
前記推定モデルを適用される入力データは、前記ユーザの骨格に関するデータを含む、
請求項1または請求項2に記載のプログラム。
【請求項4】
前記推定モデルを適用される入力データは、基準点から前記ユーザの各部位までの深度に関するデータにさらに基づく、
請求項1乃至請求項3のいずれかに記載のプログラム。
【請求項5】
前記換気指標は、換気量、換気速度、または換気加速度の少なくとも1つを含む、
請求項1乃至請求項4のいずれかに記載のプログラム。
【請求項6】
前記ユーザ動画は、少なくとも前記ユーザの上半身が撮影範囲に含まれるように当該ユーザを撮影した動画である、
請求項1乃至請求項5のいずれかに記載のプログラム。
【請求項7】
前記ユーザの上半身は、前記ユーザの肩、胸、または腹部の少なくとも1つを含む、
請求項6に記載のプログラム。
【請求項8】
前記被験者は、前記ユーザと同一人物である、
請求項2に記載のプログラム。
【請求項9】
前記コンピュータを、前記ユーザの換気指標の推定の結果に基づく情報を提示する手段としてさらに機能させる、
請求項1乃至請求項8のいずれかに記載のプログラム。
【請求項10】
前記提示する手段は、前記ユーザの換気指標の経時的変化に関する情報を提示する、
請求項9に記載のプログラム。
【請求項11】
ユーザの外観の写ったユーザ動画を取得する手段と、
前記ユーザ動画に基づく
データと前記ユーザの健康状態に関するデータとを含む入力データに推定モデルを適用することで、前記ユーザの呼吸運動に伴う換気指標に関する推定を行う手段と
を具備
する情報処理装置。
【請求項12】
コンピュータが、
ユーザの外観の写ったユーザ動画を取得するステップと、
前記ユーザ動画に基づく
データと前記ユーザの健康状態に関するデータとを含む入力データに推定モデルを適用することで、前記ユーザの呼吸運動に伴う換気指標に関する推定を行うステップと
を実行
する方法。
【発明の詳細な説明】
【技術分野】
【0001】
本開示は、プログラム、情報処理装置、および情報処理方法に関する。
【背景技術】
【0002】
心臓リハビリテーションは、運動療法を含む総合的活動プログラムを通じて、心臓病の患者が、体力および自信を回復し、快適な家庭生活および社会生活に復帰するとともに、心臓病の再発または再入院を防止することを目指す。運動療法の中心は、ウォーキング、ジョギング、サイクリング、エアロビクス、などの有酸素運動である。有酸素運動をより安全かつ効果的に行うためには、患者が、自己の嫌気性代謝閾値(AT(Anaerobic Threshold))付近の強度で運動を行うことが好ましい。
【0003】
嫌気性代謝閾値は、換気指標の一例であって、心肺機能状態の変化点、つまり、有酸素運動と無酸素運動との境界付近の運動強度に相当する。嫌気性代謝閾値は、一般的に、検査対象者に漸増的に運動負荷を与えながら呼気ガスを収集して分析を行うCPX検査(心肺運動負荷検査)により決定される。CPX検査では、呼気ガス分析により測定された結果(例えば、酸素摂取量、二酸化炭素排出量、1回換気量、呼吸数、分時換気量、またはそれらの組み合わせ)に基づいて、嫌気性代謝閾値が決定される。CPX検査によれば、嫌気性代謝閾値のほか、最大運動耐容能付近の運動強度に相当する最大酸素摂取量を決定することもできる。
【0004】
しかしながら、CPX検査には、検査対象者に大きな身体的負担がかかる、検査装置が高額で実施可能な施設が限られる、などの問題がある。また、CPX検査に必須の呼気ガス分析で必要な呼気マスクの装着は検査対象者にとって快適ではない。
【0005】
特許文献1には、測定対象者の胸腹部を含む対象領域の三次元画像を撮影すること、三次元画像から姿勢情報を取得すること、姿勢情報を用いて呼吸主要領域を定め、当該呼吸主要領域の移動量波形を生成し、当該移動量波形から呼吸波形を生成すること、および呼吸波形から単位時間あたりの換気量を算出することが記載されている。
【先行技術文献】
【特許文献】
【0006】
【発明の概要】
【発明が解決しようとする課題】
【0007】
特許文献1に記載の非接触呼吸測定装置は、測定対象者の単位時間あたりの換気量を非接触に測定するのに有用である可能性がある。
【0008】
本開示の目的は、ユーザの呼吸運動に伴う換気指標を非接触に推定するための新規な技法を提供することである。
【課題を解決するための手段】
【0009】
本開示の一態様のプログラムは、コンピュータを、ユーザの外観の写ったユーザ動画を取得する手段、ユーザ動画に基づく入力データに推定モデルを適用することで、ユーザの呼吸運動に伴う換気指標に関する推定を行う手段として機能させる。
【発明の効果】
【0010】
本開示によれば、ユーザの呼吸運動に伴う換気指標を非接触に推定するための新規な技法を提供することができる。
【図面の簡単な説明】
【0011】
【
図1】本実施形態の情報処理システムの構成を示すブロック図である。
【
図2】本実施形態のクライアント装置の構成を示すブロック図である。
【
図3】本実施形態のサーバの構成を示すブロック図である。
【
図5】本実施形態の教師データセットのデータ構造を示す図である。
【
図6】本実施形態の情報処理のフローチャートである。
【
図7】本実施形態の情報処理において表示される画面例を示す図である。
【
図8】変形例1の教師データセットのデータ構造を示す図である。
【発明を実施するための形態】
【0012】
以下、本発明の一実施形態について、図面に基づいて詳細に説明する。なお、実施形態を説明するための図面において、同一の構成要素には原則として同一の符号を付し、その繰り返しの説明は省略する。
【0013】
(1)情報処理システムの構成
情報処理システムの構成について説明する。
図1は、本実施形態の情報処理システムの構成を示すブロック図である。
【0014】
図1に示すように、情報処理システム1は、クライアント装置10と、サーバ30とを備える。
クライアント装置10及びサーバ30は、ネットワーク(例えば、インターネット又はイントラネット)NWを介して接続される。
【0015】
クライアント装置10は、サーバ30にリクエストを送信する情報処理装置の一例である。クライアント装置10は、例えば、スマートフォン、タブレット端末、又は、パーソナルコンピュータである。
【0016】
サーバ30は、クライアント装置10から送信されたリクエストに応じたレスポンスをクライアント装置10に提供する情報処理装置の一例である。サーバ30は、例えば、Webサーバである。
【0017】
(1-1)クライアント装置の構成
クライアント装置の構成について説明する。
図2は、本実施形態のクライアント装置の構成を示すブロック図である。
【0018】
図2に示すように、クライアント装置10は、記憶装置11と、プロセッサ12と、入出力インタフェース13と、通信インタフェース14とを備える。クライアント装置10は、ディスプレイ15と、カメラ16と、深度センサ17とに接続される。
【0019】
記憶装置11は、プログラム及びデータを記憶するように構成される。記憶装置11は、例えば、ROM(Read Only Memory)、RAM(Random Access Memory)、及び、ストレージ(例えば、フラッシュメモリ又はハードディスク)の組合せである。
【0020】
プログラムは、例えば、以下のプログラムを含む。
・OS(Operating System)のプログラム
・情報処理を実行するアプリケーション(例えば、ウェブブラウザ、リハビリアプリ、またはフィットネスアプリ)のプログラム
【0021】
データは、例えば、以下のデータを含む。
・情報処理において参照されるデータベース
・情報処理を実行することによって得られるデータ(つまり、情報処理の実行結果)
【0022】
プロセッサ12は、記憶装置11に記憶されたプログラムを起動することによって、クライアント装置10の機能を実現するコンピュータである。プロセッサ12は、例えば、以下の少なくとも1つである。
・CPU(Central Processing Unit)
・GPU(Graphic Processing Unit)
・ASIC(Application Specific Integrated Circuit)
・FPGA(Field Programmable Gate Array)
【0023】
入出力インタフェース13は、クライアント装置10に接続される入力デバイスから情報(例えば、ユーザの指示、画像、音)を取得し、かつ、クライアント装置10に接続される出力デバイスに情報(例えば、画像、コマンド)を出力するように構成される。
入力デバイスは、例えば、カメラ16、深度センサ17、マイクロホン、キーボード、ポインティングデバイス、タッチパネル、センサ、又は、それらの組合せである。
出力デバイスは、例えば、ディスプレイ15、スピーカ、又は、それらの組合せである。
【0024】
通信インタフェース14は、クライアント装置10と外部装置(例えば、サーバ30)との間の通信を制御するように構成される。
具体的には、通信インタフェース14は、サーバ30との通信のためのモジュール(例えば、WiFiモジュール、移動通信モジュール、またはそれらの組み合わせ)を含むことができる。
【0025】
ディスプレイ15は、画像(静止画、または動画)を表示するように構成される。ディスプレイ15は、例えば、液晶ディスプレイ、または有機ELディスプレイである。
【0026】
カメラ16は、撮影を行い、画像信号を生成するように構成される。
【0027】
深度センサ17は、例えばLIDAR(Light Detection And Ranging)である。深度センサ17は、当該深度センサ17(つまり、基準点)から周囲の物体(例えば、ユーザ)までの距離(深度)を測定するように構成される。
【0028】
(1-2)サーバの構成
サーバの構成について説明する。
図3は、本実施形態のサーバの構成を示すブロック図である。
【0029】
図3に示すように、サーバ30は、記憶装置31と、プロセッサ32と、入出力インタフェース33と、通信インタフェース34とを備える。
【0030】
記憶装置31は、プログラム及びデータを記憶するように構成される。記憶装置31は、例えば、ROM、RAM、及び、ストレージの組合せである。
【0031】
プログラムは、例えば、以下のプログラムを含む。
・OSのプログラム
・情報処理を実行するアプリケーションのプログラム
【0032】
データは、例えば、以下のデータを含む。
・情報処理において参照されるデータベース
・情報処理の実行結果
【0033】
プロセッサ32は、記憶装置31に記憶されたプログラムを起動することによって、サーバ30の機能を実現するコンピュータである。プロセッサ32は、例えば、以下の少なくとも1つである。
・CPU
・GPU
・ASIC
・FPGA
【0034】
入出力インタフェース33は、サーバ30に接続される入力デバイスから情報(例えば、ユーザの指示)を取得し、かつ、サーバ30に接続される出力デバイスに情報を出力するように構成される。
入力デバイスは、例えば、キーボード、ポインティングデバイス、タッチパネル、又は、それらの組合せである。
出力デバイスは、例えば、ディスプレイである。
【0035】
通信インタフェース34は、サーバ30と外部装置(例えば、クライアント装置10)との間の通信を制御するように構成される。
【0036】
(2)実施形態の概要
本実施形態の概要について説明する。
図4は、本実施形態の概要の説明図である。
【0037】
図4に示すように、クライアント装置10のカメラ16は、ユーザUS1の外観(例えば全身)を撮影する。
図4の例では、ユーザUS1が自転車の運動を行う例を示しているが、ユーザUS1は任意の運動(有酸素運動、または無酸素運動)を行うことができる。或いは、カメラ16は、運動前、または運動後(安静時を含む)のユーザUS1を撮影してもよい。
【0038】
一例として、カメラ16は、ユーザUS1の外観を、正面または斜め前から撮影する。深度センサ17は、当該深度センサ17からユーザUS1の各部位までの距離(深度)を測定する。なお、例えばカメラ16によって生成される動画データ(2次元)と、例えば深度センサ17によって生成される深度データとを組み合わせることで、3次元動画データを生成することも可能である。
【0039】
クライアント装置10は、少なくとも、カメラ16から取得した動画データを参照し、ユーザの骨格を解析する。クライアント装置10は、ユーザの骨格をより適切に解析するために、深度センサ17から取得した深度データをさらに参照してもよい。クライアント装置10は、動画データ(或いは、動画データおよび深度データ)の解析結果に基づく、ユーザUS1の骨格に関するデータ(以下、「ユーザ骨格データ」という)をサーバ30へ送信する。
【0040】
サーバ30は、取得したユーザ骨格データに、学習済みモデルLM1(「推定モデル」の一例)を適用することで、ユーザUS1の呼吸運動に伴う換気指標に関する推定を行う。サーバ30は、推定結果(例えば、ユーザUS1のリアルタイムの換気指標を示す数値)をクライアント装置10へ送信する。
【0041】
このように、情報処理システム1は、ユーザUS1の外観の写った動画(或いは、動画および深度)に基づく入力データに学習済みモデルLM1を適用することで、当該ユーザUS1の換気指標に関する推定を行う。故に、この情報処理システム1によれば、ユーザに接触することなく、当該ユーザの呼吸運動に伴う換気指標に関する推定を行うことができる。
【0042】
(3)教師データセット
本実施形態の教師データセットについて説明する。
図5は、本実施形態の教師データセットのデータ構造を示す図である。
【0043】
図5に示すように、教師データセットは、複数の教師データを含む。教師データは、対象モデルの訓練または評価に用いられる。教師データは、サンプルIDと、入力データと、正解データとを含む。
【0044】
サンプルIDは、教師データを識別する情報である。
【0045】
入力データは、訓練時または評価時に対象モデルに入力されるデータである。入力データは、対象モデルの訓練時または評価時に用いられる例題に相当する。一例として、入力データは、被験者の骨格データを含む。被験者の骨格データは、被験者動画の撮影時における被験者の骨格に関するデータ(例えば特徴量)である。
【0046】
被験者動画データは、被験者の外観の写った被験者動画に関するデータである。被験者動画は、典型的には、少なくとも被験者の上半身(具体的には、被験者の肩、胸、腹部の少なくとも1つ)が撮影範囲に含まれるように、当該被験者を撮影した動画である。被験者動画データは、例えば、被験者の外観(例えば全身)を正面または斜め前(例えば、45度前方)からカメラ(一例として、スマートフォンに搭載されたカメラ)で撮影することで取得可能である。
【0047】
カメラは、被験者動画データを取得するために、運動中、または運動前もしくは運動後(安静時を含む)の被験者の外観を撮影可能である。正解データと入力データとを正確に関連付ける観点から、呼気ガスに関する検査(一例としてCPX検査)中の被験者を撮影することで被験者動画データを取得してもよい。
【0048】
被験者深度データは、深度センサから被験者の各部位(典型的には肩、胸、腹部の少なくとも1つ)までの距離(深度)に関するデータである。被験者深度データは、被験者動画の撮影時に、深度センサを動作させることで取得可能である。
【0049】
被験者は、情報処理システム1の運用時に、呼吸運動に伴う換気指標に関する推定が行われるユーザと同一人物であってもよいし、異なる人物であってもよい。被験者およびユーザを同一人物とすることで、対象モデルがユーザの個性を学習し、推定精度が向上する可能性がある。他方、被験者がユーザと異なる人物であることを許容することは、教師データセットの豊富化が容易となる利点がある。また、被験者は、ユーザを含む複数人、またはユーザを含まない複数人により構成されてもよい。
【0050】
骨格データは、具体的には、被験者の各部位の速度、または加速度に関するデータ(被験者が使用する筋肉の部位の変化、または被験者の体感のぶれに関するデータを含み得る)を含む。
【0051】
骨格データの少なくとも一部は、被験者動画データ(或いは、被験者動画データおよび被験者深度データ)を参照して、被験者動画撮影時における被験者の骨格を解析することで取得可能である。一例として、iOS(登録商標) 14のSDKであるVision、または他の骨格検知アルゴリズムが骨格の解析に利用可能である。或いは、教師データセット向けの骨格データは、例えば、被験者の各部位に動きセンサを装着した状態で運動を行わせることで取得可能である。
【0052】
また、骨格データは、上述の被験者の各部位の速度、または加速度に関するデータについて、以下の少なくとも1つの項目を解析することで得られるデータを含むこともできる。
・肩、胸(側胸部を含み得る)、腹部、またはそれらの組み合わせの動き(広がり)
・吸気時間
・呼気時間
・呼吸補助筋の使用程度
【0053】
正解データは、対応する入力データ(例題)に対する正解に相当するデータである。対象モデルは、入力データに対して正解データにより近い出力を行うように訓練(教師あり学習)される。一例として、正解データは、換気指標、または換気指標を決定するための材料となる指標、の少なくとも1つを含む。一例として換気指標は、以下の少なくとも1つを含むことができる。
・換気回数
・換気量
・換気速度(つまり、単位時間あたりの換気量、または換気回数)
・換気加速度(つまり、換気速度の時間微分)
ただし、換気指標は、呼吸運動を定量的に把握するための任意の指標であってよく、ここに例示した指標に限定されない。
【0054】
正解データは、例えば、被験者動画の撮影時に被験者に対して実施された呼気ガスに関する検査の結果から取得可能である。呼気ガスに関する検査の第1例は、呼気ガス分析装置を装着した被験者が、負荷漸増式の運動(例えばエルゴメータ)を実施している間に行われる検査(典型的にはCPX検査)である。呼気ガスに関する検査の第2例は、呼気ガス分析装置を装着した被験者が、一定、または随時変更可能な負荷量の運動(例えば、自重運動、体操、筋力トレーニング)を実施している間に行われる検査である。呼気ガスに関する検査の第3例は、呼気ガス分析装置を装着した被験者が、任意の活動を実施している間に行われる検査である。呼気ガスに関する検査の第4例は、呼気ガス分析装置を装着した被験者が、安静状態である間に行われる検査である。
【0055】
或いは、正解データは、例えば、被験者動画の撮影時に被験者に対して実施された呼吸機能検査(例えば、肺機能検査、または肺活量検査)の結果から取得することもできる。この場合に、呼吸機能検査には、医療機器に限られず市販の検査器具を用いても構わない。
【0056】
(4)推定モデル
サーバ30によって用いられる推定モデルは、教師データセット(
図5)を用いた教師あり学習により作成された学習済みモデル、または当該学習済みモデルの派生モデルもしくは蒸留モデルに相当する。
【0057】
(5)情報処理
本実施形態の情報処理について説明する。
図6は、本実施形態の情報処理のフローチャートである。
図7は、本実施形態の情報処理において表示される画面例を示す図である。
【0058】
情報処理は、例えば以下の開始条件のいずれかの成立に応じて開始する。
・他の処理によって情報処理が呼び出された。
・ユーザが情報処理を呼び出すための操作を行った。
・クライアント装置10が所定の状態(例えば、所定のアプリの起動)になった。
・所定の日時が到来した。
・所定のイベントから所定の時間が経過した。
【0059】
図6に示すように、クライアント装置10は、センシング(S110)を実行する。
具体的には、クライアント装置10は、カメラ16の動作を有効にすることで、ユーザの外観についての動画(以下、「ユーザ動画」という)の撮影を開始する。ユーザ動画は、典型的には、少なくともユーザの上半身(具体的には、ユーザの肩、胸、腹部の少なくとも1つ)が撮影範囲に含まれるように、当該ユーザを撮影した動画である。
【0060】
また、クライアント装置10は、深度センサ17の動作を有効にすることで、ユーザ動画の撮影時に当該深度センサ17からユーザの各部位までの距離(以下、「ユーザ深度」という)の計測を開始する。
【0061】
ステップS110の後に、クライアント装置10は、データの取得(S111)を実行する。
具体的には、クライアント装置10は、ステップS110において有効とした各種センサによって生成されたセンシング結果を取得する。例えば、クライアント装置10は、カメラ16からユーザ動画データを取得し、深度センサ17からユーザ深度データを取得する。
【0062】
ステップS111の後に、クライアント装置10は、リクエスト(S112)を実行する。
具体的には、クライアント装置10は、ステップS111において取得したデータを参照し、リクエストを生成する。クライアント装置10は、生成したリクエストをサーバ30へ送信する。リクエストは、例えば、以下の少なくとも1つを含むことができる。
・ステップS111において取得したデータ(例えば、ユーザ動画データ、またはユーザ深度データ)
・ステップS111において取得したデータを加工したデータ
・ステップS111において取得したユーザ動画データ(或いは、ユーザ動画データおよびユーザ深度データ)を解析することで取得したユーザ骨格データ
【0063】
ステップS112の後に、サーバ30は、換気指標に関する推定(S130)を実行する。
具体的には、サーバ30は、クライアント装置10から取得したリクエストに基づいて、推定モデルの入力データを取得する。入力データは、教師データと同様に、ユーザ骨格データを含む。サーバ30は、入力データに推定モデルを適用することで、ユーザの呼吸運動に伴う換気指標に関する推定を行う。一例として、サーバ30は、換気指標の少なくとも1つを推定する。
【0064】
ステップS130の後に、サーバ30は、レスポンス(S131)を実行する。
具体的には、サーバ30は、ステップS130における推定の結果に基づくレスポンスを生成する。サーバ30は、生成したレスポンスをクライアント装置10へ送信する。一例として、レスポンスは以下の少なくとも1つを含むことができる。
・換気指標に関する推定の結果に相当するデータ
・換気指標に関する推定の結果を加工したデータ(例えば、クライアント装置10のディスプレイ15に表示されるべき画面のデータ、または当該画面を生成するために参照されるデータ)
【0065】
クライアント装置10は、ステップS131の後に、情報提示(S113)を実行する。
具体的には、クライアント装置10は、サーバ30から取得したレスポンス(つまり、ユーザの換気指標に関する推定の結果)に基づく情報をディスプレイ15に表示させる。
ただし、情報は、ユーザの代わりに、またはユーザに加えて、ユーザの指導者(例えば、医療関係者、またはトレーナー)向けに当該指導者の使用する端末に提示されてもよい。或いは、情報は、換気指標を元にユーザの運動耐容能を評価するアルゴリズム、または推定モデルを利用可能なコンピュータに提供されてもよい。このコンピュータは、情報処理システム1の内部にあってもよいし、情報処理システム1の外部にあってもよい。
【0066】
一例として、クライアント装置10は、画面P10(
図7)をディスプレイ15に表示させる。画面P10は、表示オブジェクトA10、および操作オブジェクトB10を含む。
操作オブジェクトB10は、表示オブジェクトA10に表示させる換気指標を指定する操作を受け付ける。
図7の例では、操作オブジェクトB10は、チェックボックスに相当する。
表示オブジェクトA10は、ユーザの換気指標を推定した結果の経時的変化を表示する。
図7の例では、表示オブジェクトA10は、操作オブジェクトB10において指定されている換気指標である換気速度を1分毎に推定した結果(つまり、分時換気量の推定結果)の経時的変化を示すグラフを表示する。
操作オブジェクトB10において複数の換気指標が指定されている場合に、表示オブジェクトA10には、複数の換気指標を推定した結果の経時的変化を示すグラフを重畳して表示してもよいし、これらのグラフを個別に表示してもよい。
【0067】
ステップS113の後に、クライアント装置10は、情報処理(
図6)を終了する。ただし、ユーザの換気指標に関する推定を当該ユーザ動画の撮影中にリアルタイムに実施する場合に、クライアント装置10は、ステップS113の後にデータの取得(S111)に戻ってもよい。
【0068】
(6)小括
以上説明したように、実施形態の情報処理システム1は、ユーザの外観の写ったユーザ動画に基づく入力データを推定モデルに適用することで、当該ユーザの呼吸運動に伴う換気指標に関する推定を行う。これにより、ユーザの呼吸運動に伴う換気指標に関する推定を非接触に行うことができる。
【0069】
推定モデルは、前述の教師データセット(
図5)を用いた教師あり学習により作成された学習済みモデル、または当該学習済みモデルの派生モデルもしくは蒸留モデルに相当してもよい。これにより、推定モデルを効率的に構築することができる。さらに、被験者は、ユーザと同一人物であってもよい。これにより、ユーザの個性を学習したモデルを利用して、高精度な推定を行うことができる。
【0070】
推定モデルを適用される入力データは、ユーザ動画の撮影時におけるユーザの骨格に関するデータ(つまり、ユーザ骨格データ)を含んでもよい。これにより、換気指標の推定精度を向上させることができる。
【0071】
推定モデルを適用される入力データは、ユーザ動画の撮影時における、基準点(つまり、深度センサ17)からユーザの各部位までの深度に関するデータ(つまり、ユーザ深度データ)を含んでもよい。これにより、換気指標の推定精度を向上させることができる。
【0072】
換気指標は、換気量、換気速度、または換気加速度の少なくとも1つを含んでもよい。これにより、ユーザの呼吸運動を適切に評価することができる。
【0073】
ユーザ動画は、少なくともユーザの上半身(好ましくは、ユーザの肩、胸、または腹部の少なくとも1つ)が撮影範囲に含まれるように当該ユーザを撮影した動画であってもよい。これにより、換気指標の推定精度を向上させることができる。
【0074】
情報処理システム1は、ユーザの換気指標の推定の結果に基づく情報を提示してもよい。これにより、ユーザ、またはその指導者に、ユーザの呼吸運動に伴う換気指標を知らせることができる。人間(例えば医師などの指導者)が、提示された換気指標を元に、ユーザの運動耐容能を評価してもよい。或いは、情報処理システム1は、所定のアルゴリズムまたは推定モデルを利用可能なコンピュータに提示し、当該コンピュータが換気指標を元にアルゴリズムまたは推定モデルによりユーザの運動耐容能を評価してもよい。つまり、情報処理システム1は、運動耐容能の評価支援に用いることができる。一例として、情報処理システム1は、ユーザの換気指標の経時的変化に関する情報を提示してもよい。これにより、人間、またはコンピュータによるユーザの運動耐容能の評価を支援することができる。
【0075】
(7)変形例1
変形例1について説明する。変形例1は、推定モデルに対する入力データを変形する例である。
【0076】
(7-1)変形例1の概要
【0077】
変形例1の概要について説明する。本実施形態では、ユーザ動画に基づく入力データに推定モデルを適用する例を示した。変形例1では、ユーザ動画およびユーザの健康状態の双方に基づく入力データに推定モデルを適用することで、当該ユーザの呼吸運動に伴う換気指標に関する推定を行うこともできる。
【0078】
健康状態は、以下の少なくとも1つを含む。
・年齢
・性別
・身長
・体重
・体脂肪率
・筋肉量
・骨密度
・現病歴
・既往歴
・内服歴
・手術歴
・生活歴(例えば、喫煙歴、飲酒歴、日常生活動作(ADL)、フレイルスコア、など)
・家族歴
・呼吸機能検査の結果
・呼吸機能検査以外の検査結果(例えば、血液検査、尿検査、心電図検査(ホルター心電図検査を含む)、心臓超音波検査、X線検査、CT検査(心臓形態CT・冠動脈CT含む)、MRI検査、核医学検査、PET検査、などの結果)
・心臓リハビリテーション施行中に取得されたデータ(Borg指数含む)
【0079】
(7-2)教師データセット
変形例1の教師データセットについて説明する。
図8は、変形例1の教師データセットのデータ構造を示す図である。
【0080】
図8に示すように、変形例1の教師データセットは、複数の教師データを含む。教師データは、対象モデルの訓練または評価に用いられる。教師データは、サンプルIDと、入力データと、正解データとを含む。
【0081】
サンプルIDおよび正解データは、本実施形態において説明したとおりである。
【0082】
入力データは、訓練時または評価時に対象モデルに入力されるデータである。入力データは、対象モデルの訓練時または評価時に用いられる例題に相当する。一例として、入力データは、被験者の骨格データ(つまり、相対的に動的なデータ)、および被験者の健康状態に関するデータ(つまり、相対的に静的なデータ)である。被験者の骨格データは、本実施形態において説明したとおりである。
【0083】
被験者の健康状態に関するデータは、様々な方法で取得可能である。被験者の健康状態に関するデータは、被験者の運動前、運動中、または運動後のいずれのタイミングで取得されてもよい。被験者の健康状態に関するデータは、被験者、またはその担当医からの申告に基づいて取得されてもよいし、医療情報システムにおいて被験者に紐づけられている情報を抽出することで取得されてもよいし、被験者のアプリ(例えばヘルスケアアプリ)経由で取得されてもよい。
【0084】
(7-3)推定モデル
変形例1において、サーバ30によって用いられる推定モデルは、教師データセット(
図8)を用いた教師あり学習により作成された学習済みモデル、または当該学習済みモデルの派生モデルもしくは蒸留モデルに相当する。
【0085】
(7-4)情報処理
変形例1の情報処理について
図6を用いて説明する。
【0086】
変形例1において、クライアント装置10は
図6と同様に、センシング(S110)を実行する。
【0087】
ステップS110の後に、クライアント装置10は、データの取得(S111)を実行する。
具体的には、クライアント装置10は、ステップS110において有効とした各種センサによって生成されたセンシング結果を取得する。例えば、クライアント装置10は、カメラ16からユーザ動画データを取得し、深度センサ17からユーザ深度データを取得する。
【0088】
さらに、クライアント装置10は、ユーザの健康状態に関するデータ(以下、「ユーザ健康状態データ」という)を取得する。例えば、クライアント装置10は、ユーザ、またはその担当医による操作(申告)に基づいてユーザ健康状態データを取得してもよいし、医療情報システムにおいてユーザに紐づけられている情報を抽出することでユーザ健康状態データを取得してもよいし、ユーザのアプリ(例えばヘルスケアアプリ)経由でユーザ健康状態データを取得してもよい。ただし、クライアント装置10は、ステップS111とは異なるタイミング(例えば、ステップS110よりも前、ステップS110と同じタイミング、ステップS111よりも後のタイミング)で、ユーザ健康状態データを取得してもよい。
【0089】
ステップS111の後に、クライアント装置10は、リクエスト(S112)を実行する。
具体的には、クライアント装置10は、ステップS111において取得したデータを参照し、リクエストを生成する。クライアント装置10は、生成したリクエストをサーバ30へ送信する。リクエストは、例えば、以下の少なくとも1つを含むことができる。
・ステップS111において取得したデータ(例えば、ユーザ動画データ、ユーザ深度データ、またはユーザ健康状態データ)
・ステップS111において取得したデータを加工したデータ
・ステップS111において取得したユーザ動画データ(或いは、ユーザ動画データおよびユーザ深度データ)を解析することで取得したユーザ骨格データ
【0090】
ステップS112の後に、サーバ30は、換気指標に関する推定(S130)を実行する。
具体的には、サーバ30は、クライアント装置10から取得したリクエストに基づいて、推定モデルの入力データを取得する。入力データは、教師データと同様に、ユーザ骨格データ、およびユーザ健康状態データを含む。サーバ30は、入力データに推定モデルを適用することで、ユーザの呼吸運動に伴う換気指標に関する推定を行う。一例として、サーバ30は、換気指標の少なくとも1つを推定する。
【0091】
ステップS130の後に、サーバ30は
図6と同様に、レスポンス(S131)を実行する。
ステップS131の後に、クライアント装置10は
図6と同様に、情報提示(S113)を実行する。
【0092】
(7-5)小括
以上説明したように、変形例1の情報処理システム1は、ユーザ動画およびユーザの健康状態の双方に基づく入力データに推定モデルを適用することで、当該ユーザの呼吸運動に伴う換気指標に関する推定を行う。これにより、ユーザの健康状態をさらに考慮して、高精度な推定を行うことができる。例えば、ユーザの健康状態と、教師データの元となった被験者の健康状態との間に差異がある場合であっても、妥当な推定を行うことができる。
【0093】
(8)その他の変形例
記憶装置11は、ネットワークNWを介して、クライアント装置10と接続されてもよい。ディスプレイ15は、クライアント装置10に内蔵されてもよい。記憶装置31は、ネットワークNWを介して、サーバ30と接続されてもよい。
【0094】
実施形態および変形例1の情報処理システムを、クライアント/サーバ型のシステムによって実装する例を示した。しかしながら、実施形態および変形例1の情報処理システムは、スタンドアロン型のコンピュータによって実装することもできる。一例として、クライアント装置10が単独で、推定モデルを用いて、換気指標に関する推定を行ってもよい。
【0095】
上記の情報処理の各ステップは、クライアント装置10及びサーバ30の何れでも実行可能である。一例として、クライアント装置10の代わりにサーバ30が、ユーザ動画(或いは、ユーザ動画およびユーザ深度)を解析することでユーザ骨格データを取得してもよい。
【0096】
上記説明では、クライアント装置10のカメラ16を用いてユーザ動画を撮影する例を示した。しかしながら、ユーザ動画は、カメラ16とは別のカメラを用いて撮影されてもよい。クライアント装置10の深度センサ17を用いてユーザ深度を計測する例を示した。しかしながら、ユーザ深度は、深度センサ17とは別の深度センサを用いて計測されてもよい。
【0097】
本実施形態および変形例1の情報処理システム1は、プレイヤーの身体の動きに応じてゲーム進行が制御されるビデオゲームにも適用可能である。一例として、情報処理システム1は、ゲームプレイ中に、ユーザの換気指標に関する推定を行い、当該推定の結果に応じて、以下のいずれか1つを決定してもよい。これにより、ビデオゲームがユーザの健康増進に与える効果を高めることができる。
・ユーザに与えられる、ビデオゲームに関する課題(例えば、ステージ、ミッション、クエスト)の質(例えば難易度)、または量
・ユーザに与えられる、ビデオゲームに関する特典(例えば、ゲーム内通貨、アイテム、ボーナス)の質(例えば種類)、または量
【0098】
クライアント装置10に搭載されたマイクロホン、またはクライアント装置10に接続されたマイクロホンが、ユーザ動画の撮影時にユーザが発する音波(例えば、呼吸、または発声に伴って生じる音)を受信し、音データを生成してもよい。音データは、ユーザ骨格データとともに推定モデルに対する入力データを構成し得る。
【0099】
上記説明では、呼気ガスに関する検査として、CPX検査を例示した。CPX検査では、検査対象者に対して漸増的に運動負荷が与えられる。しかしながら、ユーザ動画の撮影時にユーザに与える運動負荷を漸増させる必要はない。具体的には、リアルタイムの換気指標は、ユーザに一定、または随時変更可能な運動負荷を与えた状態でも推定可能であるし、ユーザの安静時にも推定可能である。例えば、ユーザが行う運動は、自重運動、体操、筋力トレーニングであってもよい。
【0100】
変形例1では、健康状態に基づく入力データに推定モデルを適用する例を示した。しかしながら、被験者の健康状態(の少なくとも一部)に基づいて、複数の推定モデルを構築することも可能である。この場合に、ユーザの健康状態(の少なくとも一部)が、推定モデルを選択するために参照されてもよい。このさらなる変形例において、推定モデルの入力データは、ユーザの健康状態に基づかないデータであってもよいし、ユーザの健康状態およびユーザ動画に基づくデータ(例えばユーザ骨格データ)であってもよい。
【0101】
推定モデルに対する入力データの一部として加速度データを用いることも可能である。或いは、加速度データを参照してユーザの骨格を解析してもよい。加速度データは、例えば、ユーザ動画の撮影時にユーザに加速度センサを備えたクライアント装置10またはウェアラブルデバイスをユーザに携行または装着させることで取得可能である。
【0102】
推定モデルに対する入力データの一部として酸素飽和度データを用いることも可能である。酸素飽和度データは、例えば、ユーザ動画の撮影時に血中酸素濃度を測定可能なセンサ(例えば光学センサ)を備えたウェアラブルデバイス、またはパルスオキシメータをユーザに装着させることで取得可能である。酸素飽和度データは、例えばユーザ動画データに対してrPPG(Remote Photo-plethysmography)解析を行うことで推定されてもよい。
【0103】
以上、本発明の実施形態および変形例について詳細に説明したが、本発明の範囲は上記の実施形態および変形例に限定されない。また、上記の実施形態および変形例は、本発明の主旨を逸脱しない範囲において、種々の改良や変更が可能である。また、上記の実施形態及び変形例は、組合せ可能である。
【符号の説明】
【0104】
1 :情報処理システム
10 :クライアント装置
11 :記憶装置
12 :プロセッサ
13 :入出力インタフェース
14 :通信インタフェース
15 :ディスプレイ
16 :カメラ
17 :深度センサ
30 :サーバ
31 :記憶装置
32 :プロセッサ
33 :入出力インタフェース
34 :通信インタフェース