(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2023-09-29
(45)【発行日】2023-10-10
(54)【発明の名称】スリットランプ顕微鏡、眼科情報処理装置、眼科システム、スリットランプ顕微鏡の制御方法、プログラム、及び記録媒体
(51)【国際特許分類】
A61B 3/135 20060101AFI20231002BHJP
【FI】
A61B3/135
(21)【出願番号】P 2019164282
(22)【出願日】2019-09-10
【審査請求日】2022-08-23
(73)【特許権者】
【識別番号】000220343
【氏名又は名称】株式会社トプコン
(74)【代理人】
【識別番号】100124626
【氏名又は名称】榎並 智和
(72)【発明者】
【氏名】リウ・ジョナサン
(72)【発明者】
【氏名】清水 仁
(72)【発明者】
【氏名】塚田 央
【審査官】相川 俊
(56)【参考文献】
【文献】特開2003-111731(JP,A)
【文献】特開2019-024618(JP,A)
【文献】特開2016-179004(JP,A)
【文献】特開平06-142044(JP,A)
【文献】特開2002-224116(JP,A)
【文献】特開2016-054854(JP,A)
【文献】特開2006-055547(JP,A)
【文献】和田, 昌昭,DeltaViewerによる連続切片からの3D構築,比較生理生化学,2007年,Vol.24, No.4,pp.160-165
【文献】松井, 英一郎, ほか,加齢と眼疾患,Dokkyo Journal of Medical Sciences,2008年,Vol.35, No.3,pp.251-258
(58)【調査した分野】(Int.Cl.,DB名)
A61B 3/00 - 3/18
(57)【特許請求の範囲】
【請求項1】
被検眼の前眼部をスリット光でスキャンして複数の断面画像を収集するスキャン部と、
前記複数の断面画像に基づいて、水晶体の混濁部の分布を表す混濁分布情報を生成するデータ処理部と
を含
み、
前記データ処理部は、
前記複数の断面画像から3次元水晶体画像を構築する水晶体画像構築部と、
前記3次元水晶体画像を解析して前記混濁分布情報を生成する混濁分布情報生成部と
を含み、
前記混濁分布情報生成部は、前記3次元水晶体画像の複数の3次元部分領域のそれぞれについて、当該3次元部分領域における混濁部の分布を表す局所分布情報を生成する局所分布情報生成部を含み、
前記データ処理部は、前記局所分布情報生成部により生成された複数の局所分布情報に基づいて、前記水晶体の光透過率の分布を表す透過率分布情報を生成する第1透過率分布情報生成部を含む、
スリットランプ顕微鏡。
【請求項2】
前記水晶体画像構築部は、
前記スキャン部により収集された前記複数の断面画像に3次元再構成を適用する第1再構成部と、
前記第1再構成部により構築された3次元再構成画像にセグメンテーションを適用して前記3次元水晶体画像を特定する第1セグメンテーション部と
を含む、請求項
1のスリットランプ顕微鏡。
【請求項3】
前記水晶体画像構築部は、
前記スキャン部により収集された前記複数の断面画像のそれぞれにセグメンテーションを適用して2次元水晶体画像を特定する第2セグメンテーション部と、
前記第2セグメンテーション部により特定された複数の2次元水晶体画像に3次元再構成を適用して前記3次元水晶体画像を構築する第2再構成部と
を含む、請求項
1のスリットランプ顕微鏡。
【請求項4】
前記データ処理部は、前記局所分布情報生成部により生成された複数の局所分布情報に基づいて混濁分布マップを作成する混濁分布マップ作成部を含む、
請求項
1~3のいずれかのスリットランプ顕微鏡。
【請求項5】
前記混濁分布マップは、前記複数の3次元部分領域のそれぞれにおける混濁部の深さ位置を表す、
請求項
4のスリットランプ顕微鏡。
【請求項6】
前記混濁分布マップは、第1座標軸が深さ方向を表し、且つ、第2座標軸が前記深さ方向に直交する方向を表す2次元座標系によって表現される、
請求項
5のスリットランプ顕微鏡。
【請求項7】
前記データ処理部は、前記第1透過率分布情報生成部により生成された前記透過率分布情報に基づいて透過率分布マップを作成する第1透過率分布マップ作成部を含む、
請求項
1~6のいずれかのスリットランプ顕微鏡。
【請求項8】
前記データ処理部は、前記3次元水晶体画像を含む3次元画像にレンダリングを適用するレンダリング部を含む、
請求項
1~7のいずれかのスリットランプ顕微鏡。
【請求項9】
前記レンダリング部は、所定の平面に対するプロジェクションを前記3次元画像に適用する、
請求項
8のスリットランプ顕微鏡。
【請求項10】
前記所定の平面は、深さ方向に直交する、
請求項
9のスリットランプ顕微鏡。
【請求項11】
前記レンダリング部により構築されたレンダリング画像及び前記混濁分布情報に基づく情報の一方に他方を重ねて第1表示装置に表示させる第1表示制御部を含む、
請求項
8~10のいずれかのスリットランプ顕微鏡。
【請求項12】
前記プロジェクションにより構築された2次元画像及び前記混濁分布情報に基づく分布画像の一方に他方を重ねて第2表示装置に表示させる第2表示制御部を含む、
請求項
9又は
10のスリットランプ顕微鏡。
【請求項13】
前記データ処理部は、前記前眼部の複数の混濁分布情報に基づいて、前記水晶体の混濁部の分布の経時変化を表す第1経時変化情報を生成する第1経時変化情報生成部を含む、
請求項1~
12のいずれかのスリットランプ顕微鏡。
【請求項14】
前記データ処理部は、前記透過率分布情報に基づいて、前記水晶体の光透過率の分布の経時変化を表す第2経時変化情報を生成する第2経時変化情報生成部を含む、
請求項
1~13のいずれかのスリットランプ顕微鏡。
【請求項15】
前記第2経時変化情報に基づいて、前記複数の3次元部分領域のそれぞれにおける光透過率の経時変化を表すグラフを第3表示装置に表示させる第3表示制御部を含む、
請求項
14のスリットランプ顕微鏡。
【請求項16】
前記データ処理部は、
前記スキャン部により収集された前記複数の断面画像に正規化を適用する正規化部を含み、
前記正規化が適用された前記複数の断面画像に基づいて前記混濁分布情報の生成を行う、
請求項1~
15のいずれかのスリットランプ顕微鏡。
【請求項17】
前記正規化部は、輝度の正規化を前記複数の断面画像に適用する、
請求項
16のスリットランプ顕微鏡。
【請求項18】
前記正規化部は、前記前眼部の角膜後面に対応する画像の輝度に基づいて前記輝度の正規化を前記複数の断面画像に実行する、
請求項
17のスリットランプ顕微鏡。
【請求項19】
前記スリット光は、可視光を含み、
前記正規化部は、色の正規化を前記複数の断面画像に適用する、
請求項
16~18のいずれかのスリットランプ顕微鏡。
【請求項20】
前記データ処理部は、前記複数の断面画像及び前記混濁分布情報の少なくとも一方に基づいて所定の白内障指標についての評価を行う評価部を含む、
請求項1~
19のいずれかのスリットランプ顕微鏡。
【請求項21】
前記スリット光は、白色光を含み、
前記評価部は、前記複数の断面画像の色情報に基づいて水晶体核硬度の評価を行う、
請求項
20のスリットランプ顕微鏡。
【請求項22】
前記評価部は、前記混濁分布情報に基づいて白内障の種類の推定を行う、
請求項
20又は
21のスリットランプ顕微鏡。
【請求項23】
前記データ処理部は、前記混濁分布情報に基づいて前記被検眼による視認状態のシミュレーションを行うシミュレーション部を含む、
請求項1~
22のいずれかのスリットランプ顕微鏡。
【請求項24】
前記データ処理部は、前記複数の断面画像に基づいて所定の前眼部パラメータの計測を行う計測部を含む、
請求項1~
23のいずれかのスリットランプ顕微鏡。
【請求項25】
前記前眼部パラメータは、角膜厚、角膜曲率、前房深度、水晶体厚、水晶体曲率、水晶体径、水晶体傾斜角度、及び、角膜中心と水晶体中心との間の偏位のうちの少なくとも1つを含む、
請求項
24のスリットランプ顕微鏡。
【請求項26】
前記スキャン部は、
前記前眼部に前記スリット光を照射する照明系と、
前記照明系とは異なる方向から前記前眼部を撮影する撮影系と、
前記照明系及び前記撮影系を移動する移動機構と
を含む、
請求項1~
25のいずれかのスリットランプ顕微鏡。
【請求項27】
前記撮影系は、
前記スリット光が照射された前記前眼部からの光を導く光学系と、
前記光学系により導かれた前記光を撮像面で受光する撮像素子と
を含み、
前記照明系の光軸に沿う物面と前記光学系と前記撮像面とがシャインプルーフの条件を満足する、
請求項
26のスリットランプ顕微鏡。
【請求項28】
前記データ処理部からの出力に基づいて第4表示装置に情報を表示させる第4表示制御部を含む、
請求項1~
27のいずれかのスリットランプ顕微鏡。
【請求項29】
被検眼の前眼部をスリット光でスキャンして収集された複数の断面画像を受け付ける受付部と、
前記複数の断面画像に基づいて、水晶体の混濁部の分布を表す混濁分布情報を生成するデータ処理部と
を含
み、
前記データ処理部は、
前記複数の断面画像から3次元水晶体画像を構築する水晶体画像構築部と、
前記3次元水晶体画像を解析して前記混濁分布情報を生成する混濁分布情報生成部と
を含み、
前記混濁分布情報生成部は、前記3次元水晶体画像の複数の3次元部分領域のそれぞれについて、当該3次元部分領域における混濁部の分布を表す局所分布情報を生成する局所分布情報生成部を含み、
前記データ処理部は、前記局所分布情報生成部により生成された複数の局所分布情報に基づいて、前記水晶体の光透過率の分布を表す透過率分布情報を生成する第1透過率分布情報生成部を含む、
眼科情報処理装置。
【請求項30】
スリットランプ顕微鏡と情報処理装置とを含む眼科システムであって、
前記スリットランプ顕微鏡は、
被検眼の前眼部をスリット光でスキャンして複数の断面画像を収集するスキャン部と、
前記スキャン部により収集された前記複数の断面画像を、通信回線を通じて前記情報処理装置に送信する送信部と
を含み、
前記情報処理装置は、
前記複数の断面画像を受信する受信部と、
前記複数の断面画像に基づいて、水晶体の混濁部の分布を表す混濁分布情報を生成するデータ処理部と
を含
み、
前記データ処理部は、
前記複数の断面画像から3次元水晶体画像を構築する水晶体画像構築部と、
前記3次元水晶体画像を解析して前記混濁分布情報を生成する混濁分布情報生成部と
を含み、
前記混濁分布情報生成部は、前記3次元水晶体画像の複数の3次元部分領域のそれぞれについて、当該3次元部分領域における混濁部の分布を表す局所分布情報を生成する局所分布情報生成部を含み、
前記データ処理部は、前記局所分布情報生成部により生成された複数の局所分布情報に基づいて、前記水晶体の光透過率の分布を表す透過率分布情報を生成する第1透過率分布情報生成部を含む、
眼科システム。
【請求項31】
プロセッサと、被検眼の前眼部をスリット光でスキャンして複数の断面画像を収集するスキャン部とを含むスリットランプ顕微鏡を制御する方法であって、
前記スキャン部により収集された前記複数の断面画像に基づいて水晶体の混濁部の分布を表す混濁分布情報を生成する処理を前記プロセッサに実行さ
せ、
前記混濁分布情報を生成する処理は、
前記複数の断面画像から3次元水晶体画像を構築する水晶体画像構築ステップと、
前記3次元水晶体画像を解析して前記混濁分布情報を生成する混濁分布情報生成ステップと
を含み、
前記混濁分布情報生成ステップは、前記3次元水晶体画像の複数の3次元部分領域のそれぞれについて、当該3次元部分領域における混濁部の分布を表す局所分布情報を生成する局所分布情報生成ステップを含み、
前記混濁分布情報を生成する処理は、前記局所分布情報生成ステップにより生成された複数の局所分布情報に基づいて、前記水晶体の光透過率の分布を表す透過率分布情報を生成する第1透過率分布情報生成ステップを含む、
スリットランプ顕微鏡の制御方法。
【請求項32】
請求項
31の方法をコンピュータに実行させるためのプログラム。
【請求項33】
請求項
32のプログラムが記録された、コンピュータ可読な非一時的記録媒体。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、スリットランプ顕微鏡、眼科情報処理装置、眼科システム、スリットランプ顕微鏡の制御方法、プログラム、及び記録媒体に関する。
【背景技術】
【0002】
眼科分野において画像診断は重要な位置を占める。画像診断には、様々な眼科撮影装置が用いられる。眼科撮影装置の種類には、スリットランプ顕微鏡、眼底カメラ、走査型レーザー検眼鏡(SLO)、光干渉断層計(OCT)などがある。
【0003】
これら様々な眼科装置のうち最も広く且つ頻繁に使用される装置がスリットランプ顕微鏡である。スリットランプ顕微鏡は、スリット光で被検眼を照明し、照明された断面を斜方や側方から顕微鏡で観察したり撮影したりするために使用される(例えば、特許文献1~3を参照)。
【0004】
スリットランプ顕微鏡の主な用途の1つに前眼部観察がある。前眼部観察において、医師は、スリット光による照明野やフォーカス位置を移動させつつ前眼部全体を観察して異常の有無を判断する。また、コンタクトレンズのフィッティング状態の確認など、視力補正器具の処方において、スリットランプ顕微鏡が用いられることもある。
【0005】
前眼部観察に徹照法を用いることがある(例えば、特許文献3を参照)。徹照法は、照明光の網膜反射を利用して眼内の状態を描出する観察法であり、典型的には、水晶体の混濁部を網膜からの反帰光線の影として描出する手法である。徹照法により得られる像は徹照像と呼ばれる。徹照法は白内障眼の観察などに広く利用されている一般的な手法であるが、次のような問題を有している。
【0006】
第1に、網膜からの反射光を利用することから徹照像の明るさを管理することは困難であり、画質の管理(制御、調整)も困難であるため、定量的な診断に適していないという問題がある。したがって、徹照法を用いた診断は読影者の主観に大きく依存し、例えば白内障のグレードを客観的に評価することができない。また、解析プログラムや機械学習を用いた自動画像解析が近年急速に発展しているが、画質管理の困難性は、徹照像に対する自動画像解析の適用を妨げる要因の1つとなっている。
【0007】
第2に、徹照像は、眼底を2次光源とする平面画像(投影画像、射影画像)であり、奥行き方向(深さ方向、Z方向)の情報を有さないため、3次元的な混濁分布を把握できないという問題がある。すなわち、徹照像は、Z方向に直交するXY平面における混濁分布を提供するに過ぎず、Z方向における混濁分布を提供することができない。
【先行技術文献】
【特許文献】
【0008】
【文献】特開2016-159073号公報
【文献】特開2016-179004号公報
【文献】特開2009-56149号公報
【発明の概要】
【発明が解決しようとする課題】
【0009】
本発明の目的は、徹照法の欠点が解消された新規な眼科観察法を提供することにある。
【課題を解決するための手段】
【0010】
幾つかの例示的な態様のスリットランプ顕微鏡は、被検眼の前眼部をスリット光でスキャンして複数の断面画像を収集するスキャン部と、前記複数の断面画像に基づいて、水晶体の混濁部の分布を表す混濁分布情報を生成するデータ処理部とを含む。
【0011】
幾つかの例示的な態様のスリットランプ顕微鏡において、前記データ処理部は、前記複数の断面画像から3次元水晶体画像を構築する水晶体画像構築部と、前記3次元水晶体画像を解析して前記混濁分布情報を生成する混濁分布情報生成部とを含む。
【0012】
幾つかの例示的な態様のスリットランプ顕微鏡において、前記水晶体画像構築部は、前記スキャン部により収集された前記複数の断面画像に3次元再構成を適用する第1再構成部と、前記第1再構成部により構築された3次元再構成画像にセグメンテーションを適用して前記3次元水晶体画像を特定する第1セグメンテーション部とを含む。
【0013】
幾つかの例示的な態様のスリットランプ顕微鏡において、前記水晶体画像構築部は、前記スキャン部により収集された前記複数の断面画像のそれぞれにセグメンテーションを適用して2次元水晶体画像を特定する第2セグメンテーション部と、前記第2セグメンテーション部により特定された複数の2次元水晶体画像に3次元再構成を適用して前記3次元水晶体画像を構築する第2再構成部とを含む。
【0014】
幾つかの例示的な態様のスリットランプ顕微鏡において、前記混濁分布情報生成部は、前記3次元水晶体画像の複数の3次元部分領域のそれぞれについて、当該3次元部分領域における混濁部の分布を表す局所分布情報を生成する局所分布情報生成部を含む。
【0015】
幾つかの例示的な態様のスリットランプ顕微鏡において、前記データ処理部は、前記局所分布情報生成部により生成された複数の局所分布情報に基づいて混濁分布マップを作成する混濁分布マップ作成部を含む。
【0016】
幾つかの例示的な態様のスリットランプ顕微鏡において、前記混濁分布マップは、前記複数の3次元部分領域のそれぞれにおける混濁部の深さ位置を表す。
【0017】
幾つかの例示的な態様のスリットランプ顕微鏡において、前記混濁分布マップは、第1座標軸が深さ方向を表し、且つ、第2座標軸が前記深さ方向に直交する方向を表す2次元座標系によって表現される。
【0018】
幾つかの例示的な態様のスリットランプ顕微鏡において、前記複数の3次元部分領域は、前記深さ方向に直交する平面において前記3次元水晶体画像に等角度分割を施すことにより得られ、前記第2座標軸は、前記等角度分割における角度方向を表す。
【0019】
幾つかの例示的な態様のスリットランプ顕微鏡において、前記データ処理部は、前記局所分布情報生成部により生成された複数の局所分布情報に基づいて、前記水晶体の光透過率の分布を表す透過率分布情報を生成する第1透過率分布情報生成部を含む。
【0020】
幾つかの例示的な態様のスリットランプ顕微鏡において、前記データ処理部は、前記第1透過率分布情報生成部により生成された前記透過率分布情報に基づいて透過率分布マップを作成する第1透過率分布マップ作成部を含む。
【0021】
幾つかの例示的な態様のスリットランプ顕微鏡において、前記データ処理部は、前記混濁分布マップ作成部により作成された前記混濁分布マップに基づいて、前記水晶体の光透過率の分布を表す透過率分布マップを作成する第2透過率分布マップ作成部を含む。
【0022】
幾つかの例示的な態様のスリットランプ顕微鏡において、前記データ処理部は、前記複数の3次元部分領域のそれぞれについて、前記2次元座標系で定義される当該3次元部分領域の面積で、当該3次元部分領域内の混濁部の面積を除算することにより、前記水晶体の光透過率の分布を表す透過率分布情報を生成する第2透過率分布情報生成部を含む。
【0023】
幾つかの例示的な態様のスリットランプ顕微鏡において、前記データ処理部は、前記第2透過率分布情報生成部により生成された前記透過率分布情報に基づいて透過率分布マップを作成する第3透過率分布マップ作成部を含む。
【0024】
幾つかの例示的な態様のスリットランプ顕微鏡において、前記データ処理部は、前記3次元水晶体画像を含む3次元画像にレンダリングを適用するレンダリング部を含む。
【0025】
幾つかの例示的な態様のスリットランプ顕微鏡において、前記レンダリング部は、所定の平面に対するプロジェクションを前記3次元画像に適用する。
【0026】
幾つかの例示的な態様のスリットランプ顕微鏡において、前記所定の平面は、深さ方向に直交する。
【0027】
幾つかの例示的な態様のスリットランプ顕微鏡は、前記レンダリング部により構築されたレンダリング画像及び前記混濁分布情報に基づく情報の一方に他方を重ねて第1表示装置に表示させる第1表示制御部を含む。
【0028】
幾つかの例示的な態様のスリットランプ顕微鏡は、前記プロジェクションにより構築された2次元画像及び前記混濁分布情報に基づく分布画像の一方に他方を重ねて第2表示装置に表示させる第2表示制御部を含む。
【0029】
幾つかの例示的な態様のスリットランプ顕微鏡において、前記データ処理部は、前記前眼部の複数の混濁分布情報に基づいて、前記水晶体の混濁部の分布の経時変化を表す第1経時変化情報を生成する第1経時変化情報生成部を含む。
【0030】
幾つかの例示的な態様のスリットランプ顕微鏡において、前記データ処理部は、前記透過率分布情報に基づいて、前記水晶体の光透過率の分布の経時変化を表す第2経時変化情報を生成する第2経時変化情報生成部を含む。
【0031】
幾つかの例示的な態様のスリットランプ顕微鏡は、前記第2経時変化情報に基づいて、前記複数の3次元部分領域のそれぞれにおける光透過率の経時変化を表すグラフを第3表示装置に表示させる第3表示制御部を含む。
【0032】
幾つかの例示的な態様のスリットランプ顕微鏡において、前記データ処理部は、前記スキャン部により収集された前記複数の断面画像に正規化を適用する正規化部を含み、前記正規化が適用された前記複数の断面画像に基づいて前記混濁分布情報の生成を行う。
【0033】
幾つかの例示的な態様のスリットランプ顕微鏡において、前記正規化部は、輝度の正規化を前記複数の断面画像に適用する。
【0034】
幾つかの例示的な態様のスリットランプ顕微鏡において、前記正規化部は、前記前眼部の角膜後面に対応する画像の輝度に基づいて前記輝度の正規化を前記複数の断面画像に実行する。
【0035】
幾つかの例示的な態様のスリットランプ顕微鏡において、前記スリット光は、可視光を含み、前記正規化部は、色の正規化を前記複数の断面画像に適用する。
【0036】
幾つかの例示的な態様のスリットランプ顕微鏡において、前記データ処理部は、前記複数の断面画像及び前記混濁分布情報の少なくとも一方に基づいて所定の白内障指標についての評価を行う評価部を含む。
【0037】
幾つかの例示的な態様のスリットランプ顕微鏡において、前記スリット光は、白色光を含み、前記評価部は、前記複数の断面画像の色情報に基づいて水晶体核硬度の評価を行う。
【0038】
幾つかの例示的な態様のスリットランプ顕微鏡において、前記評価部は、前記混濁分布情報に基づいて白内障の種類の推定を行う。
【0039】
幾つかの例示的な態様のスリットランプ顕微鏡において、前記データ処理部は、前記混濁分布情報に基づいて前記被検眼による視認状態のシミュレーションを行うシミュレーション部を含む。
【0040】
幾つかの例示的な態様のスリットランプ顕微鏡において、前記データ処理部は、前記複数の断面画像に基づいて所定の前眼部パラメータの計測を行う計測部を含む。
【0041】
幾つかの例示的な態様のスリットランプ顕微鏡において、前記前眼部パラメータは、角膜厚、角膜曲率、前房深度、水晶体厚、水晶体曲率、水晶体径、水晶体傾斜角度、及び、角膜中心と水晶体中心との間の偏位のうちの少なくとも1つを含む。
【0042】
幾つかの例示的な態様のスリットランプ顕微鏡において、前記スキャン部は、前記前眼部に前記スリット光を照射する照明系と、前記照明系とは異なる方向から前記前眼部を撮影する撮影系と、前記照明系及び前記撮影系を移動する移動機構とを含む。
【0043】
幾つかの例示的な態様のスリットランプ顕微鏡において、前記撮影系は、前記スリット光が照射された前記前眼部からの光を導く光学系と、前記光学系により導かれた前記光を撮像面で受光する撮像素子とを含み、前記照明系の光軸に沿う物面と前記光学系と前記撮像面とがシャインプルーフの条件を満足する。
【0044】
幾つかの例示的な態様のスリットランプ顕微鏡は、前記データ処理部からの出力に基づいて第4表示装置に情報を表示させる第4表示制御部を含む。
【0045】
幾つかの例示的な態様の眼科情報処理装置は、被検眼の前眼部をスリット光でスキャンして収集された複数の断面画像を受け付ける受付部と、前記複数の断面画像に基づいて、水晶体の混濁部の分布を表す混濁分布情報を生成するデータ処理部とを含む。
【0046】
幾つかの例示的な態様の眼科システムは、スリットランプ顕微鏡と情報処理装置とを含む。前記スリットランプ顕微鏡は、被検眼の前眼部をスリット光でスキャンして複数の断面画像を収集するスキャン部と、前記スキャン部により収集された前記複数の断面画像を、通信回線を通じて前記情報処理装置に送信する送信部とを含む。前記情報処理装置は、前記複数の断面画像を受信する受信部と、前記複数の断面画像に基づいて、水晶体の混濁部の分布を表す混濁分布情報を生成するデータ処理部とを含む。
【0047】
幾つかの例示的な態様の方法は、プロセッサと、被検眼の前眼部をスリット光でスキャンして複数の断面画像を収集するスキャン部とを含むスリットランプ顕微鏡を制御する方法であって、前記スキャン部により収集された前記複数の断面画像に基づいて水晶体の混濁部の分布を表す混濁分布情報を生成する処理を前記プロセッサに実行させる。
【0048】
幾つかの例示的な態様のプログラムは、いずれかの態様の方法をコンピュータに実行させる。
【0049】
幾つかの例示的な態様の記録媒体は、いずれかの態様のプログラムが記録された、コンピュータ可読な非一時的記録媒体である。
【発明の効果】
【0050】
例示的な態様が提供する眼科観察法によれば、画像の明るさを管理可能であり、3次元的情報を提供可能である。
【図面の簡単な説明】
【0051】
【
図1】例示的な態様に係るスリットランプ顕微鏡の構成を表す概略図である。
【
図2A】例示的な態様に係るスリットランプ顕微鏡の動作を説明するための概略図である。
【
図2B】例示的な態様に係るスリットランプ顕微鏡の動作を説明するための概略図である。
【
図3】例示的な態様に係るスリットランプ顕微鏡の動作を説明するための概略図である。
【
図4】例示的な態様に係るスリットランプ顕微鏡の構成を表す概略図である。
【
図5A】例示的な態様に係るスリットランプ顕微鏡の構成を表す概略図である。
【
図5B】例示的な態様に係るスリットランプ顕微鏡の構成を表す概略図である。
【
図6】例示的な態様に係るスリットランプ顕微鏡の構成を表す概略図である。
【
図7】例示的な態様に係るスリットランプ顕微鏡の構成を表す概略図である。
【
図8A】例示的な態様に係るスリットランプ顕微鏡の構成を表す概略図である。
【
図8B】例示的な態様に係るスリットランプ顕微鏡の構成を表す概略図である。
【
図8C】例示的な態様に係るスリットランプ顕微鏡の構成を表す概略図である。
【
図9A】例示的な態様に係るスリットランプ顕微鏡の構成を表す概略図である。
【
図9B】例示的な態様に係るスリットランプ顕微鏡の構成を表す概略図である。
【
図10A】例示的な態様に係るスリットランプ顕微鏡の構成を表す概略図である。
【
図10B】例示的な態様に係るスリットランプ顕微鏡の構成を表す概略図である。
【
図11】例示的な態様に係るスリットランプ顕微鏡の構成を表す概略図である。
【
図12】例示的な態様に係るスリットランプ顕微鏡の構成を表す概略図である。
【
図13】例示的な態様に係るスリットランプ顕微鏡の構成を表す概略図である。
【
図14】例示的な態様に係るスリットランプ顕微鏡の構成を表す概略図である。
【
図15】例示的な態様に係るスリットランプ顕微鏡が実行する処理を説明するための概略図である。
【
図16A】例示的な態様に係るスリットランプ顕微鏡が実行する処理を説明するための概略図である。
【
図16B】例示的な態様に係るスリットランプ顕微鏡が実行する処理を説明するための概略図である。
【
図17】例示的な態様に係るスリットランプ顕微鏡が実行する処理を説明するための概略図である。
【
図18】例示的な態様に係るスリットランプ顕微鏡が実行する処理を説明するための概略図である。
【
図19】例示的な態様に係るスリットランプ顕微鏡が実行する処理を説明するための概略図である。
【
図20】例示的な態様に係るスリットランプ顕微鏡が実行する処理を説明するための概略図である。
【
図21】例示的な態様に係るスリットランプ顕微鏡の動作を表すフローチャートである。
【
図22】例示的な態様に係るスリットランプ顕微鏡の動作を説明するための図である。
【
図23】例示的な態様に係る眼科情報処理装置の構成を表す概略図である。
【
図24】例示的な態様に係る眼科システムの構成を表す概略図である。
【
図25】例示的な態様に係る眼科システムの構成を表す概略図である。
【
図26】例示的な態様に係る眼科システムの構成を表す概略図である。
【
図27】例示的な態様に係る眼科システムの構成を表す概略図である。
【
図28】例示的な態様に係る眼科システムの構成を表す概略図である。
【発明を実施するための形態】
【0052】
幾つかの例示的な態様について図面を参照しながら詳細に説明する。なお、本明細書にて引用した文献に開示された事項などの任意の公知技術を例示的な態様に組み合わせることができる。
【0053】
例示的な態様に係るスリットランプ顕微鏡は、設置型でも可搬型でもよい。例示的な態様に係るスリットランプ顕微鏡は、スリット光で前眼部をスキャンして複数の断面画像を取得する(自動)スキャン機能を有し、典型的には、同装置に関する専門技術保持者(熟練者)が側にいない状況や環境で使用される。なお、例示的な態様に係るスリットランプ顕微鏡は、熟練者が側にいる状況や環境で使用されてもよいし、熟練者が遠隔地から監視、指示、操作することが可能な状況や環境で使用されてもよい。
【0054】
スリットランプ顕微鏡が設置される施設の例として、眼鏡店、オプトメトリスト、医療機関、健康診断会場、検診会場、患者の自宅、福祉施設、公共施設、検診車などがある。
【0055】
例示的な態様に係るスリットランプ顕微鏡は、少なくともスリットランプ顕微鏡としての機能を有する眼科撮影装置であり、他の撮影機能(モダリティ)を更に備えていてもよい。他のモダリティの例として、前眼部カメラ、眼底カメラ、SLO、OCTなどがある。例示的な態様に係るスリットランプ顕微鏡は、被検眼の特性を測定する機能を更に備えていてもよい。測定機能の例として、視力測定、屈折測定、眼圧測定、角膜内皮細胞測定、収差測定、視野測定などがある。例示的な態様に係るスリットランプ顕微鏡は、撮影画像や測定データを解析するためのアプリケーションを更に備えていてもよい。例示的な態様に係るスリットランプ顕微鏡は、治療や手術のための機能を更に備えていてもよい。その例として光凝固治療や光線力学的療法がある。
【0056】
例示的な態様に係る眼科情報処理装置は、上記のスキャン機能を有するスリットランプ顕微鏡により収集された複数の断面画像を処理するプロセッサ(回路)を含む。例示的な態様の眼科情報処理装置は、スリットランプ顕微鏡の周辺機器であってもよいし、スリットランプ顕微鏡とLANを介して接続されてもよいし、スリットランプ顕微鏡と広域ネットワークを介して接続されてもよい。或いは、例示的な態様の眼科情報処理装置は、記録媒体に記録された複数の断面画像の入力を受け付ける機能を有していてもよい。
【0057】
例示的な態様に係る眼科システム、1以上のスリットランプ顕微鏡と、1以上の情報処理装置とを含んでいてよく、例えば遠隔医療のために使用可能である。スリットランプ顕微鏡は、いずれかの例示的な態様に係るスリットランプ顕微鏡であってもよいし、その少なくとも一部を具備したスリットランプ顕微鏡であってもよい。
【0058】
情報処理装置は、スリットランプ顕微鏡により取得された画像を受けてこれを処理する機能を有する。情報処理装置は、例えば、ネットワーク上のサーバ又はコンピュータ端末であってよい。コンピュータ端末は、例えば、読影端末及び/又は読影装置であってよい。情報処理装置が読影端末及び/又は読影装置である場合、眼科システムは、スリットランプ顕微鏡により取得された画像を受けて読影端末及び/又は読影装置に転送する他の情報処理装置(サーバ等)を含んでいてよい。なお、眼科システムのアーキテクチャは、クライアント-サーバ方式に限定されず、ピア・トゥー・ピア(peer-to-peer)方式であってもよい。以下の例示的なクライアント-サーバ方式の眼科システムを主に説明するが、クライアント-サーバ方式における機能、構成、要素、動作、処理などをピア・トゥー・ピア方式に準用することが可能である。
【0059】
読影端末は、医師(典型的には、眼科医又は読影医等の専門医)がスリットランプ顕微鏡により取得された画像の読影(画像を観察して診療上の所見を得ること)を行うために使用されるコンピュータである。読影者が読影端末に入力した情報は、例えば、読影端末又は他のコンピュータにより読影レポート又は電子カルテ情報に変換されてサーバに送信されてよい。他の例において、読影者が読影端末に入力した情報をサーバに送信することができる。この場合、サーバ又は他のコンピュータは、読影者が入力した情報を読影レポート又は電子カルテ情報に変換することができる。サーバは、読影レポート又は電子カルテ情報を自身で管理してもよいし、他の医療システム(例えば電子カルテシステム)に転送してもよい。
【0060】
読影装置は、例えば画像処理プロセッサ及び/又は人工知能エンジンを利用して、スリットランプ顕微鏡により取得された画像の読影を行うコンピュータである。読影装置が画像から導出した情報は、例えば、読影装置又は他のコンピュータにより読影レポート又は電子カルテ情報に変換されてサーバに送信されてよい。他の例において、読影装置が画像から導出した情報をサーバに送信することができる。この場合、サーバ又は他のコンピュータは、読影装置が画像から導出した情報を読影レポート又は電子カルテ情報に変換することができる。サーバは、読影レポート又は電子カルテ情報を自身で管理してもよいし、他の医療システムに転送してもよい。
【0061】
このように例示的な態様に係るスリットランプ顕微鏡、眼科情報処理装置及び眼科システムは遠隔医療に使用可能である。一方、従来のスリットランプ顕微鏡を用いて良好な画像を得ることは容易ではなく、また、読影や診断を有効に行うには前眼部の広い範囲の画像を「予め」取得する必要がある。このような事情から、スリットランプ顕微鏡を用いた有効な遠隔医療は実現されていないと言える。その実現に寄与する技術を例示的な態様は提供可能である。なお、他の用途のために例示的な態様を応用することも可能である。
【0062】
以下、幾つかの例示的な態様について説明する。これら態様のいずれかに対して任意の公知技術に基づく変形(付加、置換、省略等)を施すことが可能である。また、これら態様のうちのいずれか2つ又はそれ以上を少なくとも部分的に組み合わせることが可能である。このような組み合わせに対して任意の公知技術に基づく変形(付加、置換、省略等)を施すことが可能である。
【0063】
以下に例示する態様において、「プロセッサ」は、例えば、CPU(Central Processing Unit)、GPU(Graphics Processing Unit)、ASIC(Application Specific Integrated Circuit)、プログラマブル論理デバイス(例えば、SPLD(Simple Programmable Logic Device)、CPLD(Complex Programmable Logic Device)、FPGA(Field Programmable Gate Array))等の回路(circuit)や回路構成(circuitry)を含む。例えば、プロセッサは、記憶回路や記憶装置に格納されているプログラムやデータを読み出し実行することで、その態様に係る機能を実現する。或いは、プロセッサは、人工知能やコグニティブ・コンピューティングにおいて用いられる回路を含んでいてよく、典型的には機械学習が適用されたコンピュータシステムを含む。
【0064】
<第1の態様>
第1の態様に係るスリットランプ顕微鏡の例を
図1に示す。
【0065】
スリットランプ顕微鏡1は、被検眼Eの前眼部撮影に用いられ、照明系2と、撮影系3と、移動機構6と、制御部7と、データ処理部8と、出力部9とを含む。なお、符号Cは角膜を示し、符号CLは水晶体を示す。
【0066】
スリットランプ顕微鏡1は、単一の装置であってもよいし、2以上の装置を含むシステムであってもよい。システムの例として、スリットランプ顕微鏡1は、照明系2、撮影系3、及び移動機構6を含む本体装置と、制御部7、データ処理部8、及び出力部9を含むコンピュータと、本体装置とコンピュータとの間の通信を担う通信デバイスとを含む。システムの他の例として、スリットランプ顕微鏡1は、照明系2、撮影系3、及び移動機構6を含む本体装置と、制御部7及びデータ処理部8を含むコンピュータと、出力部9を含む出力装置と、本体装置とコンピュータと出力装置との間の通信を担う通信デバイスとを含む。コンピュータは、例えば、本体装置とともに設置されてもよいし、ネットワーク上に設置されていてもよい。出力装置についても同様である。
【0067】
<照明系2>
照明系2は、被検眼Eの前眼部にスリット光を照射する。符号2aは、照明系2の光軸(照明光軸)を示す。照明系2は、従来のスリットランプ顕微鏡の照明系と同様の構成を備えていてよい。例えば、図示は省略するが、照明系2は、被検眼Eから遠い側から順に、照明光源と、正レンズと、スリット形成部と、対物レンズとを含む。
【0068】
照明光源は照明光を出力する。照明系2は複数の照明光源を備えていてよい。例えば、照明系2は、連続光を出力する照明光源と、フラッシュ光を出力する照明光源とを含んでいてよい。また、照明系2は、前眼部用照明光源と後眼部用照明光源とを含んでいてよい。また、照明系2は、出力波長が異なる2以上の照明光源を含んでいてよい。典型的な照明系2は、照明光源として可視光源を含む。照明系2は、赤外光源を含んでいてもよい。照明光源から出力された照明光は、正レンズを通過してスリット形成部に投射される。
【0069】
スリット形成部は、照明光の一部を通過させてスリット光を生成する。典型的なスリット形成部は、一対のスリット刃を有する。これらスリット刃の間隔(スリット幅)を変更することで照明光が通過する領域(スリット)の幅を変更し、これによりスリット光の幅が変更される。また、スリット形成部は、スリット光の長さを変更可能に構成されてもよい。スリット光の長さとは、スリット幅に対応するスリット光の断面幅方向に直交する方向におけるスリット光の断面寸法である。スリット光の幅やスリット光の長さは、典型的には、スリット光の前眼部への投影像の寸法として表現されるが、これには限定されず、例えば、任意の位置におけるスリット光の断面における寸法として表現することや、スリット形成部により形成されるスリットの寸法として表現することも可能である。
【0070】
スリット形成部により生成されたスリット光は、対物レンズにより屈折されて被検眼Eの前眼部に照射される。
【0071】
照明系2は、スリット光のフォーカス位置を変更するための合焦機構を更に含んでいてもよい。合焦機構は、例えば、対物レンズを照明光軸2aに沿って移動させる。対物レンズの移動は、自動及び/又は手動で実行可能である。なお、対物レンズとスリット形成部との間の照明光軸2a上の位置に合焦レンズを配置し、この合焦レンズを照明光軸2aに沿って移動させることによってスリット光のフォーカス位置を変更可能としてもよい。
【0072】
なお、
図1は上面図であり、同図に示すように、本態様では、被検眼Eの軸に沿う方向をZ方向とし、これに直交する方向のうち被検者にとって左右の方向をX方向とし、X方向及びZ方向の双方に直交する方向をY方向とする。典型的には、X方向は左眼と右眼との配列方向であり、Y方向は被検者の体軸に沿う方向(体軸方向)である。
【0073】
<撮影系3>
撮影系3は、照明系2からのスリット光が照射されている前眼部を撮影する。符号3aは、撮影系3の光軸(撮影光軸)を示す。本態様の撮影系3は、光学系4と、撮像素子5とを含む。
【0074】
光学系4は、スリット光が照射されている被検眼Eの前眼部からの光を撮像素子5に導く。撮像素子5は、光学系4により導かれた光を撮像面にて受光する。
【0075】
光学系4により導かれる光(つまり、被検眼Eの前眼部からの光)は、前眼部に照射されているスリット光の戻り光を含み、他の光を更に含んでいてよい。戻り光の例として、反射光、散乱光、蛍光がある。他の光の例として、スリットランプ顕微鏡1の設置環境からの光(室内光、太陽光など)がある。前眼部全体を照明するための前眼部照明系が照明系2とは別に設けられている場合、この前眼部照明光の戻り光が、光学系4により導かれる光に含まれてもよい。
【0076】
撮像素子5は、2次元の撮像エリアを有するエリアセンサであり、例えば、電荷結合素子(CCD)イメージセンサや相補型金属酸化膜半導体(CMOS)イメージセンサであってよい。
【0077】
光学系4は、例えば、従来のスリットランプ顕微鏡の撮影系と同様の構成を備えていてよい。例えば、光学系4は、被検眼Eに近い側から順に、対物レンズと、変倍光学系と、結像レンズとを含む。スリット光が照射されている被検眼Eの前眼部からの光は、対物レンズ及び変倍光学系を通過し、結像レンズにより撮像素子5の撮像面に結像される。
【0078】
撮影系3は、例えば、第1撮影系と第2撮影系とを含んでいてよい。典型的には、第1撮影系と第2撮影系とは同じ構成を有する。撮影系3が第1撮影系と第2撮影系とを含む場合については他の態様において説明する。
【0079】
撮影系3は、そのフォーカス位置を変更するための合焦機構を更に含んでいてもよい。合焦機構は、例えば、対物レンズを撮影光軸3aに沿って移動させる。対物レンズの移動は、自動及び/又は手動で実行可能である。なお、対物レンズと結像レンズとの間の撮影光軸3a上の位置に合焦レンズを配置し、この合焦レンズを撮影光軸3aに沿って移動させることによってフォーカス位置を変更可能としてもよい。
【0080】
照明系2及び撮影系3は、シャインプルーフカメラとして機能する。すなわち、照明光軸2aに沿う物面と、光学系4と、撮像素子5の撮像面とが、いわゆるシャインプルーフの条件を満足するように、照明系2及び撮影系3が構成される。より具体的には、照明光軸2aを通るYZ面(物面を含む)と、光学系4の主面と、撮像素子5の撮像面とが、同一の直線上にて交差する。これにより、物面内の全ての位置(照明光軸2aに沿う方向における全ての位置)にピントを合わせて撮影を行うことができる。
【0081】
本態様では、例えば、少なくとも角膜Cの前面と水晶体CLの後面とによって画成される範囲に撮影系3のピントが合うように、照明系2及び撮影系3が構成される。つまり、
図1に示す角膜Cの前面の頂点(Z=Z1)から水晶体CLの後面の頂点(Z=Z2)までの範囲全体に撮影系3のピントが合っている状態で、撮影を行うことが可能である。なお、Z=Z0は、照明光軸2aと撮影光軸3aとの交点のZ座標を示す。
【0082】
このような条件は、典型的には、照明系2に含まれる要素の構成及び配置、撮影系3に含まれる要素の構成及び配置、並びに、照明系2と撮影系3との相対位置によって実現される。照明系2と撮影系3との相対位置を示すパラメータは、例えば、照明光軸2aと撮影光軸3aとがなす角度θを含む。角度θは、例えば、17.5度、30度、又は45度に設定される。なお、角度θは可変であってもよい。
【0083】
<移動機構6>
移動機構6は、照明系2及び撮影系3を移動する。移動機構6は、例えば、照明系2及び撮影系3が搭載された可動ステージと、制御部7から入力される制御信号にしたがって動作するアクチュエータと、このアクチュエータにより発生された駆動力に基づき可動ステージを移動する機構とを含む。他の例において、移動機構6は、照明系2及び撮影系3が搭載された可動ステージと、図示しない操作デバイスに印加された力に基づき可動ステージを移動する機構とを含む。操作デバイスは、例えばレバーである。可動ステージは、少なくともX方向に移動可能であり、更にY方向及び/又はZ方向に移動可能であってよい。
【0084】
本態様において、移動機構6は、例えば、照明系2及び撮影系3を一体的にX方向に移動する。つまり、移動機構6は、上記したシャインプルーフの条件が満足された状態を保持しつつ照明系2及び撮影系3をX方向に移動する。この移動と並行して、撮影系3は、例えば所定の時間間隔(撮影レート)で動画撮影を行う。これにより、被検眼Eの前眼部の3次元領域がスリット光でスキャンされ、この3次元領域内の複数の断面に対応する複数の画像(断面画像群)が収集される。
【0085】
<制御部7>
制御部7は、スリットランプ顕微鏡1の各部を制御する。例えば、制御部7は、照明系2の要素(照明光源、スリット形成部、合焦機構など)、撮影系3の要素(合焦機構、撮像素子など)、移動機構6、データ処理部8、出力部9などを制御する。また、制御部7は、照明系2と撮影系3との相対位置を変更するための制御を実行可能であってもよい。幾つかの態様において、制御部7は、後述の表示制御部71を含む。詳細は後述するが、表示制御部71は、後述の表示部9Aに情報を表示させる。
【0086】
制御部7は、プロセッサ、主記憶装置、補助記憶装置などを含む。補助記憶装置には、制御プログラム等が記憶されている。制御プログラム等は、スリットランプ顕微鏡1がアクセス可能なコンピュータや記憶装置に記憶されていてもよい。制御部7の機能は、制御プログラム等のソフトウェアと、プロセッサ等のハードウェアとの協働によって実現される。
【0087】
制御部7は、被検眼Eの前眼部の3次元領域をスリット光でスキャンするために、照明系2、撮影系3及び移動機構6に対して次のような制御を適用することができる。
【0088】
まず、制御部7は、照明系2及び撮影系3を所定のスキャン開始位置に配置するように移動機構6を制御する(アライメント制御)。スキャン開始位置は、例えば、X方向における角膜Cの端部(第1端部)に相当する位置、又は、それよりも被検眼Eの軸から離れた位置である。
図2Aの符号X0は、X方向における角膜Cの第1端部に相当するスキャン開始位置の例を示している。また、
図2Bの符号X0’は、X方向における角膜Cの第1端部に相当する位置よりも被検眼Eの軸EAから離れたスキャン開始位置の例を示している。
【0089】
制御部7は、照明系2を制御して、被検眼Eの前眼部に対するスリット光の照射を開始させる(スリット光照射制御)。なお、アライメント制御の実行前に、又は、アライメント制御の実行中に、スリット光照射制御を行ってもよい。スリット光は、典型的には連続光であるが、断続光(パルス光)であってもよい。パルス光の点灯制御は、撮影系3の撮影レートに同期される。また、スリット光は、典型的には可視光であるが、赤外光であってもよいし、可視光と赤外光との混合光であってもよい。
【0090】
制御部7は、撮影系3を制御して、被検眼Eの前眼部の動画撮影を開始させる(撮影制御)。なお、アライメント制御の実行前に、又は、アライメント制御の実行中に、撮影制御を行ってもよい。典型的には、スリット光照射制御と同時に、又は、スリット光照射制御よりも後に、撮影制御が実行される。
【0091】
アライメント制御、スリット光照射制御、及び撮影制御の実行後、制御部7は、移動機構6を制御して、照明系2及び撮影系3の移動を開始する(移動制御)。移動制御により、照明系2及び撮影系3が一体的に移動される。つまり、照明系2と撮影系3との相対位置(角度θなど)を維持しつつ照明系2及び撮影系3が移動される。典型的には、前述したシャインプルーフの条件が満足された状態を維持しつつ照明系2及び撮影系3が移動される。照明系2及び撮影系3の移動は、前述したスキャン開始位置から所定のスキャン終了位置まで行われる。スキャン終了位置は、例えば、スキャン開始位置と同様に、X方向において第1端部の反対側の角膜Cの端部(第2端部)に相当する位置、又は、それよりも被検眼Eの軸から離れた位置である。このような場合、スキャン開始位置からスキャン終了位置までの範囲がスキャン範囲となる。
【0092】
典型的には、X方向を幅方向とし且つY方向を長手方向とするスリット光を前眼部に照射しつつ、且つ、照明系2及び撮影系3をX方向に移動しつつ、撮影系3による動画撮影が実行される。
【0093】
ここで、スリット光の長さ(つまり、Y方向におけるスリット光の寸法)は、例えば、被検眼Eの表面において角膜Cの径以上に設定される。すなわち、スリット光の長さは、Y方向における角膜径以上に設定されている。また、前述のように、移動機構6による照明系2及び撮影系3の移動距離(つまり、スキャン範囲)は、X方向における角膜径以上に設定されている。これにより、少なくとも角膜C全体をスリット光でスキャンすることができる。
【0094】
このようなスキャンにより、スリット光の照射位置が異なる複数の前眼部画像が得られる。換言すると、スリット光の照射位置がX方向に移動する様が描写された動画像が得られる。本態様においては、シャインプルーフの条件が満足されているため、撮影時(キャプチャ時)におけるスリット光照射領域(断面)が高精細に描出された複数の断面画像が得られる。このような複数の前眼部画像(つまり、動画像を構成するフレーム群)の例を
図3に示す。
【0095】
図3は、複数の前眼部画像(フレーム群、断面画像群)F1、F2、F3、・・・、FNを示す。これら前眼部画像Fn(n=1、2、・・・、N)の添字nは、時系列順序を表している。つまり、第n番目に取得された前眼部画像が符号Fnで表される。前眼部画像Fnには、スリット光照射領域Anが含まれている。
図3に示すように、スリット光照射領域A1、A2、A3、・・・、ANは、時系列に沿って右方向に移動している。
図3に示す例では、スキャン開始位置及びスキャン終了位置は、X方向における角膜Cの両端に対応する。なお、スキャン開始位置及び/又はスキャン終了位置は本例に限定されず、例えば、角膜端部よりも被検眼Eの軸から離れた位置であってよい。また、スキャンの向きや回数についても任意に設定することが可能である。
【0096】
<データ処理部8>
データ処理部8は、各種のデータ処理を実行する。処理されるデータは、スリットランプ顕微鏡1により取得されたデータ、及び、外部から入力されたデータのいずれでもよい。例えば、データ処理部8は、撮影系3によって取得された画像を処理することができる。なお、データ処理部8の構成や機能については、本態様での説明に加え、他の態様においても説明する。
【0097】
データ処理部8は、プロセッサ、主記憶装置、補助記憶装置などを含む。補助記憶装置には、データ処理プログラム等が記憶されている。データ処理プログラム等は、スリットランプ顕微鏡1がアクセス可能なコンピュータや記憶装置に記憶されていてもよい。データ処理部8の機能は、データ処理プログラム等のソフトウェアと、プロセッサ等のハードウェアとの協働によって実現される。
【0098】
データ処理部8は、スリット光を用いた前眼部スキャンにより収集された複数の断面画像に基づいて、被検眼Eの水晶体の混濁部の分布を表す情報(混濁分布情報)を生成する。このようなデータ処理部8の幾つかの例を説明する。
図4~
図14は、データ処理部8の幾つかの構成例であり、これら構成例のうちの2つ又はそれ以上を組み合わせることが可能である。なお、データ処理部8の構成はこれらに限定されない。例えば、同じ結果又は類似の結果を得るための任意の要素をデータ処理部8に設けることが可能である。
【0099】
図4に示すデータ処理部8Aは、水晶体画像構築部81と、混濁分布情報生成部82とを含む。水晶体画像構築部81は、スリット光を用いた前眼部スキャンにより収集された複数の断面画像(複数の前眼部画像)から3次元水晶体画像を構築する。混濁分布情報生成部82は、構築された3次元水晶体画像を解析して混濁分布情報を生成する。
【0100】
図5Aは、水晶体画像構築部81の第1の構成例を示す。本例の水晶体画像構築部81Aは、再構成部811と、セグメンテーション部812とを含む。
【0101】
再構成部811は、スリット光を用いた前眼部スキャンにより収集された複数の前眼部画像に3次元再構成を適用する。これにより、複数の前眼部画像に基づく3次元再構成画像が構築される。典型的な3次元再構成画像は、スタックデータ又はボリュームデータである。
【0102】
スタックデータは、それぞれが別々の2次元座標系(2次元画像空間)により定義された複数の前眼部画像を、単一の3次元座標系(3次元画像空間)で表現することによって構築される。換言すると、スタックデータは、複数の前眼部画像を同じ3次元画像空間に埋め込むことによって構築される。例えば、各前眼部画像の埋め込み位置は、複数の前眼部画像の相対位置関係に基づき決定される。
【0103】
複数の前眼部画像の相対位置関係は、例えば、前述のスキャン制御(スリット光照射制御、撮影制御、移動制御など)の内容から決定される。その例として、移動制御の内容(スキャン範囲)と撮影制御の内容(撮影レート)とに基づいて複数の前眼部画像の相対位置関係(配置間隔など)を求めることが可能である。
【0104】
他の例では、前眼部の複数の断面画像(複数の前眼部画像)を収集するためのスキャンと並行して前眼部の正面画像を収集する。典型的には、前眼部正面撮影はスキャンに同期され、複数の正面画像のそれぞれにおけるスリット光照射領域から複数の断面画像の相対位置関係を求めることができる。
【0105】
ボリュームデータはボクセルデータとも呼ばれ、典型的には、公知のボクセル化処理をスタックデータに適用することによって構築される。なお、本態様の3次元画像はスタックデータ及びボリュームデータに限定されない。
【0106】
本態様に適用される3次元再構成法は任意である。典型的には、再構成部811は、スタックデータを構築するために、複数の前眼部画像に公知の3次元再構成法を適用する。また、再構成部811は、ボリュームデータを構築するために、スタックデータに公知のボクセル化処理を適用する。
【0107】
再構成部811は、3次元再構成において実行可能な公知の処理、及び、3次元再構成とともに実行可能な公知の処理のいずれかを実行することができる。例えば、再構成部811は、ノイズ除去、輝度補正、歪み補正、コントラスト補正、色補正、ガンマ補正、などの任意の補正処理を、複数の前眼部画像及び/又は3次元再構成画像に適用することができる。また、再構成部811は、移動平均フィルタ、ガウシアンフィルタ、メディアンフィルタ、ソーベルフィルタ、平滑化フィルタ、鮮鋭化フィルタ、細線化フィルタなどの任意のフィルタを、複数の前眼部画像及び/又は3次元再構成画像に適用することができる。
【0108】
セグメンテーション部812は、再構成部811により構築された3次元再構成画像(スタックデータ、ボリュームデータなど)にセグメンテーションを適用する。セグメンテーションは画像を複数の領域に分割するための技術であり、本態様では3次元再構成画像の部分領域を特定するために利用される。
【0109】
本態様に適用されるセグメンテーション法は任意である。例えば、セグメンテーション部812は、公知のセグメンテーションアルゴリズムを実行するためのプログラムにしたがって動作するプロセッサを含む。或いは、セグメンテーション部812は、人工知能エンジンを含んでいてよい。この人工知能エンジンは、典型的には、畳み込みニューラルネットワーク(CNN)を含み、この畳み込みニューラルネットワークは、スリットランプ顕微鏡により取得された多数の画像とそれらのセグメンテーション結果とを含む訓練データを用いて、事前に訓練される。
【0110】
セグメンテーション部812は、再構成部811により構築された3次元再構成画像から、所定の組織(所定の部位)に対応する画像領域を特定するように構成される。特定対象の組織は、一般に、スリットランプ顕微鏡1により撮影可能な任意の組織であってよい。例えば、特定対象の組織は、角膜、角膜のサブ組織(角膜前面、角膜後面、角膜上皮、ボーマン膜、固有層、デュア層、デスメ膜、角膜内皮など)、虹彩、虹彩前面、瞳孔、前房、水晶体、水晶体のサブ組織(水晶体前面、水晶体後面、水晶体上皮、水晶体嚢など)、硝子体、病変部、血管、及び、他の眼組織のうちのいずれかであってよい。
【0111】
また、セグメンテーション部812は、再構成部811により構築された3次元再構成画像から、眼組織の任意の部分に対応する画像領域を特定するように構成されてよい。例えば、特定対象の部分は、例えば、前部、中央部、後部、縁部、端部、及び、他の部分のいずれかであってよい。
【0112】
前述したように、徹照法には、画像の明るさを管理できないこと、そして、3次元的情報を提供できないこと、という欠点がある。スリットランプ顕微鏡1は、このような欠点が解消された新規な水晶体観察法を提供することを1つの目的としている。
【0113】
そのために、セグメンテーション部812は、再構成部811により構築された3次元再構成画像から、水晶体に対応する画像領域を特定するように構成されてよい。セグメンテーション部812により3次元再構成画像から抽出される画像領域を3次元水晶体画像又は単に水晶体画像と呼ぶ。
【0114】
図5Bは、水晶体画像構築部81の第2の構成例を示す。本例の水晶体画像構築部81Bは、セグメンテーション部813と、再構成部814とを含む。
【0115】
なお、第1の例は、複数の断面画像から3次元画像を再構成し、この3次元再構成画像から3次元水晶体画像を抽出するように構成されている。逆に、本例は、複数の断面画像のそれぞれから2次元水晶体画像を抽出し、抽出された複数の2次元水晶体画像から3次元水晶体画像を再構成するように構成されている。
【0116】
つまり、セグメンテーション部813は、スリット光による前眼部スキャンにより収集された複数の前眼部画像のそれぞれにセグメンテーションを適用して2次元水晶体画像を特定する。更に、再構成部814は、セグメンテーション部813により複数の前眼部画像からそれぞれ特定された複数の2次元水晶体画像に3次元再構成を適用して3次元水晶体画像を構築する。
【0117】
本例に適用されるセグメンテーション法は任意であり、3次元再構成法も任意である。また、複数の2次元水晶体画像の相対位置関係を取得する方法は、第1の例における複数の断面画像の相対位置関係を取得する方法と同じ要領で実行可能である。
【0118】
図6は、混濁分布情報生成部82の構成例を示す。本例の混濁分布情報生成部82Aは、局所分布情報生成部821を含む。局所分布情報生成部821は、水晶体画像構築部81により構築された3次元水晶体画像の複数の3次元部分領域のそれぞれについて、その3次元部分領域における混濁部の分布を表す情報(局所分布情報)を生成する。それにより、3次元水晶体画像の複数の3次元部分領域にそれぞれ対応する複数の局所分布情報が得られる。
【0119】
3次元水晶体画像に対して設定される複数の3次元部分領域の態様は任意である。典型的には、XY平面において定義された所定パターンにしたがって3次元水晶体画像を分割することにより複数の3次元部分領域を設定することができる。XY平面上の分割パターンは、例えば、セクタ分割、同心円分割、格子状分割などがある。
【0120】
セクタ分割は、XY平面において水晶体画像に等角度分割を施す分割法である。これにより得られる各部分画像は、略扇形柱体形状である。ここで、扇形柱体は、Z方向を軸とし、これに直交するXY断面の形状が扇形である3次元図形である。等角度分割の中心は、典型的には、XY平面における水晶体画像の中心に設定される。水晶体画像のXY中心は、例えば、水晶体画像のXY射影画像の中心又は重心として、又は、水晶体画像の軸(例えば、前嚢中心と後嚢中心とを通る直線)上の点として設定される。セクタ分割の例を
図15に示す。本例のセクタ分割では、水晶体画像100に角度45度の等角度分割が適用される。これにより、それぞれが中心角45度の略扇形柱体形状の8個の部分領域101~108が得られる。同心円分割や格子状分割などの他の分割パターンについても同様である。
【0121】
なお、ここではXY平面上のパターンによる分割について説明したが、3次元水晶体画像の分割態様はこれに限定されない。例えば、Z方向において3次元水晶体画像を分割してもよいし、XY平面上のパターンによる分割と、Z方向における分割とを組み合わせてもよい。また、このような既定パターンによる分割の代わりに又はそれと組み合わせて、水晶体のサブ組織の位置、形状及び寸法のいずれかに応じた分割態様、及び/又は、水晶体の周辺組織の位置、形状及び寸法のいずれかに応じた分割態様を適用してもよい。
【0122】
混濁分布情報生成部82(局所分布情報生成部821)は、3次元水晶体画像において混濁部に対応する画像領域(混濁領域)を特定する。この処理は、典型的には画素値(輝度、色)に基づく画像解析を含む。例えば、任意のセグメンテーション法が混濁領域の特定に適用される。
【0123】
例えば、局所分布情報生成部821は、3次元水晶体画像の全体から混濁領域を特定する処理と、3次元水晶体画像に対して複数の3次元部分領域を設定する処理と、3次元水晶体画像全体からの混濁領域特定により得られた大域混濁分布を複数の3次元部分領域に割り当てる処理とを実行することによって、3次元水晶体画像の複数の3次元部分領域にそれぞれ対応する複数の局所分布情報を取得するように構成されてよい。
【0124】
或いは、局所分布情報生成部821は、3次元水晶体画像に対して複数の3次元部分領域を設定する処理と、各3次元部分領域から混濁領域を特定する処理とを実行することによって、3次元水晶体画像の複数の3次元部分領域にそれぞれ対応する複数の局所分布情報を取得するように構成されてもよい。
【0125】
なお、本態様において、典型的には、スリット光は可視光であり、それを用いたスキャンにより収集された複数の前眼部画像には虹彩の裏側の領域は描出されない。よって、3次元再構成画像中の水晶体画像は、被検眼Eの水晶体のうち瞳孔後方に位置する部分に対応する画像領域のみである。
【0126】
また、スリットランプ顕微鏡1は、スリット光により照明されている断面(例えばYZ断面)を斜方から撮影するように構成されているため、この断面を撮影して得られた前眼部画像にはこの断面の状態が描出されており、特に水晶体内の混濁の2次元的な分布(例えばYZ断面における分布)が描出されている。そして、このような断面を移動しつつ撮影を繰り返すことにより(例えば、YZ断面をX方向に移動しつつ動画撮影を行うことにより)、水晶体内の混濁の3次元的な分布を表現した3次元再構成画像が得られる。そして、この3次元再構成画像柱の3次元水晶体画像は、3次元的混濁分布の情報を含んでいる。このように、本態様によれば、水晶体における混濁部の3次元的分布を把握することが可能である。
【0127】
スリットランプ顕微鏡1は、被検眼Eの水晶体における混濁部の分布を表す画像(混濁分布マップ)を作成可能に構成されてよい。そのためのデータ処理部8の構成例を
図7に示す。本例のデータ処理部8Bは、混濁分布マップ作成部83を含む。本例では、局所分布情報生成部821が、3次元水晶体画像の複数の3次元部分領域にそれぞれ対応する複数の局所分布情報を生成する。混濁分布マップ作成部83は、生成された複数の局所分布情報に基づいて混濁分布マップを作成するように構成される。
【0128】
混濁分布マップは、混濁部の分布に関する任意の指標(位置、寸法、形状、個数、密度、濃度など)を視覚的に表現した情報である。前述のように、本態様は混濁部の3次元的分布を把握可能であり、特に徹照法では把握できない深さ方向(Z方向)における混濁部の位置を把握することが可能である。したがって、混濁分布マップは、少なくとも、3次元水晶体画像の複数の3次元部分領域のそれぞれにおける混濁部の深さ位置を表す情報であってよい。深さ位置の表現法は任意であり、例えば、提示位置、数値、色、パターンなどで深さ位置を表現することが可能である。
【0129】
混濁分布マップは、混濁部の深さ位置を表現可能な2次元座標系によって定義されてよい。例えば、この2次元座標系の第1座標軸は、深さ方向(Z方向)を表し、且つ、第2座標軸は、深さ方向に直交する方向(XY平面内の任意方向)を表す。
【0130】
このような2次元座標系を用いた混濁分布マップの例を、
図16A及び
図16Bを参照しつつ説明する。
図16Aは、
図15(水晶体画像100に角度45度の等角度分割を適用したセクタ分割)の場合における第2座標軸αを示す。第2座標軸αは、XY座標系内に定義されており、上方を原点(0度)とし且つ時計回りを正方向とした角度を表す座標軸である。なお、本例における第1座標軸はXYZ座標系におけるZ座標軸である。
【0131】
前述したように、本例のセクタ分割により、それぞれが中心角45度の略扇形柱体形状の8個の部分領域101~108が得られる。部分領域101~108の中心角の角度は、それぞれ、第2座標軸α=0~45度、45~90度、90~135度、135~180度、180~225度、225~270度、270~315度、315~360度に相当している。
【0132】
図16Bは、Z座標軸を第1座標軸とし且つα座標軸を第2座標軸とした2次元座標系により表現された混濁分布マップの例を表す。なお、
図16Bに示す2次元座標系においては、
図16Aでは円状に定義されたα座標軸が直線状に表現されている。つまり、
図16Bに示す2次元座標系は、直線状のZ座標軸と直線状のα座標軸とにより定義された2次元直交座標系である。
【0133】
Zα座標系で定義された
図16Bに示す混濁分布マップ200の上辺は角膜の位置を示し、下辺は水晶体後嚢の位置を示す。また、上辺と下辺との間の破線は水晶体前嚢の位置を示す。3次元水晶体画像は水晶体前嚢から水晶体後嚢までの範囲に相当し、3次元水晶体画像から特定される混濁領域は当該範囲に分布する。混濁領域は斜線で示されている。
【0134】
混濁分布マップ200は、それぞれがZ方向を長手方向とし且つα方向を短手方向とした短冊状の8個の部分領域201~208に分けられている。混濁分布マップ200の8個の部分領域201~208は、それぞれ、
図16Aに示す水晶体画像100の8個の部分領域101~108に相当する。
【0135】
このような混濁分布マップ200によれば、被検眼Eの水晶体における混濁部の分布を容易に把握可能な態様で提供することができる。特に、徹照法では提供できなかった混濁部の深さ位置(深さ方向における分布)を容易に把握可能な態様で提供することができる。
【0136】
なお、前眼部OCTを利用すれば混濁部の3次元的な分布を提供することは可能であるが、前眼部OCTには次のような問題があるため、少なくとも混濁分布の取得及び提供ににおいては本態様のスリットランプ顕微鏡1が有利と考えられる:(1)前眼部OCT装置は、スリットランプ顕微鏡のように広く普及していない;(2)スリットランプ顕微鏡1が視覚に寄与する可視光を用いて撮影を行うのに対し、前眼部OCTは赤外光を用いて計測を行っている;(3)スリットランプ顕微鏡1は、照明野を斜方から撮影するため、深さ位置に関わらず混濁部の鮮明な描出が可能であるが、前眼部OCTは、照明光の正反射や後方散乱を検出するため、例えば部分領域203、206及び207のように深さ方向に異なる2以上の混濁部が存在する場合には、深い位置に存在する混濁部を(鮮明に)描出することができない。
【0137】
混濁分布マップ200とともに、複数の前眼部画像に基づく画像を表示することができる。この画像は、例えば、混濁分布マップ200を定義する2次元座標系により定義された画像であってよい。例えば、3次元水晶体画像を含む3次元画像(角膜から水晶体後嚢までの領域を表す3次元画像)を水晶体軸を軸とした円柱面に射影することにより、Zα座標系により定義された2次元画像を構築することができる。このような画像の構築は、例えば、後述のレンダリング部86によって実行される。
【0138】
スリットランプ顕微鏡1は、被検眼Eの水晶体における光透過率の分布を表す情報(透過率分布情報、透過率分布マップ)を取得可能に構成されてよい。そのためのデータ処理部8の構成の幾つかの例について
図8A~8Cを参照しつつ説明する。
【0139】
図8Aに示すデータ処理部8Cは、透過率分布情報生成部84Aと、透過率分布マップ作成部85Aとを含む。本例では、局所分布情報生成部821が、3次元水晶体画像の複数の3次元部分領域にそれぞれ対応する複数の局所分布情報を生成する。
【0140】
透過率分布情報生成部84Aは、局所分布情報生成部821により生成された複数の局所分布情報に基づいて、被検眼Eの水晶体の光透過率の分布を表す透過率分布情報を生成する。透過率分布マップ作成部85Aは、透過率分布情報生成部84Aにより生成された透過率分布情報に基づいて、被検眼Eの水晶体の光透過率の分布を視覚的に表現した透過率分布マップを作成する。
【0141】
例えば、透過率分布情報生成部84Aは、局所分布情報生成部821により生成された複数の局所分布情報のそれぞれから、その局所分布情報に対応する3次元部分領域における光透過率の値を算出する。算出される値は、例えば、単一の値(例えば、平均値、最大値、最小値、中央値、最頻値などの統計値)、範囲(例えば、最大値と最小値の間の範囲)、及び、分布のいずれかであってよい。
【0142】
例えば、透過率分布マップ作成部85Aは、複数の局所分布情報からそれぞれ算出された光透過率の値を、対応する3次元部分領域に割り当てることにより、複数の3次元部分領域に関する光透過率の分布を表す画像(透過率分布マップ)が作成される。光透過率の値の表現法は任意であり、例えば、数値、色、パターンなどによって値の大きさなどを表現することが可能である。
【0143】
図8Bに示すデータ処理部8Dは、透過率分布マップ作成部85Bを含む。本例では、局所分布情報生成部821が、3次元水晶体画像の複数の3次元部分領域にそれぞれ対応する複数の局所分布情報を生成し、更に、混濁分布マップ作成部83が、局所分布情報生成部821により生成された複数の局所分布情報に基づいて混濁分布マップを作成する。
【0144】
透過率分布マップ作成部85Bは、混濁分布マップ作成部83により作成された混濁分布マップに基づいて、被検眼Eの水晶体の光透過率の分布を視覚的に表現した透過率分布マップを作成する。
【0145】
例えば、透過率分布マップ作成部85Bは、混濁分布マップに表現された複数の局所分布情報のそれぞれを光透過率に変換することによって透過率分布マップを作成する。光透過率の値の表現法は任意である。また、局所分布情報を光透過率に変換する方法も任意である。このように混濁分布マップから透過率分布マップを作成する場合の1つの具体例を以下に説明する。
【0146】
図8Cに示すデータ処理部8Eは、透過率分布情報生成部84Bと、透過率分布マップ作成部85Cとを含む。本例では、局所分布情報生成部821が、3次元水晶体画像の複数の3次元部分領域にそれぞれ対応する複数の局所分布情報を生成し、更に、混濁分布マップ作成部83が、局所分布情報生成部821により生成された複数の局所分布情報に基づいて混濁分布マップを作成する。
【0147】
本例の混濁分布マップ作成部83により作成される混濁分布マップは、第1座標軸が深さ方向を表し、且つ、第2座標軸が深さ方向に直交する方向を表す2次元座標系によって表現された混濁分布マップであるとする。その例示である
図16Bの混濁分布マップ200は、Zα座標系によって定義されている。
【0148】
このような2次元座標系により定義された混濁分布マップから透過率分布マップを作成するために、透過率分布情報生成部84Bは、3次元水晶体画像の複数の3次元部分領域のそれぞれについて、この2次元座標系で定義されるその3次元部分領域の面積で、その3次元部分領域内の混濁部の面積を除算することにより、被検眼Eの水晶体の光透過率の分布を表す透過率分布情報を生成する。
【0149】
図16Bの混濁分布マップ200が混濁分布マップ作成部83により作成された場合、透過率分布情報生成部84Bは、
図16Aの3次元水晶体画像100の複数の3次元部分領域101~108のそれぞれについて、Zα座標系で定義されるその3次元部分領域の面積で、その3次元部分領域内の混濁部の面積を除算することにより、被検眼Eの水晶体の光透過率の分布を表す透過率分布情報を生成する。
【0150】
例えば、透過率分布情報生成部84Bは、3次元水晶体画像100の3次元部分領域101について、Zα座標系で定義される3次元部分領域101の面積で3次元部分領域101内の混濁部の面積を除算することにより、3次元部分領域101に対応する光透過率の値を算出する。つまり、透過率分布情報生成部84Bは、
図16Bにおける短冊状の部分領域201の面積で、部分領域201内の混濁部(斜線で示した領域)の面積を除算することにより、3次元部分領域101に対応する光透過率の値(推定値)を算出する。
【0151】
これと同様の演算を各3次元部分領域102~108について実行することにより、3次元水晶体画像100の複数の3次元部分領域101~108に対応する透過率分布情報が得られる。
【0152】
なお、混濁分布マップ200から透過率分布情報を生成する方法はこれに限定されない。例えば、3次元水晶体画像100の複数の3次元部分領域101~108のそれぞれについて、その3次元部分領域の体積で、その3次元部分領域内の混濁部の体積を除算することにより、その3次元部分領域に対応する光透過率の値を算出してもよい。また、混濁部の所定の指標(例えば濃度)に応じた重み(weight)を考慮して演算を行ってもよい。
【0153】
透過率分布マップ作成部85Cは、透過率分布情報生成部84Bにより生成された透過率分布情報に基づいて、被検眼Eの水晶体の光透過率の分布を視覚的に表現した透過率分布マップを作成する。光透過率の値の表現法は任意である。
【0154】
透過率分布マップ作成部85Cにより作成された透過率分布マップの例を
図17に示す。透過率分布マップ300は、3次元水晶体画像100の8個の3次元部分領域101~108(
図15を参照)に対応する8個の区域のそれぞれにおける光透過率の値を提示している。ここで、光透過率の値が小さいほど混濁が強い(混濁の濃度が高い)。このような透過率分布マップ300によれば、被検眼Eの水晶体における光透過率の分布を容易に把握可能な態様で提供することができる。
【0155】
本態様のスリットランプ顕微鏡1は、スリット光を用いた前眼部スキャンにより収集された複数の前眼部像(複数の断面画像)又はそれらに基づく画像をレンダリングすることができる。そのためのデータ処理部8の構成の幾つかの例について
図9A及び
図9Bを参照しつつ説明する。
【0156】
図9Aに示すデータ処理部8Fは、レンダリング部86を含む。レンダリング部86は、水晶体画像構築部81により構築された3次元水晶体画像を含む3次元画像にレンダリングを適用する。
【0157】
レンダリングが適用される3次元画像は、3次元水晶体画像であってもよいし、3次元水晶体画像を真部分集合とする3次元画像であってもよいし、3次元水晶体画像の一部であってもよいし、3次元水晶体画像の一部を真部分集合とする3次元画像であってもよい。
【0158】
より一般に、レンダリングの対象となる3次元画像は、3次元座標系を用いて画素位置が定義された画像であり、例えば、スリット光による前眼部スキャンにより収集された複数の前眼部画像の3次元再構成画像の任意の一部又は全部であってよい。3次元再構成画像は、例えば、スタックデータ又はボリュームデータである。
【0159】
レンダリング部86は、このような3次元画像に対してレンダリングを適用する。レンダリング法としては、ボリュームレンダリング、サーフェスレンダリング、最大値投影(MIP)、最小値投影(MinIP)、多断面再構成(MPR)などがあるが、本態様では主としてプロジェクションが採用される。
【0160】
プロジェクションは、3次元画像に含まれる画素群を所定方向に投影する(積算する、積分する)画像処理を含む。換言すると、プロジェクションは、3次元画像に含まれる画像群を所定の平面に投影する画像処理を含む。典型的には、レンダリング部86は、XYZ座標系で定義された3次元画像をZ方向に投影することによって、XY座標系で定義された2次元画像(プロジェクション画像)を構築することができる。
【0161】
言うまでも無いが、プロジェクション以外のレンダリング法を採用することも可能である。また、複数のレンダリング法を実行可能なレンダリング部86を準備し、これらを選択的に実行可能としてもよい。
【0162】
本態様では、水晶体画像構築部81により構築された3次元水晶体画像又はその少なくとも一部を含む3次元画像がレンダリング部86に入力される。例えば、レンダリング部86は、Z方向へのプロジェクションを3次元水晶体画像に適用することによりXY射影画像(XYプロジェクション画像)を構築する。
【0163】
表示制御部71は、レンダリング部86により構築されたレンダリング画像及び混濁分布情報に基づく情報の一方に他方を重ねて表示部9Aに表示させることができる。例えば、表示制御部71は、被検眼Eの水晶体における混濁部の分布状態を表す分布情報(例えば、混濁分布情報、混濁分布マップ、透過率分布情報、透過率分布マップ)をXYプロジェクション画像にオーバーレイすることができる。このようにXYプロジェクション画像と分布情報とを重ねて表示する場合の1つの具体例を以下に説明する。
【0164】
図9Bに示すデータ処理部8Gは、
図8Cに示すデータ処理部8Eにレンダリング部86を組み合わせたものである。本例のデータ処理部8Gは、透過率分布マップ作成部85Cにより例えば
図17の透過率分布マップ300を作成し、且つ、レンダリング部86により
図15の3次元水晶体画像100のXYプロジェクション画像が構築される。
【0165】
表示制御部71は、このXYプロジェクション画像を表示部9Aに表示させるとともに、このXYプロジェクション画像に透過率分布マップ300をオーバーレイする。
【0166】
なお、XYプロジェクション画像と透過率分布マップ300(分布情報)とは同じ3次元水晶体画像100(同じ複数の断面画像)から取得されるので、これらの間には自然な位置対応関係が存在するため、これらの間にレジストレーションを適用する必要はない。
【0167】
これに対し、互いに異なる3次元水晶体画像からそれぞれXYプロジェクション画像と分布情報とを取得することも想定される。例えば、第1測定日に取得された3次元水晶体画像からXYプロジェクション画像を構築し、且つ、第1測定日と異なる第2測定日に取得された3次元水晶体画像から分布情報を取得するとともに、このXYプロジェクション画像及びこの分布情報の一方に他方を重ねて表示することが考えられる。このような場合には、例えば、2つの3次元水晶体画像の間のレジストレーションを介してXYプロジェクション画像と分布情報との間のレジストレーションを行うことが可能である。
【0168】
なお、3次元水晶体画像間のレジストレーションの代わりに、これと同等のレジストレーションを行ってもよい。例えば、2つの3次元水晶体画像からそれぞれ構築された2つのXYレジストレーション画像の間のレジストレーション、又は、
図5Aの再構成部811により構築された2つの3次元再構成画像(それぞれ2つの3次元水晶体画像を抽出する前の画像)の間のレジストレーションを、3次元水晶体画像間のレジストレーションの代わりに実行することが可能である。
【0169】
以上に例示した表示法によれば、ユーザーは、XYプロジェクション画像により被検眼Eの水晶体の形態や構造を把握しつつ、分布情報により混濁部や光透過率の分布状態を把握することが可能である。典型的には、このような表示法によれば、水晶体の形態や構造(撮影画像)と水晶体の機能(分布情報)とのそれぞれ及びそれらの関係を容易に把握可能に提示することが可能である。
【0170】
また、前述したように、レンダリング部86は、3次元水晶体画像にZ方向への投影(XY平面への投影)を適用することで、XY座標系で定義されたプロジェクション画像を構築することができる。Z方向への投影は、Z方向に沿って配列された画素群の画素値の積算を含むので、これにより構築されるプロジェクション画像は、水晶体内の混濁の位置及び状態に関する情報を含む。
【0171】
このようにして構築されたプロジェクション画像は、徹照像と同様に2次元的混濁分布(XY平面における分布)を表すだけでなく、3次元再構成画像から受け継いだ深さ方向(Z方向、奥行き方向)の混濁分布情報も含んでいる。
【0172】
表示制御部71は、徹照像と同様の2次元画像(平面画像)としてプロジェクション画像を表示することが可能である。その場合、深さ方向の情報を空間的に提示することはできない。そこで、各混濁部の深さ情報を表示色や表示濃度や表示パターンで表現することができる。例えば、深さを色で表現する場合、深さと色との対応関係を示す情報(カラーバー)をプロジェクション画像とともに表示することができる。
【0173】
混濁部の深さ情報は、この混濁部の最前部の位置(最も角膜側の位置)、最後部の位置、中央位置など、この混濁部の任意の位置を示す情報を含んでいてよい。また、混濁部の深さ情報は、この混濁部の深さ方向の寸法を示す情報を含んでいてよい。
【0174】
深さ方向に2以上の混濁部が重なっている場合、これら混濁部の深さ情報を共に表示してもよいし、これら混濁部の深さ情報を選択的に表示してもよい。
【0175】
また、混濁の程度を示す情報を表示してもよい。混濁の程度は、混濁の密度、重症度、寸法などの情報を含んでいてよい。このような混濁の程度は、例えば、表示色、表示濃度、表示パターンによって表現される。
【0176】
水晶体画像の全体にレンダリングを適用した場合、水晶体画像全体に対応するレンダリング画像の一部を抽出して表示することができる。レンダリング画像の一部を抽出する処理は、例えば、前述のセグメンテーションと同じ要領で実行される。
【0177】
また、水晶体画像の一部(部分領域)にレンダリングを適用してもよい。この場合、水晶体画像にセグメンテーションを適用してその部分領域を特定することができる。或いは、3次元再構成画像にセグメンテーションを適用して水晶体画像の部分領域を特定することができる。
【0178】
例えば、データ処理部8は、被検眼Eの深さ方向(Z方向)における水晶体の部分領域を水晶体画像(又は3次元再構成画像)から特定するように構成されてよい。この部分領域は、例えば、核領域、核の前方領域、核の後方領域、嚢領域、所定深さ位置よりも浅い領域、所定深さ位置よりも深い領域、第1深さ位置と第2深さ位置とに挟まれた領域、及び、他の部分領域であってよい。レンダリング部86は、これにより特定された部分領域にレンダリングを適用することができる。これにより、当該部分領域における混濁部の分布を提供することが可能となる。例えば、ユーザが所望する深さ範囲における混濁部の分布を提供することができる。
【0179】
データ処理部8は、被検眼Eの深さ方向(Z方向)に直交する方向(例えば、X方向、Y方向、XY方向)における水晶体の部分領域を水晶体画像(又は3次元再構成画像)から特定するように構成されてよい。例えば、前述したように、水晶体画像を等角度の複数のセクタに分割し、セクタ毎の混濁の状態(分布、量、割合、程度など)を求めることが可能である。
【0180】
セグメンテーションにより水晶体の核領域及び嚢領域の少なくとも一方が特定された場合、当該領域に基づいて水晶体の部分領域の特定を行うことができる。例えば、水晶体の核領域が特定された場合、この核領域の輪郭を基準として部分領域を特定することができる。具体的には、核領域を所定寸法だけ拡大又は縮小して部分領域を設定してもよい。また、水晶体の嚢領域が特定された場合、嚢領域の形状(曲面形状)に合わせて部分領域を設定することができる。例えば、前嚢領域と同一又は類似の曲面を前面とする部分領域を設定してもよい。
【0181】
本態様で実行可能なレンダリングの幾つかの例について図示する。
図18は、XY平面に定義されたプロジェクション画像を構築するためのレンダリングの例を示す。符号Kは、
図3に示す複数の前眼部画像F1~FNの3次元再構成画像(例えばスタックデータ)を示す。レンダリング部86は、Z方向へのプロジェクションを3次元再構成画像Kに適用する。それにより、Z方向に直交するXY平面に定義されたレンダリング画像(プロジェクション画像)Gが構築される。
【0182】
図19は、XY平面上に定義されたプロジェクション画像を構築するためのレンダリングの他の例を示す。水晶体画像構築部81は、複数の前眼部画像F1~FNの3次元再構成画像から3次元水晶体画像H1を抽出する。レンダリング部86は、Z方向へのプロジェクションを水晶体画像H1に適用する。それにより、Z方向に直交するXY平面に定義された、水晶体画像H1のレンダリング画像(プロジェクション画像)H2が構築される。
【0183】
本態様のスリットランプ顕微鏡1は、水晶体の混濁状態の経時変化を求めるように構成されてよい。そのためのデータ処理部8の構成の幾つかの例について
図10A及び
図10Bを参照しつつ説明する。
【0184】
図10Aに示すデータ処理部8Hは、経時変化情報生成部87Aを含む。また、本例においては、医療情報データベース10が用いられる。医療情報データベース10は、スリットランプ顕微鏡1等を用いて行われた水晶体混濁検査で得られたデータを少なくとも記憶している。医療情報データベース10は、例えば電子カルテシステム等の病院情報システム(HIS)に設けられている。医療情報データベース10は、スリットランプ顕微鏡1の一部であってもよいし、スリットランプ顕微鏡1によりアクセス可能な情報システムであってもよい。なお、医療情報データベース10の代わりに、スリットランプ顕微鏡1等を用いて行われた水晶体混濁検査で得られたデータが記録された記録媒体を用いてもよい。
【0185】
このような医療情報データベース10から、被検眼Eについて過去に実施された水晶体混濁検査で得られたデータ(検査データ、混濁分布検査履歴)11が、経時変化情報生成部87Aに入力される。また、経時変化情報生成部87Aには、今回の検査で取得されたデータも入力される。これにより、経時変化情報生成部87Aには、被検眼Eの水晶体の混濁状態に関する複数のデータが入力される。検査データ11には、被検眼Eの水晶体の混濁状態に関するデータ(数値など)に加え、被検者の識別情報、測定日(撮影日)などの情報が記録されている。
【0186】
経時変化情報生成部87Aが処理するデータの種類は任意であってよい。例えば、経時変化情報生成部87Aは、混濁分布情報、及び/又は、それに基づき取得された情報を処理するように構成される。混濁分布情報に基づき取得される情報としては、混濁分布マップ、透過率分布情報、透過率分布マップなどがある。より一般に、経時変化情報生成部87Aは、スリット光による前眼部スキャンで収集された複数の断面画像、及び/又は、それに基づき取得された情報を処理するように構成されてもよい。
【0187】
経時変化情報生成部87Aは、被検眼Eについての複数の混濁分布情報(又は、それらから取得された情報)に基づいて、被検眼Eの水晶体の混濁部の分布の経時変化を表す情報(経時変化情報)を生成する。経時変化の表現法は任意であり、典型的には、グラフ、表、リスト、動画、スライドショーなどであってよい。このような経時変化情報を生成するための1つの具体例を以下に説明する。
【0188】
図10Bに示すデータ処理部8Jは、
図8Cに示すデータ処理部8Eを変形したものであり、透過率分布マップ作成部85Cの代わりに経時変化情報生成部87Bを設けたものである。前述したように、経時変化情報生成部87Bには、複数の測定日(複数の撮影日)においてそれぞれ取得された複数のデータ(透過率分布情報、それに基づく情報)が入力される。
【0189】
経時変化情報生成部87Bは、透過率分布情報生成部84Bにより生成された透過率分布情報(又は、それに基づく情報)に基づいて、被検眼Eの水晶体の光透過率の分布の経時変化を表す経時変化情報を生成する。表示制御部71は、生成された経時変化情報に基づいて表示部9Aに情報を表示させることができる。
【0190】
経時変化情報生成部87Bにより生成された経時変化情報に基づき表示される情報の例を
図20に示す。経時変化情報400は、
図17の透過率分布マップ300と同じ要領で、
図15に示す3次元水晶体画像100の8個の3次元部分領域101~108のそれぞれについて取得された透過率の値(平均透過率)を、測定日(撮影日)毎にプロットすることで作成されたグラフである。経時変化情報400は、3次元部分領域101~108のそれぞれに関する、平均透過率の経時変化のトレンドグラフを提示している。
【0191】
このような経時変化情報400によれば、被検眼Eの水晶体における光透過率の分布に加え、光透過率の局所的経時変化や大域的経時変化や変化トレンドなどを容易に把握可能な態様で提供することができる。
【0192】
本態様のスリットランプ顕微鏡1は、YZ断面を照明するスリット光をX方向に移動させつつ前眼部スキャンを行うように構成されている。そのため、曲面形状の角膜に対するスリット光の入射角度がスキャンとともに変化し、特に角膜前面における反射の大きさがスキャン位置毎に変化する。よって、スキャンにより収集される複数の前眼部画像の明るさや色表現は、一般に統一されない。このような複数の前眼部画像から構築される3次元再構成画像や3次元水晶体画像は、スキャン断面毎に明るさや色調がバラバラなものとなるおそれがある。
【0193】
このような問題に対処するために、本態様のスリットランプ顕微鏡1は、スキャンにより収集された複数の前眼部画像(複数の断面画像)の所定のパラメータに正規化を施すことができる。本例の正規化(normarization)は、複数の前眼部画像における所定の画像パラメータの値が略等しくなるようにこれら前眼部画像を調整する処理である。
【0194】
なお、本例の正規化は、複数の前眼部画像における画像パラメータ値を略等しくするための補正値(調整値)を算出して各前眼部画像に割り当てる処理であってもよいし、複数の前眼部画像の画像パラメータ値を当該補正値で実際に変更する処理を更に含んでいてもよい。
【0195】
このような正規化を行うためのデータ処理部8の構成の幾つかの例について
図11を参照しつつ説明する。
【0196】
図11に示すデータ処理部8Kは、正規化部88を含む。正規化部88は、スリット光を用いた前眼部スキャンにより収集された複数の断面画像に正規化を適用する。例えば、正規化部88は、輝度の正規化及び色の正規化のいずれか一方又は双方を実行するように構成されてよい。
【0197】
輝度の正規化は、複数の前眼部画像の明るさを略等しくするために行われる。輝度の正規化は、反射の程度が比較的小さい組織を基準として行うことが望ましいと考えられる。この観点から、例えば、正規化部88は、まず、複数の前眼部画像のそれぞれにセグメンテーションを適用することで、各前眼部画像中の角膜後面画像(角膜後面に相当する画像領域)を特定する。
【0198】
次に、正規化部88は、複数の前眼部画像からそれぞれ特定された複数の角膜後面画像のいずれか1つを基準画像に設定する。基準画像を設定するための指標は任意であり、例えば、時系列、空間位置及び輝度のいずれかの指標が参照される。例えば、複数の前眼部画像のうち最初に取得された前眼部画像の角膜後面画像を基準画像に選択することが可能である(時系列指標)。また、複数の前眼部画像のうち角膜頂点を通る前眼部画像(角膜頂点に最も近い前眼部画像)の角膜後面画像を基準画像に選択することが可能である(空間位置指標)。また、複数の角膜後面画像のうち輝度の統計値(最大値、最小値、平均値など)が最も大きい(又は、最も小さい)角膜後面画像を基準画像に選択することが可能である(輝度指標)。なお、基準画像の設定法はこれらに限定されず、任意であってよい。また、基準画像の設定をユーザーが行ってもよい。また、基準画像を設定する代わりに、輝度の基準値(目標値)を設定してもよい。
【0199】
続いて、正規化部88は、複数の角膜後面画像の輝度を略等しくするために、基準画像と、それ以外の角膜後面画像のそれぞれとの比較値を算出する。この比較値は、例えば、基準画像の輝度の代表値(平均値、最大値、最小値など)と、他の角膜後面画像の輝度の代表値との比較により算出される。典型的には、比較値は、他の角膜後面画像の輝度の代表値を基準画像の輝度の代表値で除算して得られる比の値、又は、他の角膜後面画像の輝度の代表値から基準画像の輝度の代表値を減算して得られる差の値であってよい。このようにして算出された比較値が、対応する前眼部画像に割り当てられる。
【0200】
各前眼部画像に割り当てられた比較値は、その前眼部画像の輝度を、基準前眼部画像(基準画像を含む前眼部画像)の輝度に合わせて調整するための補正値として用いられる。例えば、補正値が上記した比の値である場合、この比の値を前眼部画像の輝度に乗算することによって、この前眼部画像の輝度を基準前眼部画像の輝度に合わせて調整することができる。また、補正値が上記した差の値である場合、この差の値を前眼部画像の輝度に加算することによって、この前眼部画像の輝度を基準前眼部画像の輝度に合わせて調整することができる。
【0201】
本態様のスリットランプ顕微鏡1のスリット光は可視光を含むため、スキャンで得られる複数の前眼部画像はカラー画像である。色の正規化は、複数の前眼部画像の色(色相、彩度、明度など)を調整するために行われる。例えば、輝度の正規化と同様に、正規化部88は、複数の前眼部画像のいずれかを基準前眼部画像に設定し、基準前眼部画像の色情報と他の前眼部画像との色情報とを比較して比較値を求め、その比較値を対応する前眼部画像に割り当てる。ここで、比較値は、例えば、隣接する前眼部画像同士の比較によって算出されてもよい。このような一連の処理により、複数の前眼部画像における色の正規化が実現される。
【0202】
本例では、このようにして正規化された複数の前眼部画像を用いて混濁分布情報が生成される。これにより、スキャンに起因する輝度や色のばらつきが補正された複数の前眼部画像を用いて混濁分布情報を求めることができ、検査の確度や精度や再現性の向上を図ることが可能となる。
【0203】
以上に説明したように、本態様のスリットランプ顕微鏡1は、前眼部の画像や、水晶体混濁に関する様々な情報を取得することが可能である。スリットランプ顕微鏡1は、取得された情報を利用して白内障の評価を行うように構成されてもよい。白内障評価を行うためのデータ処理部8の構成の幾つかの例について
図12を参照しつつ説明する。
【0204】
図12に示すデータ処理部8Lは、評価部89を含む。評価部89は、白内障に関する様々な評価を行うことが可能であるが、ここでは、水晶体核硬度の評価と水晶体種別の評価について説明する。
【0205】
水晶体核硬度は、核白内障の進行度合の診断などにおいて利用される。前述のように、本態様のスリットランプ顕微鏡1のスリット光は可視光を含むため、スキャンで得られる複数の前眼部画像はカラー画像である。
【0206】
また、水晶体核の硬度と色調との関係については、Emery-Little分類が知られている。なお、Emery-Little分類については、例えば次の文献に記載されている:加齢と眼疾患、獨協大学 眼科学、松井英一郎、松島博之、松本佳浩、妹尾正、Dokkyo Journal of Medical Sciences、35(3):251~258、2008。Emery-Little分類は、白内障の進行度合をグレード1~5の5段階に分けるとともに、各グレードにおける核硬度と色調とを関連付けたものである。
【0207】
評価部89は、例えば、複数の前眼部画像、3次元再構成画像、又は3次元水晶体画像に基づいて、被検眼Eの水晶体の色情報を取得し、Emery-Little分類の5つのグレードのうち水晶体の色情報に対応するグレードを特定する。この評価は具体的には次のように行われる。
【0208】
水晶体の色が「透明ないしやや白色」である場合、核硬度は「Soft」(グレード1)と判定される。水晶体の色が「白色ないしやや淡黄色」である場合、核硬度は「Semi soft」(グレード2)と判定される。水晶体の色が「黄色」である場合、核硬度は「Medium」(グレード3)と判定される。水晶体の色が「茶色がかった黄色」である場合、核硬度は「Hard」(グレード4)と判定される。水晶体の色が「茶色ないし黒色」である場合、核硬度は「Rock hard」(グレード5)と判定される。
【0209】
評価部89は、被検眼Eが罹患している白内障の種類の推定を行うことができる。例えば、評価部89は、混濁分布情報、混濁分布マップ、透過率分布情報、及び、透過率分布マップのいずれかに基づいて、白内障の種類を推定することが可能である。
【0210】
具体例として、水晶体の中心領域に混濁部が偏在している場合などには、核白内障と推定することができる。また、水晶体の周辺領域に混濁部が広く存在している場合や、混濁部が放射状に分布している場合などには、皮質白内障と推定することができる。また、水晶体の前嚢近傍に偏在している場合などには、前嚢下白内障と推定することができる。また、水晶体の後嚢近傍に偏在している場合などには、後嚢下白内障と推定することができる。また、進行度合についても、Emery-Little分類などの公知の知見から評価を行うことが可能である。
【0211】
このような評価部89によれば、医師や、後段の診断支援コンピュータに、白内障診断のための情報を提供することが可能である。特に、本態様のスリットランプ顕微鏡1によれば、徹照像などでは得られない混濁の3次元的分布に基づいた評価が可能であるから、従来よりも高い品質の情報を提供することができる。
【0212】
本態様のスリットランプ顕微鏡1は、水晶体混濁に関する様々な情報を利用して被検眼Eの視認状態のシミュレーションを行うように構成されてもよい。視認状態シミュレーションを行うためのデータ処理部8の構成の幾つかの例について
図13を参照しつつ説明する。
【0213】
図13に示すデータ処理部8Mは、シミュレーション部90を含む。シミュレーション部90は、例えば、混濁分布情報、混濁分布マップ、透過率分布情報、及び、透過率分布マップのいずれかに基づいて、視認状態シミュレーションを実行することが可能である。
【0214】
視認状態シミュレーションは、水晶体内の混濁部の分布(位置、寸法、密度、濃度など)に基づいて、被検眼Eがどのように物体を視認しているか実際に評価を行ってモデルを作成する演算である。
【0215】
例えば、シミュレーション部90は、まず、混濁分布情報に基づいて水晶体モデルを作成する。この水晶体モデルには、被検眼Eの水晶体内の混濁部の分布が反映されている。また、この水晶体モデルには、被検眼Eから既に取得された測定値が反映されてもよい。例えば、水晶体前面曲率、水晶体後面曲率、水晶体厚などの測定値を用いて水晶体モデルを作成することができる。いずれかの測定値は、後述の計測部91により取得されてもよい。
【0216】
次に、シミュレーション部90は、この水晶体モデルを含む眼球モデルを作成する。この眼球モデルには、被検眼Eから既に取得された測定値が反映されてもよい。例えば、眼軸長、角膜曲率、前房深度、眼底形状(網膜曲率など)などの測定値を用いて眼球モデルを作成することができる。いずれかの測定値は、後述の計測部91により取得されてもよい。
【0217】
続いて、シミュレーション部90は、この眼球モデルを用いて光線追跡を行う。光線追跡において、混濁部は、光線の強度を減弱する作用や、波長選択的に光線の強度を減弱する作用や、光線を拡散する作用を奏する。これら作用の程度は、例えば、混濁部の濃度に基づき設定される。これにより、所定の物体(視標など)に関する被検眼Eの視認状態のシミュレーション結果(画像)が得られる。
【0218】
このような視認状態シミュレーションは、インフォームドコンセントにおいて有効と考えられる。例えば、被検眼Eの現在の状態を説明するためにシミュレーション結果を提示することや、白内障手術による視認状態の変化を説明するためにシミュレーション結果を提示することができる。
【0219】
本態様のスリットランプ顕微鏡1は、スリット光を用いた前眼部スキャンで収集された複数の断面画像に基づいて所定の前眼部パラメータの計測を行うように構成されてもよい。計測の対象とされる前眼部パラメータは、角膜厚(分布)、角膜前面曲率(分布)、角膜後面曲率(分布)、前房深度(分布)、水晶体厚(分布)、水晶体前面曲率(分布)、水晶体後面曲率(分布)、水晶体径(分布)、水晶体傾斜角度、及び、角膜中心と水晶体中心との間の偏位のいずれか1つ以上であってよい。このような前眼部パラメータ計測を行うためのデータ処理部8の構成の幾つかの例について
図14を参照しつつ説明する。
【0220】
図14に示すデータ処理部8Nは、計測部91を含む。計測部91は、例えば、複数の前眼部画像、3次元再構成画像、又は3次元水晶体画像に基づいて、所定の前眼部パラメータの計測を実行する。
【0221】
前眼部パラメータの計測は、従来と同様に、計測対象となる部位の特定と、特定された部位に基づく計測とを含む。以下、前眼部パラメータ計測について幾つかの例を説明する。角膜厚の計測は、角膜前面画像及び角膜後面画像の特定と、これらの間の距離計測とを含む。水晶体厚の計測も同じ要領で実行される。角膜前面曲率の計測は、角膜前面画像の特定と、特定された角膜後面画像の曲率計測とを含む。角膜後面曲率、水晶体前面曲率、又は水晶体後面曲率の計測も同じ要領で計測される。前房深度の計測は、角膜後面画像及び水晶体前面画像の特定と、これらの間の距離計測とを含む。水晶体径の計測は、瞳孔後方の水晶体画像(前述)における前嚢画像及び後嚢画像の特定と、前嚢画像に基づく前嚢全体形状の推定(外挿)と、後嚢画像に基づく後嚢全体形状の推定(外挿)と、前嚢の推定形状と後嚢の推定形状とに基づく水晶体縁(前嚢と後嚢との交差位置)の特定と、水晶体縁の径の計測とを含む。水晶体傾斜角度の計測は、瞳孔後方の水晶体画像における前嚢画像及び後嚢画像の特定と、前嚢画像に基づく前嚢中心の特定と、後嚢画像に基づく後嚢中心の特定と、前嚢中心と後嚢中心とを結ぶ直線の特定と、基準方向に対する当該直線の角度の計測とを含む。角膜中心と水晶体中心との間の偏位の計測は、角膜中心(角膜前面の中心又は角膜後面の中心)の特定と、水晶体中心(水晶体前面の中心、水晶体後面の中心、又は水晶体の中心)の特定と、XY方向における角膜中心と水晶体中心との間の偏位の計測とを含む。
【0222】
このような前眼部パラメータ計測によれば、スリット光を用いた前眼部スキャンで収集された高品質な断面画像群に基づいて前眼部パラメータを測定することができる。
【0223】
<出力部9>
出力部9は、スリットランプ顕微鏡1から情報を出力する。出力部9は、典型的には、スリットランプ顕微鏡1と他の装置との間におけるデータ通信を行う通信デバイス(通信部)、及び、情報を表示する表示デバイス(表示部9A)のいずれか一方又は双方を含む。また、出力部9は、記録媒体に情報を書き込む記録デバイス(データライター、ドライブ装置等)、印刷媒体に情報を記録するプリンターなどを含んでもよい。
【0224】
出力部9に含まれる通信部は、スリットランプ顕微鏡1と他の装置との間におけるデータ通信を行う。すなわち、通信部は、他の装置へのデータの送信と、他の装置から送信されたデータの受信とを行う。通信部が実行するデータ通信の方式は任意である。例えば、通信部は、インターネットに準拠した通信インターフェイス、専用線に準拠した通信インターフェイス、LANに準拠した通信インターフェイス、近距離通信に準拠した通信インターフェイスなど、各種の通信インターフェイスのうちの1以上を含む。データ通信は有線通信でも無線通信でもよい。通信部により送受信されるデータは暗号化されていてよい。その場合、例えば、制御部7及び/又はデータ処理部8は、通信部により送信されるデータを暗号化する暗号化処理部、及び、通信部により受信されたデータを復号化する復号化処理部の少なくとも一方を含む。
【0225】
出力部9に含まれる表示部9Aは、制御部7(表示制御部71)の制御を受けて各種の情報を表示する。表示部9Aは、液晶ディスプレイ(LCD)などのフラットパネルディスプレイを含んでいてよい。なお、表示部9Aは、スリットランプ顕微鏡1の周辺機器であってもよい。
【0226】
<他の要素>
図1に示す要素に加え、スリットランプ顕微鏡1は操作デバイスを備えていてよい。或いは、操作デバイスは、スリットランプ顕微鏡1の周辺機器であってもよい。操作デバイスは、スリットランプ顕微鏡1を操作するためのデバイスや、情報を入力するためのデバイスを含む。操作デバイスは、例えば、ボタン、スイッチ、レバー、ダイアル、ハンドル、ノブ、マウス、キーボード、トラックボール、操作パネルなどを含む。タッチスクリーンのように、表示デバイスと操作デバイスとが一体化したデバイスが用いられてもよい。被検者や補助者は、表示デバイス及び操作デバイスを用いることで、スリットランプ顕微鏡1の操作を行うことができる。
【0227】
<アライメント>
被検眼Eに対するスリットランプ顕微鏡1のアライメントについて説明する。一般に、アライメントは、被検眼Eの撮影や測定のために好適な位置に装置光学系を配置させる動作である。本態様のアライメントは、
図3に示すような動画像(複数の前眼部画像)を取得するために好適な位置に照明系2及び撮影系3を配置させる動作である。
【0228】
眼科装置のアライメントには様々な手法がある。以下、幾つかのアライメント手法を例示するが、本態様に適用可能な手法はこれらに限定されない。
【0229】
本態様に適用可能なアライメント手法としてステレオアライメントがある。ステレオアライメントは、2以上の異なる方向から前眼部を撮影可能な眼科装置において適用可能であり、その具体的な手法は、本出願人による特開2013-248376号公報などに開示されている。ステレオアライメントは、例えば次の工程を含む:2以上の前眼部カメラが前眼部を異なる方向から撮影して2以上の撮影画像を取得する工程;プロセッサがこれら撮影画像を解析して被検眼の3次元位置を求める工程;求められた3次元位置に基づいてプロセッサが光学系の移動制御を行う工程。これにより、光学系(本例では照明系2及び撮影系3)が、被検眼に対して好適な位置に配置される。典型的なステレオアライメントでは、被検眼の瞳孔(瞳孔の中心又は重心)の位置が基準とされる。
【0230】
このようなステレオアライメントの他にも、アライメント光により得られるプルキンエ像を利用した手法や、光テコを利用した手法や、アライメント指標を利用した手法など、任意の公知のアライメント手法を採用することが可能である。プルキンエ像を利用した手法や光テコやアライメント指標を利用した手法では、被検眼の角膜頂点の位置が基準とされる。
【0231】
なお、以上の例示を含む従来の典型的なアライメント手法は、被検眼の軸と光学系の光軸とを一致させることを目的として行われるが、本態様では、スキャン開始位置に対応する位置に照明系2及び撮影系3を配置させるようにアライメントを実行することが可能である。
【0232】
本態様におけるアライメントの第1の例として、上記したアライメント手法のいずれかを適用して被検眼Eの瞳孔又は角膜頂点を基準としたアライメントを行った後、予め設定された角膜半径の標準値に相当する距離だけ照明系2及び撮影系3を(X方向に)移動することができる。なお、標準値を用いる代わりに、被検眼Eの角膜半径の測定値を用いてもよい。
【0233】
第2の例として、上記したアライメント手法のいずれかを適用して被検眼Eの瞳孔又は角膜頂点を基準としたアライメントを行った後、被検眼Eの前眼部の画像を解析して角膜半径を測定し、この測定値に相当する距離だけ照明系2及び撮影系3を(X方向に)移動することができる。本例で解析される前眼部の画像は、例えば、撮影系3により得られた前眼部画像、又は、他の画像である。他の画像は、前眼部カメラにより得られた画像、前眼部OCTにより得られた画像など、任意の画像であってよい。
【0234】
第3の例として、ステレオアライメント用の前眼部カメラ又は撮影系3により得られた前眼部の画像を解析して角膜の第1端部を求め、ステレオアライメントを適用してこの第1端部に対応する位置に照明系2及び撮影系3を移動することができる。
【0235】
なお、上記したアライメント手法のいずれかを適用して被検眼Eの瞳孔又は角膜頂点を基準としたアライメントを実行し、これにより決定された位置からスリット光による前眼部スキャンを開始するようにしてもよい。この場合においても、角膜Cの全体をスキャンするようにスキャンシーケンスを設定することができる。例えば、当該アライメントにより決定された位置から左方にスキャンを行った後、右方にスキャンを行うように、スキャンシーケンスが設定される。
【0236】
<その他の事項>
スリットランプ顕微鏡1は、被検眼Eを固視させるための光(固視光)を出力する固視系を備えていてよい。固視系は、典型的には、少なくとも1つの可視光源(固視光源)、又は、風景チャートや固視標等の画像を表示する表示デバイスを含む。固視系は、例えば、照明系2又は撮影系3と同軸又は非同軸に配置される。固視系は、装置光学系の光路を通じて固視標を被検者に提示する内部固視系、及び/又は、当該光路の外から固視標を被検者に提示する外部固視系を含んでいてよい。
【0237】
スリットランプ顕微鏡1により取得可能な画像の種別は、前述した前眼部の動画像(複数の前眼部画像)に限定されない。例えば、スリットランプ顕微鏡1は、この動画像に基づく3次元画像、この3次元画像に基づくレンダリング画像、徹照像、被検眼に装用されたコンタクトレンズの動きを表す動画像、蛍光剤適用によるコンタクトレンズと角膜表面との隙間を表す画像などがある。また、眼底撮影、角膜内皮細胞撮影、マイボーム腺撮影などが可能であってもよい。徹照像を取得可能である場合、例えば、前述のレンダリング画像と徹照像とを表示することや、レンダリング画像と徹照像とを合成することや、レンダリング画像及び徹照像の一方を他方に基づき加工することや、レンダリング画像及び徹照像の一方を他方に基づき解析することなどが可能である。
【0238】
<動作>
スリットランプ顕微鏡1の動作を説明する。動作の一例を
図21に示す。
【0239】
図示は省略するが、任意の段階において、ユーザー(被検者、検者、補助者など)は、スリットランプ顕微鏡1に被検者情報を入力する。入力された被検者情報は、制御部7に保存される。被検者情報は、典型的には、被検者の識別情報(被検者ID)を含む。
【0240】
更に、背景情報の入力を行うことができる。背景情報は、被検者に関する任意の情報であって、その例として、被検者の問診情報、所定のシートに被検者が記入した情報、被検者の電子カルテに記録された情報などがある。典型的には、背景情報は、性別、年齢、身長、体重、疾患名、候補疾患名、検査結果(視力値、眼屈折力値、眼圧値など)、屈折矯正具(眼鏡、コンタクトレンズなど)の装用歴や度数、検査歴、治療歴などがある。これらは例示であって、背景情報はこれらに限定されない。
【0241】
また、撮影の準備として、スリットランプ顕微鏡1が設置されているテーブル、被検者が座るイス、スリットランプ顕微鏡1の顎受け台の調整が行われる(いずれも図示を省略する)。例えば、テーブル、イス、顎受け台の高さ調整が行われる。顎受け台には、被検者の顔を安定配置させるための顎受け部及び額当てが設けられている。
【0242】
準備が完了したら、被検者は、イスに腰掛け、顎受けに顎を載せ、額当てに額を当接させる。これらの動作の前又は後に、ユーザーは、被検眼の撮影を開始するための指示操作を行う。この操作は、例えば、図示しない撮影開始トリガーボタンの押下、指示音声の入力などであってよい。或いは、制御部7が準備フェーズの完了を検知して撮影フェーズに自動で移行してもよい。また、図示しない固視標を被検者(被検眼E又はその僚眼)に提示してもよい。
【0243】
(S1:アライメント)
撮影開始に対応し、スリットランプ顕微鏡1は、まず、被検眼Eに対する照明系2及び撮影系3のアライメントを行う。被検眼Eの角膜頂点や瞳孔中心に光学系光軸を合わせるための一般的なアライメントと異なり、ステップS1のアライメントは、ステップS2で行われる前眼部スキャンの開始位置に照明系2及び撮影系3を配置させるために実行される。
【0244】
ステップS1のアライメントの態様は任意であってよく、例えば、ステレオアライメント、プルキンエ像を用いた手動又は自動アライメント、光テコを用いた手動又は自動アライメント、及び、アライメント指標を用いた手動又は自動アライメントのうちのいずれかであってよい。
【0245】
幾つかの態様では、このような従来の手法により、角膜頂点又は瞳孔中心を目標としたアライメントが実行される。更に、制御部7は、角膜頂点や瞳孔中心を目標としたアライメントにより移動された照明系2及び撮影系3を、スキャン開始位置(これに対応する位置)まで更に移動する。
【0246】
他の幾つかの態様では、初めからスキャン開始位置を目標としてアライメントが実行される。このアライメントは、例えば、前眼部の画像(例えば、正面又は斜方からの画像)を解析してスキャン開始位置(例えば、前述した角膜の第1端部、又は、第1端部に対して被検眼Eの軸とは反対の方向に所定距離だけ離れた位置)を特定する処理と、特定されたスキャン開始位置に対応する位置に照明系2及び撮影系3を移動する処理とを含む。
【0247】
アライメントの開始前、実行中、及び/又は終了後に、所定の動作を実行するようにしてもよい。例えば、照明光量(スリット光の強度)の調整、スリットの調整(スリット幅の調整、スリット長の調整、スリットの向きの調整)、撮像素子5の調整(感度調整、ゲイン調整など)、フォーカス調整を行ってもよい。
【0248】
(S2:前眼部スキャン)
スリットランプ顕微鏡1は、前述した要領で、照明系2によるスリット光の照射と、撮影系3による動画撮影と、移動機構6による照明系2及び撮影系3の移動とを組み合わせることで、被検眼Eの前眼部をスキャンする。
【0249】
図22は、実際に行われた前眼部スキャンを正面から連続撮影して得られた幾つかの画像を示す。これらの画像により、前眼部に照射されているスリット光が移動する様が理解できよう。
【0250】
1回のスキャン(スキャン開始位置からスキャン終了位置までのスキャン)により、例えば、
図3に示す画像群(複数の前眼部画像)F1~FNが得られる。
【0251】
データ処理部8は、スキャンで得られた画像に所定の処理を施してもよい。例えば、ノイズ除去、コントラスト調整、輝度調整、色補正など、任意の信号処理や任意の画像処理を適用することが可能である。
【0252】
(S3:複数の断面画像を正規化)
正規化部88は、ステップS2で収集された複数の断面画像(例えば、複数の前眼部画像F1~FN)に正規化を適用する。これにより、複数の断面画像の明るさや色が調整される。
【0253】
(S4:3次元再構成画像を構築)
再構成部811は、ステップS3で正規化が施された複数の前眼部画像に3次元再構成を適用する。これにより、3次元再構成画像が構築される。
【0254】
(S5:水晶体画像を特定)
セグメンテーション部812は、ステップS4で構築された3次元再構成画像にセグメンテーションを適用して水晶体画像を特定する。
【0255】
なお、セグメンテーション部812は、この水晶体画像に更なるセグメンテーションを適用して水晶体の所定の部分領域に対応する画像領域を特定することができる。
【0256】
(S6:混濁分布情報を生成)
ステップS5で特定された水晶体画像は、XYZ座標系で定義された3次元画像である。混濁分布情報生成部82は、この3次元水晶体画像を解析することにより、被検眼Eの水晶体の混濁部の分布を表す混濁分布情報を生成する。
【0257】
(S7:マップを作成)
データ処理部8は、ステップS6で生成された混濁分布情報に基づいて、水晶体混濁に関するマップを作成する。例えば、データ処理部8は、混濁分布マップ作成部83により混濁分布マップを作成することができ、透過率分布マップ作成部85A(85B、85C)により透過率分布マップを作成することができる。
【0258】
また、データ処理部8は、レンダリング部86によりレンダリング画像を構築することができ、経時変化情報生成部87A(87B)により経時変化情報を生成することができ、評価部89により所定の白内障指標についての評価を行うことができ、シミュレーション部90により視認状態シミュレーションを行うことができ、計測部91により所定の前眼部パラメータの計測を行うことができる。
【0259】
(S8:マップを表示)
制御部7(表示制御部71)は、ステップS7で構築されたマップや他の情報を、出力部9の表示部9Aに表示させる。
【0260】
制御部7は、出力部9の通信部を制御して任意の情報を他の装置に送信することができる。情報の送信先となる装置の例として情報処理装置や記憶装置がある。情報処理装置は、例えば、広域回線上のサーバ、LAN上のサーバ、コンピュータ端末などである。記憶装置は、広域回線上に設けられた記憶装置、LAN上に設けられた記憶装置などである。
【0261】
表示及び/又は送信される情報は、前述した背景情報を含んでいてよい。或いは、背景情報は画像の付帯情報であってもよい。一般に、表示及び/又は送信される情報のデータ構造は任意である。
【0262】
また、表示及び/又は送信される情報は、典型的には、被検者の右眼の情報と、左眼の情報とを含む。右眼の情報及び左眼の情報は、本例の動作を右眼及び左眼にそれぞれ適用することにより得られる。右眼の情報及び左眼の情報には識別情報がそれぞれ付帯され、それにより右眼の情報と左眼の情報とが識別される。
【0263】
スリットランプ顕微鏡1により取得された情報とともに被検者の識別情報が送信される。この識別情報は、スリットランプ顕微鏡1に入力された被検者IDでもよいし、被検者IDに基づき生成された識別情報でもよい。例えば、スリットランプ顕微鏡1が設置されている施設内での個人識別に用いられる被検者ID(内部識別情報)を、当該施設外にて用いられる外部識別情報に変換することができる。これにより、画像や背景情報などの個人情報に関する情報セキュリティの向上を図ることができる。
【0264】
以上で、本例に係る動作の説明を終える。
【0265】
<効果>
本態様のスリットランプ顕微鏡1が奏する幾つかの効果について説明する。
【0266】
本態様のスリットランプ顕微鏡1は、スキャン部(照明系2、撮影系3、及び移動機構6)と、データ処理部8とを含む。スキャン部は、被検眼Eの前眼部をスリット光でスキャンして複数の断面画像F1~FNを収集する。データ処理部8は、複数の断面画像F1~FNに基づいて、被検眼Eの水晶体の混濁部の分布を表す混濁分布情報を生成する。
【0267】
このような本態様のスリットランプ顕微鏡1によれば、水晶体の混濁部を網膜からの反帰光線の影として描出する徹照法ではなく、前眼部をスリット光でスキャンして得られた断面画像群から混濁部を描出する新規な観察法を実施することが可能である。したがって、照明光量(及び撮影感度)を調整することができる。これにより、像の明るさを管理することができ、画質を管理することが可能である。
【0268】
このような利点により、本態様のスリットランプ顕微鏡1で得た画像を定量的な診断に用いることが可能となる。例えば、白内障のグレードの主観的な評価に加え、客観的な評価にも用いることができる。また、本態様のスリットランプ顕微鏡1で得た画像に、解析プログラムや機械学習を用いた自動画像解析を適用することが可能となる。
【0269】
また、本態様のスリットランプ顕微鏡1によれば、水晶体の混濁部の2次元的な分布しか提供できない徹照法とは異なり、その3次元的な分布を提供することが可能である。
【0270】
このように、本態様のスリットランプ顕微鏡1は、徹照法の欠点が解消された新規な眼科観察法を提供することが可能である。
【0271】
本態様において、データ処理部8(8A)は、スキャン部により収集された複数の断面画像F1~FNから3次元水晶体画像100を構築する水晶体画像構築部81と、この3次元水晶体画像100を解析して混濁分布情報を生成する混濁分布情報生成部82とを含んでいてよい。
【0272】
ここで、水晶体画像構築部81(81A)は、スキャン部により収集された複数の断面画像F1~FNに3次元再構成を適用する第1再構成部(再構成部811)と、第1再構成部により構築された3次元再構成画像にセグメンテーションを適用して3次元水晶体画像100を特定する第1セグメンテーション部(セグメンテーション部812)とを含んでいてよい。
【0273】
或いは、水晶体画像構築部81(81B)は、スキャン部により収集された複数の断面画像F1~FNのそれぞれにセグメンテーションを適用して2次元水晶体画像を特定する第2セグメンテーション部(セグメンテーション部813)と、第2セグメンテーション部により特定された複数の2次元水晶体画像に3次元再構成を適用して3次元水晶体画像100を構築する第2再構成部(再構成部814)とを含んでいてよい。
【0274】
混濁分布情報生成部82(82A)は、局所分布情報生成部821を含んでいてよい。局所分布情報生成部821は、水晶体画像構築部81により構築された3次元水晶体画像100の複数の3次元部分領域101~108のそれぞれについて、その3次元部分領域における混濁部の分布を表す局所分布情報を生成する。
【0275】
これらの構成は、スリット光を用いた前眼部スキャンで収集された複数の断面画像F1~FNから3次元水晶体画像100を構築するための、幾つかの例示的な態様を提供するものである。
【0276】
本態様において、データ処理部8(8B)は、局所分布情報生成部821により生成された複数の局所分布情報に基づいて混濁分布マップを作成する混濁分布マップ作成部83を更に含んでいてよい。
【0277】
ここで、混濁分布マップは、3次元水晶体画像100の複数の3次元部分領域101~108のそれぞれにおける混濁部の深さ位置を表すマップであってよい。更に、混濁分布マップは、第1座標軸が深さ方向(Z方向)を表し、且つ、第2座標軸が深さ方向に直交する方向を表す2次元座標系によって表現されていてよい。加えて、複数の3次元部分領域101~108は、深さ方向(Z方向)に直交する平面(XY平面)において3次元水晶体画像100に等角度分割を施すことにより得られてよく、且つ、第2座標軸(α座標軸)は、この等角度分割における角度方向を表していてよい。
【0278】
このような構成によれば、例えば
図16Bの混濁分布マップ200のような、白内障の診断において有用な情報を提供することが可能である。
【0279】
本態様において、データ処理部8(8C)は、局所分布情報生成部821により生成された複数の局所分布情報に基づいて、被検眼Eの水晶体の光透過率の分布を表す透過率分布情報を生成する第1透過率分布情報生成部(透過率分布情報生成部84A)を含んでいてよい。
【0280】
更に、データ処理部8(8C)は、第1透過率分布情報生成部により生成された透過率分布情報に基づいて透過率分布マップを作成する第1透過率分布マップ作成部(透過率分布マップ作成部85A)を含んでいてよい。
【0281】
或いは、データ処理部8(8D)は、混濁分布マップ作成部83により作成された混濁分布マップに基づいて、被検眼Eの水晶体の光透過率の分布を表す透過率分布マップを作成する第2透過率分布マップ作成部(透過率分布マップ作成部85B)を含んでいてよい。
【0282】
例えば、データ処理部8(8E)は、3次元水晶体画像100の複数の3次元部分領域101~108のそれぞれについて、前述の2次元座標系で定義される当該3次元部分領域の面積で、当該3次元部分領域内の混濁部の面積を除算することにより、被検眼Eの水晶体の光透過率の分布を表す透過率分布情報を生成する第2透過率分布情報生成部(透過率分布情報生成部84B)を含んでいてよい。
【0283】
更に、データ処理部8(8E)は、第2透過率分布情報生成部により生成された透過率分布情報に基づいて透過率分布マップを作成する第3透過率分布マップ作成部(透過率分布マップ作成部85C)を含んでいてよい。
【0284】
このような構成によれば、例えば
図17の透過率分布マップ300のような、白内障の診断において有用な情報を提供することが可能である。
【0285】
本態様において、データ処理部8(8F)は、水晶体画像構築部81により構築された3次元水晶体画像100を含む3次元画像にレンダリングを適用するレンダリング部86を含んでいてよい。より一般に、レンダリングが適用される3次元画像は、例えば、スキャン部により収集された複数の断面画像の3次元再構成画像の全体又は一部である。これにより、3次元水晶体画像などの任意のレンダリング画像を観察することが可能になる。
【0286】
更に、レンダリング部86は、所定の平面に対するプロジェクションを3次元画像に適用するように構成されてよい。ここで、所定の平面は、被検眼Eの深さ方向(Z方向)に直交するように設定されてよい(XY平面)。この構成は、例えば、徹照像に類似した平面画像(2次元画像)の構築に利用可能である。
【0287】
加えて、本態様のスリットランプ顕微鏡1は、レンダリング部86により構築されたレンダリング画像、及び、混濁分布情報生成部82により生成された混濁分布情報に基づく情報について、その一方に他方を重ねて第1表示装置(表示部9A)に表示させる第1表示制御部(表示制御部71)を含んでいてよい。
【0288】
また、本態様のスリットランプ顕微鏡1は、レンダリング部86が3次元画像にプロジェクションを適用した場合において、このプロジェクションにより構築された2次元画像及び混濁分布情報に基づく分布画像の一方に他方を重ねて第2表示装置(表示部9A)に表示させる第2表示制御部(表示制御部71)を含んでいてよい。
【0289】
ここで、レンダリング画像(プロジェクション画像)とともに表示される情報は、混濁分布情報から得られる任意の情報であってよく、例えば、混濁分布マップ200、透過率分布マップ300、混濁分布に関する数値、透過率に関する数値などであってよい。
【0290】
これらの構成によれば、ユーザーは、レンダリング画像によって前眼部(水晶体)の形態や構造を把握しつつ、混濁分布情報から得られた各種の情報の把握することが可能である。また、それらの位置関係を把握することも可能である。
【0291】
本態様において、データ処理部8(8H)は、被検眼Eの前眼部の複数の混濁分布情報(又はそれに基づく情報)に基づいて、被検眼Eの水晶体の混濁部の分布の経時変化を表す第1経時変化情報を生成する第1経時変化情報生成部(経時変化情報生成部87A)を含んでいてよい。
【0292】
また、本態様において、データ処理部8(8J)は、被検眼Eの水晶体の透過率分布情報に基づいて、被検眼Eの水晶体の光透過率の分布の経時変化を表す第2経時変化情報を生成する第2経時変化情報生成部(経時変化情報生成部87B)を含んでいてよい。
【0293】
更に、本態様のスリットランプ顕微鏡1は、第2経時変化情報に基づいて、3次元水晶体画像100の複数の3次元部分領域101~108のそれぞれにおける光透過率の経時変化を表すグラフ(経時変化情報400)を第3表示装置(表示部9A)に表示させる第3表示制御部(表示制御部71)を含んでいてよい。
【0294】
以上のように水晶体の経時変化を示す情報を生成可能な構成によれば、
図20の経時変化情報400のような白内障の進行評価に有用な情報を提供することが可能である。
【0295】
本態様において、データ処理部8(8K)は、スキャン部により収集された複数の断面画像F1~FNに正規化を適用する正規化部88を含んでいてよい。更に、データ処理部8(8K)は、正規化が適用された複数の断面画像F1~FNに基づいて混濁分布情報の生成を行うように構成されてよい。
【0296】
この構成によれば、スリット光を用いた前眼部スキャンに起因して複数の断面画像F1~FNに生じる誤差(ばらつき)を解消することができるので、高品質な混濁分布情報を生成することが可能になる。
【0297】
ここで、正規化部88は、輝度の正規化を複数の断面画像F1~FNに適用するように構成されてよい。この場合において、正規化部88は、被検眼Eの前眼部の角膜後面に対応する画像の輝度に基づいて輝度の正規化を複数の断面画像F1~FNに実行するように構成されてよい。この構成によれば、輝度が正規化された複数の断面画像F1~FNに基づき高品質な混濁分布情報を生成することが可能である。
【0298】
スリット光が可視光を含む場合において、正規化部88は、色の正規化を複数の断面画像F1~FNに適用するように構成されてよい。この構成によれば、色が正規化された複数の断面画像F1~FNに基づき高品質な混濁分布情報を生成することが可能である。
【0299】
本態様において、データ処理部8(8L)は、複数の断面画像F1~FN及び混濁分布情報(又は、それに基づく情報)の少なくとも一方に基づいて所定の白内障指標についての評価を行う評価部89を含んでいてよい。
【0300】
例えば、スリット光が白色光を含む場合、評価部89は、複数の断面画像F1~FNの色情報に基づいて水晶体核硬度の評価を行うように構成されてよい。この評価は、例えば、Emery-Little分類などの公知の知見に基づき行われてよい。
【0301】
また、評価部89は、混濁分布情報(又は、それに基づく情報)に基づいて白内障の種類の推定を行うように構成されてもよい。この評価についても公知の知見に基づき行われてよい。
【0302】
このような評価機能によれば、白内障診断のための指標を提供することが可能であり、診断支援に寄与することができる。
【0303】
本態様において、データ処理部8(8M)は、前記混濁分布情報(又は、それに基づく情報)に基づいて被検眼Eによる視認状態のシミュレーションを行うシミュレーション部90を含んでいてよい。
【0304】
この構成によれば、インフォームドコンセントを好適に行うことが可能である。例えば、白内障の症状である羞明(眩しさ)、かすみ、色の変化、複視などを、画像として被検者に提示することができる。その際、水晶体の現在の混濁状態を悪化させた場合のシミュレーションや、手術により混濁部を除去した場合のシミュレーションなどを、被検者に提示することも可能である。
【0305】
本態様において、データ処理部8(8N)は、複数の断面画像F1~FN(又は、それに基づく画像)に基づいて所定の前眼部パラメータの計測を行う計測部91を含んでいてよい。ここで、前眼部パラメータは、角膜厚(その分布)、角膜曲率(その分布)、前房深度(その分布)、水晶体厚(その分布)、水晶体曲率(その分布)、水晶体径、水晶体傾斜角度、及び、角膜中心と水晶体中心との間の偏位のうちの少なくとも1つを含んでいてよい。
【0306】
この構成によれば、複数の断面画像F1~FN(又は、それに基づく画像)から前眼部パラメータの値を求めることが可能である。計測値は、例えば、上記のシミュレーション、眼内レンズ(IOL)の設計・選択、治療方針の検討、手術方針の検討などにおいて利用される。
【0307】
本態様のスリットランプ顕微鏡1は、次のような構成によって、スリット光による前眼部のスキャンを実現している。すなわち、スキャン部は、照明系2と、撮影系3と、移動機構6とを含む。照明系2は、被検眼Eの前眼部にスリット光を照射する。撮影系3は、照明系2とは異なる方向から前眼部を撮影する。移動機構6は、照明系2及び撮影系3を移動する。撮影系3は、移動機構6による照明系2及び撮影系3の移動と並行して繰り返し撮影を行う。この繰り返し撮影は、例えば、所定の撮影レートの動画撮影である。
【0308】
本態様では、移動機構6は、スリット光による前眼部のスキャンにおいて、照明系2及び撮影系3をX方向に移動している。また、移動機構6は、アライメントにおいて、照明系2及び撮影系3を3次元的に移動可能であってよい。
【0309】
更に、本態様のスリットランプ顕微鏡1は、例えば角膜前面から水晶体後面までの範囲を一度に撮影するために、シャインプルーフカメラとしての機能を有していてよい。そのために、撮影系3は、スリット光が照射された前眼部からの光を導く光学系4と、光学系4により導かれた光を撮像面で受光する撮像素子5とを含んでいてよい。更に、スリットランプ顕微鏡1は、照明系2の光軸に沿う物面と光学系4と撮像素子5(撮像面)とがシャインプルーフの条件を満足するように構成されていてよい。
【0310】
<第2の態様>
本態様では、眼科情報処理装置について説明する。第1の態様において説明された事項のいずれかを本態様に組み合わせることが可能である。
【0311】
本態様の一例を
図23に示す。眼科情報処理装置500は、制御部510と、受付部520と、データ処理部530とを含む。制御部510は、眼科情報処理装置500の各部の制御を行う。
【0312】
受付部520は、被検眼の前眼部をスリット光でスキャンして収集された複数の断面画像を受け付ける。複数の断面画像は、例えば、第1のスリットランプ顕微鏡1のスキャン部と同様の構成を有する眼科撮影装置によって取得される。受付部520は、複数の断面画像を外部(例えば、眼科装置、画像アーカイビングシステム、記録媒体)から受け付ける。受付部520は、例えば通信デバイス又はドライブ装置を含んでいてよい。
【0313】
データ処理部530は、受付部520により受け付けられた複数の断面画像に基づいて、水晶体の混濁部の分布を表す混濁分布情報を生成する。データ処理部530は、例えば、第1の態様のデータ処理部8と同様の機能及び構成を有する。データ処理部530は、第1の態様のデータ処理部8A~8Nのいずれか1つ又はいずれか2以上の組み合わせであってよい。
【0314】
このような本態様の眼科情報処理装置500によれば、例えば、第1の態様のスリットランプ顕微鏡1のスキャン部と同様の構成を有する眼科撮影装置との組み合わせにより、徹照法の欠点が解消された新規な眼科観察法を提供することが可能である。
【0315】
第1の態様で説明した事項のいずれかを本態様に組み合わせた場合、組み合わせられた事項に応じた効果が奏される。
【0316】
<第3の態様>
本態様では、眼科撮影装置と情報処理装置とを含む眼科システムについて説明する。眼科撮影装置は、少なくともスリットランプ顕微鏡(第1の態様のスキャン部)としての機能を有する。眼科撮影装置に含まれるスリットランプ顕微鏡は、第1の態様のスリットランプ顕微鏡であってよい。なお、眼科撮影装置は、第1の態様のデータ処理部の少なくとも一部を有していなくてよい。以下、前述したいずれかの態様の要素や構成や符号を適宜に準用しつつ説明を行う。
【0317】
図24に例示された眼科システム1000は、眼科撮影が行われるT個の施設(第1施設~第T施設)のそれぞれと、サーバ4000と、読影端末5000mとを結ぶ通信路(通信回線)1100を利用して構築されている。なお、サーバ4000及び読影端末5000mのそれぞれは、情報処理装置の例である。
【0318】
ここで、眼科撮影は、スリットランプ顕微鏡を用いた前眼部撮影を少なくとも含む。この前眼部撮影は、少なくとも、第1の態様で説明した、スリット光を用いた前眼部スキャンを含む。
【0319】
各施設(第t施設:t=1~T、Tは1以上の整数)には、眼科撮影装置2000-it(it=1~Kt、Ktは1以上の整数)が設置されている。つまり、各施設(第t施設)には、1以上の眼科撮影装置2000-itが設置されている。眼科撮影装置2000-itは、眼科システム1000の一部を構成する。なお、眼科以外の検査を実施可能な検査装置が眼科システム1000に含まれていてもよい。
【0320】
本例の眼科撮影装置2000-itは、被検眼の撮影を実施する「撮影装置」としての機能と、各種データ処理や外部装置との通信を行う「コンピュータ」としての機能の双方を備えている。他の例において、撮影装置とコンピュータとを別々に設けることが可能である。この場合、撮影装置とコンピュータとは互いに通信可能に構成されてよい。更に、撮影装置の数とコンピュータの数とはそれぞれ任意であり、例えば単一のコンピュータと複数の撮影装置とを設けることができる。
【0321】
眼科撮影装置2000-itにおける「撮影装置」は、少なくともスリットランプ顕微鏡を含む。このスリットランプ顕微鏡は、第1の態様のスリットランプ顕微鏡であってよい。
【0322】
更に、各施設(第t施設)には、補助者や被検者により使用可能な情報処理装置(端末3000-t)が設置されている。端末3000-tは、当該施設において使用されるコンピュータであり、例えば、タブレット端末やスマートフォン等のモバイル端末、当該施設に設置されたサーバなどであってよい。更に、端末3000-tは、無線型イヤフォン等のウェアラブルデバイスを含んでいてもよい。なお、端末3000-tは、当該施設においてその機能を使用可能なコンピュータであれば十分であり、例えば、当該施設の外に設置されたコンピュータ(クラウドサーバ等)であってもよい。
【0323】
眼科撮影装置2000-itと端末3000-tとは、第t施設内に構築されたネットワーク(施設内LAN等)や、広域ネットワーク(インターネット等)や、近距離通信技術を利用して通信を行えるように構成されてよい。
【0324】
眼科撮影装置2000-itは、サーバ等の通信機器としての機能を備えていてよい。この場合、眼科撮影装置2000-itと端末3000-tとが直接に通信を行うように構成することができる。これにより、サーバ4000と端末3000-tとの間の通信を眼科撮影装置2000-itを介して行うことができるので、端末3000-tとサーバ4000との間で通信を行う機能を設ける必要がなくなる。
【0325】
サーバ4000は、典型的には、第1~第T施設のいずれとも異なる施設に設置され、例えば管理センタに設置されている。サーバ4000は、ネットワーク(LAN、広域ネットワーク等)を介して、読影端末5000m(m=1~M、Mは1以上の整数)と通信が可能である。更に、サーバ4000は、第1~第T施設に設置された眼科撮影装置2000-itの少なくとも一部との間で、広域ネットワークを介して通信が可能である。
【0326】
サーバ4000は、例えば、眼科撮影装置2000-itと読影端末5000mとの間の通信を中継する機能と、この通信の内容を記録する機能と、眼科撮影装置2000-itにより取得されたデータや情報を記憶する機能と、読影端末5000mにより取得されたデータや情報を記憶する機能とを備える。サーバ4000は、データ処理機能を備えてもよい。
【0327】
読影端末5000mは、眼科撮影装置2000-itによって取得された被検眼の画像(例えば、前眼部スキャンで得られた複数の断面画像、又は、これらに基づく3次元画像のレンダリング画像)の読影と、レポート作成とに使用可能なコンピュータを含む。読影端末5000mは、データ処理機能を備えてもよい。
【0328】
サーバ4000について説明する。
図25に例示されたサーバ4000は、制御部4010と、通信確立部4100と、通信部4200とを備える。
【0329】
制御部4010は、サーバ4000の各部の制御を実行する。制御部4010は、その他の演算処理を実行可能であってよい。制御部4010はプロセッサを含む。制御部4010は、更に、RAM、ROM、ハードディスクドライブ、ソリッドステートドライブなどを含んでいてよい。
【0330】
制御部4010は、通信制御部4011と転送制御部4012とを含む。
【0331】
通信制御部4011は、複数の眼科撮影装置2000-itと複数の端末3000-tと複数の読影端末5000mとを含む複数の装置の間における通信の確立に関する制御を実行する。例えば、通信制御部4011は、眼科システム1000に含まれる複数の装置のうちから後述の選択部4120によって選択された2以上の装置のそれぞれに向けて、通信を確立するための制御信号を送る。
【0332】
転送制御部4012は、通信確立部4100(及び通信制御部4011)により通信が確立された2以上の装置の間における情報のやりとりに関する制御を行う。例えば、転送制御部4012は、通信確立部4100(及び通信制御部4011)により通信が確立された少なくとも2つの装置のうちの一方の装置から送信された情報を他の装置に転送するように機能する。
【0333】
具体例として、眼科撮影装置2000-itと読影端末5000mとの間の通信が確立された場合、転送制御部4012は、眼科撮影装置2000-itから送信された情報(例えば、複数の断面画像)を読影端末5000mに転送することができる。逆に、転送制御部4012は、読影端末5000mから送信された情報(例えば、眼科撮影装置2000-itへの指示、読影レポートなど)を眼科撮影装置2000-itに転送することができる。
【0334】
転送制御部4012は、送信元の装置から受信した情報を加工する機能を有していてもよい。この場合、転送制御部4012は、受信した情報と、加工処理により得られた情報との少なくとも一方を転送先の装置に送信することができる。
【0335】
例えば、転送制御部4012は、眼科撮影装置2000-it等から送信された情報の一部を抽出して読影端末5000m等に送信することができる。
【0336】
また、眼科撮影装置2000-it等から送信された情報(例えば、複数の断面画像)又はそれを加工した情報をサーバ4000又は他の装置によって解析し、その解析結果(及び元の情報)を読影端末5000m等に送信するようにしてもよい。例えば、眼科撮影装置2000-itから送信された複数の断面画像(又は、それらに基づく3次元画像若しくはそのレンダリング画像)の読影を人工知能エンジン等を用いて実行し、その結果を複数の断面画像とともに読影端末5000mに送信することができる。
【0337】
眼科撮影装置2000-itから複数の断面画像が送信された場合、サーバ4000又は他の装置が、複数の断面画像から3次元画像(例えば、スタックデータ、ボリュームデータ、3次元水晶体画像など)を構築し、転送制御部4012が、構築された3次元画像を読影端末5000mに送信するように構成することが可能である。
【0338】
眼科撮影装置2000-itからスタックデータが送信された場合、サーバ4000又は他の装置が、このスタックデータからボリュームデータを構築し、転送制御部4012が、構築されたボリュームデータを読影端末5000mに送信するように構成することが可能である。
【0339】
サーバ4000又は他の装置により実行可能なデータ加工処理は、上記した例には限定されず、任意のデータ処理を含んでいてよい。例えば、サーバ4000又は他の装置は、第1の態様のデータ処理部8のいずれかの機能及び/又はいずれかの構成(
図4~
図14を参照)を有していてよい。
【0340】
通信確立部4100は、複数の眼科撮影装置2000-itと複数の端末3000-tと複数の読影端末5000mとを含む複数の装置のうちから選択された少なくとも2つの装置の間における通信を確立するための処理を実行する。本態様において「通信の確立」とは、例えば、(1)通信が切断された状態から一方向通信を確立すること、(2)通信が切断された状態から双方向通信を確立すること、(3)受信のみが可能な状態から送信も可能な状態に切り替えること、(4)送信のみが可能な状態から受信も可能な状態に切り替えること、のうちの少なくとも1つを含む概念である。
【0341】
更に、通信確立部4100は、確立されている通信を切断する処理を実行可能である。本態様において「通信の切断」とは、例えば、(1)一方向通信が確立された状態から通信を切断すること、(2)双方向通信が確立された状態から通信を切断すること、(3)双方向通信が確立された状態から一方向通信に切り替えること、(4)送信及び受信が可能な状態から受信のみが可能な状態に切り替えること、(5)送信及び受信が可能な状態から送信のみが可能な状態に切り替えること、のうちの少なくとも1つを含む概念である。
【0342】
眼科撮影装置2000-it、端末3000-t、及び読影端末5000mのそれぞれは、他の装置(そのユーザー)を呼び出すための通信要求(呼び出し要求)と、他の2つの装置の間の通信に割り込むための通信要求(割り込み要求)とのうちの少なくとも一方をサーバ4000に送信することができる。呼び出し要求及び割り込み要求は、手動又は自動で発信される。サーバ4000(通信部4200)は、眼科撮影装置2000-it、端末3000-t、又は読影端末5000mから送信された通信要求を受信する。
【0343】
本態様において、通信確立部4100は選択部4120を含んでいてよい。選択部4120は、例えば、眼科撮影装置2000-it、端末3000-t、又は読影端末5000mから送信された通信要求に基づいて、眼科撮影装置2000-it、端末3000-t、及び読影端末5000mのうちから、当該通信要求を送信した装置以外の1以上の装置を選択する。
【0344】
選択部4120が実行する処理の具体例を説明する。眼科撮影装置2000-it又は端末3000-tからの通信要求(例えば、眼科撮影装置2000-itにより取得された画像の読影の要求)を受けた場合、選択部4120は、例えば、複数の読影端末5000mのうちのいずれかを選択する。通信確立部4100は、選択された読影端末5000mと、眼科撮影装置2000-it及び端末3000-tの少なくとも一方との間の通信を確立する。
【0345】
通信要求に応じた装置の選択は、例えば、予め設定された属性に基づいて実行される。この属性の例として、検査の種別(例えば、撮影モダリティの種別、画像の種別、疾患の種別、候補疾患の種別など)や、要求される専門度・熟練度や、言語の種別などがある。本例では、例えば、読影者の専門分野や熟練度が参照される。本例に係る処理を実現するために、通信確立部4100は、予め作成された属性情報が記憶された記憶部4110を含んでいてよい。属性情報には、読影端末5000m及び/又はそのユーザー(医師、オプトメトリスト等)の属性が記録されている。
【0346】
ユーザーの識別は、事前に割り当てられたユーザーIDによって行われる。また、読影端末5000mの識別は、例えば、事前に割り当てられた装置IDやネットワークアドレスによって行われる。典型的な例において、属性情報は、各ユーザーの属性として、専門分野(例えば、診療科、専門とする疾患など)、専門度・熟練度、使用可能な言語の種別などを含む。
【0347】
選択部4120が属性情報を参照する場合、眼科撮影装置2000-it、端末3000-t、又は読影端末5000mから送信される通信要求は、属性に関する情報を含んでいてよい。例えば、眼科撮影装置2000-itから送信される読影要求(診断要求)は、次のいずれかの情報を含んでいてよい:(1)撮影モダリティの種別を示す情報;(2)画像の種別を示す情報;(3)疾患名や候補疾患名を示す情報;(4)読影の難易度を示す情報;(5)眼科撮影装置2000-it及び/又は端末3000-tのユーザーの使用言語を示す情報。
【0348】
このような読影要求を受信した場合、選択部4120は、この読影要求と記憶部4110に記憶された属性情報とに基づいて、いずれかの読影端末5000mを選択することができる。このとき、選択部4120は、読影要求に含まれる属性に関する情報と、記憶部4110に記憶された属性情報に記録された情報とを照合する。それにより、選択部4120は、例えば、次のいずれかの属性に該当する医師(又はオプトメトリスト)に対応する読影端末5000mを選択する:(1)当該撮影モダリティを専門とする医師;(2)当該画像種別を専門とする医師;(3)当該疾患(当該候補疾患)を専門とする医師;(4)当該難易度の読影が可能な医師;(5)当該言語を使用可能な医師。
【0349】
なお、医師やオプトメトリストと、読影端末5000mとの間の対応付けは、例えば、読影端末5000m(又は眼科システム1000)へのログイン時に入力されたユーザーIDによってなされる。
【0350】
通信部4200は、他の装置(例えば、眼科撮影装置2000-it、端末3000-t、及び読影端末5000mのいずれか)との間でデータ通信を行う。データ通信の方式や暗号化については、眼科撮影装置2000-itに設けられた通信部(第1の態様における出力部9の通信部)と同様であってよい。
【0351】
サーバ4000は、データ処理部4300を含む。データ処理部4300は、各種のデータ処理を実行する。データ処理部4300は、眼科撮影装置2000-i
t(特に、スリットランプ顕微鏡)により取得された複数の断面画像又は3次元画像を処理することができる。例えば、データ処理部4300は、第1の態様のデータ処理部8のいずれかの機能及び/又はいずれかの構成(
図4~
図14を参照)を有していてよい。データ処理部4300は、プロセッサ、主記憶装置、補助記憶装置などを含む。補助記憶装置には、データ処理プログラム等が記憶されている。データ処理部4300の機能は、データ処理プログラム等のソフトウェアと、プロセッサ等のハードウェアとの協働によって実現される。
【0352】
サーバ4000は、データ処理部4300により得られたデータを他の装置に提供することができる。例えば、データ処理部4300が、眼科撮影装置2000-itにより取得された複数の断面画像から3次元画像を構築した場合、サーバ4000は、通信部4200により、この3次元画像を読影端末5000mに送信することができる。データ処理部4300が、眼科撮影装置2000-it又はデータ処理部4300により構築された3次元画像をレンダリングした場合、サーバ4000は、通信部4200により、構築されたレンダリング画像を読影端末5000mに送信することができる。データ処理部4300が、1以上の断面画像又は3次元画像に計測処理を適用した場合、サーバ4000は、得られた計測データを通信部4200によって読影端末5000mに送信することができる。データ処理部4300が、1以上の断面画像又は3次元画像に歪み補正を適用した場合、サーバ4000は、通信部4200により、補正された画像を読影端末5000mに送信することができる。
【0353】
続いて、読影端末5000mについて説明する。
図26に例示された読影端末5000mは、制御部5010と、データ処理部5100と、通信部5200と、操作部5300とを備える。
【0354】
データ処理部5100は、各種のデータ処理を実行する。データ処理部5100は、第1の態様のデータ処理部8のいずれかの機能及び/又はいずれかの構成(
図4~
図14を参照)を有していてよい。例えば、データ処理部5100は、サーバ4000から提供された複数の断面画像に基づいて、被検眼の水晶体の混濁部の分布を表す混濁分布情報を生成する。また、データ処理部5100は、生成された混濁分布情報から各種の情報(マップ等)を取得するように構成されてよい。データ処理部5100は、プロセッサ、主記憶装置、補助記憶装置などを含む。補助記憶装置には、データ処理プログラム等が記憶されている。データ処理部5100の機能は、データ処理プログラム等のソフトウェアと、プロセッサ等のハードウェアとの協働によって実現される。
【0355】
制御部5010は、読影端末5000mの各部の制御を実行する。制御部5010は、その他の演算処理を実行可能であってよい。制御部5010は、プロセッサ、RAM、ROM、ハードディスクドライブ、ソリッドステートドライブなどを含む。
【0356】
制御部5010は表示制御部5011を含む。表示制御部5011は、表示装置6000mを制御する。表示装置6000mは、読影端末5000mに含まれてもよいし、読影端末5000mに接続された周辺機器であってもよい。表示制御部5011は、被検眼Eの前眼部の画像を表示装置6000mに表示させる。例えば、表示制御部5011は、被検眼の前眼部の複数の断面画像に基づく3次元画像のレンダリング画像を表示装置6000mに表示させることができる。更に、表示制御部5011は、複数の断面画像から取得されたマップ(例えば、混濁分布マップ、透過率分布マップ、経時変化情報)を表示装置6000mに表示させることができる。また、表示制御部5011は、複数の断面画像及び混濁分布情報の少なくとも一方に基づき実行された白内障の評価の結果を表示装置6000mに表示させることができる。また、表示制御部5011は、複数の断面画像に基づき実行された前眼部パラメータ計測の結果を表示装置6000mに表示させることができる。
【0357】
制御部5010はレポート作成制御部5012を含む。レポート作成制御部5012は、表示制御部5011により表示された情報に関するレポートを作成するための各種の制御を実行する。例えば、レポート作成制御部5012は、レポートを作成するための画面やグラフィカルユーザーインターフェイス(GUI)を表示装置6000mに表示させる。また、レポート作成制御部5012は、ユーザーが入力した情報や、前眼部の画像や、計測データや、解析データなどを、所定のレポートテンプレートに入力する。
【0358】
通信部5200は、他の装置(例えば、眼科撮影装置2000-it、端末3000-t、及びサーバ4000のいずれか)との間でデータ通信を行う。データ通信の方式や暗号化については、眼科撮影装置2000-itの通信部と同様であってよい。
【0359】
操作部5300は、読影端末5000mの操作、読影端末5000mへの情報入力などに使用される。本態様では、操作部5300はレポートの作成に使用される。操作部5300は、操作デバイスや入力デバイスを含む。操作部5300は、例えば、マウス、キーボード、トラックボール、操作パネル、スイッチ、ボタン、ダイアルなどを含む。操作部5300は、タッチスクリーンを含んでもよい。
【0360】
本態様の眼科システム1000は、次のような動作を実行可能である。
【0361】
まず、眼科撮影装置2000-it(スリットランプ顕微鏡)が、被検眼の前眼部をスリット光でスキャンして複数の断面画像を収集する。眼科撮影装置2000-itは、収集された複数の断面画像を含む第1送信情報を、通信回線1100を通じてサーバ4000に送信する。このような眼科撮影装置2000-itの動作は、第1の態様と同じ要領で実行されてよい。また、眼科撮影装置2000-itは、第1の態様における任意の処理を実行可能であってよい。
【0362】
サーバ4000は、眼科撮影装置2000-itから送信された第1送信情報を通信部4200(受信部)によって受信し、この第1送信情報を記憶部4110に記憶する。更に、サーバ4000は、通信部4200(送信部)を用いて、第1送信情報に含まれる複数の断面画像を少なくとも含む第2送信情報を、通信回線1100を通じて読影端末5000mに送信する。
【0363】
読影端末5000mは、サーバ4000から送信された第2送信情報を通信部5200(受信部)によって受信する。読影端末5000mのユーザー(読影者)は、ユーザーインターフェイス(操作部5300、表示装置6000m、レポート作成制御部5012等)を利用して、複数の断面画像に基づく読影を行う。例えば、データ処理部5100は、複数の断面画像に基づいて混濁分布情報を生成し、この混濁分布情報から混濁分布マップ、透過率分布マップ、経時変化情報など各種の情報を作成する。これにより生成された各種の情報は、表示制御部5011によって表示装置6000mに表示される。また、データ処理部5100は、複数の断面画像に基づく3次元画像にレンダリングを適用する。これにより構築されたレンダリング画像は、表示制御部5011によって表示装置6000mに表示される。このレンダリング画像は、例えば、徹照像に類似した正面画像である。ユーザーは、この正面画像の読影を行ったり、混濁分布に関する各種の情報を参照したりすることで、例えば白内障のグレードを評価し、その結果を読影端末5000mに入力する。読影端末5000mは、通信部5200(送信部)によって、ユーザーインターフェイスを用いて入力された情報(読影レポート等)を含む第3送信情報を、通信回線1100を通じてサーバ4000に送信する。
【0364】
サーバ4000は、読影端末5000mから送信された第3送信情報を通信部4200(受信部)により受信し、この第3送信情報を第1送信情報に関連付けて記憶部4110に記憶する。
【0365】
このような眼科システム1000によれば、第1の態様の効果から分かるように、予め取得された前眼部の画像に基づいて読影を好適に行うことができる。前眼部の画像の取得は、遠隔地にて行われてもよい。従来においては、医師が遠隔地から操作を行いつつ診察を行っているが、本態様では、医師は、事前に取得された画像に基づく読影を行うだけでよい。つまり、本態様では、撮影の手間や時間から医師を解放することができ、読影に集中することが可能となる。よって、本態様は、高品質なスリットランプ顕微鏡検査の提供範囲の拡大に寄与する。
【0366】
<第4の態様>
第3の態様における情報処理装置は、医師が読影を行うための読影端末を含んでいる。一方、本態様では、読影機能を有する読影装置を情報処理装置として含む眼科システムについて説明する。第3の態様との相違は、読影端末の代わりに読影装置が設けられている点である。なお、第3の態様と第4の態様とを組み合わせて、読影端末及び読影装置の双方を含む眼科システムを構築することも可能である。以下、前述したいずれかの態様の要素や構成や符号を適宜に準用しつつ説明を行う。
【0367】
図27に例示された眼科システム1000Aは、前述したように、第3の態様の眼科システム1000の読影端末5000mを読影装置7000mに置き換えたものである。読影装置7000mは、例えば画像処理プロセッサ及び/又は人工知能エンジンを利用して、眼科撮影装置2000-i
t(スリットランプ顕微鏡)により取得された複数の断面画像の読影を行うコンピュータである。
【0368】
読影装置7000mの構成例を
図28に示す。本例の読影装置7000mは、読影処理部7100と通信部7200とデータ処理部7300とを含む。通信部7200は、他の装置(例えば、眼科撮影装置2000-i
t、端末3000-t、及びサーバ4000のいずれか)との間でデータ通信を行う。
【0369】
データ処理部7300は、各種のデータ処理を実行する。データ処理部7300は、第1の態様のデータ処理部8のいずれかの機能及び/又はいずれかの構成(
図4~
図14を参照)を有していてよい。例えば、データ処理部7300は、サーバ4000から提供された複数の断面画像に基づいて、被検眼の水晶体の混濁部の分布を表す混濁分布情報を生成する。また、データ処理部7300は、生成された混濁分布情報から各種の情報を取得するように構成されてよい。データ処理部7300は、プロセッサ、主記憶装置、補助記憶装置などを含む。補助記憶装置には、データ処理プログラム等が記憶されている。データ処理部7300の機能は、データ処理プログラム等のソフトウェアと、プロセッサ等のハードウェアとの協働によって実現される。
【0370】
読影処理部7100は、例えば、読影用のプログラムにしたがって動作する読影プロセッサを含み、複数の断面画像(それらに基づく画像)を解析して所見を得る。幾つかの態様において、読影処理部7100は、複数の断面画像(それらに基づく画像)から所見を得るために、第1の態様における人工知能エンジンを含んでいてもよい。本態様では、データ処理部7300が、複数の断面画像に基づく3次元画像のレンダリング画像を構築し、読影処理部7100が、このレンダリング画像の読影を行って所見を得る。更に、読影処理部7100は、取得された所見に基づきレポートを作成する。
【0371】
本態様の眼科システム1000Aは、次のような動作を実行可能である。
【0372】
まず、眼科撮影装置2000-it(スリットランプ顕微鏡)が、被検眼の前眼部をスリット光でスキャンして複数の断面画像を収集する。眼科撮影装置2000-itは、収集された複数の断面画像を含む第1送信情報を、通信回線1100を通じてサーバ4000に送信する。このような眼科撮影装置2000-itの動作は、第1の態様と同じ要領で実行されてよい。また、眼科撮影装置2000-itは、第1の態様における任意の処理を実行可能であってよい。
【0373】
サーバ4000は、眼科撮影装置2000-itから送信された第1送信情報を通信部4200(受信部)によって受信し、この第1送信情報を記憶部4110に記憶する。更に、サーバ4000は、通信部4200(送信部)を用いて、第1送信情報に含まれる複数の断面画像を少なくとも含む第2送信情報を、通信回線1100を通じて読影装置7000mに送信する。
【0374】
読影装置7000mは、サーバ4000から送信された第2送信情報を通信部7200(受信部)によって受信する。データ処理部7300は、第2送信情報に含まれる複数の断面画像に基づいて混濁分布情報を生成し、この混濁分布情報から混濁分布マップ、透過率分布マップ、経時変化情報など各種の情報を作成する。また、データ処理部7300は、第2送信情報に含まれる複数の断面画像に基づく3次元画像にレンダリングを適用し、レンダリング画像を構築する。このレンダリング画像は、例えば、徹照像に類似した正面画像である。読影処理部7100は、このレンダリング画像に対して読影処理を適用したり、混濁分布に関する各種の情報を解析したりすることで、例えば白内障のグレード評価を行う。読影装置7000mは、通信部7200(送信部)によって、読影処理部7100により取得された情報を含む第4送信情報を、通信回線1100を通じてサーバ4000に送信する。
【0375】
サーバ4000は、読影装置7000mから送信された第4送信情報を通信部4200(受信部)により受信し、この第4送信情報を第1送信情報に関連付けて記憶部4110に記憶する。
【0376】
このような眼科システム1000Aによれば、第1の態様の効果から分かるように、予め取得された前眼部の画像に基づいて自動読影を好適に行うことができる。前眼部の画像の取得は、遠隔地にて行われてもよい。従来においては、医師が遠隔地から操作を行いつつ診察を行っているが、本態様では、医師は、事前に取得された画像に基づく自動読影の結果を参照しながら読影を行うだけでよい。つまり、本態様では、撮影の手間や時間から医師を解放することができるとともに、自動読影の結果を医師に提供することができるので、読影作業の大幅な効率化を図ることが可能となる。また、読影の正確性向上も期待される。よって、本態様は、高品質なスリットランプ顕微鏡検査の提供範囲の拡大に寄与する。
【0377】
〈その他の事項〉
いずれかの態様に係るスリットランプ顕微鏡を制御する方法を提供することができる。スリットランプ顕微鏡は、プロセッサと、被検眼の前眼部をスリット光でスキャンして複数の断面画像を収集するスキャン部とを含む。本制御方法は、スキャン部により収集された複数の断面画像に基づいて水晶体の混濁部の分布を表す混濁分布情報を生成する処理を、プロセッサに実行させる。
【0378】
この制御方法をコンピュータに実行させるプログラムを構成することが可能である。更に、このプログラムを記録したコンピュータ可読な非一時的記録媒体を作成することが可能である。この非一時的記録媒体は任意の形態であってよく、その例として、磁気ディスク、光ディスク、光磁気ディスク、半導体メモリなどがある。
【0379】
同様に、本開示は、第1~第4の態様のいずれかにおいて説明された任意の制御方法を提供するものである。また、本開示は、第1~第4の態様のいずれかにおいて説明された任意の処理方法(演算方法、画像処理方法、画像解析方法等)を提供するものである。更に、これらの方法のいずれかをコンピュータに実行させるプログラムを構成することが可能である。加えて、これらの方法のいずれかをコンピュータに実行させるプログラムを記録したコンピュータ可読な非一時的記録媒体を作成することが可能である。
【0380】
以上に説明した幾つかの態様は本発明の例示に過ぎない。したがって、本発明の要旨の範囲内における任意の変形(省略、置換、付加等)を上記の態様に対して適宜に施すことが可能である。
【符号の説明】
【0381】
1 スリットランプ顕微鏡
2 照明系
3 撮影系
4 光学系
5 撮像素子
6 移動機構
7 制御部
8 データ処理部
9 出力部