(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2023-10-02
(45)【発行日】2023-10-11
(54)【発明の名称】障害判定方法、障害判定プログラムおよび情報処理装置
(51)【国際特許分類】
G06Q 50/22 20180101AFI20231003BHJP
G06T 7/20 20170101ALI20231003BHJP
【FI】
G06Q50/22
G06T7/20 300Z
(21)【出願番号】P 2019152899
(22)【出願日】2019-08-23
【審査請求日】2022-05-17
(73)【特許権者】
【識別番号】000005223
【氏名又は名称】富士通株式会社
(74)【代理人】
【識別番号】110002147
【氏名又は名称】弁理士法人酒井国際特許事務所
(72)【発明者】
【氏名】紺野 剛史
【審査官】安井 雅史
(56)【参考文献】
【文献】特開2013-255786(JP,A)
【文献】特開2016-144598(JP,A)
【文献】国際公開第2018/066422(WO,A1)
【文献】国際公開第2019/130674(WO,A1)
【文献】国際公開第2019/008771(WO,A1)
【文献】国際公開第2014/115817(WO,A1)
【文献】特表2018-517400(JP,A)
【文献】中国特許出願公開第106650195(CN,A)
(58)【調査した分野】(Int.Cl.,DB名)
G06Q 50/22
G16H 10/00-80/00
A61B 5/06- 5/22
G06T 7/20
(57)【特許請求の範囲】
【請求項1】
コンピュータが、
怪我をしている被介護者および怪我をしていない被介護者のそれぞれの歩行時の画像データから、各被介護者が立ち止まった時間を算出し、
前記立ち止まった時間を含む歩行情報を説明変数、怪我の種類を目的変数とする訓練データを用いて、人間の歩行情報の入力に応じて前記人間の怪我の種類を出力する学習モデルを生成し、
判定対象者の歩行情報を学習済みの前記学習モデルに入力し、前記学習済みの学習モデルが出力した結果に基づいて、食事の際の動作に影響を与える障害を前記判定対象者が有するか否かを判定する、
処理を実行することを特徴とする障害判定方法。
【請求項2】
食事の際の動作に影響を与える障害を前記判定対象者が有すると判定した場合に、前記判定対象者である被介護者が食事の提供を受ける前に、前記被介護者の介護を行う介護者に対してアラートを通知することを特徴とする請求項1に記載の障害判定方法。
【請求項3】
前記
判定対象者の歩行情報から特定される内的要因の指標となる外的要因の特徴に基づいて、前記外的要因の特徴に関する時系列の
変化を表す回帰モデルを生成し、
前記被介護者の姿勢と、前記
回帰モデルとに基づいて、前記被介護者が内的要因の障害を有するか否かを判定する、処理を前記コンピュータがさらに実行し、
前記アラートを通知する処理は、前記内的要因における障害を有する場合に、前記介護者にアラートを通知することを特徴とする請求項2に記載の障害判定方法。
【請求項4】
前記生成する処理は、前記外的要因として歩行速度、歩幅、歩隔、歩行角度のそれぞれについて、各時系列の
変化を表す各回帰モデルを生成し、
前記判定する処理は、前記歩行速度、歩幅、歩隔、歩行角度のそれぞれに
ついて姿勢ごとの用意された時系列の変化を表す各基準モデルのうち、前記被介護者の歩行に関する歩行情報から特定した姿勢に対応する各基準モデルと、生成された前記各回帰モデルとの有意差検定の結果に基づき、前記被介護者が内的要因の障害を有するか否かを判定することを特徴とする請求項3に記載の障害判定方法。
【請求項5】
複数の被介護者について、食事提供日より前に撮像された歩行に関する時系列画像から、歩行時の特徴を示す歩行情報を抽出し、前記歩行情報を説明変数、当該被介護者の怪我の種別を目的変数とする各学習データを生成する処理を、前記コンピュータがさらに実行し、
前記生成する処理は、前記各学習データを用いて、前記
学習モデルを学習し、
前記判定する処理は、食事提供日の前記判定対象者の前記歩行に関する時系列画像から前記歩行情報を抽出し、抽出した前記歩行情報を学習済みの前記
学習モデルに入力し、前記学習済みの
学習モデルからの出力結果に基づいて、前記判定対象者の怪我の種別を判定することを特徴とする請求項3または4に記載の障害判定方法。
【請求項6】
前記通知する処理は、前記怪我の種類と前記内的要因の障害とで異なる態様のアラートを通知することを特徴とする請求項5に記載の障害判定方法。
【請求項7】
コンピュータに、
怪我をしている被介護者および怪我をしていない被介護者のそれぞれの歩行時の画像データから、各被介護者が立ち止まった時間を算出し、
前記立ち止まった時間を含む歩行情報を説明変数、怪我の種類を目的変数とする訓練データを用いて、人間の歩行情報の入力に応じて前記人間の怪我の種類を出力する学習モデルを生成し、
判定対象者の歩行情報を学習済みの前記学習モデルに入力し、前記学習済みの学習モデルが出力した結果に基づいて、食事の際の動作に影響を与える障害を前記判定対象者が有するか否かを判定する、
処理を実行させることを特徴とする障害判定プログラム。
【請求項8】
怪我をしている被介護者および怪我をしていない被介護者のそれぞれの歩行時の画像データから、各被介護者が立ち止まった時間を算出する算出部と、
前記立ち止まった時間を含む歩行情報を説明変数、怪我の種類を目的変数とする訓練データを用いて、人間の歩行情報の入力に応じて前記人間の怪我の種類を出力する学習モデルを生成する生成部と
判定対象者の歩行情報を学習済みの前記学習モデルに入力し、前記学習済みの学習モデルが出力した結果に基づいて、食事の際の動作に影響を与える障害を前記判定対象者が有するか否かを判定する判定部と、
を有することを特徴とする情報処理装置。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、障害判定方法、障害判定プログラムおよび情報処理装置に関する。
【背景技術】
【0002】
介護現場では、嚥下障害などにより窒息リスクが高まることがあるので、食事の付添に多くの時間を取られている。嚥下障害を予防する手法としては、首を左右に倒すや口を膨らますなどの嚥下体操を食事前に行うことで、唾液の分泌を促して喉のつまりを防ぐ手法が利用されている。また、食事前の会話時間などで顔を動かくした時間も嚥下体操と同様の効果があることから、会話時間を長くとるなどの手法も利用されている。近年では、食事に揮発性化合物を混入させて、呼気中における揮発性化合物の存在を測定して、被介護者の嚥下機能を測定する手法も知られている。
【先行技術文献】
【特許文献】
【0003】
【文献】特表2013-513664号公報
【文献】特表2014-502548号公報
【文献】特開2019-57282号公報
【文献】特開2012-75758号公報
【発明の概要】
【発明が解決しようとする課題】
【0004】
ところで、被介護者の食事リスクは、嚥下障害に限らず、食事動作も密接に関係する。例えば、転倒などによって手を怪我して御箸等を正しく使用することができない状態、転倒などにより腰や肩を打って腕を正常に動かくことが難しい状態など、正常な食事動作が行えない被介護者は、食べ物が喉に詰まるなどのリスクが高くなる。しかしながら、上記技術では、転倒などにより被介護者の身体に発生した怪我を検出することができない。また、骨折などの大きな怪我に限らず、捻挫などの見た目では分かりにくに怪我であっても、食事動作に悪影響を及ぼすこともある。
【0005】
一つの側面では、被介護者の食事リスクを低減することができる障害判定方法、障害判定プログラムおよび情報処理装置を提供することを目的とする。
【課題を解決するための手段】
【0006】
第1の案では、障害判定方法は、コンピュータが、複数の人間毎の歩行に関する時系列画像に基づいて人間の歩行に関するモデルを生成する処理を実行する。障害判定方法は、コンピュータが、判定対象者の歩行に関する時系列画像と、前記モデルとに基づいて、食事の際の動作に影響を与える障害を前記判定対象者が有するか否かを判定する処理を実行する。
【発明の効果】
【0007】
一実施形態によれば、被介護者の食事リスクを低減することができる。
【図面の簡単な説明】
【0008】
【
図1】
図1は、実施例1にかかる情報処理装置の処理を説明する図である。
【
図3】
図3は、実施例1にかかる情報処理装置の機能構成を説明する図である。
【
図4】
図4は、学習データの一例を説明する図である。
【
図5】
図5は、推論データの一例を説明する図である。
【
図6】
図6は、学習処理の流れを示すフローチャートである。
【
図7】
図7は、推論処理の流れを示すフローチャートである。
【
図8】
図8は、実施例2にかかる情報処理装置の機能構成を説明する図である。
【
図9】
図9は、ユーザ情報を例示する説明図である。
【
図10】
図10は、加齢モデルの作成を説明する説明図である。
【
図12】
図12は、加齢モデルのモデリングを説明する説明図である。
【
図16】
図16は、実施例2にかかる加齢モデルの作成に関する処理の一例を示すフローチャートである。
【
図17】
図17は、実施例2にかかる内部要因の判別処理の一例を示すフローチャートである。
【発明を実施するための形態】
【0009】
以下に、本願の開示する障害判定方法、障害判定プログラムおよび情報処理装置の実施例を図面に基づいて詳細に説明する。なお、この実施例によりこの発明が限定されるものではない。また、各実施例は、矛盾のない範囲内で適宜組み合わせることができる。
【実施例1】
【0010】
[情報処理装置の説明]
図1は、実施例1にかかる情報処理装置10の処理を説明する図である。
図1に示す情報処理装置10は、被介護者の食事のときに、被介護者の動作に関する動作情報から被介護者の食事リスクを高める身体的な障害を検出することで、食事の付添が必要な被介護者を適切に特定する。
【0011】
一般的に、介護現場では、介護者の人数に余裕がなく、すべての被介護者の食事を付きっきりでサポートすることが難しい。また、骨折などの大きな怪我は、介護者が目視で見つけることができるので、そのような被介護者の食事には注意することも容易である。一方で、捻挫や関節痛などのような怪我は、見た目で分かりにくく、本人も重要視していない場合も多い。しかし、このような怪我であっても、食事がしづらくなることがあり、意図しない食事動作によって食べ物を喉に詰まらせる危険性がある。
【0012】
そこで、情報処理装置10は、手首の骨折や捻挫、腕の付け根の打撲、腰痛や腰の打撲、肩の関節痛などのように、食事動作に悪影響がある怪我をしている各被介護者の特徴を学習モデルにより学習し、学習済みの学習モデルを用いて、食事前の被介護者の身体的な障害を検出する。ここで、食事動作に悪影響がある怪我をしている各被介護者の特徴として、歩行動作を用いる。
【0013】
図2は、歩行への影響を説明する図である。
図2に示すように、腰が痛い場合には、歩行中に立ち止まる操作が発生したり、肩や手首が痛い場合には、腕振りが通常時とは異なったりする。このように、歩行動作は、見た目に分かりにくい怪我であっても、その影響を受けやすく、怪我をしている各被介護者の特徴として有効である。
【0014】
情報処理装置10は、学習フェーズにおいて、食事提供日よりも前に、食事動作に悪影響がある怪我をしている各被介護者が行った5mの歩行テスト時の画像から歩行情報を取得する。そして、情報処理装置10は、歩行情報を説明変数、怪我の種類を目的変数とする学習データを生成し、この学習データを用いて学習モデルを学習する。
【0015】
具体的には、情報処理装置10は、一般的な画像解析により、各被介護者の右腕の振り(右腕の平均角度)、左腕の振り(左腕の平均角度)、5mを歩行する間に立ち止まる時間(秒(s))などの歩行情報を取得する。その後、情報処理装置10は、これらの歩行情報(説明変数)と怪我の種別(目的変数)とする学習データを用いて、学習モデルを学習する。
【0016】
そして、推論フェーズでは、情報処理装置10は、食事提供日の食事前に、被介護者が行った5mの歩行テスト時の画像から被介護者の歩行情報を取得する。なお、歩行テストに限らず、食事会場へ向かう画像から普段の歩行情報を取得してもよい。そして、情報処理装置10は、学習時と同様に、被介護者の右腕の振りなどの歩行状態を取得し、取得した歩行情報を学習済みの学習モデルに入力する。その後、情報処理装置10は、学習済みの学習モデルの出力結果にしたがって、身体的な障害を検出する。
【0017】
このように、情報処理装置10は、怪我をしている各被介護者の特徴を学習した学習モデルを用いて、食事前に被介護者の怪我を推論することができるので、被介護者の食事リスクを高める身体的な障害を検出することができる。
【0018】
[機能構成]
図3は、実施例1にかかる情報処理装置10の機能構成を説明する図である。
図3に示すように、情報処理装置10は、通信部11、記憶部12、制御部20を有する。
【0019】
通信部11は、他の装置との間に通信を制御する処理部であり、例えば通信インタフェースなどである。この通信部11は、管理者等が利用する管理者端末から処理開始の指示を受信し、管理者端末に処理結果である身体的な障害の検出結果を送信し、カメラなどの撮像部から画像データを受信する。
【0020】
記憶部12は、データや制御部20が実行するプログラムを記憶する記憶装置の一例であり、例えばメモリやハードディスクなどである。この記憶部12は、画像データDB13、学習データDB14、学習結果15、推論結果16を記憶する。
【0021】
画像データDB13は、図示しないカメラなどの撮像装置により撮像された画像データを記憶する。具体的には、画像データDB13は、被介護者ごとに、5m歩行テストを実行してもらったときの画像データであって、異なる時点の画像データを記憶する。例えば、画像データDB13は、各被介護者に5mの歩行をしてもらい、その歩行を撮像した時系列の画像データを記憶する。
【0022】
学習データDB14は、身体的な障害を推論する学習モデルを学習するための学習データを記憶する。ここで記憶される学習データは、後述する学習データ生成部22によって生成される教師有学習用の学習データである。
【0023】
学習結果15は、後述する学習部23により学習された学習モデルの学習結果である。例えば、学習結果15は、学習モデルに利用されるニューラルネットワークなどの機械学習の各種パラメータである。なお、学習結果15は、学習済みの各種パラメータが適用された学習済みの学習モデルであってもよい。
【0024】
推論結果16は、学習済みの学習モデルを利用して推論された結果である。例えば、推論結果16は、被介護者ごとに対応付けられた、食事前の画像データを用いて推論された身体的な障害を示す情報である。
【0025】
制御部20は、情報処理装置10全体を司る処理部であり、例えばプロセッサなどである。この制御部20は、データ収集部21、学習データ生成部22、学習部23、推論部24、アラート通知部25を有する。なお、データ収集部21、学習データ生成部22、学習部23、推論部24、アラート通知部25は、プロセッサが有する電子回路の一例やプロセッサが実行するプロセスの一例である。
【0026】
データ収集部21は、被介護者の歩行時の画像データを収集する処理部である。具体的には、データ収集部21は、図示しないカメラによって撮像された、怪我をしている被介護者および怪我をしていない被介護者のそれぞれの5m歩行テスト時の時系列の画像データを、カメラから取得して画像データDB13に格納する。なお、カメラは、5m歩行テスト時に、例えば1秒ごとに画像を撮像する。
【0027】
学習データ生成部22は、学習データを生成する処理部である。例えば、学習データ生成部22は、画像データDB13に記憶される時系列の画像データから、怪我の種類を目的変数、歩行時の特徴を示す歩行情報を説明変数とする学習データを生成して、学習データDB14に格納する。
【0028】
例えば、学習データ生成部22は、右手首の捻挫をしているAさんの歩行テスト時の各画像データを取得する。続いて、学習データ生成部22は、Aさんの各画像データから、右腕の振りの角度と左腕の振りの角度のそれぞれの平均値を算出するとともに、5m歩行テスト時の間に立ち止まった合計時間(立ち止まる時間)を算出する。その後、学習データ生成部22は、算出した歩行情報「右腕の振りの角度(平均値)と左腕の振りの角度の(平均値)と立ち止まる時間」を説明変数、怪我の種類である「右手首の捻挫」を目的変数とする学習データを生成する。このように、学習データ生成部22は、画像データDB13に記憶される怪我をしている被介護者の5m歩行テスト時の画像データから、歩行の特徴と怪我の種類とを特定し、それらを用いた学習データを生成する。
【0029】
図4は、学習データの一例を説明する図である。
図4に示すように、学習データは、「説明変数」と「目的変数」とが構成される。説明変数には、歩行を特徴づける測定可能な項目(歩行情報)を予め指定することができ、ここでは、歩行情報をして「右腕の振り(角度)、左腕の振り(角度)、立ち止まる時間」を用いた例を図示している。また、「説明変数」は、怪我の種類が設定される。なお、怪我の種類は、予め定めた種類の数が定められており、介護日誌等が取得することもでき、介護者や管理者が設定することもできる。
【0030】
図4の例では、右手首に捻挫をしているAさんの画像データから、歩行情報「右腕の振り(角度):10度、左腕の振り(角度):30度、立ち止まる時間(s):1秒」を説明変数、「右手首の捻挫」を目的変数とする学習データが生成されたことを示す。同様に、腰を打撲しているBさんの画像データから、歩行情報「右腕の振り(角度):20度、左腕の振り(角度):20度、立ち止まる時間(s):10秒」を説明変数、「腰の打撲」を目的変数とする学習データが生成されたことを示す。また、怪我をしていないCさんの画像データから、歩行情報「右腕の振り(角度):30度、左腕の振り(角度):30度、立ち止まる時間(s):0秒」を説明変数、「怪我なし」を目的変数とする学習データが生成されたことを示す。
【0031】
図3に戻り、学習部23は、食事提供日の食事時のタイミングよりも前に、学習データを用いて、身体的な障害を推論する学習モデルを学習する処理部である。具体的には、学習部23は、学習データの説明変数を学習モデルに入力し、学習モデルの出力結果と当該学習データの説明変数との誤差が最小化するように、学習モデルを学習する。
【0032】
例えば、
図4に示すAさんから生成された学習データを一例に説明する。この場合、学習部23は、説明変数「右腕の振り(角度):10度、左腕の振り(角度):30度、立ち止まる時間(s):1秒」を学習モデルに入力する。そして、学習部23は、学習モデルの出力として、各怪我の種類(右手首の捻挫、腰の打撲、怪我なしなど)について、それぞれの怪我に該当する確率(尤度)を取得する。その後、学習部23は、出力結果のうち、当該学習データに設定される目的変数「右手首の捻挫」に対応する確率(尤度)が最も高くなるように、学習モデルを学習する。
【0033】
そして、学習部23は、学習が完了すると、学習結果15を記憶部12に格納する。なお、学習を終了するタイミングは、すべての学習データを用いた学習が完了した時点、所定数以上の学習データを用いた学習が完了した時点や復元誤差が閾値未満となった時点など、任意に設定することができる。なお、学習モデルには、ニューラルネットワークなど様々な機械学習を採用することができる。
【0034】
推論部24は、各被介護者の食事提供日の食事前に、学習済みの学習モデルを用いて、各被介護者が身体的な障害を有しているか否かを推論する処理部である。具体的には、推論部24は、記憶部12から学習結果15を読み出して、学習済みの学習モデルを構築する。続いて、推論部24は、学習時と同様に、食事前に取得された被介護者の5m歩行テスト時の異なる時点の画像データ(時系列の画像データ)から、学習時と同様の歩行情報をを算出する。そして、推論部24は、歩行情報を学習済みの学習モデルに入力して、学習済みの学習モデルの出力結果にしたがって、身体的な障害を有しているか否かの推論結果を生成する。そして、推論部24は、被介護者ごとの推論結果を記憶部12に格納する。
【0035】
図5は、推論データの一例を説明する図である。
図5に示すように、推論部24は、推論対象である被介護者Xさんの食事前の画像データから、歩行情報「右腕の振り(角度):20度、左腕の振り(角度):20度、立ち止まる時間(s):8秒」を算出する。そして、推論部24は、算出した歩行情報を学習済みの学習モデルに入力し、学習済みの学習モデルの出力結果として、各怪我に該当する確率(尤度)を取得する。その後、推論部24は、最も確率(尤度)が高い怪我を推論結果として、記憶部12に格納する。
【0036】
アラート通知部25は、推論部24による推論結果にしたがって、アラートを通知する処理部である。例えば、アラート通知部25は、記憶部12の推論結果16を取得し、推論結果が「怪我なし」以外の被介護者を特定する。そして、アラート通知部25は、管理者に対して、何かしらの怪我があると推論された被介護者の一覧を通知する。また、アラート通知部25は、介護施設の見取り図が表示される画面上に、アラート対象者の被介護者の部屋や位置に、アラートを出力することもできる。また、アラート通知部25は、怪我の重要度や種別により、アラートの通知手法を変更することもできる。
【0037】
[学習処理の流れ]
図6は、学習処理の流れを示すフローチャートである。この処理は、食提供日よりも前に実行されることが好ましい。
図9に示すように、学習データ生成部22は、管理者等により処理開始が指示されると(S101:Yes)、画像データDB13から画像データを読み込む(S102)。
【0038】
続いて、学習データ生成部22は、画像データを解析して、説明変数を生成する(S103)。そして、学習データ生成部22は、各説明変数に目的変数を設定した学習データを生成する(S104)。その後、学習部23は、学習データを用いて学習モデルを学習する(S105)。
【0039】
[推論処理の流れ]
図7は、推論処理の流れを示すフローチャートである。この処理は、食事提供日の食事前に実行される。
図10に示すように、推論部24は、管理者等により処理開始が指示されると(S201:Yes)、学習結果15を読み込んで、学習モデルを構築する(S202)。
【0040】
続いて、推論部24は、推論対象の被介護者の食事前の画像データ(5m歩行テストの画像データ)を取得し(S203)、画像データから入力対象の歩行情報を生成する(S204)。
【0041】
そして、推論部24は、生成した歩行情報を、学習済みの学習モデルに入力し、学習済みの学習モデルの出力結果にしたがって、怪我の種別や有無を推論する(S205)。その後、アラート通知部25は、推論結果が怪我ありの場合(S206:Yes)、アラートを通知する(S207)。一方、アラート通知部25は、推論結果が怪我なしの場合(S206:No)、アラートを通知することなく処理を終了する。
【0042】
[効果]
上述したように、情報処理装置10は、食事動作に影響を与える怪我をしている被介護者を特定することができる。また、情報処理装置10は、被介護者に特別な装置を取り付けたりすることなく、歩行という簡単な動作によって学習モデルを学習することができるので、介護者や被介護者に大きな負担をかけることなく、被介護者の怪我を検出することができる。
【0043】
また、情報処理装置10は、食事前に被介護者の怪我を検出してアラームを通知することができるので、食事の付添いの人員配置を食事前に変更することができ、適切に被介護者をサポートすることができる。また、適切な人員配置により、介護者の負担を軽減しつつ、被介護者の食事リスクも軽減することができる。
【実施例2】
【0044】
ところで、実施例1では、外的要因である怪我を検出する例を説明したが、食事リスクには、認知症などの内的要因も大きな影響を与える。そこで、実施例2では、怪我の検出に加えて、内的要因も検出する行うことで、より正確な人員配置を実現し、介護者の負担を軽減しつつ、被介護者の食事リスクも軽減する例を説明する。
【0045】
[機能構成]
図8は、実施例2にかかる情報処理装置10の機能構成を説明する図である。
図8に示すように、情報処理装置10は、通信部11、記憶部12、制御部20を有する。実施例1と異なる点は、ユーザ情報DB17、加齢モデル情報18、認知症判別部30を有する点である。ここでは、実施例1と異なる点について説明する。
【0046】
ユーザ情報DB17は、認知症の発生有無の学習に利用される判定対象者に関する情報を記憶するデータベースである。加齢モデル情報18は、各対象者(各被介護者)に対応する認知症を判別する時系列モデルである。なお、それぞれに詳細については後述する。
【0047】
認知症判別部30は、収集部31、加齢モデル生成部32、認知症推定部33を有し、時系列モデルを生成し、各被介護者が内的要因の障害(認知症)を有するか否かを判別する処理部である。
【0048】
収集部31は、ユーザによる操作入力やファイル入力などにより、判定対象者の情報(年齢、外的要因の特徴、専門家などが判定した正解とするリスクなど)を収集する処理部である。収集部310は、収集した各判定対象者のユーザ情報をユーザ情報DB17に格納する。具体的には、収集部31は、判定対象者を識別する識別情報(ユーザIDなど)ごとに、定期検診などにより複数の時点ごとに収集したユーザ情報をユーザ情報DB17に格納する。
【0049】
図9は、ユーザ情報を例示する説明図である。
図9に示すように、ユーザ情報11Aは、対象者Aの外的要因の特徴を示す情報であり、本実施形態では対象者Aの歩行時の態様(姿勢、歩様など)を示す情報である。具体的には、ユーザ情報11Aは、対象者Aの歩行時における姿勢を示す「頭」、「首」、「腰」、「足」の座標を有する。また、ユーザ情報11Aは、対象者Aの歩様を示す「歩行速度」、「歩幅」、「歩隔」、「歩行角度」の座標を有する。また、ユーザ情報11Aには、上記の対象者Aの外的要因の特徴を示す情報の他に、ユーザ情報11Aの収集時における対象者Aの年齢などが付与されている。
【0050】
加齢モデル生成部32は、各対象者について、定期検診などにより複数の時点ごとに収集したユーザ情報11Aより、外的要因の特徴に関する時系列の加齢モデルを生成する処理部である。具体的は、加齢モデル生成部32は、ユーザ情報11Aにおいて歩様を示す「歩行速度」、「歩幅」、「歩隔」、「歩行角度」それぞれについて、複数の時点のデータから時系列変化(加齢に伴う変化)を示す加齢モデルを生成する。
【0051】
なお、歩様などの外的要因の特徴については、対象者の姿勢により大きく異なってくる。このため、加齢モデル生成部32は、ユーザ情報11Aの姿勢を示す「頭」、「首」、「腰」、「足」の座標をもとに、対象者の姿勢を判別する。
【0052】
図10は、加齢モデルの作成を説明する説明図である。
図10に示すように、人の歩行時においては、例えば脊椎の生理的彎曲などにより、姿勢C1~C6のような様々な姿勢が存在する。例えば、脊椎の生理的彎曲には、骨粗鬆症性椎体骨折による変形や腰椎部を中心とした椎間板変性などがある。また、膝の痛みによってバランスと取るために姿勢が崩れる場合もある。
【0053】
このような姿勢C1~C6ごとに、外的要因の特徴(例えば歩行速度)の加齢に伴う変化は異なる。例えば、姿勢C1については加齢モデルM1のように変化し、姿勢C2については加齢モデルM2のように変化する。
【0054】
したがって、加齢モデル生成部32は、「頭」、「首」、「腰」、「足」の座標をもとに、各判定対象者の姿勢が姿勢C1~C6のいずれであるかを判別し、判別した姿勢をベースに加齢モデルを作成する。
【0055】
図11は、姿勢判定を説明する説明図である。
図11に示すように、加齢モデル生成部32は、ユーザ情報11Aにおける対象者A、B…の「頭」、「首」、「腰」、「足」の座標が姿勢C1~C6のいずれの条件にマッチするかにより、対象者A、B…の姿勢を判別する。図示例では、対象者Aについては姿勢C2と判別しており、対象者Bについては姿勢C3と判別している。
【0056】
次いで、加齢モデル生成部32は、各判定対象者について、判定対象者の外的要因の特徴を時系列順に並べてモデリングすることで、判別した姿勢における加齢モデルを作成する。
【0057】
図12は、加齢モデルのモデリングを説明する説明図である。
図12に示すように、加齢モデル生成部32は、対象者A、B…について、ユーザ情報11Aにおいて歩様を示す「歩行速度」、「歩幅」、「歩隔」、「歩行角度」それぞれにおける加齢モデルM1、M2…を生成する。具体的には、加齢モデル生成部32は、「歩行速度」、「歩幅」、「歩隔」、「歩行角度」それぞれについて、時系列順(年齢順)にプロットした値を回帰分析することで、加齢モデルM1、M2…を求める。
【0058】
図13は、回帰分析の一例を説明する説明図である。
図13に示すように、加齢モデル生成部32は、ユーザ情報11Aにおいて、4月から9月まで得られた歩行速度を時系列順にプロットする。次いで、加齢モデル生成部32は、プロットした値をもとに重回帰を行うことで、Y=ax+bという形式の歩行速度に関する加齢モデルMを得る。なお、以後の説明では、加齢モデルについて、対象者ごとの区別や、「歩行速度」、「歩幅」、「歩隔」、「歩行角度」ごとの区別を行いわない場合は、加齢モデルMと呼ぶものとする。
【0059】
次いで、加齢モデル生成部32は、求めた加齢モデルMについて、該当する対象者の識別情報を付与した上で、加齢モデル情報18としてメモリなどに格納する。これにより、学習フェーズ、推定フェーズにおいては、対象者の識別情報をもとに加齢モデル情報18を参照することで、各対象者の加齢モデルMを取得することができる。
【0060】
図8に戻り、認知症推定部33は、各判定対象者について、取得した姿勢と、生成した加齢モデルMとに基づいて、判定対象者が内的要因の障害(認知症)を有するか否かを判別する処理部である。
【0061】
対象者が抱える内的要因の障害(本実施形態では認知症)は、姿勢別の外的要因の特徴において、時系列的に有意な変化として現れる。例えば、対象者が脳血管性認知症である場合は、段階的に認知症が進むことから、姿勢ごとの加齢に応じた基準とする加齢モデル(以下、基準モデル)に対し、対象者の加齢モデルMに有意差が生じる。また、レビー小体型認知症では、調子が良い時と悪い時を繰り返すことから、対象者の加齢モデルMにおいて、時系列に伴う所定幅のゆらぎが生じる。認知症推定部33では、このような対象者の加齢モデルMの時系列的な特徴をもとに、対象者が内的要因の障害(認知症)を有するか否かを判別する。
【0062】
図14、
図15は、認知症推定を説明する説明図である。具体的には、
図14に示すように、認知症推定部33は、対象者Aのユーザ情報11Aより判別した姿勢をもとに、メモリ等に予め設定された姿勢ごとの基準モデルMKの中から対象者Aの姿勢に該当する基準モデルMKを読み出す。なお、基準モデルMKについては、予めメモリなどに設定されたデータを用いてもよいし、加齢モデル情報18に格納された多数の対象者の平均を用いてもよい。
【0063】
次いで、認知症推定部33は、基準モデルMKと、対象者Aの歩様(「歩行速度」、「歩幅」、「歩隔」、「歩行角度」)について生成した加齢モデルMとをもとに、統計上の有意差検定を行う。次いで、認知症推定部33は、有意差検定において基準モデルMKと、加齢モデルMとの間に有意差がある場合に対象者Aは認知症有りと判定し、有意差がない場合に対象者Aは認知症なしと判定する。
【0064】
また、
図15に示すように、認知症推定部33は、対象者Aの歩様(「歩行速度」、「歩幅」、「歩隔」、「歩行角度」)について生成した加齢モデルMについて、時系列に伴う所定幅のゆらぎの有無をルールベースで判定する。次いで、認知症推定部33は、時系列に伴う所定幅のゆらぎがある場合に対象者Aは認知症有りと判定し、ゆらぎがない場合に対象者Aは認知症なしと判定する。
【0065】
[加齢モデルの生成処理の流れ]
図16は、実施例2にかかる加齢モデルの作成に関する処理の一例を示すフローチャートである。
図16に示すように、処理が開始されると、加齢モデル生成部32は、ユーザ情報DB17より学習対象者における外的要因の特徴(「頭」、「首」、「腰」、「足」の座標)を収集する(S1)。
【0066】
次いで、加齢モデル生成部32は、収集した外的要因の特徴(「頭」、「首」、「腰」、「足」の座標)をもとに、対象者の姿勢を判別する(S2)。
【0067】
次いで、加齢モデル生成部32は、ユーザ情報DB17より対象者における外的要因の特徴(歩様を示す「歩行速度」、「歩幅」、「歩隔」、「歩行角度」)について、複数の時点のデータを収集する(S3)。
【0068】
次いで、加齢モデル生成部32は、歩様を示す「歩行速度」、「歩幅」、「歩隔」、「歩行角度」それぞれについて、複数の時点のデータから時系列のモデル(加齢モデルM)を作成する(S4)。次いで、加齢モデル生成部32は、生成した加齢モデルMを、学習対象者に該当する識別情報を付与した上で加齢モデル情報18に格納し、処理を終了する。
【0069】
[内部要因の判別処理の流れ]
図17は、実施例2にかかる内部要因の判別処理の一例を示すフローチャートである。
図17に示すように、加齢モデルの作成が完了した後、認知症推定部33は、ユーザ情報DB17より学習対象者における外的要因の特徴(「頭」、「首」、「腰」、「足」の座標)を収集する(S11)。
【0070】
次いで、認知症推定部33は、収集した外的要因の特徴(「頭」、「首」、「腰」、「足」の座標)をもとに、判定対象者の姿勢を判別する(S12)。次いで、認知症推定部33は、加齢モデル情報18より判定対象者に該当する識別情報が付与された時系列のモデル(加齢モデルM)を取得する(S13)。
【0071】
次いで、認知症推定部33は、判定対象者における外的要因の特徴(歩様を示す「歩行速度」、「歩幅」、「歩隔」、「歩行角度」)について、複数の時点のデータを収集する(S14)。
【0072】
次いで、認知症推定部33は、判別した姿勢と、学習対象者の加齢モデルMとに基づいて、定対象者が内的要因の障害(認知症)を有するか否かを判別する(S15)。
【0073】
[効果]
上述したように、情報処理装置10は、被介護者の歩行に関する情報から、被介護者の内的要因を検出することができる。すなわち、情報処理装置10は、外見的に判断することが難しい食事リスクが高く要因を、食事前に検出することができるので、介護者の負担を軽減と被介護者の食事リスクの軽減とを両立することができる。
【0074】
そして、情報処理装置10のアラート通知部25は、管理者に対して、認知症と推定された被介護者の一覧を管理者に通知することもできる。また、アラート通知部25は、怪我のみか検出された被介護者、認知症のみか検出された被介護者、怪我と認知症か検出された被介護者の通知の態様を変更することができる。例えば、アラート通知部25は、怪我が検出された被介護者に関しては、当該被介護者に所持させる警告灯を点灯させ、認知症が検出された被介護者に関しては、介護者にバイブレーションなどで通知する。
【0075】
また、アラート通知部25は、介護施設の見取り図が表示される画面上にアラートを出力するときも、検出された状態に応じて、アラートの色や音などを変更することができる。
【0076】
また、アラート通知部25は、実施例1で検出される外的要因(怪我)と実施例2で検出される内的要因(認知症)との推論結果の統計情報を生成して、管理者等に出力することもできる。
【0077】
図18は、アラートの一例を説明する図である。
図18では、被介護者Xさんの統計情報の一例を図示している。
図18に示すように、アラート通知部25は、最新の推論日(今日)、一か月前、二か月前、三か月前のそれぞれに推論結果をプロットして、統計情報を生成する。ここでは、月毎の例を示したが、日毎や年毎に生成することもできる。
【0078】
そして、アラート通知部25は、過去の推論結果から所定値以上離れた位置にプロットされた場合などに、被介護者の状態が通常時とは異なると判断して、食事のフォローを促すメッセージを出力する。また、アラート通知部25により生成される統計情報により、外部要因が発生した時期の特定や内部要因の発生傾向などを管理することができ、被介護者の食事をフォローするための介護者の人員配置の検討に有用な情報を提供することができる。
【実施例3】
【0079】
さて、これまで本発明の実施例について説明したが、本発明は上述した実施例以外にも、種々の異なる形態にて実施されてよいものである。
【0080】
[データや数値等]
上記実施例で用いたデータ例、数値例、表示例等は、あくまで一例であり、任意に変更することができる。また、怪我の粒度や重症度により細分化した目的変数を用いることで、怪我の詳細な具合を判定することもできる。なお、実施例1では、怪我などの身体的な障害を検出する例を説明したが、これに限定されるものではなく、頭痛、胃痛などに該当する被介護者の歩行情報を用いることで、これらの要因を推論することもできる。また、内的要因も認知症に限らず、脳梗塞などのように外部からは判断できない病気を採用することもできる。
【0081】
上述した歩行情報も一例であり、怪我の影響を受ける他の情報を採用することもできる。例えば、膝の角度、5mの歩行時間、頭の上下運動の幅などを採用することもできる。また、上記例では、腕等の角度の平均値を用いる例で説明したが、これに限定されるものではなく、例えば最大値と最小値との差分など任意の値を用いることもできる。
【0082】
[学習モデル]
上記実施例では、学習モデルとして、ニューラルネットワークを用いた例を説明したが、これに限定されるものではなく、ロジスティック回帰モデルやサポートベクターマシンなど他の機械学習を採用することもできる。学習済みのモデルを用いた予測は、判定対象の当日のうち食事前であればいつ実行してもよい。なお、身体的な障害を推論する学習モデルの学習に利用する学習データは、被介護者の画像に限らず、怪我をしている一般の人の画像を用いることができる。
【0083】
[システム]
上記文書中や図面中で示した処理手順、制御手順、具体的名称、各種のデータやパラメータを含む情報については、特記する場合を除いて任意に変更することができる。
【0084】
また、図示した各装置の各構成要素は機能概念的なものであり、必ずしも物理的に図示の如く構成されていることを要しない。すなわち、各装置の分散や統合の具体的形態は図示のものに限られない。つまり、その全部または一部を、各種の負荷や使用状況などに応じて、任意の単位で機能的または物理的に分散・統合して構成することができる。
【0085】
さらに、各装置にて行なわれる各処理機能は、その全部または任意の一部が、CPUおよび当該CPUにて解析実行されるプログラムにて実現され、あるいは、ワイヤードロジックによるハードウェアとして実現され得る。
【0086】
[ハードウェア]
図19は、ハードウェア構成例を説明する図である。
図19に示すように、情報処理装置10は、通信装置100a、HDD(Hard Disk Drive)100b、メモリ100c、プロセッサ100dを有する。また、
図19に示した各部は、バス等で相互に接続される。
【0087】
通信装置100aは、ネットワークインタフェースカードなどであり、他の装置との通信を行う。HDD100bは、
図3や
図8に示した機能を動作させるプログラムやDBを記憶する。
【0088】
プロセッサ100dは、
図3や
図8に示した各処理部と同様の処理を実行するプログラムをHDD100b等から読み出してメモリ100cに展開することで、
図3等で説明した各機能を実行するプロセスを動作させる。例えば、このプロセスは、情報処理装置10が有する各処理部と同様の機能を実行する。具体的には、プロセッサ100dは、データ収集部21、学習データ生成部22、学習部23、推論部24、アラート通知部25等と同様の機能を有するプログラムをHDD100b等から読み出す。そして、プロセッサ100dは、データ収集部21、学習データ生成部22、学習部23、推論部24、アラート通知部25等と同様の処理を実行するプロセスを実行する。
【0089】
このように、情報処理装置100は、プログラムを読み出して実行することで検出方法を実行する情報処理装置として動作する。また、情報処理装置100は、媒体読取装置によって記録媒体から上記プログラムを読み出し、読み出された上記プログラムを実行することで上記した実施例と同様の機能を実現することもできる。なお、この他の実施例でいうプログラムは、情報処理装置100によって実行されることに限定されるものではない。例えば、他のコンピュータまたはサーバがプログラムを実行する場合や、これらが協働してプログラムを実行するような場合にも、本発明を同様に適用することができる。
【符号の説明】
【0090】
10 情報処理装置
11 通信部
12 記憶部
13 画像データDB
14 学習データDB
15 学習結果
16 推論結果
17 ユーザ情報DB
18 加齢モデル情報
20 制御部
21 データ収集部
22 学習データ生成部
23 学習部
24 推論部
25 アラート通知部
30 認知症判別部
31 収集部
32 加齢モデル生成部
33 認知症推定部