IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ トヨタ自動車株式会社の特許一覧

<>
  • 特許-高圧タンクの製造方法および高圧タンク 図1
  • 特許-高圧タンクの製造方法および高圧タンク 図2
  • 特許-高圧タンクの製造方法および高圧タンク 図3
  • 特許-高圧タンクの製造方法および高圧タンク 図4
  • 特許-高圧タンクの製造方法および高圧タンク 図5
  • 特許-高圧タンクの製造方法および高圧タンク 図6
  • 特許-高圧タンクの製造方法および高圧タンク 図7
  • 特許-高圧タンクの製造方法および高圧タンク 図8
  • 特許-高圧タンクの製造方法および高圧タンク 図9
  • 特許-高圧タンクの製造方法および高圧タンク 図10
  • 特許-高圧タンクの製造方法および高圧タンク 図11
  • 特許-高圧タンクの製造方法および高圧タンク 図12
  • 特許-高圧タンクの製造方法および高圧タンク 図13
  • 特許-高圧タンクの製造方法および高圧タンク 図14
  • 特許-高圧タンクの製造方法および高圧タンク 図15
  • 特許-高圧タンクの製造方法および高圧タンク 図16
  • 特許-高圧タンクの製造方法および高圧タンク 図17
  • 特許-高圧タンクの製造方法および高圧タンク 図18
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2023-10-02
(45)【発行日】2023-10-11
(54)【発明の名称】高圧タンクの製造方法および高圧タンク
(51)【国際特許分類】
   B29C 70/32 20060101AFI20231003BHJP
   F17C 1/06 20060101ALI20231003BHJP
   F16J 12/00 20060101ALI20231003BHJP
   B29L 23/00 20060101ALN20231003BHJP
【FI】
B29C70/32
F17C1/06
F16J12/00 A
B29L23:00
【請求項の数】 5
(21)【出願番号】P 2020155018
(22)【出願日】2020-09-15
(65)【公開番号】P2021146725
(43)【公開日】2021-09-27
【審査請求日】2022-08-24
(31)【優先権主張番号】P 2020046355
(32)【優先日】2020-03-17
(33)【優先権主張国・地域又は機関】JP
(73)【特許権者】
【識別番号】000003207
【氏名又は名称】トヨタ自動車株式会社
(74)【代理人】
【識別番号】110002572
【氏名又は名称】弁理士法人平木国際特許事務所
(72)【発明者】
【氏名】藤井 学
(72)【発明者】
【氏名】上田 直樹
【審査官】関口 貴夫
(56)【参考文献】
【文献】特開2017-187153(JP,A)
【文献】特開2017-155768(JP,A)
【文献】特開2020-020392(JP,A)
【文献】特開平11-262955(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
B29C 70/00-70/88
(57)【特許請求の範囲】
【請求項1】
ガスを収容するライナーと、前記ライナーの外面を覆う繊維強化樹脂からなる補強層と、を備え、前記補強層は、筒部材と前記筒部材の両端に設けられる2つのドーム部材とが一体的に形成された層であり、一方の前記ドーム部材は、ドーム本体部と、前記ドーム本体部から突出するとともに、ガスを充填および排出するためのガス流路を有する円筒状の突出部とを含む、高圧タンクの製造方法であって、
少なくとも前記一方のドーム部材を形成する工程を備え、
前記少なくとも前記一方のドーム部材を形成する工程は、
前記突出部の一部と前記ドーム本体部の一部とを形成するように、第1樹脂が含浸された第1繊維束を配置する工程と、
前記第1繊維束を覆うように、第2樹脂が含浸された第2繊維束を配置する工程と、
を含み、
前記第1繊維束を配置する工程において、前記突出部において繊維方向が前記突出部の軸方向に沿うように、かつ、前記突出部から前記ドーム本体部まで連続するように、前記第1繊維束を配置しながら、配置した前記第1繊維束に含浸された第1樹脂を固化し、
前記第2繊維束を配置する工程において、前記第2繊維束の繊維方向が前記第1繊維束の繊維方向に対して交差するように、前記第2繊維束を配置し、
前記第1樹脂は、熱可塑性樹脂からなり、
前記第2樹脂は、熱硬化性樹脂からなり、
前記第1繊維束を配置する工程において、前記第1樹脂が軟化した状態で前記第1繊維束を配置しながら、配置した前記第1繊維束に含浸された第1樹脂が固化し、
前記第2繊維束を配置する工程において、前記第2樹脂が未硬化の状態で前記第2繊維束を配置した後、前記第2樹脂を加熱して硬化させることを特徴とする高圧タンクの製造方法。
【請求項2】
前記2つのドーム部材を形成する際に、前記ドーム部材のうち前記ガスに接触する面を前記第1繊維束により形成することを特徴とする請求項に記載の高圧タンクの製造方法。
【請求項3】
ガスを収容するライナーと、前記ライナーの外面を覆う繊維強化樹脂からなる補強層と、を備え、前記補強層は、筒部材と前記筒部材の両端に設けられる2つのドーム部材とが一体的に形成された層であり、一方の前記ドーム部材は、ドーム本体部と、前記ドーム本体部から突出するとともに、ガスを充填および排出するためのガス流路を有する突出部とを含む、高圧タンクであって、
前記ドーム本体部および前記突出部は、第1樹脂が含浸された第1繊維束と第2樹脂が含浸された第2繊維束とによって形成されており、
前記第1繊維束は、前記突出部の一部および前記ドーム本体部の一部を構成しており、前記突出部において繊維方向が前記突出部の軸方向に沿うとともに、前記突出部から前記ドーム本体部まで連続して配置されており、
前記第2繊維束は、前記第1繊維束を覆うとともに、前記第2繊維束の繊維方向が前記第1繊維束の繊維方向に対して交差するように配置されており、
前記第1樹脂は、熱可塑性樹脂からなり、
前記第2樹脂は、熱硬化性樹脂からなり、
前記ドーム部材のうち前記ガスに接触する面は、前記第1繊維束により形成されていることを特徴とする高圧タンク。
【請求項4】
前記第1繊維束を配置する工程において、内周面に雌ねじを有するインサートの外周に前記第1繊維束を配置することを特徴とする請求項1または請求項2に記載の高圧タンクの製造方法。
【請求項5】
前記突出部の内側に筒状のインサートが配置され、
前記インサートは、内周面に雌ねじを有することを特徴とする請求項に記載の高圧タンク。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、ガスを収容するライナーと、ライナーの外面を覆う繊維強化樹脂からなる補強層とを備えた高圧タンクおよびその製造方法に関する。
【背景技術】
【0002】
従来、水素等の貯蔵・供給に用いられる高圧タンクとして、タンク本体と、そのタンク本体の長手方向の開口端部に取り付けられた口金とを備えているタンクが知られている。タンク本体は、例えば、水素ガスを気密保持するためのライナーと、その外面を樹脂が含浸された繊維束で巻き付けて補強した補強層と、を含んでいる。
【0003】
このように、ライナーと、その外面を覆う補強層と、補強層の端部に設けられる口金と、を備えた高圧タンクは、例えば特許文献1に開示されている。特許文献1の高圧タンクは、ライナーと、その外面を覆う繊維強化樹脂からなる補強層と、補強層の端部に設けられる口金と、を備えている。口金は、水素ガスなどを充填および排出するためのガス流路を有する円筒状の突出部を有している。
【先行技術文献】
【特許文献】
【0004】
【文献】特開2018-179201号公報
【発明の概要】
【発明が解決しようとする課題】
【0005】
ところで、高圧タンクの運搬や、高圧タンクを搭載した車両の燃費向上などの観点から、高圧タンクの軽量化を図ろうとした場合、口金に相当する部分を繊維強化樹脂にして軽量化することも想定される。
【0006】
この場合、例えば、樹脂が含浸された繊維束を、ガス流路を有する円筒状の突出部が設けられたライナーなどの外面に、フィラメントワインディング法などにより巻回することによって、口金に相当する部分を有する補強層を形成することが考えられる。しかしながら、高圧タンクの内部は非常に高圧になり、突出部の先端に取り付けられるバルブには軸方向外側に大きな力が加わるため、突出部自体にも軸方向外側に大きな力が加わる。このとき、突出部において繊維束は螺旋状に巻回されているため、突出部の軸方向の引張強度を確保することは困難である。このため、突出部が損傷することが考えられる。
【0007】
本発明は、このような点を鑑みてなされたものであり、高圧タンクの軽量化を図りながら、ガス流路を有する突出部が損傷するのを抑制することが可能な高圧タンクおよびその製造方法を提供することを課題とする。
【課題を解決するための手段】
【0008】
本発明に係る高圧タンクの製造方法は、ガスを収容するライナーと、前記ライナーの外面を覆う繊維強化樹脂からなる補強層と、を備え、前記補強層は、筒部材と前記筒部材の両端に設けられる2つのドーム部材とが一体的に形成された層であり、一方の前記ドーム部材は、ドーム本体部と、前記ドーム本体部から突出するとともに、ガスを充填および排出するためのガス流路を有する円筒状の突出部とを含む、高圧タンクの製造方法であって、少なくとも前記一方のドーム部材を形成する工程を備え、前記少なくとも前記一方のドーム部材を形成する工程は、前記突出部の一部と前記ドーム本体部の一部とを形成するように、第1樹脂が含浸された第1繊維束を配置する工程と、前記第1繊維束を覆うように、第2樹脂が含浸された第2繊維束を配置する工程と、を含み、前記第1繊維束を配置する工程において、前記突出部において繊維方向が前記突出部の軸方向に沿うように、かつ、前記突出部から前記ドーム本体部まで連続するように、前記第1繊維束を配置しながら、配置した前記第1繊維束に含浸された第1樹脂を固化し、前記第2繊維束を配置する工程において、前記第2繊維束の繊維方向が前記第1繊維束の繊維方向に対して交差するように、前記第2繊維束を配置する。
【0009】
本発明の高圧タンクの製造方法によれば、前記突出部において繊維方向が前記突出部の軸方向に沿うように第1繊維束を配置する。これにより、突出部の軸方向の引張強度を確保することができる。また、前記突出部から前記ドーム本体部まで連続するように前記第1繊維束を配置するとともに、前記第1繊維束を覆うように前記第2繊維束を配置する。これにより、第2繊維束が第1繊維束の移動を拘束し、突出部がドーム本体部から抜け出るのを防止することができる。また、第2繊維束の繊維方向が第1繊維束の繊維方向に対して交差するように第2繊維束を設けるので、軸方向の引張強度だけでなく、半径方向などの他の方向の引張強度も確保することができる。したがって、高圧タンクの内部が高圧になり、突出部に軸方向外側に大きな力が加わった場合であっても、突出部が損傷するのを抑制することができる。このため、口金を設ける必要がないので、高圧タンクを軽量化することができる。
【0010】
上記高圧タンクの製造方法において、好ましくは、前記第1樹脂は、熱可塑性樹脂からなり、前記第2樹脂は、熱硬化性樹脂からなり、前記第1繊維束を配置する工程において、前記第1樹脂が軟化した状態で前記第1繊維束を配置しながら、配置した前記第1繊維束に含浸された第1樹脂が固化し、前記第2繊維束を配置する工程において、前記第2樹脂が未硬化の状態で前記第2繊維束を配置した後、前記第2樹脂を加熱して硬化させる。このように、第1繊維束に含浸される第1樹脂を熱可塑性樹脂にすることによって、第1樹脂が軟化された状態で第1繊維束を例えばマンドレルやライナーの表面に配置することにより、第1繊維束の熱がマンドレルやライナーに奪われ、第1繊維束に含浸された樹脂が固化する。これにより、第1樹脂が固化した状態の第1繊維束上に第2繊維束を配置することになる。このため、第2繊維束を配置する際に第1繊維束が撓んだり位置ズレしたりすることがないので、突出部の軸方向の引張強度が低下するのを抑制することができる。また、第2繊維束に含浸される第2樹脂を熱硬化性樹脂にすることによって、第2樹脂を硬化した後の突出部の機械的強度を容易に向上させることができる。
【0011】
この場合、好ましくは、前記2つのドーム部材を形成する際に、前記ドーム部材のうち前記ガスに接触する面を前記第1繊維束により形成する。熱可塑性樹脂はガスバリア性を有するため、ドーム部材のうちガスに接触する面を熱可塑性樹脂が含浸された第1繊維束により形成することによって、ドーム部材の内面に沿ってライナー(のドーム状の両端部)を設ける必要がない。これにより、高圧タンクをさらに軽量化することができる。
【0012】
本発明に係る高圧タンクは、ガスを収容するライナーと、前記ライナーの外面を覆う繊維強化樹脂からなる補強層と、を備え、前記補強層は、筒部材と前記筒部材の両端に設けられる2つのドーム部材とが一体的に形成された層であり、一方の前記ドーム部材は、ドーム本体部と、前記ドーム本体部から突出するとともに、ガスを充填および排出するためのガス流路を有する突出部とを含む、高圧タンクであって、前記ドーム本体部および前記突出部は、第1樹脂が含浸された第1繊維束と第2樹脂が含浸された第2繊維束とによって形成されており、前記第1繊維束は、前記突出部の一部および前記ドーム本体部の一部を構成しており、前記突出部において繊維方向が前記突出部の軸方向に沿うとともに、前記突出部から前記ドーム本体部まで連続して配置されており、前記第2繊維束は、前記第1繊維束を覆うとともに、前記第2繊維束の繊維方向が前記第1繊維束の繊維方向に対して交差するように配置されている。
【0013】
本発明の高圧タンクによれば、第1繊維束は、前記突出部において繊維方向が前記突出部の軸方向に沿うように配置されている。これにより、突出部の軸方向の引張強度を確保することができる。また、第1繊維束は、前記突出部から前記ドーム本体部まで連続するように配置されており、第2繊維束は、第1繊維束を覆うように配置されている。これにより、第2繊維束が第1繊維束の移動を拘束し、突出部がドーム本体部から抜け出るのを防止することができる。また、第2繊維束の繊維方向が第1繊維束の繊維方向に対して交差するように第2繊維束を設けるので、軸方向の引張強度だけでなく、半径方向などの他の方向の引張強度も確保することができる。したがって、高圧タンクの内部が高圧になり、突出部に軸方向外側に大きな力が加わった場合であっても、突出部が損傷するのを抑制することができる。このため、口金を設ける必要がないので、高圧タンクを軽量化することができる。
【0014】
上記高圧タンクにおいて、好ましくは、前記第1樹脂は、熱可塑性樹脂からなり、前記第2樹脂は、熱硬化性樹脂からなり、前記ドーム部材のうち前記ガスに接触する面は、前記第1繊維束により形成されている。熱可塑性樹脂はガスバリア性を有するため、ドーム部材のうちガスに接触する面を熱可塑性樹脂が含浸された第1繊維束により形成することによって、ドーム部材の内面に沿ってライナー(のドーム部)を設ける必要がない。これにより、高圧タンクをさらに軽量化することができる。また、第2繊維束に含浸される第2樹脂を熱硬化性樹脂にすることによって、突出部の機械的強度を容易に向上させることができる。
【0015】
上記高圧タンクの製造方法は、好ましくは、前記第1繊維束を配置する工程において、内周面に雌ねじを有するインサートの外周に前記第1繊維束を配置する。これにより、ドーム部材の突出部の内側にインサートを配置することができ、外周面に雄ねじを有するバルブをインサートの内周面の雌ねじに螺合させ、突出部にバルブを取り付けることができる。このような構成により、高圧タンクの内圧がバルブに作用して突出部に高圧タンクの軸方向外側への引張力が作用しても、特定の部分に対する応力集中を回避することができ、ライナーの損傷を防止することができる。なお、第1繊維束は、インサートの外周に配置した第2繊維束の外周に配置して、さらにその外周に第2繊維束を配置することで、第2繊維束の間の中間層に配置してもよい。この場合、第1繊維束の両面を第2繊維束に接着させることができる。
【0016】
上記高圧タンクにおいて、好ましくは、前記突出部の内側に筒状のインサートが配置され、前記インサートは、内周面に雌ねじを有する。これにより、外周面に雄ねじを有するバルブをインサートの内周面の雌ねじに螺合させ、突出部にバルブを取り付けることができる。このような構成により、高圧タンクの内圧がバルブに作用して突出部に高圧タンクの軸方向の外側へ向けた引張力が作用しても、特定の部分に対する応力集中を回避することができ、ライナーの損傷を防止することができる。
【発明の効果】
【0017】
本発明によれば、高圧タンクの軽量化を図りながら、ガス流路を有する突出部が損傷するのを抑制することが可能な高圧タンクおよびその製造方法を提供することができる。
【図面の簡単な説明】
【0018】
図1】本発明の第1実施形態に係る高圧タンクの構造を示す断面図である。
図2】本発明の第1実施形態に係る高圧タンクの製造方法を示すフローチャートである。
図3】本発明の第1実施形態に係る高圧タンクの製造方法のドーム部材形成工程を示すフローチャートである。
図4】本発明の第1実施形態に係る高圧タンクの製造方法のドーム部材形成工程を説明するための斜視図である。
図5】本発明の第1実施形態に係る高圧タンクの製造方法のドーム部材形成工程を説明するための断面図である。
図6】本発明の第1実施形態に係る高圧タンクの製造方法のドーム部材形成工程の変形例を説明するための斜視図である。
図7】本発明の第1実施形態に係る高圧タンクの製造方法のドーム部材形成工程の変形例を説明するための斜視図である。
図8】本発明の第1実施形態に係る高圧タンクの製造方法の筒部材形成工程を説明するための斜視図である。
図9】本発明の第1実施形態に係る高圧タンクの製造方法の接合工程を説明するための斜視図である。
図10】本発明の第1実施形態に係る高圧タンクの製造方法の接合工程を説明するための断面図である。
図11】突出部における繊維方向と軸方向の引張強度との関係を説明するための図である。
図12】本発明の第2実施形態に係る高圧タンクの構造を示す断面図である。
図13】本発明の第2実施形態に係る高圧タンクの製造方法のドーム部材形成工程を説明するための斜視図である。
図14】本発明の変形例の高圧タンクの製造方法のドーム部材形成工程を説明するための斜視図である。
図15】本発明の第3実施形態に係る高圧タンクの構造を示す断面図である。
図16】本発明の第3実施形態に係る高圧タンクの製造方法のドーム部材形成工程を説明するための斜視図である。
図17】従来の高圧タンクの構造の一例を示す断面図である。
図18】従来の高圧タンクの応力分布の一例を示す上面図である。
【発明を実施するための形態】
【0019】
(第1実施形態)
以下、図面を参照して、本発明の第1実施形態に係る高圧タンク10の製造方法について説明するが、その前に高圧タンク10の構成について簡単に説明する。以下では、高圧タンク10を、燃料電池車両に搭載される高圧の水素ガスが充填されるタンクとして説明するが、その他の用途についても適用することができる。また、高圧タンク10に充填可能なガスとしては、高圧の水素ガスに限定されない。
【0020】
図1に示すように、高圧タンク10は、両端がドーム状に丸みを帯びた略円筒形状の高圧ガス貯蔵容器である。高圧タンク10は、ガスバリア性を有するライナー11と、ライナー11の外面を覆う繊維強化樹脂からなる繊維強化樹脂層12と、を備える。繊維強化樹脂層12は、ライナー11の外面を覆う補強層としての補強体20と、補強体20の外面を覆う外側補強層13と、を有する。高圧タンク10の一方端には、開口部が形成されている。なお、本実施形態の高圧タンク10には、口金が設けられていない。また、高圧タンク10の他方端には、開口部が形成されていない。
【0021】
ライナー11は、補強体20の内面に沿って形成されている。ライナー11は、高圧の水素ガスが充填される収容空間17を形成する樹脂製部材である。ライナー11を構成する樹脂は、充填されるガス(ここでは水素ガス)を収容空間17内に保持する性能、即ち、ガスバリア性が良好な樹脂であることが好ましい。このような樹脂としては、例えば、ポリアミド、ポリエチレン、及びエチレン-ビニルアルコール共重合樹脂(EVOH)、ポリエステル等の熱可塑性樹脂や、エポキシ等の熱硬化性樹脂が挙げられる。ライナー11には、燃料ガスとして水素ガスの他に、例えば、CNG(圧縮天然ガス)等の各圧縮ガス、LNG(液化天然ガス)、LPG(液化石油ガス)等の各種液化ガス、その他のガスが充填されてもよい。
【0022】
補強体20は、ライナー11の外面を覆っているとともに、ライナー11を補強して高圧タンク10の剛性や耐圧性等の機械的強度を向上させる機能を有する。補強体20は、後述するように、円筒状の筒部材21と、筒部材21の両端に接続された2つのドーム部材22および23とを有するとともに、これらが一体的に形成された層である。本実施形態では、ドーム部材22は、第1樹脂層121と、第1樹脂層121を覆うように形成された第2樹脂層122とによって構成されており、ドーム部材23は、第3樹脂層125によって構成されている。
【0023】
ここで、本実施形態では、ドーム部材22は、ドーム本体部22aと、ドーム本体部22aから突出する円筒状の突出部22bとを含んでいる。突出部22bは、水素ガス等を充填および排出するためのガス流路22cを有する。突出部22bの外周面には、金属製のバルブ固定具14が固定されており、バルブ固定具14の外周面には収容空間17に対して水素ガスを充填および排出するための金属製のバルブ15が取り付けられている。バルブ固定具14の内面には抜け止め用の突起14aが形成されており、バルブ固定具14の外面には、バルブ15が取り付けられるネジ山14bが形成されている。そして、バルブ固定具14は、突出部22bの外周面にかしめて固定されている。バルブ15の内面にはバルブ固定具14のネジ山14bに係合するネジ山15aが形成されており、バルブ15はバルブ固定具14を介して突出部22bの端部に固定されている。また、バルブ15には、突出部22b内に挿入される挿入部15bが形成されている。挿入部15bには、収容空間17を封止するシール部材15cが設けられているとともに、水素ガスを通過させる通路15dが形成されている。
【0024】
第1樹脂層121は、熱可塑性樹脂からなる第1樹脂が含浸された繊維束F1(第1繊維束)によって形成されている。第1樹脂層121は、ドーム本体部22aの一部と突出部22bの一部とを形成しているとともに、突出部22bからドーム本体部22aまで繊維が連続するように配置されている。ここでは、第1樹脂層121は、突出部22bからドーム本体部22aの周縁部まで繊維が連続するように配置されている。また、第1樹脂層121は、突出部22bにおいて繊維方向が突出部22bの軸方向Xに沿うように(ここでは軸方向Xに平行になるように)形成されている。なお、第1樹脂層121の突出部22bにおける詳細な繊維方向については後述する。
【0025】
第2樹脂層122は、熱硬化性樹脂からなる第2樹脂が含浸された繊維束F2(第2繊維束)によって形成されている。第2樹脂層122は、第1樹脂層121を覆うように形成されている。また、第2樹脂層122は、第2樹脂層122の繊維方向が第1樹脂層121の繊維方向に対して交差するように形成されている。
【0026】
外側補強層13は、補強体20の外面を覆うように形成されている。外側補強層13は、ドーム部材22および23の全体を覆っている。外側補強層13は、樹脂及び繊維(連続繊維)から構成されている。外側補強層13では、繊維は、筒部材21の軸方向Xに対して平行または45度以下傾斜するように配向されているとともに、筒部材21を介して2つのドーム部材22および23に亘って配向されている。この繊維は、ドーム部材22および23の軸方向Xの外側への移動を防止し、ガス圧によってドーム部材22および23が筒部材21から軸方向Xの外側に外れるのを防止する。
【0027】
次に、本発明の第1実施形態に係る高圧タンク10の製造方法について説明する。図2は、高圧タンク10の製造方法を示すフローチャートである。高圧タンク10の製造方法は、図2に示すように、ライナー準備工程S1と、ドーム部材形成工程S2と、筒部材形成工程S3と、接合工程S4と、外側補強層形成工程S5と、を含んで構成されている。なお、図2では、ライナー準備工程S1、ドーム部材形成工程S2および筒部材形成工程S3の順に行うように記載しているが、ライナー準備工程S1とドーム部材形成工程S2と筒部材形成工程S3とは、互いに独立した工程であるため、並行して行ってもよいし、いずれの工程を先に行ってもよい。
【0028】
ライナー準備工程S1においては、図1に示すように、円筒状の筒部と筒部の両端にドーム部とを有するとともに、一方のドーム部に、内部と外部とを接続するガス流路を有する円筒状の突出部が形成されたライナー11を準備する。なお、ライナー11の製造方法は特に限定されるものではなく、公知の技術を用いて製造することができる。
【0029】
ドーム部材形成工程S2は図3に示すように、第1樹脂層形成工程S21と、第2樹脂層形成工程S22と、取り外し工程S23と、を含んで構成されている。第1樹脂層形成工程S21、第2樹脂層形成工程S22および取り外し工程S23は、ドーム部材22を形成するためのものであるが、ドーム部材23を同時に形成することも可能である。また、ドーム部材23をドーム部材22とは別の工程で形成することも可能である。ここでは、ドーム部材22とドーム部材23とを別の工程で形成する方法を説明した後、ドーム部材22とドーム部材23とを同時に形成する方法について説明する。
【0030】
第1樹脂層形成工程S21においては、図4に示すように、マンドレル200の外面に第1樹脂層121を形成する。具体的には、マンドレル200は、ドーム状の本体部201と、本体部201から外側に延在するシャフト部202とを有する。そして、例えば図5に示すようにテーププレースメント法を用いて、加圧ローラ210により、マンドレル200の外面に、熱可塑性樹脂が含浸された繊維束F1を加圧しながら貼り付ける。このとき、図示しないレーザ装置を用いて繊維束F1に含浸された樹脂を加熱して軟化させた状態で繊維束F1をマンドレル200に貼り付ける(配置する)。貼り付けられた繊維束F1に含浸された樹脂は、マンドレル200に熱が奪われてすぐに固化する。このように、熱可塑性樹脂が含浸された繊維束F1を用いることによって、貼り付けられた繊維束F1に含浸された樹脂をすぐに固化することができるため、繊維束F1に張力を付与しながら貼り付けることができる。このため、繊維束F1の繊維方向が揃った状態になるので、第1樹脂層121の引張強度の低下を抑制することができる。また、繊維束F1に含浸された熱可塑性樹脂がより速く固化するように、繊維束F1に冷却風を当ててもよい。なお、マンドレル200の材質は、特に限定されるものではないが、繊維束F1および後述する繊維束F2を配置する際に変形しない強度を確保するためには、金属であることが好ましい。
【0031】
ここで、繊維束F1は、マンドレル200の本体部201からシャフト部202まで連続するように配置される。本実施形態では、繊維束F1は、本体部201の周縁部からシャフト部202まで連続するように配置される。また、繊維束F1は、シャフト部202において繊維方向がシャフト部202の軸方向Xに沿うように(ここでは軸方向Xに平行になるように)配置される。また、繊維束F1は、マンドレル200の周方向に所定の角度間隔で配置される。このようにして、マンドレル200のシャフト部202から放射状に(径方向に)広がるように、ドーム部材22の第1樹脂層121が形成される。
【0032】
第2樹脂層形成工程S22においては、図4に示す状態から第1樹脂層121(すなわち、第1樹脂が含浸された繊維束F1)を覆うように、マンドレル200の外面に第2樹脂層122(図7参照)を形成する。なお、図4に示す状態から第1樹脂層121を覆うように第2樹脂層122を形成した状態は、後述する図7の一部と同様であるため、ここでは図を省略する。第2樹脂層122を形成するとき、例えば第1樹脂層121と同様、テーププレースメント法を用いて、加圧ローラ210により、マンドレル200の外面を覆うように、熱硬化性樹脂からなる未硬化の第2樹脂が含浸された繊維束F2を加圧しながら貼り付けてもよい。また、このとき、繊維束F2は、繊維束F2の繊維方向が繊維束F1の繊維方向に対して交差するように配置される。
【0033】
そして、第2樹脂層122(すなわち、繊維束F2に含浸された未硬化の熱硬化性樹脂)を加熱して硬化させる。このとき、好ましくは、第2樹脂層122の熱硬化性樹脂の硬化温度は、第1樹脂層121の熱可塑性樹脂の軟化温度よりも低く設定される。例えば、第2樹脂層122の熱硬化性樹脂に含有される硬化剤の量や種類を調整することによって、第2樹脂層122の熱硬化性樹脂の硬化温度が変化するので、第2樹脂層122の熱硬化性樹脂の硬化温度を、第1樹脂層121の熱可塑性樹脂の軟化温度よりも容易に低く設定することができる。このように構成すれば、第2樹脂層122を硬化させる際に第1樹脂層121の第1樹脂が軟化するのを抑制することができ、第1樹脂層121に含まれる繊維が撓んだり位置ズレしたりするのを抑制することができる。
【0034】
取り外し工程S23においては、第1樹脂層121および第2樹脂層122をマンドレル200から取り外す。これにより、ドーム部材22が形成される。このように、第2樹脂層122を加熱して硬化させた後、第2樹脂層122をマンドレル200から取り外すことによって、第2樹脂層122の変形を抑制することができる。
【0035】
ドーム部材23をドーム部材22と別の工程で形成する場合、例えば、シャフト部202を有さないマンドレル200の本体部201の外面に、第3樹脂層125を形成する。このとき、第2樹脂層122と同様にして、すなわち、熱硬化性樹脂からなる第3樹脂が含浸された繊維束をテーププレースメント法を用いて貼り付けることによって、第3樹脂層125を形成することができる。そして、第3樹脂層125を加熱して硬化させる。その後、第3樹脂層125をマンドレル200から取り外すことによって、ドーム部材23が形成される。
【0036】
第1樹脂層121に含まれる熱可塑性樹脂としては、特に限定されるものではないが、ポリエーテルエーテルケトン、ポリフェニレンスルファイド、ポリアクリル酸エステル、ポリイミド、ポリアミド等を用いることができる。
【0037】
また、第2樹脂層122および第3樹脂層125に含まれる熱硬化性樹脂としては、特に限定されるものではないが、フェノール樹脂、メラミン樹脂、ユリア樹脂、及びエポキシ樹脂等の熱硬化性樹脂を用いることが好ましく、特に、機械的強度等の観点からエポキシ樹脂を用いることが好ましい。一般的に、エポキシ樹脂とは、ビスフェノールAとエピクロルヒドリンの共重合体等であるプレポリマーと、ポリアミン等である硬化剤と、を混合して熱硬化することで得られる樹脂である。エポキシ樹脂は、未硬化状態では流動性があり、熱硬化後は強靭な架橋構造を形成する。
【0038】
また、第1樹脂層121、第2樹脂層122および第3樹脂層125に含まれる繊維としては、ガラス繊維、アラミド繊維、ボロン繊維、及び炭素繊維等を用いることができ、特に、軽量性や機械的強度等の観点から炭素繊維を用いることが好ましい。
【0039】
次に、ドーム部材23をドーム部材22と同時(同じ工程)で形成する場合について説明する。なお、この方法では、繊維束F2によって第3樹脂層125が形成される。
【0040】
第1樹脂層形成工程S21において、図6に示すようなマンドレル200を用いる。このマンドレル200では、本体部201が略球状に形成されている。そして、マンドレル200の外面に、上記と同様にして第1樹脂層121を形成する。
【0041】
第2樹脂層形成工程S22において、図7に示すように、第1樹脂層121を覆うように、マンドレル200の外面に第2樹脂層122を形成する。このとき、上述したテーププレースメント法を用いて繊維束F2を貼り付けることによって第2樹脂層122を形成することもできるが、例えばフィラメントワインディング法(FW法)を用いて繊維束F2を巻き付けることによって第2樹脂層122を形成することができる。具体的には、マンドレル200のシャフト部202を回転機構(図示せず)に取り付ける。そして、マンドレル200を回転させることにより、第1樹脂層121およびマンドレル200の外面を被覆するように、繊維束F2を巻き付ける。このとき、繊維束F2を、シャフト部202の軸方向Xに対して例えば40度以上交差する角度で巻き付ける。そして、繊維束F2に含浸された熱硬化性樹脂を加熱して硬化させる。
【0042】
取り外し工程S23においては、マンドレル200の外面に巻回された巻回体(繊維束F2)を、図7の二点鎖線Lに沿ってカッター(図示せず)を用いて2個に分割する。その後、分割した巻回体をマンドレル200から分離することによって2つのドーム部材22および23が形成される。
【0043】
本実施形態では、取り外し工程S23の後、突出部22bにバルブ固定具14をかしめて固定する。なお、ドーム部材22をマンドレル200から取り外す前にバルブ固定具14を固定してもよい。また、第2樹脂層122を加熱硬化させる前にバルブ固定具14を固定してもよく、この場合、バルブ固定具14を突出部22bに強固に固定することができる。
【0044】
筒部材形成工程S3においては、図8に示すように、例えば、回転する円筒型300の内面に繊維シートF3を貼り付ける、所謂CW(Centrifugal Winding)法により筒部材21を形成する。具体的には、円筒型300は、回転機構(図示せず)によって所定の回転速度で回転される。
【0045】
円筒型300内には、ロール状の繊維シートF3を巻き出す巻出装置(図示せず)の巻出ローラ310が設けられている。円筒型300を回転させながら繊維シートF3を巻き出すことによって、繊維シートF3が円筒型300の内面に貼り付き、筒部材21が形成される。
【0046】
繊維シートF3は、巻出ローラ310の周方向に配向された繊維を少なくとも有している。これにより、周方向に繊維が配向された筒部材21を得ることができる。
【0047】
繊維シートF3としては、例えば、単一方向に揃えられた複数の繊維束が拘束糸で編み込まれた所謂UD(Uni-Direction)シートや、単一方向に揃えられた複数の繊維束とこの複数の繊維束に交差する、例えば直交する複数の繊維束とが編み込まれた繊維シートなどに、予め樹脂が含浸されたものを用いることができる。
【0048】
繊維シートF3に含浸される第3樹脂としては、特に限定されるものではないが、例えば熱硬化性樹脂を用いることができる。熱硬化性樹脂としては、繊維束F2と同様、フェノール樹脂、メラミン樹脂、ユリア樹脂、及びエポキシ樹脂等の熱硬化性樹脂を用いることが好ましく、特に、機械的強度等の観点からエポキシ樹脂を用いることが好ましい。
【0049】
繊維シートF3を構成する繊維としては、繊維束F1およびF2と同様、ガラス繊維、アラミド繊維、ボロン繊維、及び炭素繊維等を用いることができ、特に、軽量性や機械的強度等の観点から炭素繊維を用いることが好ましい。
【0050】
円筒型300の内面に形成された筒部材21は、図1に示すように、軸方向Xの両端の厚みが徐々に薄くなるように形成されている。また、ドーム部材22および23も同様に、周縁部の厚みが徐々に薄くなるように形成されている。これにより、筒部材21と2つのドーム部材22および23とを組み合わせた状態で、筒部材21の外面と2つのドーム部材22および23の外面との接続部分に段差が形成されにくくなる。
【0051】
筒部材21の軸方向Xの両端の厚みを徐々に薄く形成するためには、繊維シートF3の軸方向X(幅方向)の端部は、繊維束の厚みが徐々に薄くなるように繊維束が編み込まれていることが好ましい。また、筒部材21の軸方向Xの両端をローラ等で押さえつけることによって厚みを徐々に薄くしてもよい。また、ドーム部材22および23の周縁部の厚みを徐々に薄く形成するために、繊維束F2の巻回数および巻回方向を調整したり、周縁部をローラ等で押さえつけたりしてもよい。
【0052】
そして、筒部材21を加熱して硬化させた後、筒部材21を円筒型300の内部から取り外す。これにより、筒部材21を円筒型300から取り外す際の筒部材21の変形を抑制することができる。
【0053】
ここでは、円筒型300の内面に筒部材21を形成する例について説明したが、その他の方法によって筒部材21を形成することもできる。例えば、円筒型の外面に繊維シートF3を貼り付けたり、円筒型の外面にFW法により第3樹脂が含浸された繊維束をフープ巻きしたりすることによって、筒部材21を形成してもよい。
【0054】
また、マンドレル200を用いてドーム部材22および23を形成し、円筒型300を用いて筒部材21を形成するため、ライナー11に繊維束等を直接巻回することなく筒部材21、ドーム部材22および23が形成される。これにより、ライナー11にフープ巻きやヘリカル巻き等による巻き締り力が作用しないので、巻き締り力に起因してライナー11が変形しないように、ライナー11の強度を高くしなくてよい。このため、ライナー11の厚み(肉厚)を薄くすることが可能であるので、ライナー11の容積を増加させることができるとともに、ライナー11を軽量化することができる。
【0055】
接合工程S4においては、図9および図10に示すように、筒部材21の両端の周縁部21aと2つのドーム部材22および23の周縁部22dおよび23aとを接合して、補強層としての補強体20を形成する。
【0056】
具体的には、ライナー準備工程S1で準備したライナー11を筒部材21に挿入し、ドーム部材22および23をライナー11の両端部に覆い被せる。このとき、本実施形態では、ドーム部材22および23の周縁部22dおよび23aを内側にし、筒部材21の両端の周縁部21aを外側にして嵌め合せる。ドーム部材22の第1樹脂層121は、内側(ライナー11側)に露出しており、第1樹脂層121は熱可塑性樹脂を含んでいるため、第1樹脂層121を熱硬化性樹脂によって形成する場合に比べてライナー11に対する密着性が高くなる。ここではドーム部材23が熱硬化性樹脂を含む第3樹脂層125によって形成される例について示したが、ドーム部材23もドーム部材22と同様、熱可塑性樹脂を含む樹脂層と熱硬化性樹脂を含む樹脂層とによって形成してもよい。この場合、ライナー11に対するドーム部材23の密着性も高くすることができる。
【0057】
なお、ドーム部材22および23の周縁部22dおよび23aを外側にし、筒部材21の両端の周縁部21aを内側にして嵌め合せてもよいし、ドーム部材22および23の周縁部22dおよび23aと、筒部材21の両端の周縁部21aとを突き合わせて接合してもよい。また、筒部材21とドーム部材22および23との間に接着剤(図示せず)を配置してもよい。
【0058】
外側補強層形成工程S5においては、補強体20の外面を覆うように、繊維強化樹脂により2つのドーム部材22および23に亘って繊維が配置された外側補強層13を形成する。これにより、補強体20および外側補強層13を有する繊維強化樹脂層12が形成される。例えば、熱硬化性樹脂が含浸された繊維束を補強体20の外面にヘリカル巻きすることによって、外側補強層13を形成してもよい。また、熱硬化性樹脂が含浸された複数の繊維束を補強体20の軸方向Xに延在させた状態で補強体20の外面に貼り付けることによって外側補強層13を形成してもよいし、熱硬化性樹脂が含浸された繊維シートを補強体20の外面に巻回する、所謂シートワインディング法を用いて外側補強層13を形成してもよい。そして、外側補強層13に含まれる熱硬化性樹脂を加熱して硬化させる。外側補強層13に含まれる熱硬化性樹脂および繊維束としては、例えば、ドーム部材22および23を形成する熱硬化性樹脂および繊維束と同じものを使用することができる。
【0059】
そして、バルブ15をバルブ固定具14に取り付けることによって、高圧タンク10が完成する。なお、ここでは、バルブ固定具14を介してバルブ15を突出部22bに取り付ける例について示したが、本発明はこれに限らない。例えば、バルブ15を突出部22bの外周面にバルブ固定具14を介さず直接取り付けてもよい。この場合、バルブ15を突出部22bの外周面にかしめて固定してもよい。
【0060】
次に、第1樹脂層121の突出部22bにおける繊維方向と軸方向Xの引張強度との関係について説明する。図11に示すように、突出部22bにおける第1樹脂層121の繊維方向を軸方向Xと平行(図11の90度)にした場合の軸方向Xの引張強度を100として規格化すると、繊維方向を軸方向Xに対して10度、20度、30度(それぞれ、図11の80度、70度、60度)傾斜させると、引張強度は90、65、33程度に低下する。なお、通常、FW法によって形成できる角度は、図11の0~30度であるため、突出部22bをFW法によって形成すると、引張強度は8程度になってしまう。
【0061】
本実施形態では、第1樹脂層121は、突出部22bにおいて繊維方向が突出部22bの軸方向Xに沿うように形成しており、具体的には、繊維方向の軸方向Xに対する傾斜角度が20度以下、好ましくは10度以下、より好ましくは0度(それぞれ、図11の70度以上、80度以上、90度)となるように形成している。これにより、突出部22bの引張強度を十分確保することができる。
【0062】
本実施形態では、上記のように、突出部22bにおいて繊維方向が突出部22bの軸方向Xに沿うように繊維束F1を配置する。これにより、突出部22bの軸方向の引張強度を確保することができる。また、突出部22bからドーム本体部22aまで連続するように繊維束F1を配置するとともに、繊維束F1を覆うように繊維束F2を配置する。これにより、繊維束F2が繊維束F1の移動を拘束し、突出部22bがドーム本体部22aから抜け出るのを防止することができる。また、繊維束F2の繊維方向が繊維束F1の繊維方向に対して交差するように繊維束F2を設けるので、軸方向Xの引張強度だけでなく、半径方向などの他の方向の引張強度も確保することができる。したがって、高圧タンク10の内部が高圧になり、突出部22bの先端に取り付けられるバルブ15に軸方向Xの外側に大きな力が加わることにより、突出部22bにも軸方向Xの外側に大きな力が加わった場合であっても、突出部22bが損傷するのを抑制することができる。このため、口金を設ける必要がないので、高圧タンク10を軽量化することができる。
【0063】
また、上記のように、繊維束F1に含浸される樹脂は、熱可塑性樹脂からなり、繊維束F2に含浸される第1樹脂は、熱硬化性樹脂からなる。このように、繊維束F1に含浸される第1樹脂を熱可塑性樹脂にすることによって、第1樹脂が軟化された状態で繊維束F1を例えばマンドレルやライナー11の表面に配置することにより、繊維束F1の熱がマンドレル200やライナー11に奪われ、繊維束F1に含浸された樹脂が固化する。これにより、第1樹脂が固化した状態の繊維束F1上に繊維束F2を配置することになる。このため、繊維束F2を配置する際に繊維束F1が撓んだり位置ズレしたりすることがないので、突出部22bの軸方向Xの引張強度が低下するのを抑制することができる。また、繊維束F2に含浸される第2樹脂を熱硬化性樹脂にすることによって、第2樹脂を硬化した後の突出部22bの機械的強度を容易に向上させることができる。
【0064】
(第2実施形態)
この第2実施形態では、上記第1実施形態と異なり、ドーム部材22および23の内側の面(後述するように、水素ガスと接触する面)を熱可塑性樹脂が含浸された繊維束F1により形成する例について説明する。
【0065】
本実施形態の高圧タンク10では、図12に示すように、ライナー11は、円筒状の筒部のみによって形成されている。
【0066】
本実施形態では、ドーム部材22は、第1樹脂層121と、第1樹脂層121を覆うように形成された第2樹脂層122とによって構成されている。第1樹脂層121は、上記第1実施形態と異なり、内側の面(水素ガスに接触する面、すなわちドーム本体部22aの内面および突出部22bの内面)の全面に亘って形成されている。
【0067】
また、ドーム部材23は、上記第1実施形態と異なり、第4樹脂層126と、第4樹脂層126を覆う第3樹脂層125とによって構成されている。第4樹脂層126は、熱可塑性樹脂が含浸された繊維束からなるとともに、内側の面(水素ガスに接触する面)の全面に亘って形成されている。
【0068】
すなわち、ドーム部材22および23は、内側の全面に亘ってガスバリア性を有しており、上記第1実施形態のライナー11のドーム状の両端部と同じ機能を有するため、本実施形態では、ライナー11は両端部が開口した円筒状に形成されている。そして、円筒状のライナー11、第1樹脂層121および第4樹脂層126によって、水素ガスが充填される収容空間17が形成されている。
【0069】
第2実施形態のその他の構造は、上記第1実施形態と同様である。
【0070】
次に、本発明の第2実施形態に係る高圧タンク10の製造方法について説明する。本実施形態では、ライナー準備工程S1においては、両端部が開口した円筒状のライナー11を準備する。なお、ライナー11の製造方法は特に限定されるものではなく、公知の技術を用いて製造することができる。
【0071】
上記第1実施形態と同様、ドーム部材形成工程S2は図3に示すように、第1樹脂層形成工程S21と、第2樹脂層形成工程S22と、取り外し工程S23と、を含んで構成されている。
【0072】
第1樹脂層形成工程S21においては、図13に示すように、マンドレル200の外面の全面を覆うように第1樹脂層121を形成する。このとき、図13に示したように全ての繊維束F1がマンドレル200のシャフト部202から放射状に(径方向に)広がるように貼り付けてもよいし、例えば図4図6に示した状態から、繊維束F1同士が交差するように様々な角度にさらに繊維束F1を貼り付けてもよい。このようにしてドーム部材22の第1樹脂層121が形成される。
【0073】
ドーム部材23の第4樹脂層126を形成する場合も、第1樹脂層121の形成方法と同様にして形成することができるが、ドーム部材23には突出部22bがないため、マンドレル200のシャフト部202から放射状に広がるように第4樹脂層126を設けなくてもよい。また、上記第1実施形態と同様、ドーム部材23は、ドーム部材22と同時(同じ工程)で形成することもできる。
【0074】
第2実施形態のその他の製造方法は、上記第1実施形態と同様である。
【0075】
本実施形態では、上記のように、ドーム部材22および23を形成する際に、ドーム部材22および23のうち水素ガスに接触する面を繊維束F1により形成する。熱可塑性樹脂はガスバリア性を有するため、ドーム部材22および23のうち水素ガスに接触する面を熱可塑性樹脂が含浸された繊維束F1により形成することによって、ドーム部材22および23の内面に沿ってライナー11(のドーム状の両端部)を設ける必要がない。これにより、高圧タンク10をさらに軽量化することができる。
【0076】
第2実施形態のその他の効果は、上記第1実施形態と同様である。
【0077】
(第3実施形態)
この第3実施形態では、上記第1実施形態と異なり、ドーム部材22の突出部22bの内側に金属製のバルブ18を取り付けるためのインサート16が配置されている例について説明する。
【0078】
本実施形態の高圧タンク10では、図15に示すように、ドーム部材22の突出部22bの内側に、たとえば金属製の筒状のインサート16が配置されている。本実施形態では、ドーム部材22は、ライナー11と、インサート16と、ライナー11およびインサート16を覆うように形成された第1樹脂層121と、第1樹脂層121を覆うように形成された第2樹脂層122とによって構成されている。
【0079】
インサート16は、内周面に雌ねじ16aを有している。インサート16は、ドーム部材22の第1樹脂層121の内側で、ライナー11の円筒状の突出部の軸方向における先端に隣接して配置されている。インサート16は、たとえば、高圧タンク10の軸方向における内側の端部がテーパ状に縮径された円筒状の形状を有している。
【0080】
バルブ18には、突出部22b内に挿入される挿入部18aが形成されている。挿入部18aの外周面には、インサート16の雌ねじ16aに螺合する雄ねじ18bと、収容空間17を封止するシール部材18cが設けられている。また、図示を省略するが、バルブ18には、図1に示す第1実施形態のバルブ15の通路15dと同様に、水素ガスを通過させる通路が形成されている。
【0081】
第3実施形態のその他の構造は、上記第1実施形態と同様である。
【0082】
次に、本発明の第3実施形態に係る高圧タンク10の製造方法について説明する。本実施形態では、繊維束F1(第1繊維束)を配置する第1樹脂層形成工程S21において、たとえば、内周面に雌ねじ16aを有するインサート16を、図4に示すマンドレル200のシャフト部202の先端部の外周に支持する。そして、インサート16の外周とマンドレル200の外周に繊維束F1を配置する。
【0083】
第3実施形態のその他の製造方法は、上記第1実施形態と同様である。より詳細には、上述の第1実施形態と同様の第1樹脂層形成工程S21において、図4または図14と同様に、インサート16の外面とマンドレル200の外面に第1樹脂層121を形成する。ここで、第1樹脂層121を構成する繊維束F1は、上記第1実施形態と同様に、インサート16およびシャフト部202において、繊維方向がシャフト部202の軸方向Xに沿うように(ここでは軸方向Xに平行になるように)配置される。これにより、図15に示す突出部22bの第1樹脂層121において、繊維束F1が突出部22bの軸方向に沿うように(ここでは突出部22bの軸方向に平行になるように)配置される。
【0084】
また、上述の第1実施形態と同様の第2樹脂層形成工程S22において、図16に示すように、第1樹脂層121(すなわち、第1樹脂が含浸された繊維束F1)を覆うように、マンドレル200の外面に第2樹脂層122を形成する。このとき、第2樹脂層122を構成する繊維束F2は、少なくともインサート16の外周とシャフト部202の外周において、繊維束F2の繊維方向が繊維束F1の繊維方向に対して交差するように(ここでは直交または80度以上の角度で交差するように)配置される。
【0085】
また、インサート16の外周およびシャフト部202の外周に巻回された繊維束F2は、インサート16の外周およびシャフト部202の外周からドーム状のマンドレル200の外周へ連続して巻回される。これにより、インサート16およびシャフト部202からマンドレル200へ一筆書きで一体に巻回された繊維束F2によって、図15に示すドーム部材22の突出部22bからドーム状の部分へ連続する第2樹脂層122が一体に巻回成形される。
【0086】
図17に示すように、従来の高圧タンク90は、タンク本体91と、そのタンク本体910の長手方向の開口端部に取り付けられた口金92とを備えている。タンク本体91は、例えば、水素ガスを気密保持するためのライナー911と、その外面を樹脂が含浸された繊維束で巻き付けて補強した補強層912と、を含んでいる。口金92は、高圧タンク900の軸方向における内側に、他の部分よりも拡径されたフランジ部921を有している。口金92は、雌ねじまたは雄ねじを有し、図示を省略するバルブが螺合されて取り付けられる。
【0087】
このような従来の高圧タンク90では、高圧タンク90の内圧を受けた口金92のフランジ部921から、補強層912に対して高圧タンク90の軸方向外側への推力TFが作用する。このような推力TFは、図18に示すように、口金92のフランジ部921の外縁部921aや、口金92のフランジ部921上の繊維の交差部921xなどにおいて、繊維に作用する応力を上昇させ、高圧タンク900に応力集中部SCを生じさせる。また、高圧タンク900の低温充填時に、補強層912と口金92との線膨張係数の相違により、図17に示すように、口金92のフランジ部921の外周部で補強層912に引張力PFが作用して、ライナー911が引き延ばされて損傷するおそれがある。
【0088】
これに対し、本実施形態の高圧タンク10の製造方法は、繊維束F1(第1繊維束)を配置する工程において、内周面に雌ねじ16aを有するインサート16の外周に繊維束F1を配置する。これにより、ドーム部材22の突出部11bの内側に筒状のインサート16が配置され、インサート16が内周面に雌ねじ16aを有する高圧タンク10を製造することができる。
【0089】
これにより、バルブ18の外周面の雄ねじ18bをインサート16の内周面の雌ねじ16aに螺合させ、バルブ18を突出部22bの内側に配置された筒状のインサート16に取り付けることができる。このような構成により、高圧タンク10の内圧Pによる引張力は、ドーム部材22のドーム本体部22aと突出部22bとの連結部の全周に作用し、繊維束F1、F2の交差部など、特定の部分に応力が集中することが防止される。
【0090】
そのため、高圧タンク10の内圧Pがバルブ18に作用して突出部22bに高圧タンク10の軸方向外側への引張力が作用しても、特定の部分に対する応力集中を回避することができ、繊維束F1、F2の強度利用率を向上させることができる。したがって、繊維束F1、F2の使用量を削減して、高圧タンク10を軽量化することが可能になる。さらに、応力集中を防止することで、ライナー11の損傷を防止することができる。
【0091】
なお、繊維束F1(第1繊維束)は、インサート16の外周に配置した繊維束F2(第2繊維束)の外周に配置して、さらにその外周に繊維束F2を配置することで、繊維束F2の間の中間層に配置してもよい。この場合、繊維束F1の両面を繊維束F2に接着させることができる。
【0092】
第3実施形態のその他の効果は、上記第1実施形態と同様である。
【0093】
なお、今回開示された実施形態は、すべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は、上記した実施形態の説明ではなく特許請求の範囲によって示され、さらに特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれる。
【0094】
例えば、上記実施形態では、2つのドーム部材と筒部材とを別々に形成した後、これらを接合することによって補強層としての補強体を形成する例について説明したが、本発明はこれに限らない。例えば、公知の製造方法によって形成された樹脂製のライナーの表面に第1繊維束および第2繊維束を配置することによって、補強層の筒部材と2つのドーム部材とを同時に形成してもよい。この場合、筒部材と2つのドーム部材とを接合する工程は不要である。
【0095】
また、上記実施形態では、第1繊維束に熱可塑性樹脂が含浸されている例について説明したが、本発明はこれに限らず、第1繊維束に熱硬化性樹脂を含浸してもよい。この場合、第1繊維束を配置する工程において、第1繊維束を配置しながら、配置された第1繊維束に例えば熱風を吹き付けることによって、第1繊維束に含浸された熱硬化性樹脂を硬化することにより固化してもよい。ただし、熱可塑性樹脂を用いた方が容易に固化させることができるので、第1繊維束に含浸させる樹脂は、熱可塑性樹脂であることが好ましい。
【0096】
また、上記実施形態では、第2繊維束に熱硬化性樹脂が含浸されている例について説明したが、本発明はこれに限らず、第2繊維束に熱可塑性樹脂を含浸させてもよい。ただし、機械的強度の観点から、第2繊維束に含浸させる樹脂は、熱硬化性樹脂であることが好ましい。
【0097】
また、上記実施形態では、第1樹脂層121は、突出部22bからドーム本体部22aの周縁部まで配置されている例について説明したが、本発明はこれに限らず、第1樹脂層121は、突出部22bからドーム本体部22aまで配置されていれば、ドーム本体部22aの周縁部まで配置されていなくてもよい。すなわち、例えば図14に示すように、繊維束F1を、シャフト部202からマンドレル200の本体部201まで配置すれば、本体部201の周縁部まで配置しなくてもよい。
【0098】
また、上記実施形態では、筒部材を1つの部材によって形成する例について説明したが、本発明はこれに限らない。例えば、2つ以上の部材によって筒部材を形成してもよい。この場合、2つ以上の筒部材を互いに接合した後に、その両端にドーム部材を接合してもよい。また、ドーム部材に筒部材を1つずつ接合した後に、それらを接合してもよい。
【0099】
また、上記実施形態では、ライナーを準備した後、ライナーを覆うように筒部材およびドーム部材を配置して接合する例について説明したが、本発明はこれに限らない。例えば、筒部材とドーム部材とを接合して補強体を形成した後、補強体の内側にライナーを形成してもよい。この場合、例えば、樹脂材料として常温で流動性がある2種類以上の低分子量・低粘度の液体材料を用いて、反応射出成形(Reaction Injection Molding)法によってライナーを形成してもよい。また、ブロー成形のように、補強体の内部に、加熱して軟化した樹脂材料を筒状に押し出し、この筒状の樹脂材料の内部に圧縮空気を送り込むことでライナーを形成してもよい。また、溶射のように、補強体の内面に液状または軟化した樹脂材料を吹き付けることによってライナー11を形成してもよい。
【符号の説明】
【0100】
10:高圧タンク、11:ライナー、16:インサート、16a:雌ねじ、20:補強体(補強層)、21:筒部材、22,23:ドーム部材、22a:ドーム本体部、22b:突出部、22c:ガス流路、F1:繊維束(第1繊維束)、F2:繊維束(第2繊維束)、X:軸方向
図1
図2
図3
図4
図5
図6
図7
図8
図9
図10
図11
図12
図13
図14
図15
図16
図17
図18