IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ ウシオ電機株式会社の特許一覧

(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2023-10-04
(45)【発行日】2023-10-13
(54)【発明の名称】光処理装置及びその使用方法
(51)【国際特許分類】
   B01J 19/12 20060101AFI20231005BHJP
【FI】
B01J19/12 C
【請求項の数】 6
(21)【出願番号】P 2020003217
(22)【出願日】2020-01-10
(65)【公開番号】P2021109151
(43)【公開日】2021-08-02
【審査請求日】2022-03-25
(73)【特許権者】
【識別番号】000102212
【氏名又は名称】ウシオ電機株式会社
(74)【代理人】
【識別番号】110000729
【氏名又は名称】弁理士法人ユニアス国際特許事務所
(72)【発明者】
【氏名】澤田 隆志
(72)【発明者】
【氏名】石原 肇
【審査官】中村 泰三
(56)【参考文献】
【文献】特開2006-000760(JP,A)
【文献】特開2010-075888(JP,A)
【文献】特開2006-204970(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
A61L 9/18-20
B01J 19/08-12
B05C 9/00
B29C 71/04
C08J 7/18
(57)【特許請求の範囲】
【請求項1】
光源が収容されると共に、前記光源から出射される紫外光の光取り出し面を有する光源収容室と、
壁体に取り囲まれた有底筒状体を呈する収容領域であって、前記光源収容室の外側で前記光取り出し面に対向して位置し、前記光取り出し面を介して前記紫外光が照射される処理室と、
前記壁体の外側に形成され、前記処理室内の雰囲気ガスを外部に排気するための通気路とを備え、
前記処理室は、
前記壁体の一部箇所に形成され、所定のガスを前記処理室内に導入するガス導入口と、
前記壁体の一部箇所であって前記ガス導入口が形成されている箇所とは異なる箇所に形成され、前記処理室と前記通気路とを連絡する連絡口とを有し、
前記通気路は、
前記連絡口とは異なる箇所において、前記処理室外の外気を前記通気路内に導入するための外気導入口と、
前記外気導入口から導入された前記外気と、前記連絡口を通じて前記処理室から流出された前記雰囲気ガスとの混合ガスを排気する排気口とを有し、
前記光源収容室が前記処理室の底部に対向する開放面に隣接して前記処理室の前記開放面を閉塞することを特徴とする、光処理装置。
【請求項2】
前記連絡口は、前記外気導入口よりも前記排気口に近い位置に形成されていることを特徴とする、請求項1に記載の光処理装置。
【請求項3】
前記通気路は、前記連絡口が形成されている箇所に対向する箇所、及び、前記連絡口から見て前記外気導入口の側に位置する箇所を閉塞する遮蔽壁を有することを特徴とする、請求項1又は2に記載の光処理装置。
【請求項4】
前記通気路は、前記処理室の前記壁体の外側面に連結されてなる筒状空間であることを特徴とする、請求項1~3のいずれか1項に記載の光処理装置。
【請求項5】
前記連絡口の開口面積は、前記外気導入口の開口面積よりも小さいことを特徴とする、請求項1~4のいずれか1項に記載の光処理装置。
【請求項6】
請求項1~5のいずれか1項に記載の光処理装置の使用方法であって、
前記処理室内を前記雰囲気ガスによって陽圧にした状態で、前記排気口から外部に排気することで、前記外気導入口から前記通気路内に導入された前記外気と共に、前記連絡口を通じて前記処理室から流出された前記雰囲気ガスを、前記排気口から排気することを特徴とする、光処理装置の使用方法。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、光処理装置に関し、特に所定のガス雰囲気内で紫外光を照射することで処理対象物(ワーク)に対して処理を行う光処理装置に関する。また、本発明は、このような光処理装置の使用方法に関する。
【背景技術】
【0002】
従来、紫外光を発する誘電体バリア放電ランプ(エキシマランプとも称される。)を収容したランプハウスと、このランプハウスに対向する位置にワークを収納する処理室とを有し、ワークに対して紫外光を照射することでワークに対して洗浄や表面処理を行う技術が知られている(例えば、下記特許文献1参照)。
【先行技術文献】
【特許文献】
【0003】
【文献】特開2003-144913号公報
【発明の概要】
【発明が解決しようとする課題】
【0004】
特許文献1では、200nm以下の真空紫外光をワークに対して照射することで、ワークに対する処理を行うことが記載されている。ここで、真空紫外光は、酸素によって吸収されてしまうため、処理室内における酸素濃度が高いと、ワークに対して処理に必要な照射光量の紫外光を照射させることができず、ワークに対して所望の処理が行えないおそれがある。かかる観点から、処理室内に窒素ガスを導入しながら処理室内の雰囲気ガスを排気することで、処理室内の酸素濃度を所定の範囲内に保持させる制御が行われる。
【0005】
図12は、従来の処理室の構造を模式的に示す斜視図である。なお、図12では、説明の都合上、処理室90内に通常設置される他の構造部品については、図示が省略されている。
【0006】
従来の処理室90は、窒素ガスなどの所定のガスを処理室に導入するためのガス導入口91と、処理室90内の雰囲気を外部に排気するための排気口92とを備えている。この排気口92は、例えば工場の排気機構に接続されている。より具体的には、工場に設置されたブロワによって、排気口92からの排気が外部に引き出されている。
【0007】
工場などでは、大型のブロワによって複数の排気系統からの排気が一括して吸引されて外部に送り出されるのが一般的である。このような構成の場合、排気口が接続されている他の装置の運転状態が変更されると、排気系統から排気される流量が変動してしまう。このことは、処理室90から雰囲気ガスが排気される流量が変動することを意味する。
【0008】
仮に、ガス導入口91から導入される窒素ガスの流量が一定である場合、処理室90から排気される雰囲気ガスの流量が変動すると、処理室90内の酸素濃度が変動する。この理由は、処理室90の壁には微小な孔が不可避的に存在することによる。
【0009】
図12には図示されていないが、処理室90にはいくつかの構造部品が配置されている。これらの構造部品のうち、例えば、ワークを載置するためのステージや、このステージの駆動機構などは、処理室90の壁を貫通するように構成されるのが一般的である。このような事情により、処理室90を完全に密閉空間として形成することは現実的に難しく、処理室90の壁には微小な孔が存在する。
【0010】
処理室90内の雰囲気ガスとしては、できるだけ酸素濃度を低く設定することが求められる。ここで、処理室90が陽圧でない状態において、仮に、排気系統からの排気流量がガス導入口91から導入される窒素ガスの流量を超えると、図13Aに示すように、処理室90の壁に形成された孔93を通じて、処理室90の外側の大気が処理室90内に流入し(気流Va)、処理室90内の雰囲気ガスに含まれる酸素濃度が上昇する。このような事態を避けるためには、従来の処理室90によれば、処理室90内を陽圧にした状態で、排気流量の変動に応じてガス導入口91から導入される窒素ガスの流量が制御する必要がある。しかし、かかる制御を行ったとしても、処理室90内の酸素濃度を精度良く目的の値に設定するのは極めて難しい。
【0011】
一方、処理室90が陽圧に設定された状態において、排気系統から排気される流量が急に低下すると、図13Bに示すように、処理室90の壁に形成された孔93を通じて雰囲気ガスが作業空間に漏れ出すおそれがある(気流Vb)。雰囲気ガスが窒素を多く含む場合、作業空間内の窒素濃度が上がってしまい、作業員への安全面の観点からはあまり好ましくない。更に、処理室90に対して真空紫外光が照射されるような場合には、処理室90の雰囲気ガスに含まれる酸素分子からオゾンが生成され、このオゾンが孔93を通じて作業空間に漏れ出すおそれもある。
【0012】
処理室90の壁に完全に孔93をなくす方法としては、処理室90を真空チャンバで構成する方法が挙げられる。しかし、真空環境を実現するためには、装置価格が高騰してしまう。
【0013】
本発明は、上記の課題に鑑み、簡易な構成によって、処理室内を所望の雰囲気環境に制御しやすく、且つ、作業空間側に雰囲気ガスが漏れにくい、光処理装置を提供することを目的とする。また、本発明は、このような光処理装置の使用方法を提供することを別の目的とする。
【課題を解決するための手段】
【0014】
本発明に係る光処理装置は、
光源が収容されると共に、前記光源から出射される紫外光の光取り出し面を有する光源収容室と、
壁体に取り囲まれた収容領域であって、前記光源収容室の外側で前記光取り出し面に対向して位置し、前記光取り出し面を介して前記紫外光が照射される処理室と、
前記壁体の外側に形成され、前記処理室内の雰囲気ガスを外部に排気するための通気路とを備え、
前記処理室は、
前記壁体の一部箇所に形成され、所定のガスを前記処理室内に導入するガス導入口と、
前記壁体の一部箇所であって前記ガス導入口が形成されている箇所とは異なる箇所に形成され、前記処理室と前記通気路とを連絡する連絡口とを有し、
前記通気路は、
前記連絡口とは異なる箇所において、前記処理室外の外気を前記通気路内に導入するための外気導入口と、
前記外気導入口から導入された前記外気と、前記連絡口を通じて前記処理室から流出された前記雰囲気ガスとの混合ガスを排気する排気口とを有することを特徴とする。
【0015】
上記構成によれば、排気口が工場の排気機構に接続されている場合において、この排気機構による排気流量が変動したとしても、外気導入口から通気路に導入される外気の流量が変動することで追随できる。すなわち、ガス導入口から導入されるガスの流量と、連絡口を通じて通気路に流出する処理室内の雰囲気ガスの流量の比率は、排気口の排気流量の変動にかかわらず、ほぼ1:1に設定することができる。これにより、ガス導入口からのガスの流量を緻密に制御することなく、処理室を所望の雰囲気環境に制御することが可能となる。
【0016】
なお、上記構成において、排気口からの排気流量V0は、連絡口を通じて処理室内の雰囲気ガスが通気路に流出する流量V2と比べて、充分高い値となる。言い換えれば、排気口からの排気流量V0は、ガス導入口からの処理室内に導入されるガスの流量V1と比べて、充分高い値となる。例えば、光処理装置の運転時におけるV0/V1の値は、2以上、50以下である。
【0017】
また、仮に排気口に連絡されている排気流量が急に低下したとしても、外気導入口から通気路に導入される外気の流量が低下することで追随できるため、処理室が極めて高い陽圧状態に推移することはない。従って、かかる場合において、処理室の壁体に孔が形成されていたとしても、この孔から処理室内の雰囲気ガスが作業空間側に漏れ出すことが抑制される。
【0018】
前記光源は、例えば、真空紫外光を発するエキシマランプで構成することができる。その他の例としては、水銀ランプ、半導体レーザ光源、LED光源なども利用することができる。
【0019】
前記連絡口は、前記外気導入口よりも前記排気口に近い位置に形成されているのが好適である。
【0020】
これにより、外気導入口から通気路内に導入された外気の気流に、連絡口を通じて処理室から流れ出た雰囲気ガスが合流して、排気口に向かって流される。
【0021】
前記通気路は、前記連絡口が形成されている箇所に対向する箇所、及び、前記連絡口から見て前記外気導入口の側に位置する箇所を閉塞する遮蔽壁を有するものとしても構わない。
【0022】
連絡口を通じて処理室から通気路に流出した雰囲気ガスは、その大部分が、外気導入口から通気路内に導入された外気の気流に沿って排気口側に進行する。しかし、一部の雰囲気ガスは、連絡口に対向する位置に配置された遮蔽壁に衝突して、外気導入口側に拡散することも起こり得る。上記の構成によれば、連絡口から見て外気導入口の側に位置する箇所にも遮蔽壁が設けられているため、仮に、拡散した雰囲気ガスの一部が、外気導入口側に進行したとしても、この遮蔽壁に衝突した後、外気導入口から通気路内に導入された外気の気流に沿って排気口側に導かれる。これにより、処理室内の雰囲気ガスが、外気導入口を通じて作業空間側に排出される懸念が大幅に抑制される。
【0023】
前記通気路は、前記処理室の前記壁体の外側面に連結されてなる筒状空間であるものとしても構わない。
【0024】
かかる構成によれば、既存の処理室の外側面に、筒状空間を構成するための部材を連結させることで、処理室内の雰囲気ガスの制御が容易な光処理装置を実現できる。
【0025】
前記連絡口の開口面積は、前記外気導入口の開口面積よりも小さいものとしても構わない。
【0026】
また、本発明は、上記構成の光処理装置の使用方法であって、
前記処理室内を前記雰囲気ガスによって陽圧にした状態で、前記排気口から外部に排気することで、前記外気導入口から前記通気路内に導入された前記外気と共に、前記連絡口を通じて前記処理室から流出された前記雰囲気ガスを、前記排気口から排気することを特徴とする。
【発明の効果】
【0027】
本発明によれば、簡易な構成によって、処理室内を所望の雰囲気環境に制御しやすく、且つ、作業空間側に雰囲気ガスが漏れにくい、光処理装置が実現される。
【図面の簡単な説明】
【0028】
図1】本発明に係る光処理装置の一実施形態の構造を模式的に示す図面である。
図2A】光処理装置が備える処理室の構造を模式的に示す斜視図である。
図2B】処理室を図2Aとは異なる方向から見たときの模式的な斜視図である。
図3】処理室をZ方向に見たときの模式的に示す平面図である。
図4】通気路が形成されている領域の一部拡大図である。
図5図4から通気路の一部の壁面の図示を省略した図面である。
図6A】連絡口の近傍に位置する通気路の構造を模式的に示す平面図である。
図6B】連絡口の近傍に位置する通気路を図6Aとは異なる方向から見たときの、模式的な平面図である。
図7】実施例及び比較例の処理室に対して、排気系統に接続しながら窒素ガスを所定流量で導入したときの、酸素濃度の時間変化を示すグラフである。
図8】別実施形態の処理室を模式的に示す平面図である。
図9】別実施形態の処理室を模式的に示す平面図である。
図10A】別実施形態の処理室が備える通気路の近傍を、図5にならって図示した模式的な斜視図である。
図10B図10Aに示す通気路をY方向から見たときの模式的な平面図である。
図11】別実施形態の処理室が備える通気路の近傍を、図5にならって図示した模式的な斜視図である。
図12】従来の処理室の構造を模式的に示す斜視図である。
図13A】従来の処理室の構造を模式的に示す平面図である。
図13B】従来の処理室の構造を模式的に示す平面図である。
【発明を実施するための形態】
【0029】
本発明に係る光処理装置及びその使用方法の実施形態につき、適宜図面を参照して説明する。なお、以下の各図面は、いずれも模式的に図示されたものであり、実際の寸法比と図面上の寸法比は必ずしも一致しない。また、各図面間においても、寸法比は必ずしも一致していない。
【0030】
図1は、本発明に係る光処理装置の一実施形態の構造を模式的に示す図面である。光処理装置1は、紫外光を発する光源3が収容される光源収容室5と、処理対象であるワーク7が載置されるステージ9が収容される処理室10とを備える。光源収容室5には、光源3から出射される紫外光を取り出すための光取り出し面5aが設けられている。処理室10は、この光取り出し面5aに対して対向する位置に配置されている。
【0031】
図1に示す光処理装置1では、光源収容室5は上部カバー13内に収容されており、処理室10は下部カバー15内に収容されている。上部カバー13を開けて、ステージ9の上面にワーク7が載置された後、上部カバー13が閉じられることで、処理室10内は実質的に閉塞空間とされる。
【0032】
図2Aを参照して後述されるように、処理室10には、所定のガス(V1)を処理室10内に導入するためのガス導入口21が設けられている。ガス導入口21からガス(V1)が導入されることで、処理室10内は、ワーク7に対する処理に適した雰囲気下とされる。
【0033】
光源3を点灯させると、光源3から出射された紫外光が光取り出し面5aを介して処理室10内のワーク7に対して照射される。ワーク7は、処理室10において設定された雰囲気下で紫外光が照射されることで、所望の処理が施される。一例として、光源3からはピーク波長が200nm以下の真空紫外光がワーク7に対して照射されることで、ワーク7に対する洗浄処理や表面改質処理が行われる。
【0034】
図1に示す光処理装置1が備える光源3としては、一例として、Xe(キセノン)ガスが主たる発光ガスとして封入されたエキシマランプとすることができる。ただし、発光ガスの種類は、紫外光の波長によって適宜選択される。また、光源3は、ランプに限らず、LDやLEDといった固体光源であっても構わない。
【0035】
以下、光処理装置1が備える処理室10について説明する。図2A及び図2Bは、処理室10の構造を模式的に示す斜視図である。図2Bは、図2Aから見る方向を異ならせて図示された図面である。なお、図2A及び図2Bでは、説明の都合上、処理室10内に配置されている、ステージ9などの構造部品の図示が省略されている。後述する図3等においても同様である。
【0036】
また、以下の説明では、図2A及び図2Bに表示されているXYZ座標系が適宜参照される。このXYZ座標系を参照すると、図3は、図2A及び図2Bに示す処理室10をZ方向に見たときの模式的に示す平面図である。
【0037】
処理室10は、Z方向を取り囲むように構成された壁体30及び底部31を有した、有底筒状体を呈する収容領域である。壁体30及び底部31を構成する材料は限定されないが、例えば、ステンレス鋼などの金属で形成される。処理室10の寸法は、任意であるが、例えばX×Y×Z=500mm×500mm×250mmである。
【0038】
図2A図2B及び図3に示す例では、処理室10を構成する壁体30は、YZ平面に平行な壁面(30a,30c)と、XZ平面に平行な壁面(30b,30d)とを有している。このうち、壁面30aの一部箇所には、処理室10を所望の雰囲気に設定すべく、所定のガス(V1)を導入するための、ガス導入口21が形成されている。また、壁面30b及び壁面30cの一部箇所には、それぞれ、処理室10内の雰囲気ガス(V3)を処理室10外へ流出させるための、連絡口22が形成されている。
【0039】
更に、図2A図2B、及び図3に示される処理室10は、壁面30b及び壁面30cの外側面に形成された、筒状空間を呈した通気路40を有する。この通気路40は、壁面30b及び壁面30cに形成された連絡口22を介して、処理室10と連絡される。本実施形態の処理室10では、壁面30bの外側面に形成されてX方向に延在して形成された通気路40と、壁面30cの外側面に形成されてY方向に延在して形成された通気路40とが合流するように構成されている。
【0040】
通気路40は、処理室10の外側において外気が導入される外気導入口41と、排気系統に連絡される排気口43とを有する。より詳細には、外気導入口41は、通気路40内において、排気口43から見て連絡口22よりも遠い位置に配置される。別の言い方をすると、連絡口22は、外気導入口41よりも排気口43に近い位置に形成されている。この点につき、図4及び図5を参照して説明する。
【0041】
図4は、通気路40が形成されている領域の一部拡大図である。図4では、代表的に壁面30bに形成されている通気路40が図示されている。また、図5は、説明の都合上、図4から通気路40を構成する一部の壁面の図示が省略されている。
【0042】
図4及び図5に示す通気路40は、処理室10の壁体30(ここでは壁面30b)と遮蔽壁50とによって覆われることで形成された、筒状の空間である。ここで、図4及び図5に示すように、遮蔽壁50の一部の箇所に開口が形成されており、この開口によって外気導入口41が形成されている。なお、図示が省略されているが、壁面30c側に形成されている通気路40についても、同様に外気導入口41が形成されている。
【0043】
外気導入口41の開口面積は、連絡口22の開口面積よりも大きい。一例として、連絡口22は直径約10mmの円形状を呈し、外気導入口41は、約30mm×70mmの矩形状を呈する。なお、連絡口22及び外気導入口41の形状は、任意である。
【0044】
処理室10内を所定の雰囲気ガスに設定する方法について、再び図3を参照しながら説明する。V0~V3はいずれもガスの流れを示す符号である。
【0045】
初期段階では、処理室10内には大気が存在している。処理室10内の酸素濃度を低下させるために、ガス導入口21から、窒素などの所定のガスが処理室10内に導入される(ガス流V1)。ここで、排気口43が排気系統に連絡されていない状態とすることで、処理室10内は陽圧状態となる。
【0046】
引き続き、ガス導入口21からガスを処理室10内に導入しながら、排気口43を排気系統に接続すると、通気路40を通流したガスが排気口43に導かれる(ガス流V0)。このとき、上述したように、通気路40には、処理室10外の外気と連絡されている外気導入口41が形成されているため、外気導入口41から外気が通気路40内に取り込まれ(ガス流V2)、排気流量に応じた流量で通気路40を通じて排気口43に導かれる。一方、処理室10内は陽圧状態であるため、ガス導入口21から導入されたガスの流量とほぼ同等の流量で、処理室10内の雰囲気ガスが連絡口22を通じて通気路40に流出される(ガス流V3)。そして、通気路40内に流出された雰囲気ガス(V3)は、外気導入口41から導入された外気(V2)と混合されて、排気口43に導かれる(V0)。
【0047】
例えば、ガス導入口21から導入されるガスの流量が100L/minであり、排気系統の排気流量が2000L/minである場合には、通気路40の2箇所に設けられた外気導入口41から、それぞれ950L/minの流量で外気が通気路40内に取り込まれる。このとき、処理室10からは、ガス導入口21から導入されるガス流量とほぼ同等の、約100L/minの流量で、雰囲気ガスが連絡口22を通じて通気路40へと流出される。
【0048】
ここで、上述したように、排気系統の排気流量は、外的な要因によって変動することが想定される。例えば、あるタイミングで排気流量が1800L/minに低下したとする。この場合、排気流量の変化に追随して、外気導入口41から取り込まれる外気の流量が低下する。すなわち、排気流量が低下しても、処理室10から通気路40へと流出される雰囲気ガスの流量は、依然として、ガス導入口21から導入されるガス流量とほぼ同等の約100L/minが維持される。このため、処理室10の壁体30に孔が形成されていたとして、排気流量が仮に低下した場合であっても、孔を通じて処理室10内の雰囲気ガスが処理室10の外側の作業空間に流出する事象が抑制される。
【0049】
また、例えば、あるタイミングで排気流量が2200L/minに上昇したとする。この場合、排気流量の変化に追随して、外気導入口41から取り込まれる外気の流量が上昇する。すなわち、排気流量が上昇しても、処理室10から通気路40へと流出される雰囲気ガスの流量は、依然として、ガス導入口21から導入されるガス流量とほぼ同等の約100L/minが維持される。このため、処理室10の壁体30に孔が形成されていたとして、排気流量が仮に上昇した場合であっても、孔を通じて処理室10の外側の外気が処理室10内に入り込んで雰囲気ガスの酸素濃度が上昇する事象が抑制される。
【0050】
つまり、本実施形態の光処理装置1が備える処理室10によれば、外部に排気される排気流量が変化したとしても、処理室10の雰囲気ガスの排気流量にほとんど影響が生じない。よって、例えばガス導入口21から導入されるガス流量を一定とすることで、ガスの導入時間によって、処理室10内の雰囲気の酸素濃度を容易に制御できる。つまり、処理室10内の雰囲気環境の制御性が従来よりも大幅に向上する。
【0051】
図6A及び図6Bは、連絡口22の近傍に位置する通気路40の構造を模式的に示す平面図である。本実施形態の処理室10が備える通気路40は、上述したように、遮蔽壁50と壁体30(ここでは壁面30b)とによって覆われてなる筒状空間である。以下の説明では、XZ平面に平行な壁面30bに形成されている通気路40を例に挙げて説明するが、XY平面に平行な壁面30cに形成されている通気路40においても同様の議論が可能である。
【0052】
図6Aに示すように、連絡口22に対して対向する位置には遮蔽壁50(遮蔽壁50b)が形成されている。これにより、連絡口22から通気路40内に-Y方向に流出した雰囲気ガス(V3)の一部は、遮蔽壁50bに衝突した後、外気導入口41から導入された、流量の大きい外気(V2)の流れに乗って、通気路40内を+X方向に流されて排気口43に導かれる。
【0053】
ところで、連絡口22から流出した雰囲気ガス(V3)のうち、遮蔽壁50bに衝突した雰囲気ガス(V3)の一部は、排気口43とは反対側(-X側)、すなわち、外気導入口41側に拡散することが考えられる。このため、仮に、連絡口22と外気導入口41とがX方向に関して極めて近接して位置しているような場合には、連絡口22から流出した雰囲気ガス(V3)のごく一部が、外気導入口41を通じて処理室10の外側に漏れ出る可能性が考えられる。
【0054】
かかる観点から、図6Bに示すように、連絡口22から見て外気導入口41の側に位置する箇所、すなわち-X側の位置には遮蔽壁50aが設けられているのが好ましい。これにより、図6Bに模式的に示すように、連絡口22から流出された雰囲気ガス(V3)が、仮に、遮蔽壁50bに衝突した後に外気導入口41側に進行したとしても、遮蔽壁50aに衝突するため、外気導入口41を介して処理室10の外側に漏れ出る懸念が大きく低下する。
【0055】
図7は、実施例と比較例の検証結果を示すグラフである。実施例は、本実施形態の処理室10に対応し、比較例1は、図12に示す従来の処理室90に対応する。詳細には、図7は、それぞれの処理室(10,90)を排気系統に接続した状態で、100L/minで窒素ガスを流入し続けたときの、処理室(10,90)内の酸素濃度の変化をグラフ化したものである。いずれの場合も、検証開始時における処理室(10,90)内は実質的に窒素ガス雰囲気とされた。
【0056】
比較例1では、処理室90の排気口92から排気される流量が、検証開始時に100L/minに設定された後、排気流量の設定値が変更されなかった。実施例1では、処理室10の排気口43から排気される流量が、検証開始時に2,000L/minに設定された後、排気流量の設定値が変更されなかった。
【0057】
図7によれば、比較例では、検証開始時から90分後、150分後、210分後に、処理室90内の雰囲気ガスに含まれる酸素濃度が上昇していることが確認された。これに対し、実施例では、時間経過にかかわらず、処理室10内の雰囲気ガスに含まれる酸素濃度の変動が確認されなかった。
【0058】
「発明が解決しようとする課題」の項で上述したように、排気系統に接続されている他の装置の運転状況によって、排気流量は変動する。比較例では、排気流量が変動したことにより、窒素ガスの導入流量よりも排気流量が上昇した結果、処理室90に不可避的に形成されている孔93を通じて外気が導入されたことで、処理室90内の酸素濃度が上昇したものと推察される。これに対し、実施例では、排気流量が変動した場合であっても、外気導入口41から通気路40内に取り込まれる外気の量が変動することで排気流量の変動に追随できるため、処理室10から流出される雰囲気ガスの流量が変動しなかったものと推察される。
【0059】
[別実施形態]
以下、別実施形態につき説明する。
【0060】
〈1〉上記実施形態では、通気路40がZ方向に見てL字状に形成され、異なる2つの壁面(30b,30c)に連絡口22が形成されているものとして説明した。しかし、本発明において、連絡口22の形成数は限定されない。例えば、図8に模式的に示すように、通気路40は、処理室10を構成する壁体30の一の壁面30cのみに沿って形成され、連絡口22はこの壁面30cにのみ形成されているものとしても構わない。
【0061】
なお、連絡口22は、同一の壁面上に複数箇所に配置されていても構わない。
【0062】
〈2〉図4図6Bを参照して説明した上記実施形態の処理室10では、外気導入口41側に雰囲気ガスV3が流出するのを抑制する目的で設けられた遮風壁50aが、筒状空間を構成する通気路40の一部の壁面を構成していた。しかし、この遮風壁50aは、通気路40を構成する壁面とは独立していても構わない(図10A図10B参照)。
【0063】
図10Aは、この別実施形態の処理室10が備える通気路40の近傍を、図5にならって図示した模式的な斜視図である。図10Bは、図10Aに示す通気路40を、Y方向から見たときの模式的な平面図である。図10A及び図10Bに示す例では、遮風壁50aは、X方向に関して連絡口22よりも外気導入口41側の位置において処理室10の壁面30bに固定され、-Y方向に突出した面(ここではYZ平面に平行な面)を有している。この遮風壁50aの面によって、連絡口22を通じて通気路40に流出した雰囲気ガスV3が、外気導入口41側(図10Bにおける-X側)に進行しても、遮風壁50aの面に衝突ため、外気導入口41を介して処理室10の外側に漏れ出る懸念が大きく低下する。
【0064】
〈3〉図6Bを参照して上述したように、上記実施形態では、通気路40は、連絡口22から見て外気導入口41の側に位置する箇所に遮蔽壁50(50a)が設けられているものとした。しかし、処理室10が備える通気路40が、外気導入口41の側に遮蔽壁50aを設けない構成も、本発明の範囲内である(図11参照)。
【0065】
図11は、この別実施形態の処理室10が備える通気路40の近傍を、図5にならって図示した模式的な斜視図である。特に図11に示すように、連絡口22が外気導入口41から充分離れた箇所に配置されている場合(距離d1が大きい場合)には、図11に示すように、連絡口22から見て外気導入口22側に遮蔽壁50(50a)が設けられていなくても、連絡口22を通じて通気路40に流出した雰囲気ガスV3が、外気導入口41を通じて処理室10の外側に排出される懸念は極めて低くなる。これは、上述したように、そもそも連絡口22を通じて通気路40に流出する雰囲気ガスV3の流量に比べて、外気導入口41から導入される外気V2の流量が充分大きいためである。
【0066】
〈4〉上記実施形態では、通気路40が、処理室10の壁体30の壁面に連結されている場合について説明した。しかし、本発明はこの限りではない。例えば、図9に模式的に示すように、連絡口20には通気用の管体60が連結されており、この管体60が、外気導入口41が設けられた通気路40と処理室10の外側で連結されているものとしても構わない。
【0067】
〈5〉本発明において、通気路40の形状は任意である。また、処理室10の形状も任意である。例えば、上記実施形態では、図2A及び図2Bに示すように、処理室10が壁体30によって四方が覆われた直方体形状を呈している場合を例に挙げて説明したが、処理室10が円筒形状であっても構わない。この場合、壁体30は曲面構造で構成される。
【0068】
〈6〉上記実施形態では、図1に示すように、光源収容室5が処理室10の上方に位置する場合を例に挙げて説明したが、これはあくまで一例である。処理室10が光源収容室5に設けられた光取り出し面5aに対して対向する位置に配置されている限りにおいて、光源収容室5と処理室10との配置態様は任意である。
【符号の説明】
【0069】
1 :光処理装置
3 :光源
5 :光源収容室
5a :光取り出し面
7 :ワーク
9 :ステージ
10 :処理室
13 :上部カバー
15 :下部カバー
21 :ガス導入口
22 :連絡口
30 :壁体
30a :壁面
30b :壁面
30c :壁面
31 :底部
40 :通気路
41 :外気導入口
43 :排気口
50 :遮蔽壁
90 :処理室
91 :ガス導入口
92 :排気口
93 :孔
図1
図2A
図2B
図3
図4
図5
図6A
図6B
図7
図8
図9
図10A
図10B
図11
図12
図13A
図13B