(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2023-10-04
(45)【発行日】2023-10-13
(54)【発明の名称】異常位置特定装置、システム及びプログラム
(51)【国際特許分類】
G01R 31/08 20200101AFI20231005BHJP
【FI】
G01R31/08
(21)【出願番号】P 2019190474
(22)【出願日】2019-10-17
【審査請求日】2022-09-27
(73)【特許権者】
【識別番号】000196565
【氏名又は名称】西日本電線株式会社
(73)【特許権者】
【識別番号】504224153
【氏名又は名称】国立大学法人 宮崎大学
(73)【特許権者】
【識別番号】000164438
【氏名又は名称】九州電力株式会社
(74)【代理人】
【識別番号】100099634
【氏名又は名称】平井 安雄
(72)【発明者】
【氏名】迫田 達也
(72)【発明者】
【氏名】川口 憲一
(72)【発明者】
【氏名】宮川 浩二
【審査官】田口 孝明
(56)【参考文献】
【文献】特開2005-121434(JP,A)
【文献】特開2014-190758(JP,A)
【文献】特開2018-205109(JP,A)
【文献】米国特許出願公開第2018/0275188(US,A1)
【文献】特開昭61-225666(JP,A)
【文献】特開2016-142659(JP,A)
【文献】特開2001-133504(JP,A)
【文献】特開平11-038074(JP,A)
【文献】特開2001-016722(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
IPC G01R 31/08-31/11
(57)【特許請求の範囲】
【請求項1】
ケーブルにおける一の地点と他の地点との間で発生した異常に係る異常電気信号が前記一の地点と前記他の地点とに到達した時間差である到達時間差を取得する第1の取得手段と、
前記ケーブル上を前記一の地点から前記他の地点への方向に流れる伝搬電気信号が前記一の地点から前記他の地点まで伝搬する期間である信号伝搬期間を取得する第2の取得手段と、
前記第1の取得手段により取得された前記到達時間差と、前記第2の取得手段により取得された前記信号伝搬期間と、前記一の地点から前記他の地点までの前記ケーブル上における距離と、に基づいて、前記異常が発生した位置を特定する第1の特定手段と、を備え
、
前記第1の取得手段は、前記一の地点において前記異常電気信号が計測された時刻と、前記他の地点において前記異常電気信号が計測された時刻と、の差分を前記到達時間差として取得する異常位置特定装置。
【請求項2】
請求項1に記載の異常位置特定装置において、
前記第1の取得手段は、
第1の計測部により前記一の地点において前記異常電気信号が計測された
前記第1の計測部の第1の内部時間における時刻と、
第2の計測部により前記他の地点において前記異常電気信号が計測された
前記第2の計測部の第2の内部時間における時刻と、の差分を前記到達時間差として取得
し、
前記第1の内部時間は、前記第1の計測部により用いられる設定されたデバイスが周期的に発する信号に基づく、時間であり、
前記第2の内部時間は、前記第1の内部時間と同期された時間であって、前記第2の計測部により用いられる設定されたデバイスが周期的に発する信号に基づく、時間である異常位置特定装置。
【請求項3】
請求
項2に記載の異常位置特定装置において、
前記第1の内部時間、及び、前記第2の内部時間は、前記第1の計測部のアンテナ部及び前記第2の計測部のアンテナ部により受信されたGPSに用いられるPPS(Pulse Per Second)信号に基づいて同期されている異常位置特定装置。
【請求項4】
請求項
2又は3に記載の異常位置特定装置において、
前記第1の計測部と前記第2の計測部とは、前記ケーブルを伝搬する電気信号を、接地線を介さずに検知するセンサを用いて、前記ケーブルを伝搬する電気信号を計測する異常位置特定装置。
【請求項5】
請求項
1乃至4の何れか1項に記載の異常位置特定装置において、
前記第2の取得手段は、前記距離に応じた周波数の電気信号である前記伝搬電気信号が前記一の地点から前記他の地点まで伝搬する期間を前記信号伝搬期間として取得する異常位置特定装置。
【請求項6】
請求項1乃至5の何れか1項に記載の異常位置特定装置において、
前記一の地点、又は前記他の地点で計測された前記異常電気信号の大きさと、前記ケーブルにおける電気信号の減衰特性と、前記第1の特定手段により特定された前記異常が発生した位置と、に基づいて、前記異常の規模を特定する第2の特定手段を更に備える異常位置特定装置。
【請求項7】
請求
項6に記載の異常位置特定装置において、
前記第2の特定手段は、前記ケーブル上において前記一の地点と前記他の地点との間に前記ケーブルの分岐部が存在する場合、前記一の地点、又は前記他の地点で計測された前記異常電気信号の大きさと、前記ケーブルにおける電気信号の減衰特性と、前記分岐部における電気信号の分岐特性と、前記第1の特定手段により特定された前記異常が発生した位置と、に基づいて、前記異常の規模を特定する異常位置特定装置。
【請求項8】
請求項
1乃至7
の何れか1項に記載の異常位置特定装置において、
前記第1の特定手段は、前記ケーブル上の前記一の地点と前記他の地点との間に1つ以上の接続部が存在する場合、前記第1の取得手段により取得された前記到達時間差と、前記第2の取得手段により取得された前記信号伝搬期間と、前記距離と、に基づいて、前記1つ以上の接続部の何れかの位置を、前記異常が発生した位置として特定する異常位置特定装置。
【請求項9】
ケーブル上の一の地点に設置される第1のセンサと、前記ケーブル上の他の地点に設置される第2のセンサと、前記ケーブルに電気信号を注入する注入部と、異常位置特定装置と、を含むシステムであって、
前記異常位置特定装置は、
前記ケーブルにおける前記一の地点と前記他の地点との間で発生した異常に係る異常電気信号が前記一の地点において前記第1のセンサを介して計測された時刻と、前記異常電気信号が前記他の地点において前記第2のセンサを介して計測された時刻と、の差分を、前記異常電気信号が前記一の地点と前記他の地点とに到達した時間差である到達時間差として取得する第1の取得手段と、
前記注入部により前記ケーブルに注入され、前記ケーブル上を前記一の地点から前記他の地点への方向に流れる伝搬電気信号が前記一の地点から前記他の地点まで伝搬する期間である信号伝搬期間を取得する第2の取得手段と、
前記第1の取得手段により取得された前記到達時間差と、前記第2の取得手段により取得された前記信号伝搬期間と、前記一の地点から前記他の地点までの前記ケーブル上における距離と、に基づいて、前記異常が発生した位置を特定する特定手段と、
を備えるシステム。
【請求項10】
コンピュータを、請求項1乃至8の何れか1項に記載の異常位置特定装置の各手段として機能させるためのプログラム。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、異常位置特定装置、システム及びプログラムに関する。
【背景技術】
【0002】
送配電線等のケーブル上で発生した部分放電等の異常を検知する技術がある。特許文献1には、複数個所の部分放電の発生位置を正確に標定可能とする技術が開示されている。また、特許文献2には、活線状態で電力ケーブル又は電気機器の絶縁劣化を診断することができ、かつ、部分放電箇所が電力ケーブルのどこで発生しているかを特定又は電気機器のどの辺で発生しているかを区別することのできる技術が開示されている。
【0003】
特許文献1、2等の従来技術では、ケーブルにおける電気信号の伝搬速度を一定の値であるとして、この伝搬速度を用いて異常が発生した位置を求めていた。ここで、従来行われていた、異常が発生した位置を求める手法の概要を、
図16を用いて説明する。
図16には、ケーブル1600上で部分放電1603が発生した状況が示されている。部分放電1603によりケーブル1600に生じた電流が地点1601まで伝搬する期間をt1、地点1602まで伝搬する期間をt2とする。ケーブル1600上における電流の伝搬速度をVとする。ケーブル1600上における地点1601と地点1602との距離を、L0とする。そして、ケーブル1600上で地点1601から地点1602の方向へ距離(L0/2-(t2-t1)・V/2)の地点(地点1602から地点1601の方向へ距離(L0/2+(t2-t1)・V/2)の地点)を、異常が発生した位置として特定する。以上が特許文献1、2等の従来技術で行われている異常が発生した位置を求める手法の概要である。
【先行技術文献】
【特許文献】
【0004】
【文献】特開2008-216141号公報
【文献】特開2015-230289号公報
【発明の概要】
【発明が解決しようとする課題】
【0005】
しかし、ケーブルにおける電気信号の伝搬速度は、ケーブルの状態によって変動しうる不安定な値である。例えば、経年によりケーブルの遮蔽層に酸化劣化や亀裂が生じた場合、ケーブルの接地層にインダクタンスが形成されることで、ケーブルにおける電気信号の伝搬速度が変化する。また、ケーブル本体とは異なる構造を有する接続材が存在すると伝搬速度が変化する。そのため、ケーブルにおける電気信号の伝搬速度を一定の値として、その一定の値を用いて異常が発生した位置を求める従来技術では、求められる異常の位置の精度に限界があった。
本発明は、ケーブルで発生した異常の位置をより精度よく特定することを目的とする。
【課題を解決するための手段】
【0006】
本発明の異常位置特定装置は、ケーブルにおける一の地点と他の地点との間で発生した異常に係る異常電気信号が前記一の地点と前記他の地点とに到達した時間差である到達時間差を取得する第1の取得手段と、前記ケーブル上を前記一の地点から前記他の地点への方向に流れる伝搬電気信号が前記一の地点から前記他の地点まで伝搬する期間である信号伝搬期間を取得する第2の取得手段と、前記第1の取得手段により取得された前記到達時間差と、前記第2の取得手段により取得された前記信号伝搬期間と、前記一の地点から前記他の地点までの前記ケーブル上における距離と、に基づいて、前記異常が発生した位置を特定する第1の特定手段と、を備えるものである。
このように、異常位置特定装置は、送配電線110上における電流の伝搬速度のように送配電線110の状態に応じて変化しうる不安定な値を用いずに異常が発生した位置を特定する。そのため、異常位置特定装置は、より精度よく異常が発生した位置を特定できる。
【図面の簡単な説明】
【0007】
【
図1】実施形態1に係る特定システムのシステム構成等の一例を示す図である。
【
図2】実施形態1に係る情報処理装置のハードウェア構成の一例を示す図である。
【
図3】実施形態1に係る情報処理装置の機能構成の一例を示す図である。
【
図4】実施形態1に係る特定システムの処理の一例を示すシーケンス図である。
【
図5】部分放電発生の際の等価回路の一例を示す図である。
【
図8】解析に用いられる電流パルスの一例を示す図である。
【
図11】実験に用いられた分岐接続筒を示す図である。
【
図15】実施形態2に係る特定システムのシステム構成等の一例を説明する図である。
【
図16】従来行われていた手法を説明する図である。
【発明を実施するための形態】
【0008】
以下、本発明を実施するための形態の一例について図面を用いて説明する。
【0009】
<実施形態1>
(概要)
現在、国内で使用される電力設備の多くは高経年化が進行し、特に電力ケーブルの劣化による事故や火災などが日本各地で後を絶たない。そのため、これらの電力ケーブルの安全性及び信頼性の確保は今後の大きな課題とされる。一方で、電力需要の頭打ちの傾向や電力自由化等を背景にした近年の電力事業では新規設備の導入や交換作業への多額の投資は難しく、保守、監視作業は効率的に低コストで実施できることが望ましい。このように電力ケーブルの高経年化及び、電力需要の減少によるコスト削減や経済的な設備運用が重要視される中、既設設備の円滑な運用と維持管理への関心が一層高まっている。
【0010】
発明者らは、部分放電等の異常検出による電力ケーブルの劣化箇所を活線状態で特定する技術の開発を行っている。同技術において、異常の発生箇所及びその規模を明らかにでき、不良ケーブル区間を特定することができるため経済的な保守管理を可能とする。本実施形態の特定システムは、異常により発生した電流パルスを2地点に配した電流センサで検出し、センサ間での到達時間の差から異常の発生した位置を特定する。
【0011】
本実施形態の特定システムは、ケーブルにおける異常が発生した位置を特定する。本実施形態では、異常が発生した位置を特定する対象となるケーブルは、地下送配電線である送配電線110である。また、本実施形態では、特定システムは、送配電線110の絶縁体内の部分放電を発生させる異常(異物、欠損、ボイド(気泡)、ギャップ等)が発生した位置を特定する。
【0012】
ただし、特定システムは、電気信号が伝搬されるケーブルであれば、他のケーブルについて、異常が発生した位置を特定することとしてもよい。例えば、特定システムは、電柱等に架空される配電線上の異常が発生した位置を特定することとしてもよい。また、例えば、特定システムは、通信ケーブル上の異常が発生した位置を特定することとしてもよい。また、特定システムは、部分放電を発生させる異常とは異なる他の異常が発生した位置を特定することとしてもよい。例えば、特定システムは、他のケーブルとの意図しない一時的な接触が発生した位置を特定することとしてもよい。
【0013】
(特定システムのシステム構成)
図1は、本実施形態の特定システムのシステム構成の一例等を示す図である。
特定システムは、情報処理装置100、101、アナログ/デジタル変換器102、103、アンテナ104、105、CT(Current Transformer)センサ106、107、電源装置108、インジェクションコイル109を含む。
【0014】
情報処理装置100は、送配電線110を流れる電流の計測を制御し、送配電線110上の異常の位置を特定する。本実施形態では、情報処理装置100は、パーソナルコンピュータ(PC)であるとするが、他の例として、サーバ装置、タブレット装置、スマートフォン等の他の情報処理装置であってもよい。情報処理装置100は、異常位置特定装置の一例である。
【0015】
情報処理装置101は、送配電線110を流れる電流の計測を制御し、情報処理装置100に対して、計測時刻等の情報を送信する。本実施形態では、情報処理装置101は、PCであるとするが、他の例として、サーバ装置、タブレット装置、スマートフォン等の他の情報処理装置であってもよい。
【0016】
情報処理装置100と情報処理装置101とは、ネットワーク112を介して相互に通信可能に接続されている。本実施形態では、ネットワーク112は、無線LAN(Local Area Network)であるとするが、他の例として、有線LAN、インターネット、複数の種類のネットワークが複合されたネットワーク等の他のネットワークであってもよい。
【0017】
ただし、情報処理装置100と情報処理装置101とは、ネットワーク112を介さずに接続されていることとしてもよい。例えば、情報処理装置100と情報処理装置101とは、有線ケーブルを介して接続されていることとしてもよい。例えば、情報処理装置100と情報処理装置101とは、無線通信機を介して接続されていることとしてもよい。
また、情報処理装置100と情報処理装置101とは、接続されていないこととしてもよい。その場合、情報処理装置100と情報処理装置101とは、通信と異なる方法(例えば、外付け記憶媒体を介して情報のやり取りを行う方法)で、情報のやり取りを行う。
【0018】
本実施形態では、情報処理装置100が、送配電線110における異常が発生した位置を特定する処理を行うこととする。ただし、情報処理装置101が、送配電線110における異常が発生した位置を特定することとしてもよい。その場合、例えば、以下で説明する情報処理装置100の機能及び処理と、情報処理装置101の機能及び処理と、が逆となる。また、情報処理装置100と情報処理装置101との双方が、送配電線110上における異常が発生した位置を特定する処理を行うこととしてもよい。
また、情報処理装置100、101と異なる他の情報処理装置が、送配電線110上における異常が発生した位置を特定する処理を行うこととしてもよい。その場合、例えば、他の情報処理装置が、ネットワーク112や外付け記憶媒体等を介して、情報処理装置100及び情報処理装置101と情報のやり取りを行い、送配電線110上における異常が発生した位置を特定する処理を行う。
【0019】
アナログ/デジタル変換器102は、設定されたサンプリング周波数(例えば、100MHz、10MHz、1MHz、100KHz、1GHz等)で、アンテナ104、CTセンサ106により検知された信号をデジタル化し、データ(デジタル信号)として情報処理装置100に送信する。アナログ/デジタル変換器103も、同様に、設定されたサンプリング周波数で、アンテナ105、CTセンサ107により検知された信号をデジタル化し、データとして情報処理装置101に送信する。情報処理装置100(101)は、アナログ/デジタル変換器102(103)を介して、アンテナ104(105)とCTセンサ106(107)と接続されている。
【0020】
アンテナ104、105は、それぞれ、GPS(登録商標)(Global Positioning System)に用いられるPPS(Pulse Per Second)信号を受信する。アンテナ104、105は、それぞれ、アンテナ部の一例である。
【0021】
CTセンサ106は、送配電線110における地点Aに設置され、地点Aを流れる電流を検知する。CTセンサ106は、第1のセンサの一例である。CTセンサ107は、送配電線110における地点Bに設置され、地点Bを流れる電流を検知する。CTセンサ107は、第2のセンサの一例である。本実施形態では、CTセンサ106、107それぞれは、送配電線110の遮蔽層の接地線、又は、送配電線110の遮蔽層上から送配電線110を流れる電流を検知できる電流センサである。本実施形態では、CTセンサ106、107それぞれは、遮蔽層からの接地線を介さずに、送配電線110の遮蔽層上から送配電線110を流れる電流を検知することとする。これにより、特定システムは、送配電線110が接地線のないケーブルである場合であっても、異常が発生した位置を特定できる。ただし、他の例として、CTセンサ106、107それぞれは、遮蔽層の接地線を介して送配電線110を流れる電流を検知することとしてもよい。以下では、地点Aから地点Bまでの送配電線110上における距離を、Lとおく。地点Aは、一の地点の一例である。地点Bは、他の地点の一例である。
【0022】
以下では、情報処理装置100とアナログ/デジタル変換器102とアンテナ104とCTセンサ106との組を、地点Aでの電流の計測を行う計測部Aとする。計測部Aは、第1の計測部の一例である。また、以下では、情報処理装置101とアナログ/デジタル変換器103とアンテナ105とCTセンサ107との組を、地点Bでの電流の計測を行う計測部Bとする。計測部Bは、第2の計測部の一例である。
【0023】
電源装置108は、インジェクションコイル109に対して電圧を印加する。インジェクションコイル109は、電源装置108から電圧が印加されると、送配電線110に対して電流を注入する。本実施形態では、インジェクションコイル109は、フェライトコアに銅箔テープを複数回巻いたものである。インジェクションコイル109は、フェライトコアの中空部を送配電線110が通るように設置されている。本実施形態では、インジェクションコイル109は、送配電線110上で、地点Aから見て地点Bと反対方向の地点に設置されている。
【0024】
インジェクションコイル109が電源装置108から電圧の印加を受けると、インジェクションコイル109内の交番磁界による誘導起電力が発生する。発生した誘導起電力によって抵抗を有する送配電線110に電流パルスが誘導されることとなる。このようにして、電源装置108とインジェクションコイル109とは、協働して送配電線110に電流を注入する。本実施形態では、電源装置108とインジェクションコイル109とは、送配電線110上を、地点Aから地点Bへの方向に流れる電流を注入する。以下では、送配電線110に注入される電流を、インジェクション電流とする。インジェクション電流は、伝搬電気信号の一例である。電源装置108とインジェクションコイル109との組は、送配電線110に電流を注入する注入部の一例である。
【0025】
本実施形態では、電源装置108は、ユーザによる電源装置108の操作部の操作に応じて、インジェクションコイル109に電圧を印加してインジェクション電流を送配電線110に注入する。ただし、電源装置108は、他のタイミングで、インジェクションコイル109に電圧を印加してインジェクション電流を送配電線110に注入することとしてもよい。例えば、電源装置108は、送配電線110を介して送電される電力に係る交流電圧の値が0となるタイミングで、インジェクションコイル109に電圧を印加してインジェクション電流を送配電線110に注入することとしてもよい。また、例えば、電源装置108は、送配電線110を介して送電される電力に係る交流電圧の値が最大値となるタイミングで、インジェクションコイル109に電圧を印加してインジェクション電流を送配電線110に注入することとしてもよい。
【0026】
このように本実施形態では、特定システムは、電源装置108とインジェクションコイル109とを用いて、インジェクション電流を注入することとした。ただし、特定システムは、設定された電流をインジェクション電流として送配電線110に注入することができれば、他の装置又はシステムを用いてインジェクション電流を注入することとしてもよい。例えば、特定システムは、送配電線110上で地点Aの近傍の接続部(地点Bの反対方向に位置する)に接続された電流発生装置を用いて、インジェクション電流を注入することとしてもよい。
また、送配電線110の稼働状態において、インジェクション電流として利用可能な電流が送配電線110を伝搬している場合、特定システム内に、インジェクション電流を注入する構成がないこととしてもよい。例えば、送配電線110を定期的に予め定められた電流が地点Aから地点Bの方向に流れている場合、特定システムは、その電流をインジェクション電流として用いることとしてもよい。
【0027】
送配電線110は、地下に設置される送電用のケーブルである。本実施形態では、送配電線110は、地点Aと地点Bとの間にケーブルの接続部111を含む。本実施形態では、接続部111は、送配電線110上の地点Aと地点Bとの間に3つ(接続部111A~C)含むこととするが、2つ以下(1つ、又は2つ)含むこととしてもよいし、4つ以上含むこととしてもよい。また、送配電線110は、地点Aと地点Bとの間に接続部111を含まないこととしてもよい。送配電線110を流れる電流は、送配電線110を介して伝搬する電気信号の一例である。
【0028】
本実施形態では、送配電線110の地点Aと地点Bとの間の地点において、送配電線110の異常に係る部分放電113が発生したとする。部分放電113の発生により、部分放電113の発生位置から、地点Aと地点Bとのそれぞれに向けて電流が流れる。以下では、異常を原因として送配電線110を介して伝搬する電流(本実施形態では、異常のある部分で生じた部分放電113により送配電線110に流れる電流)を異常電流とする。異常電流は、異常電気信号の一例である。本実施形態の特定システムは、異常が発生した位置として、部分放電113が発生した位置を特定する。
【0029】
(情報処理装置のハードウェア構成)
図2は、情報処理装置100のハードウェア構成の一例を示す図である。情報処理装置100は、CPU(Central Processing Unit)200、主記憶装置201、補助記憶装置202、入出力部203、デバイスI/F204、ネットワークI/F205を含む。各要素は、システムバス206を介して相互に通信可能に接続されている。
【0030】
CPU200は、情報処理装置100を制御するプロセッサ(演算装置)である。主記憶装置201は、CPU200のワークエリア、データの一時的な記憶領域等として機能するRadom Access Memory(RAM)等の記憶装置である。補助記憶装置202は、各種プログラム、各種設定情報等を記憶する記憶装置である。本実施形態では、補助記憶装置202は、ハードディスクドライブ(HDD)であるとするが、Read Only Memory(ROM)、ソリッドステートドライブ(SSD)等の他の記憶装置であってもよい。また、補助記憶装置202は、複数の記憶装置の組であってもよい。
【0031】
入出力部203は、ユーザからの情報の入力に用いられるマウス、キーボード、タッチパッド、タッチパネル、マイクロホン等の入力装置と、ユーザへの情報の提示に用いられるモニタ、タッチパネル、スピーカ等の出力装置と、を含む。
デバイスI/F204は、アナログ/デジタル変換器102等の外部のデバイスとの接続に用いられるインターフェースである。ネットワークI/F205は、ネットワーク112への接続に用いられるインターフェースである。CPU200は、ネットワークI/F205を介して、ネットワーク112を経由して、情報処理装置101と通信を行う。
【0032】
本実施形態では、情報処理装置101のハードウェア構成は、
図2で説明した情報処理装置100のハードウェア構成と同様であるとする。
以下では、情報処理装置100のハードウェア構成要素の番号200~206それぞれを、200A~206Aと記載する。また、以下では、情報処理装置101のハードウェア構成要素の番号200~206それぞれを、200B~206Bと記載する。
【0033】
CPU200Aが、補助記憶装置202Aに記憶されたプログラムにしたがって処理を実行することで、
図3で後述する情報処理装置100の機能、
図4で後述するシーケンス図における情報処理装置100の処理等が実現される。
また、CPU200Bが、補助記憶装置202Bに記憶されたプログラムにしたがって処理を実行することで、情報処理装置101の機能、
図4で後述するシーケンス図における情報処理装置101の処理等が実現される。
【0034】
(情報処理装置の機能構成)
図3は、情報処理装置100の機能構成の一例を示す図である。
情報処理装置100は、計測制御部300、通信制御部301、特定部302、出力制御部303を含む。
【0035】
計測制御部300は、送配電線110上の地点AにおけるCTセンサ106を介した電流の計測を制御する。また、計測制御部300は、内部時間を情報処理装置101と同期させる。計測制御部300の内部時間とは、計測制御部300が管理する時間である。
通信制御部301は、情報処理装置101等の外部の装置との間の通信を制御する。
【0036】
特定部302は、インジェクション電流が地点A及び地点Bまで伝搬する期間と、異常電流が地点A及び地点Bに到達する時間差と、地点A及び地点Bの間の送配電線110上における距離と、から、送配電線110上における異常が発生した位置を特定する。
出力制御部303は、特定部302が特定した、異常が発生した位置の情報を出力する。
【0037】
本実施形態では、情報処理装置101は、計測制御部300、通信制御部301と同様の機能構成要素を含む。ただし、情報処理装置101の計測制御部300は、送配電線110上の地点BにおけるCTセンサ107を介した電流の計測を制御する。また、情報処理装置101の通信制御部301は、情報処理装置100との間の通信を制御する。
以下では、情報処理装置100の機能構成要素の番号300~303それぞれを、300A~303Aと記載する。また、以下では、情報処理装置101のハードウェア構成要素の番号300、301それぞれを、300B、301Bと記載する。
【0038】
(異常位置特定のアルゴリズム)
ここで、本実施形態で特定システムが、異常が発生した位置を特定するアルゴリズムを説明する。
部分放電113が発生した地点から地点Aまでの送配電線110上の距離を、l1とおく。また、部分放電113が発生した地点から地点Bまでの送配電線110上の距離を、l2とおく。その場合、以下の式1が成り立つ。
L=l1+l2 (式1)
【0039】
部分放電113に係る異常電流が地点Aで計測される時刻を、tPDAとおく。また、部分放電113に係る異常電流が地点Bで計測される時刻を、tPDBとおく。また、部分放電113が発生した時刻をΔtxとおく。また、送配電線110上を電流が伝搬する速度をvとおく。その場合、以下の式2、式3が成り立つ。
l1 = (tPDA - Δtx)v (式2)
l2 = (tPDB - Δtx)v (式3)
【0040】
式1~式3より、以下の式4が成り立つ。
L = 11+12 = v(tPDA - Δtx + tPDB - Δtx)
= v (tPDA + tPDB - 2Δtx) (式4)
【0041】
式4より以下の式5が成り立つ。
Δtx = (tPDA + tPDB - L/v)/2 (式5)
【0042】
式5で、L/vは、インジェクション電流が地点Aから地点Bまで伝搬する期間ΔTと等しくなる。そこで、式5のため、L/vをΔTと置き換えることで、以下の式6が成り立つ。
Δtx = (tPDA + tPDB - ΔT)/2 (式6)
【0043】
ここで、以下の式7のように、異常電流が地点Aまで伝搬する期間と、異常電流が地点Bまで伝搬する期間と、の差分をΔtとおく。Δtは、異常電流が地点Aで計測される時刻と、異常電流が地点Bで計測される時刻と、の差分とみなすことができる。
tPDB - tPDA = Δt (式7)
【0044】
式7から以下の式8が成り立つ。
tPDB = Δt + tPDA (式8)
式8を式6に代入すると、以下の式9が得られる。
Δtx = (2tPDA +Δt - ΔT) / 2 (式9)
【0045】
式9を式2に代入すると、l1を示す以下の式10が得られる。
l1 = L(1 - Δt/ΔT) / 2 (式10)
また、式10からl2は、以下の式11のように表すことができる。
l2 = L - l1 = L (1 + Δt/ΔT) / 2 (式11)
【0046】
本実施形態では、特定システムは、送配電線110内で発生した部分放電113に係る異常電流を計測対象ケーブルの地点Aと地点Bとに設置したCTセンサを介して計測し、各CTセンサへの電流パルスの到達時間差から部分放電113の発生箇所を特定する。地点Aと地点BとのCTセンサで部分放電に係る異常電流が計測された際、部分放電に係る異常電流の伝搬にかかる期間の差分(異常電流が地点Aと地点Bとに到達する時間差)をΔtとする。また、インジェクション電流(任意の信号)がCTセンサ間を伝搬する期間をΔT、CTセンサ間の送配電線110上における距離をLとする。その場合、部分放電113の発生位置から地点Aまでの距離l1及び地点Bまでの距離l2は、式10、式11のように与えられる。
【0047】
式10及び式11を用いることで、地点A、及び地点Bから、部分放電113の発生点までの距離l1及びl2を導出することができる。すなわち、特定システムは、ΔT及びΔtを求めて、ΔT及びΔtに基づいて、式10又は式11を用いて、部分放電113が発生した地点を、異常が発生した位置として特定することができる。
【0048】
このように、本実施形態の特定システムは、式10、式11それぞれが示すように、異常が発生した位置の特定に、送配電線110上における電流パルスの伝搬速度vは用いない。このように、特定システムは、経年による遮蔽層の酸化劣化や、複数の中間接続部の存在等の原因により変動しうる不安定なvを用いないことで、vの変動の影響を受けないように、異常が発生した位置を特定できることとなる。すなわち、特定システムは、実際に注入した電流が地点Aから地点Bまで伝搬する期間を用いることで、より精度よく異常の位置を特定できる。
本実施形態では、特定システムは、式10、又は式11を用いて、異常が発生した位置を特定することとする。ただし、特定システムは、式10、又は式11を用いずに、異常が発生した位置を特定することとしてもよい。例えば、特定システムは、式10、又は式11を式変形した式を用いて、異常が発生した位置を特定することとしてもよい。
【0049】
(内部時間管理処理)
情報処理装置100、101それぞれに搭載されているOSは、自機内で時間を管理している。しかし、情報処理装置100のOSにより管理されている時間と、情報処理装置101のOSにより管理されている時間と、は必ずしも同期されているわけではない。例えば、情報処理装置100において午前9時丁度の時刻において、情報処理装置101において午前9時丁度となっているとは限らない。そのため、以下のような問題が生じうる。
【0050】
情報処理装置100が、地点Aでインジェクション電流を計測した時刻を、自機のOSが管理する時間における時刻として取得したとする。また、情報処理装置101が地点Bでインジェクション電流を計測した時刻を、自機のOSが管理する時間における時刻として取得したとする。その場合、ΔTを求めるために、これらの時刻同士の差分をとることとなるが、同期されていない時間における時刻同士の差分であるため、適切な値とはならない。また、異常電流を計測して、Δtを求める場合にも同様の問題が生じる。
【0051】
そこで、本実施形態では、特定システムは、アンテナ104、105を介してPPS信号を受信したことをトリガにして、計測制御部300Aが管理する内部時間と、計測制御部300Bが管理する内部時間と、の同期を行う。計測制御部300Aが管理する内部時間は、第1の内部時間の一例である。計測制御部300Bが管理する内部時間は、第2の内部時間の一例である。そして、情報処理装置100は、地点Aでインジェクション電流又は異常電流を計測した時刻を、計測制御部300Aが管理する内部時間における時刻として取得する。また、情報処理装置101は、地点Bでインジェクション電流又は異常電流を計測した時刻を、計測制御部300Bが管理する内部時間における時刻として取得する。これにより、特定システムは、より精度よくΔT、Δtを求めることができる。結果として、特定システムは、より精度よく、送配電線110上の異常が発生した位置を特定できることとなる。
【0052】
ここで、特定システムが、計測制御部300Aが管理する内部時間と、計測制御部300Bが管理する内部時間と、の同期を行う処理の詳細を説明する。
計測制御部300Aは、アンテナ104を介して予め定められたPPS信号を受信する。そして、計測制御部300Aは、このPPS信号を受信した時刻を、時刻0として、内部時間の管理を開始する。また、計測制御部300Bは、アンテナ105を介して同じPPS信号を受信する。そして、計測制御部300Aは、このPPS信号を受信した時刻を、時刻0として、内部時間の管理を開始する。これにより、計測制御部300A及び計測制御部300Bの内部時間が同期されることとなる。
【0053】
このように、本実施形態では、計測制御部300Aと計測制御部300Bとは、GPSのPPS信号に基づいて、内部時間を同期させることとした。ただし、計測制御部300Aと計測制御部300Bとは、他の方法で、内部時間を同期させることとしてもよい。例えば、計測制御部300Aと計測制御部300Bとは、アンテナ104、アンテナ105を介して、PPS信号と異なる同一の無線信号(例えば、ビーコン信号等)を受信したタイミングを時刻0として、内部時間を同期させてもよい。
また、計測制御部300Aと計測制御部300Bとの内部時間が、予め同期されていることとしてもよい。その場合、計測制御部300Aと計測制御部300Bとは、内部時間の同期処理を行わなくてもよい。
【0054】
また、本実施形態では、情報処理装置100、101それぞれに搭載されているOSは、時間をミリセコンド(ms)単位の精度で管理している。そのため、情報処理装置100、101それぞれは、自機に搭載されているOSの機能を用いて、ms単位よりも高精度(例えば、ナノセコンド(ns)単位、10ns単位、100ns単位、マイクロセコンド(μs)単位等)に時間を管理できなかった。
より高精度に異常が発生した位置を特定するためには、Δt、ΔTの値を、ms単位よりも高精度に取得することが望ましい。
【0055】
そこで、本実施形態では、計測制御部300Aと計測制御部300Bとは、それぞれ自機に接続されたアナログ/デジタル変換器から設定された時間間隔で周期的に送信される信号を用いて、10ns単位で内部時間を管理する。例えば、アナログ/デジタル変換器102のサンプリング周波数が100MHzの場合、アナログ/デジタル変換器102は、以下のような処理を行う。すなわち、アナログ/デジタル変換器102は、10ns間隔で周期的に、アンテナ104及びCTセンサ106を介して検知されたアナログ信号をデジタル化して、デジタル化した信号を情報処理装置100に送信する処理を行う。この場合、計測制御部300Aは、アナログ/デジタル変換器102から信号を受信するごとに、時刻を10ns進めるように内部時間を管理する。計測制御部300Bも同様である。
【0056】
これにより、特定システムは、ms単位よりも高精度な10ns単位で、Δt、ΔTの値を取得でき、より高精度に、送配電線110上で異常が発生した位置を特定することができる。
本実施形態では、計測制御部300Aと計測制御部300Bとは、それぞれ自機に接続されたアナログ/デジタル変換器から設定された時間間隔で周期的に送信される信号を用いて、10ns単位で内部時間を管理することとしたが、ns単位、100ns単位、μs等の他の時間単位で管理してもよい。
【0057】
このように、本実施形態では、計測制御部300Aと計測制御部300Bとは、アナログ/デジタル変換器が周期的に発する信号を用いて、内部時間を管理することとした。ただし、他の例として、計測制御部300Aと計測制御部300Bとは、アナログ/デジタル変換器と異なる他のデバイスが周期的に発する信号を用いて内部時間を管理することとしてもよい。例えば、計測制御部300Aと計測制御部300Bとは、それぞれ自機のCPUのクロック信号を用いて、内部時間を管理することとしてもよい。例えば、CPU200Aのクロック周波数が1GHzの場合、計測制御部300Aは、CPU200Aからのクロック信号を10回検知するごとに、時刻を10ns進めるように内部時間を管理してもよい。計測制御部300Bも同様である。
【0058】
本実施形態では、情報処理装置100、101は、それぞれ、電流の計測を制御する計測制御部300A、300Bを含み、地点A、Bにおける電流の計測を制御することとした。ただし、情報処理装置100、101と異なる他の装置又はシステムであって、計測制御部300と同様の機能を有する装置又はシステムが、地点A、Bにおける電流の計測を、同期された内部時間に基づいて制御することとしてもよい。その場合、情報処理装置100は、この装置又はシステムから、A地点とB地点とにおけるインジェクション電流及び異常電流が計測された時刻を取得し、ΔtとΔTとを求めることとする。このような場合には、計測制御部300A、300Bそれぞれの内部時間を管理する処理を行わなくてもよい。
【0059】
(インジェクション電流の周波数の選定)
インジェクション電流が、送配電線110上で地点Aから地点Bまで伝搬しなければ、ΔTの取得ができない。送配電線110上で地点Aから地点Bまでの距離が長いほど、インジェクション電流の伝搬が難しくなる。また、リレーが動作するために送配電線110には一定の水準よりも高い電流を入力できない、周波数帯が高い信号ほど減衰率が大きい等、懸念される点がある。そのため、インジェクション電流の周波数の選定は重要である。
【0060】
また、送配電線110における地点Aから地点Bまでの距離が、インジェクション電流の波長に対して、定められた水準以上に短い場合は、インジェクション電流のパルスが伝搬せずΔTを取得することができない。その場合、送配電線110における地点Aから地点Bまでの部分は、集中定数回路とみなされ、線路定数はインダクタンスと抵抗によって表される。ΔTを取得するには、送配電線110における地点Aから地点Bまでの部分が、分布定数回路とみなすことができるようにすることが望ましい。
【0061】
本実施形態では、送配電線110における地点Aから地点Bまでの部分を分布定数回路とみなすことができる条件が、以下の式12を満たすことであるとする。本実施形態では、式12を満たすようにインジェクション電流の周波数が選定されている。
インジェクション電流のパルスの立ち上がり時間τ < 4×(電流が送配電線110上を地点Aから地点Bまで伝搬する時間T) (式12)
【0062】
インジェクション電流のパルスの立ち上がり時間τは、1周期のおよそ4分の1であるため、インジェクション電流の周波数をfとすると、τは、以下の式13で表される。
τ = 1/(4f) (式13)
【0063】
電流が送配電線110上を伝搬する速度をClとすると、電流が送配電線110上を地点Aから地点Bまで伝搬する時間Tは、以下の式14で表される。本実施形態では、Clを、2.0×108(m/s)とする。
T = L/Cl (式14)
【0064】
式13と式14とを式12に代入することで、以下の式15が得られる。
1/(4f) < 4L/Cl (式15)
【0065】
式15から以下の式16が成り立つ。
f > Cl/(16L) (式16)
【0066】
本実施形態では、式16を満たすようにインジェクション電流の周波数が選定される。本実施形態では、電源装置108とインジェクションコイル109とは、予め選定された周波数の電流を、インジェクション電流として送配電線110に注入する。
また、ケーブル上を伝搬する電流は、高周波になるほど、伝搬による減衰が大きくなる。電流が高周波になるほど、伝搬によってより減衰するのは、電流は波として伝搬しており、高周波になるにつれて波長が短くなり、個々の波がより長い距離を伝搬することになるためである。
そのため、fの値が大きいほど、インジェクション電流は、伝搬によりより大きく減衰することとなる。減衰が過大になると、地点Bでインジェクション電流を計測できない事態が生じうる。そこで、fの値は、式16を満たしつつ過大にならないように選定されることとする。本実施形態では、fの値は、設定可能な周波数のうち、式16を満たし、Cl/Lとの差分が設定された閾値以下となる値として選定されている。
【0067】
本実施形態では、インジェクション電流は、周波数fが式16を用いて選定されている電流であるとした。ただし、他の例として、インジェクション電流は、式16を用いて周波数が選定されていない電流であることとしてもよい。例えば、任意に選択した周波数の電流を、送配電線110上を地点Aから地点Bまで伝搬させてみて、地点Aと地点Bとでともに計測可能であれば、この電流を、インジェクション電流としてもよい。
【0068】
(異常位置特定処理)
特定システムが送配電線110上の異常が発生した位置を特定する処理を、
図4を用いて説明する。
図4の処理の開始前に、計測制御部300Aと計測制御部300Bとは、(内部時間管理処理)で説明した内部時間の同期を行っている。また、
図4の処理の開始前に、電源装置108は、予め選定された周波数のインジェクション電流を、送配電線110に注入する。
【0069】
S401において、計測制御部300Aは、CTセンサ106を介して、インジェクション電流を計測する。本実施形態では、インジェクション電流として検知される電流がどのような電流であるかを示す情報(以下では、インジェクション電流情報とする)は、予め補助記憶装置202Aに記憶されている。計測制御部300Aは、CTセンサ106を介して計測した電流が、補助記憶装置202Aに記憶されたインジェクション電流情報が示す電流である場合、インジェクション電流を計測したとする。
S402において、計測制御部300Aは、S401でインジェクション電流を計測した時刻であって、計測制御部300Aが管理する内部時間における時刻を特定する。
【0070】
S403において、計測制御部300Bは、CTセンサ107を介して、インジェクション電流を計測する。本実施形態では、インジェクション電流情報は、予め補助記憶装置202Bに記憶されている。計測制御部300Bは、CTセンサ106を介して計測した電流が、補助記憶装置202Bに記憶されたインジェクション電流情報が示す電流である場合、インジェクション電流を計測したとする。
【0071】
S404において、計測制御部300Bは、S403でインジェクション電流を計測した時刻であって、計測制御部300Bが管理する内部時間における時刻を特定する。
S405において、通信制御部301Bは、S404で特定された時刻を、情報処理装置100に対して送信する。そして、通信制御部301Aは、S404で特定された時刻を受信する。
【0072】
S406において、計測制御部300Aは、CTセンサ106を介して、部分放電113に係る異常電流を計測する。本実施形態では、部分放電113に係る異常電流がどのような電流であるかを示す情報(以下では、異常電流情報とする)は、予め補助記憶装置202Aに記憶されている。計測制御部300Aは、CTセンサ106を介して計測した電流が、補助記憶装置202Aに記憶された異常電流情報が示す電流である場合、異常電流を計測したとする。
S407において、計測制御部300Aは、S406で異常電流を計測した時刻であって、計測制御部300Aが管理する内部時間における時刻を特定する。
【0073】
S408において、計測制御部300Bは、CTセンサ107を介して、部分放電113に係る異常電流を計測する。本実施形態では、異常電流情報は、予め補助記憶装置202Bに記憶されている。計測制御部300Bは、CTセンサ106を介して計測した電流が、補助記憶装置202Bに記憶された異常電流情報が示す電流である場合、インジェクション電流を計測したとする。
【0074】
S409において、計測制御部300Bは、S408で異常電流を計測した時刻であって、計測制御部300Bが管理する内部時間における時刻を特定する。
S410において、通信制御部301Bは、S409で特定された時刻を、情報処理装置100に対して送信する。そして、通信制御部301Aは、S409で特定された時刻を受信する。
【0075】
本実施形態では、通信制御部301Bは、S404の処理の後、S406の処理の前に、S404で特定された時刻を情報処理装置100に対して送信することとした(S405)。ただし、通信制御部301Bは、他のタイミングで、S404で特定された時刻を情報処理装置100に対して送信してもよい。例えば、通信制御部301Bは、S410の処理の開始前、又は、終了後のタイミングで、S404で特定された時刻を情報処理装置100に対して送信してもよい。また、例えば、通信制御部301Bは、S410の処理の際に、S409で特定された時刻と併せて、S404で特定された時刻を情報処理装置100に対して送信してもよい。
【0076】
S411において、特定部302Aは、S410で受信された時刻と、S408で特定された時刻と、の差分をΔtとして取得する。本実施形態では、特定部302Aは、S410で受信された時刻からS408で特定された時刻を引くことで、Δtを取得する。S411で取得されるΔtは、異常電流が地点Aと地点Bとに到達する時間差である到達時間差の一例である。S411の処理は、第1の取得処理の一例である。
【0077】
S412において、特定部302A、S405で受信された時刻と、S403で特定した時刻と、の差分をΔTとして取得する。本実施形態では、特定部302Aは、S405で受信された時刻からS403で特定された時刻を引くことで、ΔTを取得する。S412で取得されるΔTは、インジェクション電流が地点Aから地点Bまで伝搬する期間である信号伝搬期間の一例である。S412の処理は、第2の取得処理の一例である。
【0078】
S413において、特定部302Aは、S411で取得したΔtと、S412で取得したΔTと、送配電線110上における地点Aから地点Bまでの距離Lと、を式10に代入することでl1を求める。そして、特定部302Aは、部分放電113に係る異常が発生した位置が、送配電線110上において地点Aから地点Bの方向へ距離l1の地点であることを特定する。本実施形態では、距離Lの情報は、予め補助記憶装置202Aに記憶されており、特定部302Aは、補助記憶装置202Aから距離Lを読み取り、利用する。
【0079】
本実施形態では、特定部302Aは、式10を用いて、異常が発生した位置を特定することとした。ただし、他の例として、特定部302Aは、式11を用いて、異常が発生した位置を特定することとしてもよい。その場合、特定部302Aは、Δtと、ΔTと、距離Lと、を式11に代入することでl2を求める。そして、特定部302Aは、部分放電113に係る異常が発生した位置が、送配電線110上において地点Bから地点Aの方向へ距離l2の地点であることを特定する。
S413の処理は、第1の特定処理の一例である。
【0080】
S414において、出力制御部303Aは、S413で特定された位置を出力するよう制御する。本実施形態では、出力制御部303Aは、S413で特定された位置を、入出力部203Aに含まれる表示装置に表示することで、出力するよう制御する。ただし、他の例として、出力制御部303Aは、S413で特定された位置を、補助記憶装置202A等の記憶装置に記憶することで、出力するよう制御してもよい。また、例えば、出力制御部303Aは、S413で特定された位置を、入出力部203Aに含まれるスピーカを介して音声出力することで、出力するよう制御してもよい。また、例えば、出力制御部303Aは、S413で特定された位置を、予め定められた送信先に送信することで、出力するよう制御してもよい。また、例えば、出力制御部303Aは、S413で特定された位置を、印刷装置を介して印刷媒体(例えば、紙、フィルム等)に印刷することで、出力するよう制御してもよい。
【0081】
(効果)
以上、本実施形態では、特定システムは、インジェクション電流が地点Aから地点Bまで伝搬する期間ΔTと、地点Aと地点Bとで異常電流が計測された時刻の差分Δtと、地点Aと地点Bとの距離Lと、に基づいて、異常が発生した位置を特定することとした。
このように、特定システムは、送配電線110上における電流の伝搬速度のように送配電線110の状態に応じて変化しうる不安定な値を用いずに異常が発生した位置を特定するため、より精度よく異常が発生した位置を特定できる。
【0082】
<実施形態2>
実施形態1では、処理対象のケーブル(送配電線110における地点Aと地点Bとの間)には、分岐がないこととした。本実施形態では、処理対象のケーブルに、分岐がある場合の特定システムの処理について説明する。
【0083】
まず、発明者らが行った解析及び実験について説明する。
送配電線110等のケーブルには、分岐が存在する場合がある。発明者らは、送配電線110等の電力ケーブルが分岐を有する配電線路である場合、電力ケーブルにおける部分放電に係る異常電流の伝搬特性の過渡解析、及び実験を行った。以下に、この過渡解析、及び実験の詳細を説明する。
【0084】
部分放電に係る異常電流の長距離伝搬による減衰や、計測対象区間に複数の分岐点を含む場合の分流等により、片端のCTセンサで電流を検出できずに伝搬期間差を取得できないことが懸念される。これまでに、ケーブル長及び周波数成分が電流パルスの減衰率に与える影響については検討が行われているものの、分岐線路が電流パルスに与える影響については検討例が十分でない。効率的かつ経済的な位置特定技術の確立を目指すにあたって、分岐線路における電流パルスの伝搬特性の検討は重要である。
【0085】
発明者らは、分岐を有する配電線路における部分放電に係る異常電流の伝搬特性について、Y分岐接続材を用いた試験及びEMTP(Electro-Magnetic Transient Program)による過渡解析を行った。その結果、部分放電により発生した電流パルスは分岐点において、周波数成分及び分岐後のケーブルインピーダンスに依存して分流することを明らかとした。更に、ケーブルの共振周波数より高周波成分は、より長尺ケーブル側に流入する傾向にあり、広範囲での位置標定を行うにあたっては分岐の影響は受けるものの長距離に亘って伝搬する可能性が示された。
【0086】
部分放電発生の際の等価回路を、
図5に示す。部分放電が発生すると放電部近傍の電圧が降下し、電荷の流入が起こる。これにより電流パルスが流れ、徐々に遠端へ伝搬していく。伝搬していく過程で線路上のインピーダンスによりその電流パルスの強度は低下する。また、部分放電に係る異常電流が線路の分岐点を伝搬する場合、その成分の一部は分岐による影響を受けて分流する。分岐線路の等価回路を、
図6に示す。特定システムでは、部分放電に係る異常電流がCTセンサで観測されない限り異常が発生した位置の特定ができないため、分岐点における異常電流の伝搬特性を明確化することは重要である。そのため、発明者らは、以下に示す回路においてEMTPを用いて、高周波電流が分岐点においてどのように分岐するかを解析した。
【0087】
図7に、EMTPを用いて評価した具体的な解析モデルを示す。ここでは、長さの異なる22kV級架橋ポリエチレン(XLPE)ケーブル150mm
2を用いた。また、発明者らは、分岐後のケーブル長を、後述する実ケーブルを用いた検証実験との比較のため、
図7に示すようにB側とC側とがそれぞれ1対5となるケーブル長に設定した。なお、末端のインピーダンス整合により、反射波の影響は考慮しない。
【0088】
図8に、解析に使用した電流波形の例を示す。
図7に示す地点Aから部分放電に係る異常電流を模擬した周波数1kHzから1000MHzの異なる正弦波電流1A、1周期を入射した。発明者らは、分岐後のa点とb点とでの波形を比較し分岐による電流波高値の変化を評価した。表1に解析条件の一覧を示す。
【0089】
【0090】
3通りの解析モデルそれぞれのa点及びb点における高周波電流の波高値を
図9に示す。また、それぞれのケーブル長のインピーダンスから算出した固有共振周波数と、各解析モデルの線路全体の共振周波数を表2に示す。部分放電発生の際の等価回路は、
図5の通りである。
【0091】
【0092】
図9(a)を見ると、50mと10mとのケーブルインピーダンスを合成した場合の共振周波数は1.72MHzであり、50mと10mとのケーブルの周波数特性が交差する付近に存在することが分かる。この共振周波数を境に、50mのケーブルにおいては、10mのケーブルよりも電流波高値が大きい。
【0093】
同様に、
図9(b)においては、500mと100mとのケーブルインピーダンスを合成した際の共振周波数は0.172 MHzとなり、
図9(a)の場合の共振周波数の1/10の値となる。また、
図9(a)と同様、両ケーブルの周波数特性が交差する付近に合成共振周波数が存在し、それを境に500mのケーブルにおいては100mのケーブルよりも電流波高値が高い。
図9(c)においても、互いの周波数特性が交差する付近を境に、各周波数の電流波高値は長尺ケーブル側が大きく、高周波成分を多く含む電流パルスは、長尺ケーブル側に分流する。すなわち、高周波成分を含む電流信号の分岐点における伝搬特性は、ケーブル及び系統のインピーダンスに依存し、ケーブルが長くなる、つまりインピーダンスが高くなるにしたがって、より高周波成分が伝搬することが示された。
【0094】
以上の結果から、部分放電によって発生した高周波電流は、分岐点において後続するケーブル2線路の合成共振周波数に依存して分流する。共振周波数より低周波帯域は分岐の影響を受けず、電流は2分割されて伝搬する。また、高周波帯域は分岐の影響を受け、より長尺側へ伝搬する。
部分放電に係る異常電流は、高周波成分(数MHz以上)を含んで伝搬するため、分岐点において、その多くが長尺側へ流れる。したがって、部分放電に係る異常電流は複数の分岐を有する線路においても、長距離に亘って伝搬することが予想される。
【0095】
次に、発明者らが行ったXLPEケーブルを用いた実験的検討について説明する。
供試ケーブル(22kV-XLPEケーブル150mm
2)及びY分岐接続材(西日本電線株式会社製・22kV級Y分岐接続筒)を用いて分岐点における模擬的な部分放電(以下では、模擬部分放電)の異常電流の伝搬特性を観測した。実験の概要を
図10に示す。
【0096】
分岐後のケーブル長は50mと10mを使用し、
図11に示したY分岐接続材を用いて接続し、
図7(a)と同様の分岐状態とした。
図10に示すように、ケーブルの導体部と遮蔽層との間に配したエポキシ成形電極を挿入し、導体側に交流電圧6kVを印加することで模擬部分放電を発生させた。なお、使用電極の放電開始電圧は、約5kVである。
図12に使用した電極を示す。発生した模擬部分放電に係る異常電流は、ケーブルの導体と遮蔽層とを伝搬し、分岐前後に設置したCTセンサ(西日本電線株式会社製、周波数帯域10kHz~250MHz)を介して計測した。オシロスコープは、横河計測(登録商標)株式会社製のDLM2054を用いた。なお、実験に用いたCTセンサは、ケーブル導体150mm
2がクランプできるサイズで設計・製作されている。
【0097】
実験結果について説明する。
図10に示す実験状況で、CTセンサ(CT1、CT2)を介して計測された波形を
図13に示す。50mケーブル側に最大値約9.8mA、10 mケーブル側に約5.8mAが流れており、長尺ケーブル(50mケーブル)側の電流値が大きい。また、計測された波形の周波数解析結果を
図14に示す。模擬部分放電電流の主な成分は、点線の枠で示すように40MHz~90MHz周辺の高周波帯域で確認され、特に信号のピークである80MHz付近では、その多くが長尺側の50mケーブル側で観測された。点線の枠内におけるピーク値が高い方の波形が50mケーブル側に対応する波形であり、他方の波形が10mケーブル側に対応する波形である。
【0098】
これらの結果から、部分放電に係る異常電流の分岐点における伝搬特性は周波数及び分岐後のケーブル長に依存することが示され、より高周波帯域を含む電流は分岐線路において長尺ケーブル側に伝搬する傾向にあると考えられる。更に、部分放電に係る異常電流は、高周波(数MHzから数百MHz)を含むことから長尺ケーブル側により多くの電流が流入すると予想され、部分放電に係る異常電流が長距離に亘って伝搬する可能性が示された。
【0099】
ここで、過渡解析と実験結果との比較について説明する。XLPEケーブルを用いた実証実験によって、高周波電流は、長尺ケーブル側に多く流入する傾向にあることが示された。解析結果で示した伝搬特性が変化し始める境目は、実験結果において違いはあるものの、部分放電電流の高周波成分は長尺側へ伝搬することは、EMTPによる解析結果が実験結果と概ね一致していることが分かった。したがって、部分放電に係る異常電流は電力系統内の分岐点において、長尺ケーブル側に流入し長距離伝搬することが考えられる。ただし、両者は分流特性が変化する境界は合致していない。これは、過渡解析と実証実験における対地浮遊容量、Y分岐とケーブルとの構造の違い及び、絶縁材料の違いによるインピーダンスの相違が原因であると考えられる。
【0100】
過渡解析と実験とのまとめについて説明する。分岐線路における電流パルスの伝搬特性について過渡解析ソフトEMTPを用いたシミュレーションと、XLPEケーブル及びY分岐接続材を用いた実験的検討を行い、両者において類似した結果を得た。部分放電電流は、分岐点を通過する際、分岐後のケーブルインピーダンスに依存して分流比が決定され、より長いケーブル側(比較的高インピーダンス側)に高周波成分が多く含まれる傾向にあることが分かった。数MHz以上の周波数成分が主な部分放電に係る異常電流は分岐点を伝搬する際、長尺ケーブル側に伝搬する傾向にあるため長距離に亘って伝搬することが予想され、特定システムを用いて広範囲での適用が可能であることが考えられる。
【0101】
このように、発明者らは、部分放電に係る異常電流が分岐点を伝搬する際、長尺ケーブル側に伝搬する傾向にあることを見出した。そこで、本実施形態では、特定システムは、送配電線110上に分岐がある場合、送配電線110の分岐に応じて決定した電流の計測部を用いて、異常の位置が発生した位置を特定する処理を行う。
【0102】
本実施形態における特定システムが設置されている状況、及び、特定システムのシステム構成のうち、
図1と異なる点を、
図15を用いて説明する。本実施形態では、接続部111Cにおいて送配電線110が分岐されている。本実施形態の接続部111Cは、分岐部の一例である。地点A側から見て、送配電線110は、接続部111Cで2つに分岐している。
【0103】
例えば、送配電線110における地点Aから接続部111Cまでの部分で、部分放電113が発生した場合、接続部111Cにおいて、何れかの方向には、微小な異常電流しか流れない場合がある。このような場合、微小な異常電流が流れる分岐先では、異常電流が計測できない場合が生じうる。本実施形態の特定システムは、このような場合に対応した処理を行う。
【0104】
本実施形態では、特定システムは、
図1で説明したシステム構成要素に加えて、情報処理装置1500、アナログ/デジタル変換器1501、アンテナ1502、CTセンサ1503を含む。
【0105】
情報処理装置1500は、情報処理装置101と同様の情報処理装置である。アナログ/デジタル変換器1501は、アナログ/デジタル変換器102、103と同様のアナログ/デジタル変換器である。アンテナ1502は、アンテナ104、105と同様のアンテナである。CTセンサ1503は、CTセンサ106、107と同様のセンサであり、地点Aから見て地点Bの方向と異なる方向の分岐先における地点Cに設置されている。以下では、情報処理装置1500、アナログ/デジタル変換器1501、アンテナ1502、CTセンサ1503を、地点Cでの電流の計測を行う計測部Cとする。計測部Cの処理は、計測部Bの処理と同様である。
【0106】
本実施形態では、特定部302Aは、地点Aから見て、接続部111Cでの分岐先のケーブル長が長い方の方向を特定する。
図15の例では、接続部111Cから見て地点Cの方向に分岐している部分のケーブル長の方が、接続部111Cから見て地点Bの方向に分岐している部分のケーブル長よりも長いとする。そのため、特定部302Aは、接続部111Cから見て地点Cの方向を特定する。そして、特定部302Aは、特定した方向に設置されている計測部を、処理に用いる計測部として決定する。
図15の例では、特定部302Aは、計測部Cを処理に用いる計測部として決定する。
【0107】
通信制御部301Aは、特定部302Aにより決定された計測部Cから、地点Cで異常電流が計測された時刻と、地点Cでインジェクション電流が計測された時刻と、を受信する。そして、特定部302Aは、地点Aで異常電流が計測された時刻と、地点Cで異常電流が計測された時刻と、の差分をΔtとして求める。また、特定部302Aは、地点Aでインジェクション電流が計測された時刻と、地点Cでインジェクション電流が計測された時刻と、の差分をΔTとして求める。特定部302Aは、送配電線110上における地点Aから接続部111Cを経由して地点Cまでの距離をLとして、Lと、Δtと、ΔTと、に基づいて、式10又は式11を用いて、異常が発生した位置を特定する。
【0108】
以上、本実施形態の処理により、特定システムは、異常電流が計測できずに、異常が発生した位置を特定できない事態の発生を抑制できる。
【0109】
<実施形態3>
本実施形態では、特定システムは、更に、発生した異常の規模を特定する処理を行う。
本実施形態の特定システムのシステム構成は、実施形態1と同様である。また、特定システムの各構成要素についても、実施形態1と同様である。
部分放電に係る異常電流の大きさは、発生した異常の規模に応じて大きくなると仮定できる。すなわち、異常の電流の大きさから異常の規模を特定することができる。しかし、部分放電に係る異常電流は、伝搬する距離に応じて減衰していく。
【0110】
そこで、本実施形態では、特定部302Aは、S413の処理の後で以下の処理を行う。すなわち、特定部302Aは、S408で計測された地点Bにおける異常電流の大きさを、情報処理装置101から取得する。S408で計測された異常電流は、送配電線110における電流の減衰特性にしたがって、距離l2の伝搬に応じて減衰された電流となる。そこで、特定部302Aは、送配電線110における電流の減衰特性と、距離l2と、S408で計測された異常電流の大きさと、に基づいて、減衰される前の異常電流の大きさを特定する。この減衰特性は、例えば、送配電線110と同様のケーブルにおいて、予め選定された周波数の電流をインジェクションコイル109により流し、この伝搬電気信号をCTセンサ106、107で計測することで得られる。また、この減衰特性は、異常電流として想定される電流を実際に送配電線110と同様のケーブルに流して、伝搬距離ごとに電流の値を計測することでも得られる。
【0111】
本実施形態では、異常電流の大きさと、異常の規模を示す指標値(例えば、大規模、中規模、小規模等)と、の対応関係があらかじめ定められているとする。特定部302Aは、この対応関係に基づいて、特定した異常電流の大きさに応じた異常の規模を示す指標を特定する。また、特定部302Aは、特定した減衰される前の異常電流の大きさ自体を、異常の規模を示す情報として特定してもよい。そして、出力制御部303Aは、異常が発生した位置と合わせて、特定部302Aにより特定された異常の規模を示す指標を出力する。
【0112】
また、送配電線110上で分岐がある場合、以上のような方法では、異常の規模を特定できない場合がある。
ここで、送配電線110に、
図15に示すように接続部111Cで分岐があるとする。接続部111Cよりも地点A側において部分放電113が発生した場合、異常電流は、接続部111Cで分流することとなる。そのため、地点Bで計測された異常電流から、異常電流全体についての元の大きさを求めることができない。
【0113】
そこで、特定システムは、以下のようにしてもよい。特定部302Aは、予め定められた送配電線110における電流の減衰特性と、距離l2と、S408で計測された異常電流と、に基づいて、異常電流の成分であって、地点Bに伝搬された成分の減衰される前の大きさを特定する。そして、特定部302Aは、特定した大きさと、接続部111Cにおける分岐特性と、に基づいて、減衰される前の異常電流の大きさを特定する。
例えば、地点A側から入ってきた電流の接続部111Cにおける分岐特性が、地点C側の分岐先に4/5分流して、地点B側の分岐先に1/5分流することを示すとする。その場合、特定部302Aは、地点Bに伝搬された成分の減衰される前の大きさを1/5で除することで、減衰される前の異常電流の大きさを特定する。このような分岐特性は、例えば、異常電流として想定される電流を実際に送配電線110上に流して、分岐先での電流を計測することで、予め求めることができる。
そして、特定部302は、特定した減衰される前の異常電流の大きさに基づいて、異常の規模を示す指標を特定する。
【0114】
本実施形態の処理により、特定システムは、発生した異常の規模についても特定できる。本実施形態で説明した異常の規模を特定する処理は、第2の特定処理の一例である。
【0115】
<実施形態4>
実施形態1~3では、特定システムは、式10又は式11を用いて求めた地点を、異常が発生した位置として特定した。
発明者らは、実施形態1の処理で特定システムが特定した異常が発生した位置と、異常の実際の場所と、の一致の度合いを確認した。その結果、発明者らは、特定システムが特定した位置が、異常の実際の場所から誤差がある場合があることを見出した。
【0116】
そこで、本実施形態では、特定システムは、設定された幅を持つ範囲を、異常が発生した位置として特定する。
本実施形態の特定システムのシステム構成は、実施形態1と同様である。また、特定システムの各構成要素についても、実施形態1と同様である。
【0117】
本実施形態の処理は、S413の処理が実施形態1と異なる。本実施形態におけるS413の処理を説明する。
S413では、特定部302Aは、S411で取得したΔtと、S412で取得したΔTと、送配電線110上における地点Aから地点Bまでの距離Lと、を式10に代入することでl1を求める。そして、特定部302Aは、送配電線110上において地点Aから地点Bの方向へ距離l1の地点を中心に、設定された幅(例えば、Lの4%、Lの5%、Lの5.25%、10m、50m等)を有する範囲を、異常が発生した位置として特定する。この設定された幅の値は、例えば、実施形態1の処理で特定システムが特定した異常が発生した位置と、異常の実際の場所と、の誤差から決定されることとしてもよい。
【0118】
また、特定部302Aは、式10ではなく、式11を用いて以下のようにしてもよい。すなわち、特定部302Aは、Δtと、ΔTと、Lと、を式11に代入することでl2を求めて、送配電線110上において地点Bから地点Aの方向へ距離l2の地点を中心に、設定された幅を有する範囲を、異常が発生した位置として特定してもよい。
【0119】
本実施形態の処理により、特定システムは、送配電線110上において地点Aから地点Bの方向へ距離l1の地点(地点Bから地点Aの方向へ距離l2の地点)に異常が存在しないような場合でも、異常が含まれる範囲を、異常が発生した位置として特定できる。
【0120】
<実施形態5>
近年、送配電線等のケーブルの製造技術の向上によりケーブル自体に異常が発生する事態が減少してきている。そのため、ケーブル上で異常は発生しうる部分を、ケーブル上の接続部であると仮定できる場合がある。
【0121】
そこで、本実施形態では、特定システムは、送配電線110上の接続部111のうちの何れかの位置から、異常が発生した位置を特定する処理を行う。
本実施形態の特定システムのシステム構成は、実施形態1と同様である。また、特定システムの各構成要素についても、実施形態1と同様である。
【0122】
本実施形態の処理は、S413の処理が実施形態1と異なる。本実施形態におけるS413の処理を説明する。
S413において、特定部302Aは、実施形態4で説明したS413と同様の処理により、異常が存在する範囲を特定する。そして、特定部302Aは、送配電線110上の接続部111のうち、特定した範囲に含まれる接続部111を特定する。特定部302Aは、特定した接続部111が存在する地点を、異常が存在する位置として特定する。
【0123】
また、特定部302Aは、他の方法で、送配電線110上の接続部111のうちの何れかの位置から、異常が発生した位置を特定してもよい。例えば、特定部302Aは、S413において、式10又は式11を用いて求めた地点に、最も近い接続部111を特定し、特定した接続部111が存在する地点を異常が発生した位置として特定してもよい。
【0124】
以上、本実施形態の処理により、特定システムは、異常が発生しうると仮定できる位置から、異常が発生した位置を特定することで、より適切に異常が発生した位置を特定できる。
【0125】
<実施形態6>
実施形態1~5では、特定システムは、ユーザによる電源装置108の操作部の操作に応じて、電源装置108を介して、インジェクションコイル109に電圧を印加することで、インジェクション電流を送配電線110に注入することとした。
本実施形態では、情報処理装置100がインジェクション電流の注入を制御する場合について説明する。
本実施形態の特定システムのシステム構成は、実施形態1と同様である。また、特定システムの各構成要素についても、実施形態1と同様である。ただし、情報処理装置100は、デバイスI/F204を介して電源装置108と接続される。
【0126】
本実施形態では、計測制御部300Aは、デバイスI/F204を介して電源装置108に対してインジェクションコイル109への電圧の印加の指示を行う。
また、計測制御部300Aは、距離Lと予め定められたClとから、式16を満たすインジェクション電流の周波数を決定し、決定した周波数の電流の注入を電源装置108に指示することとしてもよい。例えば、計測制御部300Aは、設定可能な周波数のうち、式16を満たし、Cl/Lとの差分が設定された閾値以下となる周波数を、インジェクション電流の周波数として決定し、決定した周波数の電流の注入を電源装置108に指示することとしてもよい。
【0127】
また、電源装置108とインジェクションコイル109との組と異なる装置又はシステムが、送配電線110へのインジェクション電流の注入を行う場合、計測制御部300Aは、この装置又はシステムを制御することとしてもよい。
【0128】
以上、本実施形態の処理により、特定システムは、ユーザの操作を介さずに、インジェクション電流の注入を行うことができ、ユーザの手間を軽減できる。
【0129】
<その他の実施形態>
上述した特定システムの機能構成の一部又は全てをハードウェアとして情報処理装置100又は情報処理装置101等に実装してもよい。
以上、本発明の実施形態の一例について詳述したが、本発明は係る特定の実施形態に限定されるものではない。例えば、上述した実施形態を任意に組み合わせる等してもよい。
【符号の説明】
【0130】
100 情報処理装置
101 情報処理装置
102 アナログ/デジタル変換器
103 アナログ/デジタル変換器
104 アンテナ
105 アンテナ
106 CTセンサ
107 CTセンサ
108 電源装置
109 インジェクションコイル
200 CPU