(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2023-10-04
(45)【発行日】2023-10-13
(54)【発明の名称】データ取得装置および該方法
(51)【国際特許分類】
G01B 11/00 20060101AFI20231005BHJP
G01B 11/24 20060101ALI20231005BHJP
【FI】
G01B11/00 A
G01B11/24 K
G01B11/24 B
(21)【出願番号】P 2020063862
(22)【出願日】2020-03-31
【審査請求日】2023-01-23
(73)【特許権者】
【識別番号】000156938
【氏名又は名称】関西電力株式会社
(74)【代理人】
【識別番号】100115381
【氏名又は名称】小谷 昌崇
(74)【代理人】
【識別番号】100111453
【氏名又は名称】櫻井 智
(72)【発明者】
【氏名】山田 淳
(72)【発明者】
【氏名】角田 恵
(72)【発明者】
【氏名】石黒 晃子
(72)【発明者】
【氏名】森井 祐介
【審査官】信田 昌男
(56)【参考文献】
【文献】特許第6545884(JP,B1)
【文献】特開2019-073182(JP,A)
【文献】特開2019-035736(JP,A)
【文献】特開2018-206089(JP,A)
【文献】特開2019-036269(JP,A)
【文献】特開2021-131762(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
G01B 11/00ー11/30
(57)【特許請求の範囲】
【請求項1】
円筒状の部材である円筒構造体の内面に、一方向に延びる線状マークを形成するマーク形成部と、
前記円筒構造体における内部のありさまを表す所定のデータを取得するデータ取得部と、
前記線状マークに基づいて前記円筒構造体の内部における前記データ取得部のデータ取得方向を求める方向検出部とを備える、
データ取得装置。
【請求項2】
前記データ取得部および前記方向検出部を持ち、飛行する航空部をさらに備える、
請求項1に記載のデータ取得装置。
【請求項3】
前記円筒構造体の内部における前記航空部の位置を測定する位置測定部と、
前記位置測定部で測定した前記航空部の位置に基づいて、前記円筒構造体の延長方向に直交する直交面における前記円筒構造体の中央位置に位置するように、前記航空部を制御する位置制御部とさらにを備え、
前記航空部は、前記位置測定部および前記位置制御部を持つ、
請求項2に記載のデータ取得装置。
【請求項4】
前記位置制御部は、さらに、前記方向検出部で求めた前記データ取得部のデータ取得方向に基づいて、前記データ取得部が所定の方向を向くように、前記航空部を制御する、
請求項3に記載のデータ取得装置。
【請求項5】
円筒状の部材である円筒構造体の内面に、一方向に延びる線状マークを形成するマーク形成工程と、
前記円筒構造体における内部のありさまを表す所定のデータを取得するデータ取得工程と、
前記線状マークに基づいて前記円筒構造体の内部における前記データ取得工程でのデータ取得方向を求める方向検出工程とを備える、
データ取得方法。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、円筒構造体における内部のありさま(状況、状態)を表す所定のデータを取得するデータ取得装置およびデータ取得方法に関する。
【背景技術】
【0002】
例えば、煙突や管等に代表される円筒構造体に対し、保守や管理等のために、通常、その内部が点検(検査、測定)される。このような円筒構造体の内部の点検では、例えば足場やゴンドラ等の比較的大規模な仮設が設置され、前記仮設が利用される。前記仮設には、その設置や解体等に費用や時間を要することから、その低減が望まれている。このような要望に対し、例えば、特許文献1に開示された点検方法が提案されている。
【0003】
この特許文献1に開示された、無人小型飛行体を用いた点検方法は、構造物の内部空間に無人小型飛行体を飛行させて、構造物の内部の点検を行う無人小型飛行体を用いた点検方法であって、前記無人小型飛行体に、線状体に沿って機体を案内させるためのガイドを設け、前記内部空間内に前記線状体を伸びた状態で設置し、前記ガイドにより前記線状体に沿って前記無人小型飛行体を飛行させながら、前記構造物の内部の点検を行う。
【先行技術文献】
【特許文献】
【0004】
【発明の概要】
【発明が解決しようとする課題】
【0005】
ところで、円筒構造体における内部のありさまを表す所定のデータ(内部データ、例えば内部の画像等)を取得して得られた前記内部データに基づいて点検する場合、円筒構造体が円筒であって特徴点もあまり無いので、前記内部データが何れの方向のデータであるか分かり難くなってしまう。前記特許文献1に開示された点検方法でも、ガイドに沿って移動する際に無人小型飛行体が周方向にずれてしまったり、無人小型飛行体の移動によってガイドが捻れてしまったりすると、無人小型飛行体で撮像した画像が何れの方向の画像であるか分かり難くなってしまう。
【0006】
本発明は、上述の事情に鑑みて為された発明であり、その目的は、円筒構造体における内部のありさまを表す所定の内部データを取得する場合に、データ取得方向の分かる内部データを取得できるデータ取得装置およびデータ取得方法を提供することである。
【課題を解決するための手段】
【0007】
本発明者は、種々検討した結果、上記目的は、以下の本発明により達成されることを見出した。すなわち、本発明の一態様にかかるデータ取得装置は、円筒状の部材である円筒構造体の内面に、一方向に延びる線状マークを形成するマーク形成部と、前記円筒構造体における内部のありさまを表す所定のデータを取得するデータ取得部と、前記線状マークに基づいて前記円筒構造体の内部における前記データ取得部のデータ取得方向を求める方向検出部とを備える。好ましくは、前記データ取得装置において、前記方向検出部は、前記線状マークに基づいて前記円筒構造体の延長方向に直交する直交面内での前記データ取得方向を求める。好ましくは、上述のデータ取得装置において、前記円筒構造体は、煙突または管である。好ましくは、上述のデータ取得装置において、前記円筒構造体は、火力発電所の煙突または水力発電所の水管である。好ましくは、上述のデータ取得装置において、前記マーク形成部は、前記円筒構造体の内面に前記線状マークとして線状の光を照射する光源部である。好ましくは、前記光源部は、レーザ光源装置である。好ましくは、前記光源部は、線状に配置された複数の発光ダイオード(例えばLEDテープライト等)である。好ましくは、上述のデータ取得装置において、前記マーク形成部は、燐光を放射する線状の燐光部材(蓄光部材)である。好ましくは、上述のデータ取得装置において、前記マーク形成部は、光を反射する線状の反射部材と、前記反射部材に光を照射する光源部とを備える。好ましくは、上述のデータ取得装置において、前記方向検出部は、前記線状マークを撮像するカメラ(撮像部)と、前記カメラで撮像した画像に基づいて前記データ取得部のデータ取得方向を求める方向処理部とを備える。好ましくは、上述のデータ取得装置において、前記所定のデータは、前記円筒構造体の内部の画像であり、前記データ取得部は、画像を生成するカメラであり、前記データ取得部のデータ取得方向は、前記カメラの撮像方向である。好ましくは、上述のデータ取得装置において、前記所定のデータは、前記円筒構造体の内部の熱分布であり、前記データ取得部は、熱分布を測定するサーモグラフィーであり、前記データ取得部のデータ取得方向は、前記サーモグラフィーの測定方向である。好ましくは、上述のデータ取得装置において、前記所定のデータは、前記円筒構造体の内壁面における表面凹凸分布(径方向の高さ分布)であり、前記データ取得部は、当該データ取得装置から前記円筒構造体の内壁面までの距離を測定する測距装置(例えばレーザ測距装置等)であり、前記データ取得部のデータ取得方向は、前記測距装置の測定方向である。
【0008】
このようなデータ取得装置は、マーク形成部を備えるので、前記マーク形成部で形成された線状マークを目印にデータ取得方向を求めることができる。このため、上記データ取得装置は、円筒構造体における内部のありさまを表す所定の内部データを取得する場合に、データ取得方向の分かる内部データを取得できる。
【0009】
他の一態様では、上述のデータ取得装置において、前記データ取得部および前記方向検出部を持ち、飛行する航空部をさらに備える。好ましくは、上述のデータ取得装置において、前記航空部は、自律的に飛行する。
【0010】
このようなデータ取得装置は、航空部を備えるので、例えば足場やゴンドラ等の比較的大規模な仮設を用いること無く、円筒構造体の内部における複数の箇所(位置)で円筒構造体の前記内部データを取得できる。
【0011】
他の一態様では、これら上述のデータ取得装置において、前記円筒構造体の内部における前記航空部の位置を測定する位置測定部と、前記位置測定部で測定した前記航空部の位置に基づいて、前記円筒構造体の延長方向に直交する直交面における前記円筒構造体の中央位置に位置するように、前記航空部を制御する位置制御部とをさらに備え、前記航空部は、前記位置測定部および前記位置制御部を持つ。
【0012】
特許文献1に開示された点検方法では、線状体がワイヤや糸やロープである場合(特許文献1の[0022]段落)、無人小型飛行体が線状体に沿って移動すると、この移動により、線状体の延長方向に交差する交差面内における線状体の位置がずれてしまう結果、無人小型飛行体の位置もずれてしまう虞がある。無人小型飛行体の位置がずれると、無人小型飛行体に搭載されたカメラと構造物との距離がずれるため、画角が固定されている場合、構造物の内部を想定の領域サイズで撮像できなくなってしまう。このため、1画素当たりに写り込む被写体のサイズが想定からずれてしまい、想定の精度で画像が得られなくなってしまう。一方、前記線状体が棒状体で構成される場合、このような位置ずれを低減できる可能性があるが、棒状体が比較的長くなると、棒状体の一方端で固定される場合、棒状体の他方端では、棒状体の位置がずれてしまう虞があり、その両端で固定される場合でも、その中央位置の付近では、棒状体の位置がずれてしまう虞がある。また、棒状体の設置に、仮設が必要になってしまう虞もある。
【0013】
上記データ取得装置は、その測定した航空部の位置に基づいて、直交面での円筒構造体の中央位置に位置するように、航空部を制御するので、想定の精度で円筒構造体の前記内部データを取得できる。
【0014】
他の一態様では、上述のデータ取得装置において、前記位置制御部は、さらに、前記方向検出部で求めた前記データ取得部のデータ取得方向に基づいて、前記データ取得部が所定の方向を向くように、前記航空部を制御する。好ましくは、上述のデータ取得装置において、前記航空部の高度を測定する高度測定部をさらに備え、前記航空部は、前記高度測定部を持ち、前記位置制御部は、さらに、前記高度測定部で求めた高度に基づいて、前記航空部が所定の高度となるように、前記航空部を制御する。
【0015】
このようなデータ取得装置は、データ取得部が所定の方向を向くように航空部を制御するので、所定の方向での円筒構造体の前記内部データを取得できる。
【0016】
本発明の他の一態様にかかるデータ取得方法は、円筒状の部材である円筒構造体の内面に、一方向に延びる線状マークを形成するマーク形成工程と、前記円筒構造体における内部のありさまを表す所定のデータを取得するデータ取得工程と、前記線状マークに基づいて前記円筒構造体の内部における前記データ取得工程でのデータ取得方向を求める方向検出工程とを備える。
【0017】
このようなデータ取得方法は、マーク形成工程を備えるので、前記マーク形成工程で形成された線状マークを目印にデータ取得方向を求めることができる。このため、上記データ取得方法は、円筒構造体における内部のありさまを表す所定の内部データを取得する場合に、データ取得方向の分かる内部データを取得できる。
【発明の効果】
【0018】
本発明にかかるデータ取得装置およびデータ取得方法は、円筒構造体における内部のありさまを表す所定の内部データを取得する場合に、データ取得方向の分かる内部データを取得できる。
【図面の簡単な説明】
【0019】
【
図1】実施形態におけるデータ取得装置の構成を示すブロック図である。
【
図2】円筒構造体の内部を前記データ取得装置が飛行する様子を説明するための図である。
【
図3】前記データ取得装置において、方向検出部の画像とデータ取得方向との関係を説明するための図である。
【
図4】前記円筒構造体の内部データの取得に関する、前記データ取得装置の動作を示すフローチャートである。
【
図5】前記円筒構造体の内部データを前記データ取得装置で取得する様子を説明するための図である。
【
図6】前記データ取得装置において、データ取得方向の制御を説明するための図である。
【発明を実施するための形態】
【0020】
以下、図面を参照して、本発明の1または複数の実施形態が説明される。しかしながら、発明の範囲は、開示された実施形態に限定されない。なお、各図において同一の符号を付した構成は、同一の構成であることを示し、適宜、その説明を省略する。本明細書において、総称する場合には添え字を省略した参照符号で示し、個別の構成を指す場合には添え字を付した参照符号で示す。
【0021】
本実施形態におけるデータ取得装置は、円筒状の部材である円筒構造体の内面に、一方向に延びる線状マークを形成するマーク形成部と、前記円筒構造体における内部のありさまを表す所定のデータを取得するデータ取得部と、前記線状マークに基づいて前記円筒構造体の内部における前記データ取得部のデータ取得方向を求める方向検出部とを備える。このようなデータ取得装置について、以下、より具体的に説明する。
【0022】
図1は、実施形態におけるデータ取得装置の構成を示すブロック図である。
図2は、円筒構造体の内部を前記データ取得装置が飛行する様子を説明するための図である。
図3は、前記データ取得装置において、方向検出部の画像とデータ取得方向との関係を説明するための図である。
図3Aは、方向検出部の画像に対するデータ取得方向の定義を説明するための図であり、
図3Bは、マーク画像に基づいて求められるデータ取得方向を説明するための図である。
【0023】
実施形態におけるデータ取得装置Sは、例えば、
図1に示すように、マーク形成部1と、データ取得部2と、方向検出部3とを備える。
図1に示す例では、データ取得装置Sは、さらに、第1位置測定部4と、第2位置測定部5と、高度測定部6と、航空部7と、制御処理部8と、記憶部9と、インターフェース部(IF部)10と、通信部11と、緊急操作部12とを備える。
【0024】
マーク形成部1は、円筒構造体の内面に、一方向に延びる線状マークを形成する装置である。前記円筒構造体は、円筒であれば、任意の構造体であってよいが、好適には、例えば、高さ方向(垂直方向)に長尺な円筒な構造体や、水平方向や垂直方向等に長尺であって人が侵入し難いあるいは危険が伴うような円筒な構造体である。このような円筒構造体は、代表的には、例えば、焼却施設の煙突、発電所(例えば火力発電所等)の煙突、製鉄所の煙突、化学プラントの煙突や配管、水力発電所の水管(例えばタービンへの導水管等)、および、トンネルの通気筒等である。
図2に示す例では、円筒構造体CBは、煙突であり、マーク形成部1は、この円筒構造体CBの底面に径方向に沿って延びる線状マークMKを形成する。より具体的には、マーク形成部1は、
図2に示す例では、前記底面の中央位置CPを通り、前記中央位置CPから径方向両側に延びる線状マークMKを形成する。なお、線状マークMKは、必ずしも前記底面の中央位置CPを通る必要は無く、また、線状であれば、前記径方向と交差してもよい。このようなマーク形成部1は、例えば、円筒構造体CBの内面に線状マークMKとして線状の光を照射する光源部である。前記光源部は、例えば、シート状(スリット状)のレーザ光を照射するレーザ光源装置、または、線状に配置された複数の発光ダイオード(例えばLEDテープライト等)等である。また例えば、マーク形成部1は、線状マークMKとしての、燐光を放射する線状の燐光部材(蓄光部材)である。また例えば、マーク形成部1は、線状マークMKとしての、光を反射する線状の反射部材と、前記反射部材に光を照射する光源部とを備える。
【0025】
データ取得部2は、制御処理部8に接続され、制御処理部8の制御に従って、円筒構造体における内部のありさま(状況、状態)を表す所定のデータ(内部データ)を取得する装置である。前記内部データは、例えば、円筒構造体CBの内部の画像であり、この場合、データ取得部2は、画像を生成するカメラ(第1カメラ)2である。あるいは、例えば、前記内部データは、円筒構造体CBの内部の熱分布であり、この場合、データ取得部2は、熱分布を測定するサーモグラフィー2である。あるいは、例えば、前記内部データは、円筒構造体CBの内壁面(内側面)の表面凹凸分布(径方向の高さ分布)であり、この場合、データ取得部2は、当該データ取得装置Sから円筒構造体CBの内壁面までの距離を測定する測距装置(例えばレーザ測距計等)2である。以下では、前記内部データが円筒構造体CBの内部、例えばその内壁面(内側面)の画像である場合について説明するが、前記内部データが他の種類のデータである場合でも同様に説明できる。データ取得部2の一例としての第1カメラ2は、モノクロカメラ、カラーカメラ、あるいは、赤外線カメラ等であってよく、円筒構造体CBの内部の画像を取得する目的に応じて適宜に選択される。第1カメラ2の解像度は、円筒構造体CBの内部の画像を取得する目的に応じて適宜に選択され、例えば、円筒構造体CBの内部点検を目的とする場合、第1カメラ2には、例えば直径5mの煙突内壁面におけるサブミリメートルオーダーのひび割れ等の異常を撮像するために適した画素数のエリアイメージセンサを持つデジタルカメラが利用される。データ取得部2は、この取得した内部データ、本実施形態では円筒構造体CBの内部の画像(構造体内部画像)を、制御処理部8へ出力する。
【0026】
方向検出部3は、マーク形成部1によって形成された線状マークMKに基づいてデータ取得部2のデータ取得方向(航空部7の向き)を求める装置である。前記データ取得方向は、本実施形態では、円筒構造体CBの延長方向に直交する直交面内での方向である。線状マークMKは、データ取得部2のデータ取得方向の基準となる。本実施形態では、前記データ取得方向は、第1カメラ2の撮像方向(第1撮像方向)である。なお、データ取得部2がサーモグラフィー2である場合、前記データ取得方向は、サーモグラフィー2の測定方向であり、データ取得部2が測距装置2である場合、前記データ取得方向は、測距装置2の測定方向である。
【0027】
本実施形態では、一例として、方向検出部3は、線状マークMKを撮像した画像(マーク画像)に基づいて線状マークMKの延長方向に対するデータ取得方向、この例では第1カメラ2の第1撮像方向(航空部7の向き)を求める。この例では、より詳しくは、方向検出部3は、線状マークMKを撮像するカメラ(撮像部、第2カメラ)と、前記第2カメラで撮像した画像に基づいてデータ取得部2のデータ取得方向(第1カメラの撮像方向)を求める、例えばマイクロコンピュータ等の情報処理回路(方向検出用情報処理回路)とを備える。前記第2カメラは、例えば、第1カメラ2と同様なデジタルカメラである。前記方向検出用情報処理回路は、前記第2カメラで取得したマーク画像から線状マークMKを検出し、この検出した線状マークMKに基づいてデータ取得方向を求めるものである。
【0028】
より具体的には、前記方向検出用情報処理回路は、マーク画像から線状マークMKを抽出する。例えば、前記方向検出用情報処理回路は、マーク画像を所定の閾値で2値化することによって輝度の高い線状領域を線状マークMKとして検出する。なお、前記方向検出用情報処理回路は、さらに、2値化したマーク画像からエッジフィルタによってエッジを検出することで輝度の高い線状領域における両辺の各エッジを検出し、これら検出した各エッジ(各辺)の中央線を線状マークMKとして検出してもよい。前記方向検出用情報処理回路は、さらに、これら検出した各エッジそれぞれに直線のハフ変換によって2本の直線を求め、これら求めた各直線の中央線を線状マークMKとして検出してもよい。そして、前記方向検出用情報処理回路は、この抽出した線状マークMKから、予め記憶した向き対応関係データを用いてデータ取得方向を求める。前記向き対応関係データは、前記第2カメラで取得された画像の方向と航空部7の向き(データ取得方向、この例では第1カメラ2の第1撮像方向)との対応関係を表すデータであり、例えば、
図3Aに示すように画像の横方向(水平方向、エリアイメージセンサの横方向)HLが航空部7の向きと定義され、前記画像の横方向HLと航空部7の向きとを対応付けたデータ等である。より詳しくは、前記方向検出用情報処理回路は、この抽出した線状マークMKに対する前記画像(マーク画像)の横方向の角度を求めることで、前記航空部7の向きをデータ取得方向として求める。例えば、
図3Bに示すように、この抽出した線状マークMKに対する前記画像(マーク画像)の横方向HLの角度がα°である場合、航空部7(データ取得部2)は、円筒構造体CBの底面の線状マークMKに対し、α°の方向に向いていることになる。すなわち、航空部7の向きは、円筒構造体CBの底面の線状マークMKを基準に、α°の方向である。前記方向検出用情報処理回路は、この求めた航空部7の向き(データ取得部2のデータ取得方向)を制御処理部8に出力する。
【0029】
第1位置測定部4は、制御処理部8に接続され、制御処理部8の制御に従って、円筒構造体の内部における航空部7の位置(データ取得部2の位置(この例では第1カメラ2の位置))を測定する装置である。本実施形態では、第1位置測定部4によって求める航空部7の位置は、円筒構造体CBの延長方向に直交する直交面(本実施形態では水平面)での位置であって、円筒構造体CBが前記直交面では円形状であるので、航空部7から円筒構造体CBの内壁面までの距離(水平距離)を、円筒構造体CBの径方向に沿った測定方向であって前記円筒構造体CBの周方向で互いに異なる複数の前記測定方向で測定することで航空部7の位置が求められる。このため、第1位置測定部4は、前記複数の測定方向で測定可能に構成された、円筒構造体CBの内壁面から航空部7までの距離を測定する測距装置を備えて構成される。より具体的には、第1位置測定部4は、前記径方向に沿った測定方向を前記周方向に回転させながら所定のサンプリング間隔で前記距離(水平距離)を1周の間に複数測定する、例えば、LiDAR(Light Detection and Ranging)等の、光や超音波等の測定パルス波を送受信することによって、いわゆるTOF(Time of Flight)方式で距離を求める測距計を備えて構成される。第1位置測定部4は、例えば前記測距計自体を回転するように構成される。あるいは、例えば、第1位置測定部4は、前記送受信の際に測定パルス波を例えばポリゴンミラー等で回転させるように構成される。第1位置測定部4は、前記複数の測定方向で測定した各前記距離を制御処理部8へ出力する。
【0030】
第2位置測定部5は、第1位置測定部4と同様に、制御処理部8に接続され、制御処理部8の制御に従って、円筒構造体の内部における航空部7の位置を測定する装置である。第2位置測定部5は、第1位置測定部4では前記距離の測定が不調であった場合に、第1位置測定部4をバックアップし、いわゆるフェイルセーフの機能を果たす。例えば、円筒構造体CBが分岐していたり、内壁面に貫通孔が形成されていたり等の場合、前記TOF方式の測距計では、前記距離の測定が不調となり得る。このため、第2位置測定部5は、第1位置測定部4の測距方式とは異なる測距方式で、航空部7から円筒構造体CBの内壁面までの前記距離を測定する装置である。より具体的には、第2位置測定部5は、前記径方向に沿った測定方向を前記周方向に回転させながら第1位置測定部4と同じ測定方向で前記距離を測定する、例えば、ステレオカメラ方式で距離を求める測距計を備えて構成される。前記ステレオカメラ方式では、互いに光軸が平行となるように基線長だけ離間して配置された左右1対のステレオカメラで撮像した左右1対の各画像に基づいて視差が求められ、この求めた視差に基づいていわゆる三角測量の原理に基づき前記距離が求められる。第2位置測定部5は、第1位置測定部4と同じ測定方向で測定した前記距離を制御処理部8へ出力する。
【0031】
高度測定部6は、制御処理部8に接続され、制御処理部8の制御に従って、航空部7の高度(高さ)(データ取得部2の高度(この例では第1カメラ2の高度))を測定する装置である。高度測定部6は、この測定した高度を制御処理部8へ出力する。高度測定部6は、例えば、気圧計、あるいは、円筒構造体CBの底面からの距離を測る測距計等を備えて構成される。
【0032】
IF部10は、制御処理部8に接続され、制御処理部8の制御に従って、外部機器との間でデータの入出力を行う回路である。前記データは、例えば、構造体内部データ等であり、前記構造体内部データは、後述のように記憶部9に記憶された、データ取得部2で取得した内部データ(この例では構造体内部画像)、前記内部データを取得した際に方向検出部3で検出したデータ取得部2のデータ取得方向、および、前記内部データを取得した際に高度測定部6で測定したデータ取得部2の高度を含む。IF部10は、例えば、Bluetooth(登録商標)規格を用いたインターフェース回路、IrDA(Infrared Data Asscoiation)規格等の赤外線通信を行うインターフェース回路、または、USB(Universal Serial Bus)規格を用いたインターフェース回路等を備えて構成される。
【0033】
通信部11は、制御処理部8に接続され、制御処理部8の制御に従って、無線によって外部機器との間で通信を行う装置であり、本実施形態では、緊急操作部12との間で通信を行う。通信部11は、例えば、Bluetooth(登録商標)規格を用いたインターフェース回路、または、IrDA規格等の赤外線通信を行うインターフェース回路等を備えて構成され、IF部10と兼用されてもよい。
【0034】
航空部7は、自律的に、大気中を飛行する装置である。本実施形態では、円筒構造体CBの内部を飛行するので、例えば、ヘリコプタまたはマルチコプタ等の、いわゆる無人機(ドローン)を備えて構成される。より具体的には、航空部7は、本体と、前記本体から四方に延びる4個のアームと、各アームの各先端部それぞれに設けられた4個のロータとを備えるマルチコプタを備えて構成される。航空部7は、データ取得部2、方向検出部3、第1および第2位置測定部4、5、高度測定部6、制御処理部8、記憶部9、IF部10および通信部11を搭載して持つ。データ取得部2は、そのデータ取得方向(第1カメラ2の第1撮像方向)が水平方向に沿って外側方向を向くように航空部7の前記本体に配設され、同様に、第1および第2位置測定部4、5それぞれは、その各測定方向が水平方向に沿って外側方向を向くように航空部7の前記本体に配設される。方向検出部3は、線状マークMKを撮像できるように、
図2に示す例では円筒構造体CBの底面を撮像できるように、その前記第2カメラの撮像方向(第2撮像方向)が垂直方向に沿って下方向を向くように航空部7の前記本体に配設される。前記第2カメラの第2撮像方向は、航空部7の中央位置を通る垂線(垂直方向に沿った線)と一致することが好ましい。高度測定部6は、測定可能に航空部7の前記本体に収容され、制御処理部8および記憶部9は、航空部7の前記本体に収容され、IF部10は、入出力可能に航空部7の前記本体に収容され、そして、通信部11は、通信可能に航空部7の前記本体に収容される。
【0035】
航空部7は、自律的に飛行するために必要な、例えばIMU(慣性計測装置)等の各種センサや、公知の常套手法によって、前記各種センサの測定結果に基づいて姿勢制御等を行って自律的に飛行を制御するマイクロコンピュータ等を備える。この航空部7の自律的な飛行の際に、本実施形態では、制御処理部8は、水平面内での位置、高度および向きを指示し、航空部7がこの指示に従って飛行することで航空部7を制御する。なお、航空部7の前記マイクロコンピュータは、制御処理部8および記憶部9と兼用されてもよい。
【0036】
記憶部9は、制御処理部8に接続され、制御処理部8の制御に従って、各種の所定のプログラムおよび各種の所定のデータを記憶する回路である。前記各種の所定のプログラムには、例えば、制御処理プログラムが含まれ、前記制御処理プログラムには、データ取得装置Sの各部2~7、9~11を当該各部の機能に応じてそれぞれ制御する制御プログラムや、第1および第2位置測定部4、5で測定した航空部7の位置に基づいて、円筒構造体の延長方向に直交する直交面(本実施形態では水平面)における前記円筒構造体の中央位置に位置するように、航空部7を制御する位置制御プログラムや、衝突回避等の緊急処理を行う緊急処理プログラム等が含まれる。前記各種の所定のデータには、例えば、これら各プログラムを実行する上で必要なデータや、前記構造体内部データ等が含まれる。このような記憶部9は、例えば不揮発性の記憶素子であるROM(Read Only Memory)や書き換え可能な不揮発性の記憶素子であるEEPROM(Electrically Erasable Programmable Read Only Memory)等を備える。そして、記憶部9は、前記所定のプログラムの実行中に生じるデータ等を記憶するいわゆる制御処理部8のワーキングメモリとなるRAM(Random Access Memory)等を含む。
【0037】
なお、方向検出部3の前記方向検出用情報処理回路は、制御処理部8および記憶部9と兼用されてもよく、記憶部9は、前記向き対応関係データを前記各種の所定のデータの1つとして記憶してもよい。
【0038】
制御処理部8は、データ取得装置Sの各部2~7、9~11を当該各部の機能に応じてそれぞれ制御し、航空部7の位置、高度および向きを制御しながらデータ取得部2によって円筒構造体の内部データを取得するための回路である。制御処理部8は、例えば、CPU(Central Processing Unit)およびその周辺回路を備えて構成される。制御処理部8には、前記制御処理プログラムが実行されることによって、制御部81、位置制御部82および緊急処理部83が機能的に構成される。
【0039】
制御部81は、データ取得装置Sの各部2~7、9~11を当該各部の機能に応じてそれぞれ制御し、データ取得装置S全体の制御を司るものである。そして、本実施形態では、制御部81は、位置制御部82から、データ取得部2のデータ取得方向、航空部7の高度およびデータ取得の指示が通知されると、このデータ取得の指示に従ってデータ取得部2に内部データを取得させ、内部データをデータ取得部2から取得し、この取得した内部データに、位置制御部82から通知されたデータ取得部2のデータ取得方向および航空部7のを互いに対応付けて構造体内部データの1つとして記憶部9に記憶する。
【0040】
位置制御部82は、第1および第2位置測定部4、5で求めた航空部7の位置に基づいて、円筒構造体CBの延長方向に直交する直交面(本実施形態では水平面)における前記円筒構造体の中央位置に位置するように、航空部7を制御するものである。より具体的には、位置制御部82は、円筒構造体CBの直交面における中央位置に位置するために、所定の移動量だけ移動するように航空部7に指示することで、第1および第2位置測定部4、5で求めた航空部7の位置に基づいて、円筒構造体CBの直交面における中央位置に位置するように、航空部7を制御する。
【0041】
より詳しくは、第2位置測定部5が第1位置測定部4のバックアップであり、円筒構造体CBが前記直交面では円形状であるので、位置制御部82は、周方向の互いに異なる複数の測定方向で第1位置測定部4で測定した各距離に基づいて、これら測定した前記各距離が互いに等しくなるように、前記所定の移動量を求め、この求めた前記所定の移動量だけ移動するように航空部7を制御する。例えば、位置制御部82は、周方向に120度の間隔で第1位置測定部4で測定した3個の各距離に基づいて、これら測定した3個の各距離が互いに等しくなるように、前記所定の移動量を求め、この求めた前記所定の移動量だけ移動するように航空部7を制御する。そして、このような第1位置測定部4で測定した各距離に基づいて航空部7を制御している際に、例えば、前記測定パルス波の不受信等により第1位置測定部4で測定不能になった場合には、第1位置測定部4が不調である判定され、位置制御部82は、第1位置測定部4の測定結果の代わりに、第2位置測定部5の測定結果を用いて上述のように航空部7を制御する。あるいは、例えば、円筒構造体CBが前記直交面では円形状であり、航空部7がその中央位置に制御されているので、前回の測定結果と今回の測定結果との差分は、小さいと予測されるため、前回の測定結果と今回の測定結果との差分が予め設定された閾値を超えた場合に、第1位置測定部4が不調である判定され、位置制御部82は、第1位置測定部4の測定結果の代わりに、第2位置測定部5の測定結果を用いて上述のように航空部7を制御する。
【0042】
本実施形態では、位置制御部82は、さらに、方向検出部3で求めたデータ取得部2のデータ取得方向(航空部7の向き)に基づいて、前記データ取得方向が所定の方向を向くように、航空部7を制御する。例えば、位置制御部82は、円筒構造体CBの内壁面を全周に亘って内部データを取得するように、航空部7を円筒構造体CBの中央位置に位置するようにホバリングさせながら、周方向に所定の角度ずつ回転させ前記データ取得方向が各方向に順次に向くように、航空部7を制御する。前記所定の角度は、例えば、数度や10度や20度等の、データ取得部2のデータの取得範囲および円筒構造体CBの内壁面における周方向の長さ(円周長)等に応じて適宜に設定される。
【0043】
さらに、本実施形態では、位置制御部82は、高度測定部6で求めた高度に基づいて、航空部7が所定の高度となるように、航空部7を制御する。より具体的には、位置制御部82は、所定の高度にするために、所定の高さだけ上昇するように航空部7に指示することで、位置制御部82は、高度測定部6で求めた高度に基づいて、航空部7が所定の高度となるように、航空部7を制御する。
【0044】
緊急処理部83は、航空部7と円筒構造体の内面との衝突を回避する緊急処理を行うものである。より具体的には、本実施形態では、例えば、緊急処理部83は、第1および第2位置測定部4、5で測定した航空部7から円筒構造体CBの内壁面までの水平距離が予め設定された所定の閾値以下となった場合に、緊急処理部83は、オペレータに衝突の警告を行うための信号(警告信号)を、通信部11を介して緊急操作部12へ送信する。これに応じて緊急操作部12から、通信部11を介して、衝突の回避を指示する信号(回避指示信号)を受信した場合に、緊急処理部83は、円筒構造体CBの内面から、予め設定された距離だけ離間するために、所定の移動量だけ位置制御部82の指示に優先して移動するように航空部7に指示する。
【0045】
緊急操作部12は、航空部7の衝突の回避を指示する装置である。より具体的には、緊急操作部12は、通信部11と通信する通信インターフェース回路と、データ取得装置Sから前記通信インターフェース回路を介して前記警告信号を受信した場合に、衝突の警告を出力する、例えばスピーカ、表示灯および表示装置等の出力部と、回避指示信号の送信の指示を受け付ける、例えば押しボタンスイッチ等の入力部と、これら前記通信インターフェース回路、前記出力部および前記入力部それぞれを各機能に応じて制御する、例えばマイクロコンピュータ等の制御回路等を備えて構成される。
【0046】
次に、本実施形態の動作について説明する。
図4は、前記円筒構造体の内部データの取得に関する、前記データ取得装置の動作を示すフローチャートである。
図5は、前記円筒構造体の内部データを前記データ取得装置で取得する様子を説明するための図である。
図6は、前記データ取得装置において、データ取得方向の制御を説明するための図である。
図6Aは、データ取得方向(第1撮像方向)0°の場合を示し、
図6Bは、データ取得方向90°の場合を示し、
図6Cは、データ取得方向180°の場合を示し、
図6Dは、データ取得方向270°の場合を示す。
【0047】
このような構成のデータ取得装置Sは、その電源が投入されると、必要な各部の初期化を実行し、その稼働を始める。制御処理部8では、その制御処理プログラムの実行によって、制御処理部8には、制御部81、位置制御部82および緊急処理部83が機能的に構成される。
【0048】
円筒構造体CBの内部データの取得に関し、データ取得装置Sは、次にように動作し、この動作中において、緊急処理部83は、上述のように、自機Sと円筒構造体CBの内壁面との衝突を回避する緊急処理を行う。なお、周方向における、データ取得部2による内部データの取得間隔は、上述したように、適宜に設定されるが、ここでは、説明の簡単化のため、90度とする。なお、他の角度でも同様に説明できる。
【0049】
円筒構造体CBの内部データの取得に関し、
図4において、まず、線状マークMKが形成される(S1)。より具体的には、マーク形成部1が稼働され、
図5に示すように、マーク形成部1によって、円筒構造体CBの底面に、線状マークMKが形成される。例えば、LEDテープライトが、一直線状に延びるように、円筒構造体CBの底面に布設される。
【0050】
次に、所定の初期設定が実行される(S2)。例えば、航空部7の中央位置への制御がし易いように、航空部7の中央位置と円筒構造体CBの底面の中央位置CPとが一致するように、航空部7が円筒構造体CBの底面に配置される。
【0051】
次に、航空部7は、高さ方向へ所定の距離hだけ移動する(S3)。より具体的には、制御処理部8の位置制御部82は、高度測定部6で求めた高度に基づいて、航空部7が所定の高度となるように、航空部7を制御する。例えば、最初(1回目)の上昇では、航空部7は、高度hの高さ位置HP1の直交面内に位置する。また例えば、2回目の上昇では、航空部7は、高度2h(=h+h)の高さ位置HP2の直交面内に位置する。前記所定の距離hは、例えば、0.5mや1mや1.5m等で、データ取得部2のデータの取得範囲等に応じて適宜に設定される。前記所定の距離hは、隣接する高さ位置での各内部データが各端部で一部重畳するように設定されることが好ましい。このような設定では、最初(1回目)の上昇で航空部7が高さ方向へ前記所定の距離hだけ移動すると、底面から距離h/2までの内面の内部データがデータ取得部2によって取得されないので、最初の上昇では、前記所定の距離hの半分(h/2)だけ移動するように、航空部7は、制御されてもよい。
【0052】
次に、航空部7は、その航空部7の位置を測定し、前記航空部7の位置が円筒構造体CBの直交面における中央位置に位置するように移動し、その航空部7の向き(データ取得部2のデータ取得方向)を検出し、前記航空部7の向きが所定の方向を向くように回転する(S4)。より具体的には、位置制御部82は、第1および第2位置測定部4、5で求めた航空部7の位置に基づいて、円筒構造体CBの直交面における中央位置に位置するように所定の移動量だけ移動するように航空部7を制御し、この制御に従って航空部7は、移動し、位置制御部82は、方向検出部3で求めたデータ取得部2のデータ取得方向(航空部7の向き)に基づいて、前記データ取得方向が所定の方向を向くように、航空部7を制御し、この制御に従って航空部7は、回転する。
【0053】
例えば、当該高度hの高さ位置HPにおける直交面内において、最初の制御では、航空部7は、その航空部7の位置が前記中央位置に位置するように制御され、
図6Aに示すように、航空部7の向き(データ取得部2のデータ取得方向)を0°に調整するために、前記向きが線状マークMKの延長方向に沿うように制御される。2回目の制御では、航空部7は、前記位置が前記中央位置に位置するように制御され、反時計回りの旋回によって(または時計回りの旋回によって)、
図6Bに示すように、前記向きを90°に調整するために、前記向きが線状マークMKの延長方向と直交するように制御される。3回目の制御では、航空部7は、前記位置が前記中央位置に位置するように制御され、反時計回りの旋回によって(または時計回りの旋回によって)、
図6Cに示すように、前記向きを180°に調整するために、前記向きが線状マークMKの延長方向に沿うように制御される。4回目の制御では、航空部7は、前記位置が前記中央位置に位置するように制御され、反時計回りの旋回によって(または時計回りの旋回によって)、
図6Dに示すように、前記向きを270°に調整するために、前記向きが線状マークMKの延長方向と直交するように制御される。このように一方向に旋回することで、1本の直線状の線状マークMKでデータ取得部2のデータ取得方向(航空部7の向き)が設定できる。
【0054】
次に、航空部7は、データ取得部2によって内部データを取得し、記憶部9に記憶する(S5)。より具体的には、位置制御部82は、処理S4で航空部7の位置およびその向きを制御すると、データ取得部2のデータ取得方向、航空部7の高度およびデータ取得の指示を制御部81に通知する。この通知を受けると、制御部81は、データ取得部2に内部データを取得させ、内部データをデータ取得部2から取得し、この取得した内部データに、この通知されたデータ取得部2のデータ取得方向および航空部7の高度(データ取得部2の高度)を互いに対応付けて構造体内部データの1つとして記憶部9に記憶する。例えば、最初(1回目)の指示では、高度hの高さ位置HP1における0°方向の内部データが取得され、この内部データ、データ取得方向0°および高度hが、互いに対応付けられて構造体内部データの1つとして記憶部9に記憶される。また例えば、2番目の指示では、高度hの高さ位置HP1における90°方向の内部データが取得され、この内部データ、データ取得方向90°および高度hが、互いに対応付けられて構造体内部データの他の1つとして記憶部9に記憶される。また例えば、8番目の指示では、高度2hの高さ位置HP2における270°方向の内部データが取得され、この内部データ、データ取得方向270°および高度2hが、互いに対応付けられて構造体内部データの他の1つとして記憶部9に記憶される。
【0055】
次に、航空部7は、制御部81によって、各方向の内部データを取得したか否かを判定する(S6)。この判定の結果、各方向の内部データを取得していない場合(No)には、制御部81は、処理を処理S4に戻す。これによって、処理S4ないし処理S6の各処理が順次に実行され、当該高度hの高さ位置HPにおける直交面内において、次のデータ取得方向の内部データが取得され、その構造体内部データが記憶される。一方、前記判定の結果、各方向の内部データを取得している場合(Yes)には、位置制御部82は、反時計回りの旋回によって(または時計回りの旋回によって)、前記向きが0°となるように航空部7を制御し、次に、処理S7を実行する。
【0056】
この処理S7では、航空部7は、制御部81によって、予め設定された所定の高度、例えば円筒構造体CBにおける最も高い撮像位置の高度に到達したか否かを判定する。この判定の結果、前記所定の高度に到達していない場合(No)には、制御部81は、処理を処理S3に戻す。これによって、処理S3ないし処理S7の各処理が順次に実行され、次の高度hの高さ位置HPにおける直交面内において、各方向それぞれでの各内部データが取得され、各構造体内部データが記憶される。一方、前記判定の結果、前記所定の高度に到達している場合(Yes)には、制御部81は、次に、処理S8を実行する。
【0057】
この処理S8では、航空部7は、制御部81によって、円筒構造体CBの底面まで降下し、前記底面に着地し、本処理を終了する。
【0058】
航空部7が着地すると、オペレータ(ユーザ)は、IF部10を介して記憶部9に記憶された構造体内部データを取り出し、取得する。この取得した構造体内部データの内部データ(本実施形態では構造体内部画像)を参照することで、オペレータは、円筒構造体CBの内面を点検できる。構造体内部画像に異常を認めた場合には、オペレータは、異常を認めた構造体内部画像に対応付けられたデータ取得方向および高度を参照することで、前記異常の位置を求めることができる。前記異常は、例えば、ひび割れ、内面被覆部材(ライニング材)の欠損、および、汚損等である。
【0059】
以上説明したように、本実施形態におけるデータ取得装置Sおよびこれに実装されたデータ取得方法は、線状マークMKが形成されるので、この形成された線状マークを目印にデータ取得方向を求めることができる。このため、上記データ取得装置Sおよびデータ取得方法は、円筒構造体CBの内部データを取得する場合に、データ取得方向の分かる内部データを取得できる。
【0060】
上記データ取得装置Sおよびデータ取得方法は、航空部7を備えるので、例えば足場やゴンドラ等の比較的大規模な仮設を用いること無く、円筒構造体CBの内部における複数の箇所(位置)で内部データを取得できる。
【0061】
上記データ取得装置Sおよびデータ取得方法は、測定した航空部7の位置に基づいて、直交面での円筒構造体CBの中央位置に位置するように、航空部7を制御するので、想定の精度で内部データを取得できる。
【0062】
上記データ取得装置Sおよびデータ取得方法は、データ取得方向が所定の方向を向くように航空部7を制御するので、所定の方向で円筒構造体CBの内部データを取得できる。
【0063】
なお、上述の実施形態では、線状マークMKは、円筒構造体CBの延長方向に直交する面(上述の例では底面)に形成されたが、線状マークMKは、円筒構造体CBの延長方向に沿った面(上述の円筒構造体CBでは側面)に前記延長方向に延びるように形成されてもよい。このような場合では、方向検出部3は、その前記第2カメラの第2撮像方向が水平方向を向くように配置される。前記第2カメラの第2撮像方向は、前記第2カメラで撮像された画像の法線方向(エリアイメージセンサの法線方向)となるので、前記向き対応関係データは、前記第2カメラで撮像された画像における中心位置を通る縦方向と航空部7の向きとを対応付けたデータであり、方向検出3は、前記抽出した線状マークMKと前記画像における中心位置を通る縦方向との横方向の距離からデータ取得方向を求めることができる。前記処理S4の方向の検出および制御では、最初の制御において、位置制御部82は、前記抽出した線状マークMKと前記画像における中心位置を通る縦方向とが一致するように航空部7を制御する。これによって、第2カメラの第2撮像方向(航空部7の向き)が0°となる。2回目ないし4回目の各制御では、ジャイロセンサ等を用いて90°ずつの反時計回りの旋回によって(または時計回りの旋回によって)、前記第2カメラの第2撮像方向(航空部7の向き、データ取得部2のデータ取得方向)が90°、180°および270°にできる。あるいは、周方向に所定の間隔(例えば90度や60度等)で互いに色の異なる複数(例えば4本や6本等)の線状マークMKを形成することで、データ取得部2のデータ取得方向が求められてもよい。
【0064】
本発明を表現するために、上述において図面を参照しながら実施形態を通して本発明を適切且つ十分に説明したが、当業者であれば上述の実施形態を変更および/または改良することは容易に為し得ることであると認識すべきである。したがって、当業者が実施する変更形態または改良形態が、請求の範囲に記載された請求項の権利範囲を離脱するレベルのものでない限り、当該変更形態または当該改良形態は、当該請求項の権利範囲に包括されると解釈される。
【符号の説明】
【0065】
S データ取得装置
1 マーク形成部
2 データ取得部
3 方向検出部
4 第1位置測定部
5 第2位置測定部
6 高度測定部
7 航空部
8 制御処理部
81 制御部
82 位置制御部