IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ 株式会社カネカの特許一覧

<>
  • 特許-太陽電池の製造方法 図1
  • 特許-太陽電池の製造方法 図2
  • 特許-太陽電池の製造方法 図3
  • 特許-太陽電池の製造方法 図4
  • 特許-太陽電池の製造方法 図5
  • 特許-太陽電池の製造方法 図6
  • 特許-太陽電池の製造方法 図7
  • 特許-太陽電池の製造方法 図8
  • 特許-太陽電池の製造方法 図9
  • 特許-太陽電池の製造方法 図10
  • 特許-太陽電池の製造方法 図11
  • 特許-太陽電池の製造方法 図12
  • 特許-太陽電池の製造方法 図13
  • 特許-太陽電池の製造方法 図14
  • 特許-太陽電池の製造方法 図15
  • 特許-太陽電池の製造方法 図16
  • 特許-太陽電池の製造方法 図17
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2023-10-04
(45)【発行日】2023-10-13
(54)【発明の名称】太陽電池の製造方法
(51)【国際特許分類】
   H01L 31/0747 20120101AFI20231005BHJP
   H01L 31/18 20060101ALI20231005BHJP
【FI】
H01L31/06 455
H01L31/04 420
【請求項の数】 12
(21)【出願番号】P 2020558118
(86)(22)【出願日】2019-09-19
(86)【国際出願番号】 JP2019036765
(87)【国際公開番号】W WO2020105265
(87)【国際公開日】2020-05-28
【審査請求日】2022-07-26
(31)【優先権主張番号】P 2018218208
(32)【優先日】2018-11-21
(33)【優先権主張国・地域又は機関】JP
(73)【特許権者】
【識別番号】000000941
【氏名又は名称】株式会社カネカ
(74)【代理人】
【識別番号】100100480
【弁理士】
【氏名又は名称】藤田 隆
(72)【発明者】
【氏名】口山 崇
【審査官】吉岡 一也
(56)【参考文献】
【文献】特開2014-158017(JP,A)
【文献】特開2013-120863(JP,A)
【文献】特開2000-100778(JP,A)
【文献】特開2005-277329(JP,A)
【文献】特開昭62-065428(JP,A)
【文献】米国特許出願公開第2014/0096819(US,A1)
(58)【調査した分野】(Int.Cl.,DB名)
H01L 31/02-31/20
(57)【特許請求の範囲】
【請求項1】
半導体基板の第1主面側に第1導電型の第1半導体層を形成する第1半導体層形成工程と、
前記第1半導体層上にリフトオフ層を積層するリフトオフ層積層工程と、
前記第1半導体層及び前記リフトオフ層をエッチングにより選択的にそれぞれ除去するパターニング工程と、
前記パターニング工程での前記第1半導体層及び前記リフトオフ層の除去部分から前記第1半導体層及び前記リフトオフ層の積層部分に跨るように、前記第1主面側に第2導電型の第2半導体層を形成する第2半導体層形成工程と、
前記リフトオフ層を除去することにより、前記リフトオフ層を覆う前記第2半導体層を除去するリフトオフ工程と、を含み、
前記パターニング工程では、前記半導体基板の面直方向の前記第1主面側から見て、前記第1半導体層のエッチング面積が前記リフトオフ層のエッチング面積以下になるように、2種類以上のエッチング液を用いて前記第1半導体層及び前記リフトオフ層を除去するものであり、
前記リフトオフ層は、金属を主成分とするものであり、
前記パターニング工程は、前記リフトオフ層を除去するリフトオフ層除去工程と、前記第1半導体層を除去する第1半導体層除去工程とを含み、前記リフトオフ層除去工程後に前記第1半導体層除去工程を行うものであり、
前記リフトオフ層除去工程で用いるエッチング液の種類と、前記第1半導体層除去工程で用いるエッチング液の種類が異なる、太陽電池の製造方法。
【請求項2】
前記リフトオフ層除去工程で用いるエッチング液を第1エッチング液とし、前記第1半導体層除去工程で用いるエッチング液を第2エッチング液としたときに、
前記第1エッチング液は、前記リフトオフ層のエッチング速度が第1半導体層のエッチング速度よりも速く、
前記第2エッチング液は、前記リフトオフ層のエッチング速度が第1半導体層のエッチング速度以上であって、かつ、前記第1エッチング液の前記リフトオフ層のエッチング速度よりも遅い、請求項に記載の太陽電池の製造方法。
【請求項3】
前記第1エッチング液は、前記リフトオフ層のエッチング速度が前記第1半導体層のエッチング速度の10倍以上である、請求項に記載の太陽電池の製造方法。
【請求項4】
半導体基板の第1主面側に第1導電型の第1半導体層を形成する第1半導体層形成工程と、
前記第1半導体層上にリフトオフ層を積層するリフトオフ層積層工程と、
前記第1半導体層及び前記リフトオフ層をエッチングにより選択的にそれぞれ除去するパターニング工程と、
前記パターニング工程での前記第1半導体層及び前記リフトオフ層の除去部分から前記第1半導体層及び前記リフトオフ層の積層部分に跨るように、前記第1主面側に第2導電型の第2半導体層を形成する第2半導体層形成工程と、
前記リフトオフ層を除去することにより、前記リフトオフ層を覆う前記第2半導体層を除去するリフトオフ工程と、を含み、
前記パターニング工程では、前記半導体基板の面直方向の前記第1主面側から見て、前記第1半導体層のエッチング面積が前記リフトオフ層のエッチング面積以下になるように、2種類以上のエッチング液を用いて前記第1半導体層及び前記リフトオフ層を除去するものであり、
前記リフトオフ層は、金属を主成分とするものであり、
前記リフトオフ層積層工程では、前記リフトオフ層は20nm以上250nm以下の膜厚となるように形成される、太陽電池の製造方法。
【請求項5】
前記リフトオフ層は、純金属又は金属合金を90%以上含む、請求項1~4のいずれか1項に記載の太陽電池の製造方法。
【請求項6】
前記リフトオフ層は、銀、又は、5n+4(nは4以上15以下の整数)の原子番号を有する金属元素を主成分とする、請求項1~5のいずれか1項に記載の太陽電池の製造方法。
【請求項7】
前記リフトオフ層は、銀、銅、クロム、イットリウム、インジウム、タングステン、ガドリニウム、又はツリウムの金属元素を主成分とする、請求項6に記載の太陽電池の製造方法。
【請求項8】
前記リフトオフ層は、物理気相堆積法によって製膜される、請求項1~のいずれか1項に記載の太陽電池の製造方法。
【請求項9】
前記リフトオフ層は、真空蒸着法によって製膜される、請求項に記載の太陽電池の製造方法。
【請求項10】
前記半導体基板は、少なくとも前記第1主面に第1テクスチャ構造を有しており、
前記第1半導体層及び前記第2半導体層は、前記第1テクスチャ構造を反映した第2テクスチャ構造を含む、請求項1~9のいずれか1項に記載の太陽電池の製造方法。
【請求項11】
前記パターニング工程では、前記リフトオフ層の端縁部が前記第1半導体層の端縁部よりも後退して形成されるようにエッチングする、請求項1~10のいずれか1項に記載の太陽電池の製造方法。
【請求項12】
半導体基板の第1主面側に、第1導電型の第1半導体層、第2導電型の第2半導体層、第1電極層、及び第2電極層を備え、前記半導体基板と前記第1電極層の間に前記第1半導体層が介在し、さらに前記半導体基板と前記第2電極層の間に前記第2半導体層が介在する太陽電池の製造方法であって、
前記半導体基板の前記第1主面側に前記第1半導体層を形成する第1半導体層形成工程と、
前記第1半導体層上にリフトオフ層を積層するリフトオフ層積層工程と、
前記リフトオフ層に対するエッチング速度が異なる2種類以上のエッチング液を用いて、前記半導体基板の面直方向の前記第1主面側から見て前記第1半導体層のエッチング面積が前記リフトオフ層のエッチング面積以下になるように、前記第1半導体層及び前記リフトオフ層のそれぞれの一部を除去するパターニング工程を含み、
前記リフトオフ層は、金属を主成分とする、太陽電池の製造方法。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、太陽電池の製造方法に関する。
【背景技術】
【0002】
一般的な太陽電池は、半導体基板の両面(受光面・裏面)に電極を配置させた両面電極型である。昨今、電極による遮蔽損のない太陽電池として、特許文献1に示されるような、裏面のみに電極を配置させたバックコンタクト(裏面電極)型太陽電池が開発されている。
【0003】
バックコンタクト型太陽電池は、裏面にp型半導体層及びn型半導体層等の半導体層パターンを高精度で形成しなければならず、両面電極型の太陽電池と比べて製造方法が煩雑となる。製造方法を簡略化するための技術として、特許文献1に示されるように、リフトオフ法による半導体層パターンの形成技術が挙げられる。すなわち、リフトオフ層を除去し、このリフトオフ層の上に形成された半導体層を除去することにより、半導体層パターンを形成するパターニング技術の開発が進められている。
【先行技術文献】
【特許文献】
【0004】
【文献】特開2013-120863号公報
【発明の概要】
【発明が解決しようとする課題】
【0005】
しかしながら、特許文献1に記載の方法では、リフトオフ層と半導体層との溶解性が似ている場合には、意図しない層までが除去されることがあり、パターニング精度又は生産性が高くならないおそれがある。
【0006】
また、エッチング又はリフトオフ層に対して使用される溶剤によって、層構成又は構造の設計が制限される可能性がある。例えば、p型半導体層とn型半導体層との製膜順、又は、各半導体層の膜厚若しくは幅などである。
【0007】
さらに、特許文献1に記載の方法では、半導体層をフォトリソグラフィとエッチングを用いてパターニングした後に、リフトオフ層を形成し、さらにリフトオフ層をフォトリソグラフィとエッチングを用いてパターニングしている。そのため、パターニングごとにレジスト層等を形成する必要があり、工程が煩雑となるので、製造時間とコストが嵩むという問題がある。
【0008】
本発明は、従来に比べて高性能なバックコンタクト型太陽電池を効率良く製造可能な太陽電池の製造方法を提供することを目的とする。
【課題を解決するための手段】
【0009】
本発明の一つの様相は、半導体基板の第1主面側に第1導電型の第1半導体層を形成する第1半導体層形成工程と、前記第1半導体層上にリフトオフ層を積層するリフトオフ層積層工程と、前記第1半導体層及び前記リフトオフ層をエッチングにより選択的にそれぞれ除去するパターニング工程と、前記パターニング工程での前記第1半導体層及び前記リフトオフ層の除去部分から前記第1半導体層及び前記リフトオフ層の積層部分に跨るように、前記第1主面側に第2導電型の第2半導体層を形成する第2半導体層形成工程と、前記リフトオフ層を除去することにより、前記リフトオフ層を覆う前記第2半導体層を除去するリフトオフ工程と、を含み、前記パターニング工程では、前記半導体基板の面直方向の前記第1主面側から見て、前記第1半導体層のエッチング面積が前記リフトオフ層のエッチング面積以下になるように、2種類以上のエッチング液を用いて前記第1半導体層及び前記リフトオフ層を除去するものであり、前記リフトオフ層は、金属を主成分とする、太陽電池の製造方法である。
【0010】
ここでいうエッチング液の「種類」とは、性質や形態だけではなく、濃度も含む。すなわち、「2種類以上のエッチング液」とは、性質や形態、濃度の少なくとも一つが異なる2種類以上のエッチング液をいう。
【0011】
本発明の一つの様相は、半導体基板の第1主面側に、第1導電型の第1半導体層、第2導電型の第2半導体層、第1電極層、及び第2電極層を備え、前記半導体基板と前記第1電極層の間に前記第1半導体層が介在し、さらに前記半導体基板と前記第2電極層の間に前記第2半導体層が介在する太陽電池の製造方法であって、前記半導体基板の前記第1主面側に前記第1半導体層を形成する第1半導体層形成工程と、前記第1半導体層上にリフトオフ層を積層するリフトオフ層積層工程と、前記リフトオフ層に対するエッチング速度が異なる2種類以上のエッチング液を用いて、前記半導体基板の面直方向の前記第1主面側から見て前記第1半導体層のエッチング面積が前記リフトオフ層のエッチング面積以下になるように、前記第1半導体層及び前記リフトオフ層のそれぞれの一部を除去するパターニング工程を含み、前記リフトオフ層は、金属を主成分とする、太陽電池の製造方法である。
【0012】
本発明の一つの様相は、半導体基板における互いに対向する2つの主面の一方の主面の上に、第1導電型の第1半導体層を形成する工程と、前記第1半導体層上に、金属を主成分とするリフトオフ層を積層する工程と、前記第1半導体層及び前記リフトオフ層をエッチングにより選択的に除去する工程と、前記第1半導体層及び前記リフトオフ層を含む前記一方の主面上に、第2導電型の第2半導体層を形成する工程と、前記リフトオフ層を除去することにより、前記リフトオフ層を覆う前記第2半導体層を除去する工程とを含む。そして、前記第1半導体層及び前記リフトオフ層を選択的に除去する工程では、前記半導体基板の面直方向の前記一方の主面側から見て、前記第1半導体層のエッチング面積が、前記リフトオフ層のエッチング面積以下になるように、2種類以上の異なるエッチング液を用いたウエットエッチングにより前記第1半導体層及び前記リフトオフ層を除去する、太陽電池の製造方法である。
【発明の効果】
【0013】
本発明によれば、従来に比べて高性能なバックコンタクト型太陽電池が効率良く製造できる。
【図面の簡単な説明】
【0014】
図1】本発明の例示的な実施形態に係る太陽電池を部分的に示す模式断面図である。
図2図1の太陽電池を構成する結晶基板の裏側主面を示す平面図である。
図3図1の太陽電池の要部の分解斜視図であり、太陽電池から電極層を分解した図である。なお、理解を容易にするために、テクスチャ構造を省略して描写している。
図4図1の太陽電池の製造方法の一工程たる結晶基板準備工程後の状態を示す部分的な模式断面図である。
図5図1の太陽電池の製造方法の一工程たる表側半導体層形成工程後の状態を示す部分的な模式断面図である。
図6図1の太陽電池の製造方法の一工程たるリフトオフ層積層工程後の状態を示す部分的な模式断面図である。
図7図1の太陽電池の製造方法の一工程たるリフトオフ層除去工程後の状態を示す部分的な模式断面図である。
図8図1の太陽電池の製造方法の一工程たる第1半導体層除去工程後の状態を示す部分的な模式断面図である。
図9図1の太陽電池の製造方法の一工程たるn側半導体層形成工程後の状態を示す部分的な模式断面図である。
図10図1の太陽電池の製造方法の一工程たるリフトオフ工程後の状態を示す部分的な模式断面図である。
図11図1の太陽電池の製造方法の一工程たる電極層形成工程後の状態を示す部分的な模式断面図である。
図12図8の工程終了時の状態を、結晶基板の面直方向の裏側主面側から見た平面図である。
図13】本実施形態の太陽電池の製造方法の各工程を示す部分的な模式断面図であり、(a)は第1半導体層除去工程後の状態を模式的に示した断面斜視図であり、(b)はn側半導体層形成工程後の状態を模式的に示した断面斜視図であり、(c)はリフトオフ工程後の状態を模式的に示した断面斜視図である。なお、理解を容易にするために、各図ではテクスチャ構造を省略して描写している。
図14】第1半導体層除去工程においてリフトオフ層が除去されなかった場合の説明図であり、(a)は第1半導体層除去工程後の状態を模式的に示した断面図であり、(b)はn側半導体層形成工程後の状態を模式的に示した断面図であり、(c)はリフトオフ工程後の状態を模式的に示した断面図である。
図15】第1半導体層除去工程においてリフトオフ層の厚みが厚い場合の説明図であり、(a)は第1半導体層除去工程後の状態を模式的に示した断面図であり、(b)はn側半導体層形成工程後の状態を模式的に示した断面図であり、(c)はリフトオフ工程後の状態を模式的に示した断面図である。
図16】本実施形態の変形例を示す図9に相当するn側半導体層形成工程後の状態を示す模式断面図である。
図17】本実施形態の変形例を示す図10に相当するリフトオフ工程後の状態を示す模式断面図である。
【発明を実施するための形態】
【0015】
本発明の一実施形態について説明すると以下の通りであるが、これに限定されるものではない。なお、便宜上、ハッチングや部材符号等を省略する場合もあるが、かかる場合、他の図面を参照するものとする。また、図面における種々部材の寸法は、便宜上、見やすいように調整されている。
【0016】
太陽電池10は、図1のように、シリコン(Si)製の結晶基板11を用いる。結晶基板11は、互いに対向する2つの主面11S(11SU、11SB)を有する。
ここでは、光が入射される主面を表側主面11SUと呼び、これと反対側の主面を裏側主面11SBと呼ぶ。便宜上、表側主面11SUは、裏側主面11SBよりも積極的に受光させる側であることから受光側とし、積極的に受光させない側を非受光側とする。
【0017】
太陽電池10は、いわゆるヘテロ接合結晶シリコン太陽電池であり、図1のように、電極層15(第1電極層15p、第2電極層15n)を裏側主面11SBに配置したバックコンタクト型(裏面電極型)太陽電池である。
【0018】
太陽電池10は、結晶基板11、真性半導体層12、導電型半導体層13(p型半導体層13p、n型半導体層13n)、低反射層14、及び電極層15(透明電極層17、金属電極層18)を含む。
【0019】
以下では、便宜上、p型半導体層13p又はn型半導体層13nに個別に対応する部材には、参照符号の末尾に「p」又は「n」を付すことがある。また、p型、n型のように導電型が相違するため、一方の導電型を「第1導電型」、他方の導電型を「第2導電型」と称することもある。
【0020】
本実施形態の太陽電池10は、図1のように、結晶基板11(半導体基板)の表側主面11SU(第2主面)上に真性半導体層12U及び低反射層14がこの順に積層されている。
太陽電池10は、結晶基板11の裏側主面11SB(第1主面)の一部において真性半導体層12p、p型半導体層13p、及び第1電極層15pがこの順に積層されている。太陽電池10は、結晶基板11の裏側主面11SBの他の部分において真性半導体層12n、n型半導体層13n、及び第2電極層15nがこの順に積層されている。
また、太陽電池10は、真性半導体層12n及びn型半導体層13nの一部がp型半導体層13pの一部にオーバーラップしており、当該オーバーラップ部分では、p型半導体層13pとn型半導体層13nの間に真性半導体層12nが介在している。
【0021】
結晶基板11は、単結晶シリコンで形成された半導体基板であっても、多結晶シリコンで形成された半導体基板であってもよい。以下では、単結晶シリコン基板を例に挙げて説明する。
【0022】
結晶基板11の導電型は、シリコン原子に対して電子を導入する不純物(例えば、リン(P)原子)が導入されたn型単結晶シリコン基板であってもよい。また、結晶基板11の導電型は、シリコン原子に対して正孔を導入する不純物(例えば、ホウ素(B)原子)が導入されたp型単結晶シリコン基板であってもよい。以下では、キャリア寿命が長いといわれるn型の単結晶基板を例に挙げて説明する。
【0023】
結晶基板11は、受光した光を閉じこめておくという観点から、2つの主面11Sの表面に、山(凸)と谷(凹)とから構成されるテクスチャ構造TX(第1テクスチャ構造)を有していてもよい。なお、テクスチャ構造TX(凹凸面)は、例えば、結晶基板11における面方位が(100)面のエッチングレートと、面方位が(111)面のエッチングレートとの差を応用した異方性エッチングによって形成される。
【0024】
結晶基板11の厚さは、250μm以下であってもよい。
なお、厚さを測定する場合の測定方向は、結晶基板11の平均面(平均面とは、テクスチャ構造TXに依存しない基板全体としての面を意味する)に対する垂直方向である。これ以降、この垂直方向、すなわち、厚さを測定する方向を面直方向とする。
【0025】
テクスチャ構造TXにおける凹凸の大きさは、例えば、頂点の数で定義することが可能である。本実施形態では、光取り込み性能と生産性との観点から、頂点の数が、50000個/mm以上100000個/mm以下の範囲であることが好ましく、特に、70000個/mm個以上85000個/mm以下であることが好ましい。
【0026】
なお、結晶基板11の厚さは、250μm以下とすると、シリコンの使用量を減らせるため、シリコン基板を確保しやすくなり、低コスト化が図れる。その上、シリコン基板内で光励起により生成した正孔と電子とを裏面側のみで回収するバックコンタクト構造では、各励起子の自由行程の観点からも好ましい。
【0027】
一方で、結晶基板11の厚さが過度に小さいと、機械的強度の低下が生じたり、外光(太陽光)が十分に吸収されず、短絡電流密度が減少したりする。このため、結晶基板11の厚さは、50μm以上が好ましく、70μm以上がより好ましい。
結晶基板11の主面にテクスチャ構造TXが形成されている場合には、結晶基板11の厚さは、受光側及び裏面側のそれぞれの凹凸構造における凸の頂点を結んだ直線間の距離で表される。
【0028】
真性半導体層12(12U、12p、12n)は、結晶基板11の両主面11S(11SU、11SB)を覆うことによって、結晶基板11への不純物の拡散を抑えつつ、表面パッシベーションを行う。
なお、「真性(i型)」とは、導電性不純物を含まない完全な真性に限られず、シリコン系層が真性層として機能し得る範囲で微量のn型不純物又はp型不純物を含む「弱n型」又は「弱p型」の実質的に真性である層をも包含する。
【0029】
なお、真性半導体層12(12U、12p、12n)は、必須ではなく、必要に応じて、適宜形成すればよい。
【0030】
真性半導体層12の材料は、特に限定されないが、非晶質シリコン系薄膜であってもよく、シリコンと水素とを含む水素化非晶質シリコン系薄膜(a-Si:H薄膜)であってもよい。なお、ここでいう非晶質とは、長周期で秩序を有していない構造を意味する。すなわち、完全な無秩序なだけでなく、短周期で秩序を有しているものも含まれる。
【0031】
真性半導体層12の厚さは、特に限定されないが、2nm以上20nm以下であってもよい。厚さが2nm以上であると、パッシベーション層としての効果が高まり、厚さが20nm以下であると、高抵抗化により生じる変換特性の低下を抑えられるためである。
【0032】
真性半導体層12の形成方法は、特に限定されないが、プラズマCVD(Plasma enhanced Chemical Vapor Deposition)法が用いられる。この方法によると、単結晶シリコンへの不純物の拡散を抑制しつつ、基板表面のパッシベーションを有効に行える。また、プラズマCVD法であれば、真性半導体層12における層中の水素濃度をその厚さ方向で変化させることにより、キャリアの回収を行う上で有効なエネルギーギャッププロファイルの形成をも行える。
【0033】
なお、プラズマCVD法による薄膜の成膜条件としては、例えば、基板温度が100℃以上300℃以下、圧力が20Pa以上2600Pa以下、及び高周波のパワー密度が0.003W/cm以上0.5W/cm以下であってもよい。
【0034】
また、薄膜の形成に使用される原料ガスとしては、真性半導体層12の場合は、モノシラン(SiH)及びジシラン(Si)等のシリコン含有ガス、又はそれらのガスと水素(H)とを混合したガスであってもよい。
【0035】
なお、上記のガスに、メタン(CH)、アンモニア(NH)若しくはモノゲルマン(GeH)等の異種の元素を含むガスを添加して、シリコンカーバイド(SiC)、シリコンナイトライド(SiN)又はシリコンゲルマニウム(SiGe)等のシリコン化合物を形成することにより、薄膜のエネルギーギャップを適宜変更してもよい。
【0036】
導電型半導体層13としては、p型半導体層13pとn型半導体層13nとが挙げられる。p型半導体層13pは、図1に示すように、結晶基板11の裏側主面11SBの一部に真性半導体層12pを介して形成される。n型半導体層13nは、結晶基板11の裏側主面11SBの他の一部に真性半導体層12nを介して形成される。すなわち、p型半導体層13pと結晶基板11との間、及び、n型半導体層13nと結晶基板11との間に、それぞれパッシベーションの役割を果たす中間層として真性半導体層12(12p・12n)が介在する。
【0037】
p型半導体層13p及びn型半導体層13nの各厚さは、特に限定されないが、2nm以上20nm以下であってもよい。厚さが2nm以上であると、パッシベーション層としての効果が高まり、厚さが20nm以下であると、高抵抗化により生じる変換特性の低下を抑えられるためである。
【0038】
p型半導体層13p及びn型半導体層13nは、結晶基板11の裏側において、真性半導体層12を介して電気的に分離されるように配置される。導電型半導体層13の幅は、50μm以上3000μm以下であってよく、80μm以上500μm以下であってもよい。
【0039】
なお、半導体層12,13の幅及び電極層17,18の幅は、特に断りがない限り、パターン化された各層の一部分の長さで、パターン化により、例えば、線状になった一部分の延び方向と直交する方向の長さを意味する。
【0040】
太陽電池10では、真性半導体層12nの一部及びn型半導体層13nの一部が、p型半導体層13pの上に形成される。真性半導体層12n及びn型半導体層13nにおける、p型半導体層13pの上に形成された部分は、幅方向の端縁が略面一になるように形成される。
【0041】
ところで、結晶基板11内で生成した光励起子(キャリア)が導電型半導体層13を介して取り出される場合、正孔は電子よりも有効質量が大きい。このため、輸送損を低減させるという観点から、p型半導体層13pがn型半導体層13nよりも幅が狭くてもよい。例えば、p型半導体層13pの幅は、n型半導体層13nの幅の0.5倍以上0.9倍以下であってもよく、また、0.6倍以上0.8倍以下であってもよい。
【0042】
p型半導体層13pは、p型のドーパント(ホウ素等)が添加されたシリコン層であって、不純物拡散の抑制又は直列抵抗の抑制の観点から、非晶質シリコンで形成されてもよい。一方、n型半導体層13nは、n型のドーパント(リン等)が添加されたシリコン層であって、p型半導体層13pと同様に、非晶質シリコン層で形成されてもよい。
導電型半導体層13の原料ガスとしては、モノシラン(SiH)若しくはジシラン(Si)等のシリコン含有ガス、又はシリコン系ガスと水素(H)との混合ガスを用いてもよい。
【0043】
なお、ドーパントガスには、p型半導体層13pの形成にはジボラン(B)等が用いられ、n型半導体層の形成にはホスフィン(PH)等が用いられる。また、ホウ素(B)又はリン(P)といった不純物の添加量は微量でよいため、ドーパントガスを原料ガスで希釈した混合ガスを用いてもよい。
【0044】
また、p型半導体層13p又はn型半導体層13nのエネルギーギャップの調整のために、メタン(CH)、二酸化炭素(CO)、アンモニア(NH)又はモノゲルマン(GeH)等の異種の元素を含むガスを添加することにより、p型半導体層13p又はn型半導体層13nが合金化されてもよい。
【0045】
p型半導体層13p及びn型半導体層13nは、図3のように、結晶基板11を裏側主面11SB側からみたときに、それぞれ櫛状となっている。すなわち、p型半導体層13p及びn型半導体層13nは、結晶基板11を裏側主面11SB側からみたときに、所定の方向に延びたバスバー下地部30(30p、30n)(下地櫛背部)と、バスバー下地部30からバスバー下地部30の延び方向に対する交差方向に延びた複数のフィンガー下地部31(31p、31n)(下地櫛歯部)を備えている。
n型半導体層13nは、p型半導体層13pの一部に覆い被さっており、結晶基板11を裏側主面11SB側からみたときに、p型半導体層13pの一部と重なっている。
【0046】
低反射層14は、太陽電池10が受けた光の反射を抑制する層である。低反射層14の材料には、光を透過する透光性の材料であれば、特に限定されないが、例えば、酸化ケイ素(SiO)、窒化ケイ素(SiN)、酸化亜鉛(ZnO)又は酸化チタン(TiO)が挙げられる。また、低反射層14の形成方法としては、例えば、酸化亜鉛又は酸化チタン等の酸化物のナノ粒子を分散させた樹脂材料で塗布してもよい。
【0047】
電極層15は、p型半導体層13p又はn型半導体層13nをそれぞれ覆うように形成されて、各導電型半導体層13と電気的に接続される。これにより、電極層15は、p型半導体層13p又はn型半導体層13nに生じるキャリアを導く輸送層として機能する。
なお、各半導体層13p、13nに対応する電極層15p、15nは、乖離して配置されることで、p型半導体層13pとn型半導体層13nとの短絡を防止する。
【0048】
電極層15は、導電性の高い金属のみで形成されてもよい。
p型半導体層13p及びn型半導体層13nとのそれぞれの電気的な接合の観点から、又は電極材料である金属の両半導体層13p、13nに対する原子の拡散を抑制するという観点から、太陽電池10は、透明導電性酸化物で構成された透明電極層17を、金属製の電極層18とp型半導体層13pとの間及び金属製の電極層18とn型半導体層13nとの間にそれぞれ設けてもよい。
本実施形態においては、透明導電性酸化物で形成される電極層15を透明電極層17と称し、金属製の電極層15を金属電極層18と称する。
【0049】
図2に示す結晶基板11の裏側主面11SBの平面図に示すように、それぞれ櫛歯形状を持つp型半導体層13p及びn型半導体層13nにおいて、下地櫛背部上に形成される電極層15をバスバー部20と称し、下地櫛歯部上に形成される電極層15をフィンガー部21と称することがある。
すなわち、本実施形態の太陽電池10は、図2のように、結晶基板11を裏側主面11SB側からみたときに、櫛状の第1電極層15pと、櫛状の第2電極層15nが形成されている。各電極層15(15p、15n)は、所定の方向に延びたバスバー部20(20p、20n)と、バスバー部20からバスバー部20の延び方向に対する交差方向に延びた複数のフィンガー部21(21p、21n)を備えている。
バスバー部20(20p、20n)は、図3のように、バスバー下地部30(30p、30n)上にバスバー下地部30に沿って形成されている。
フィンガー部21(21p、21n)は、フィンガー下地部31(31p、31n)上にフィンガー下地部31に沿って形成されている。
太陽電池10は、結晶基板11を裏側主面11SB側からみたときに、第1電極層15pと第2電極層15nの間に隙間があり、接触していない。
【0050】
透明電極層17は、材料としては特に限定されないが、例えば、酸化亜鉛(ZnO)若しくは酸化インジウム(InO)、又は酸化インジウムに種々の金属酸化物、例えば酸化チタン(TiO)、酸化スズ(SnO)、酸化タングステン(WO)若しくは酸化モリブデン(MoO)等を1重量%以上10重量%以下で添加した透明導電性酸化物が挙げられる。
【0051】
透明電極層17の厚さは、20nm以上200nm以下であってもよい。この厚さに好適な透明電極層17の形成方法には、例えば、スパッタ法等の物理気相堆積(PVD:physical Vapor Deposition)法、又は、有機金属化合物と酸素又は水との反応を利用した金属有機化学気相堆積(MOCVD:Metal-Organic Chemical Vapor Deposition)法等が挙げられる。
【0052】
金属電極層18は、材料としては特に限定されないが、例えば、銀(Ag)、銅(Cu)、アルミニウム(Al)又はニッケル(Ni)等が挙げられる。
【0053】
金属電極層18の厚さは、1μm以上80μm以下であってもよい。この厚さに好適な金属電極層18の形成方法には、材料ペーストをインクジェットによる印刷若しくはスクリーン印刷する印刷法、又はめっき法が挙げられる。但し、これには限定されず、真空プロセスを採用する場合には、真空蒸着法(以下、単に蒸着法ともいう)又はスパッタリング法を採用してもよい。
【0054】
また、p型半導体層13p及びn型半導体層13nにおける櫛歯部たるフィンガー下地部31p、31nの幅と、この櫛歯部の上に形成される金属電極層18の幅(フィンガー部21p、21nの幅)とは、同程度であってもよい。但し、フィンガー下地部31p、31nの幅と比べて、フィンガー部21p、21nの幅が狭くてもよい。また、金属電極層18同士のリークが防止されるのであれば、フィンガー下地部31p、31nの幅と比べて、フィンガー部21p、21nの幅が広くてもよい。
【0055】
なお、本実施形態では、結晶基板11の裏側主面11SBの上に、真性半導体層12、導電型半導体層13、低反射層14、及び電極層15を積層した状態で、各接合面のパッシベーション、導電型半導体層13及びその界面における欠陥準位の発生の抑制、並びに透明電極層17における透明導電性酸化物の結晶化を目的として、所定のアニール処理を施す。
【0056】
このアニール処理には、例えば、上記の各層を形成した結晶基板11を150℃以上200℃以下に過熱したオーブンに投入して行うアニール処理が挙げられる。この場合、オーブン内の雰囲気は、大気でもよく、さらには、水素又は窒素を用いると、より効果的なアニール処理を行える。また、このアニール処理は、各層を形成した結晶基板11に、赤外線ヒータにより赤外線を照射させるRTA(Rapid Thermal Annealing)処理であってもよい。
【0057】
[太陽電池の製造方法]
以下、本実施形態に係る太陽電池10の製造方法について図4図10を参照しながら説明する。
【0058】
まず、図4に示すように、表側主面11SU及び裏側主面11SBにそれぞれテクスチャ構造TXを有する結晶基板11を準備する(結晶基板準備工程)。
【0059】
次に、図5に示すように、結晶基板11の表側主面11SUの上に、例えば真性半導体層12Uを形成する。続いて、形成した真性半導体層12Uの上に低反射層14を形成する(表側半導体層形成工程)。
【0060】
このとき、低反射層14には、光閉じ込めの観点から、適した光吸収係数及び屈折率を有するシリコンナイトライド(SiN)又はシリコンオキサイド(SiO)が用いられる。
【0061】
次に、裏側に半導体層12p、13pを形成するp側半導体層形成工程を行う。具体的には、まず図6に示すように、結晶基板11の裏側主面11SBの上に、例えばi型非晶質シリコンを用いた真性半導体層12pを形成する(第1真性半導体層形成工程)。
続いて、形成した真性半導体層12pの上に、p型半導体層13pを形成する(第1半導体層形成工程)。
これらの工程により、結晶基板11における一方の主面である裏側主面11SBの上に、p型半導体層13pが形成される。
【0062】
このように、p型半導体層13p(第1半導体層)を形成する第1半導体層形成工程は、p型半導体層13pを形成する第1半導体層形成工程よりも前に、結晶基板11(半導体基板)の一方の主面11S(裏側主面11SB)の上に真性半導体層12p(第1真性半導体層)を形成する第1半導体層形成工程を含む。
【0063】
その後、形成したp型半導体層13pの上に、リフトオフ層LFを積層する(リフトオフ層積層工程)。
【0064】
このリフトオフ層LFは、金属を主成分として含むことが好ましい(なお、主成分とは、リフトオフ層LFを形成する材料のうちの50%以上の含有材料成分である)。
【0065】
具体的には、リフトオフ層LFは、銀又は原子番号が5n+4(nは4以上15以下の整数)の金属元素うち1種類以上から選択された元素を主成分として含む。
原子番号が5n+4である金属には、クロム(原子番号24)、銅(原子番号29)、イットリウム(原子番号39)、インジウム(原子番号49)、ガドリニウム(原子番号64)、ツリウム(原子番号69)、タングステン(原子番号74)、又は、金(原子番号79)が挙げられる。
リフトオフ層LFに求められる特性としては、溶解する液の選択性があり、銀以外の金属に対して5n+4の関係が成り立つ理由は明確になっていないが、d・f軌道の電子数とエッチング液に対するイオン化率との関係があると考えることができる。
リフトオフ層LFは、純金属又は金属合金であってもよく、純金属又は金属合金を90%以上含むことが好ましく、95%以上含むことがより好ましい。
【0066】
なお、リフトオフ層LFは、真空プロセス、特に、化学気相堆積法(CVD法)又は物理気相堆積法(PVD法)により形成される。これらの方法では、原料ガスの流量比、圧力、又は電源の設定電圧等の製膜条件により密度等の膜質が制御される。さらに、前記の製膜条件を膜厚方向で変えることにより、膜厚方向のエッチング特性が調整されてもよい。
【0067】
特にPVD法の場合、スパッタリング法よりも真空蒸着法の方が好ましい場合がある。これは、製膜された金属膜の結晶の質がエッチング・リフトオフ特性に影響するためである。例えば銅や銀は、結晶粒径を大きくする方が良好な結果を得られやすいため、真空蒸着法を選択することが好ましくなる場合がある。
ここでいう「真空蒸着法」とは、抵抗加熱型真空蒸着法や、電子ビーム蒸着法、フラッシュ蒸着法を含む。
【0068】
次に、図7図8に示すように、結晶基板11の裏側主面11SBにおいて、リフトオフ層LF及びp型半導体層13pをパターニングする(パターニング工程)。
これにより、p型半導体層13pが形成されない非形成領域NAが生じる。一方、結晶基板11の裏側主面11SBでエッチングされなかった領域には、リフトオフ層LF及びp型半導体層13pが残る。
【0069】
図7図8に示すパターニング工程では、結晶基板11の面直方向の裏側主面11SB側から見て、真性半導体層12p及びp型半導体層13pのエッチングで溶けた面積(以下、エッチング面積という)が、リフトオフ層LFのエッチング面積以下になるように、2種類以上の異なるエッチング液を用いたウエットエッチングにより、真性半導体層12p、p型半導体層13p及びリフトオフ層LFを除去する。
【0070】
より詳しくは、結晶基板11の面直方向の裏側主面11SB側から見て、真性半導体層12p及びp型半導体層13pの幅が、リフトオフ層LFの幅以上になるように、真性半導体層12p、p型半導体層13p及びリフトオフ層LFを除去する。
【0071】
実際の工程では、図7に示すように、リフトオフ層LFを、第1エッチング液を用いたウエットエッチングにより選択的に除去した後、図8に示すように、真性半導体層12及びp型半導体層13pを、第2エッチング液を用いたウエットエッチングにより選択的に除去する。
すなわち、パターニング工程は、第1エッチング液を用いて主にリフトオフ層LFのエッチングを行うリフトオフ層除去工程と、第2エッチング液を用いて主に真性半導体層12及びp型半導体層13pのエッチングを行う第1半導体層除去工程をこの順に含む。
【0072】
このようなパターニング工程は、フォトリソグラフィ法、例えば所定のパターンを有するレジスト膜(不図示)をリフトオフ層LFの上に形成し、レジスト膜によってマスクされた領域はエッチングにより溶けず、マスクされていない領域が溶解することで実現される。図7図8に示すように、真性半導体層12p、p型半導体層13p及びリフトオフ層LFの各層をパターニングすることにより、結晶基板11の裏側主面11SBの一部の領域に非形成領域NA、すなわち裏側主面11SBの露出領域が生じる。
【0073】
図7に示すリフトオフ層除去工程で使用する第1エッチング液としては、例えば、塩酸又は硫酸などの強酸系のエッチング液のほかに、次亜塩素酸ナトリウム水溶液又はアルカリなどのアルカリ系のエッチングが用いられる。
一方で、図8に示す第1半導体層除去工程で使用する第2エッチング液としては、例えば、オゾンをフッ化水素酸に溶解させた溶液(以下、オゾン/フッ化水素酸液)が用いられる。
【0074】
なお、第2エッチング液であるオゾン/フッ化水素酸液は、真性半導体層12p及びp型半導体層13pのみでなく、リフトオフ層LFもエッチング又は腐食する可能性がある。この場合、図8に示す第1半導体層除去工程後の状態では、図7に示すリフトオフ層除去工程後の状態と比較して、リフトオフ層LFの幅方向の端縁部が後退する。
これにより、リフトオフ層LFの端縁部がp型半導体層13pの端縁部よりも後退した状態となる。すなわち、p型半導体層13pは、図13(a)から読み取れるように、リフトオフ層LFから露出した部分(露出部分35)があり、当該露出部分35はリフトオフ層LFの縁に沿って形成されている。言い換えると、p型半導体層13pの端面とリフトオフ層LFの端面は、p型半導体層13pの主面の一部を介して段状に連続している。
この結果、図12に示すように、結晶基板11の面直方向の裏側主面11SB側から見て、真性半導体層12p及びp型半導体層13pの幅が、リフトオフ層LFの幅以上になる。
【0075】
次に、図9に示すように、真性半導体層12n及びn型半導体層13nを形成するn側半導体層形成工程を行う。すなわち、リフトオフ層LF、p型半導体層13p、及び真性半導体層12pを含め、結晶基板11の裏側主面11SBの上に、真性半導体層12n及びn型半導体層13nを順次形成する。
すなわち、n側半導体層形成工程では、結晶基板11の裏側主面11SB上からp型半導体層13p及びリフトオフ層LFの積層部分に跨って真性半導体層12nを積層する第2真性半導体層形成工程と、真性半導体層12n上にn型半導体層13nを積層する第2半導体層形成工程を実施する。言い換えると、パターニング工程により半導体層12p、13pが除去された除去部分(非形成領域NA)から、半導体層12p,13pのリフトオフ層LFからの露出部分及びリフトオフ層LFに跨って真性半導体層12n及び型半導体層13nを積層する。
【0076】
このようなn型半導体層13n(第2半導体層)を形成する第2半導体層形成工程は、n型半導体層13nを形成する第2半導体層形成工程よりも前に、結晶基板11(半導体基板)のリフトオフ層LF及びp型半導体層13pを含む一方の主面11S(裏側主面11SB)の上に真性半導体層12n(第2真性半導体層)を形成する第2真性半導体層形成工程が実施される。
これにより、真性半導体層12nとn型半導体層13nとの積層膜が、非形成領域NA上と、リフトオフ層LFの表面及び側面(端面)と、リフトオフ層LF、p型半導体層13p及び真性半導体層12pの側面(端面)とを覆うように形成される。
【0077】
ここで、本実施形態では、リフトオフ層LFの端縁部がp型半導体層13pの端縁部よりも後退した状態で、真性半導体層12n及びn型半導体層13nを形成する。そのため、図9図13(b)に示すように、真性半導体層12nの一部及びn型半導体層13nの一部は、p型半導体層13pの上に直接乗り上げて形成される。
【0078】
次に、図10図13(c)に示すように、エッチング液を用いて、積層したリフトオフ層LFを除去することにより、リフトオフ層LFを覆うn型半導体層13n及び真性半導体層12nを結晶基板11から除去する(リフトオフ工程)。
ここでは、リフトオフ層LFを覆う第2真性半導体層12n及びn型半導体層13nを溶解する必要はなく、リフトオフ層LFの除去と同時に結晶基板11から剥離され、p型半導体層13pの一部が露出する。
【0079】
なお、このリフトオフ工程に使用するエッチング液は、リフトオフ層LFを溶解しかつ各真性半導体層12及び導電型半導体層13を溶解しない溶媒を用いることが好ましい。
【0080】
例えば、リフトオフ層LFが、クロム、イットリウム、ガドリニウム、又はツリウム等の場合、エッチング液は希塩酸又は希硫酸であると好ましく、リフトオフ層LFが銅の場合、エッチング液は塩化鉄水溶液であると好ましい。
リフトオフ層LFが銀の場合、エッチング液は希硝酸、又は、希硝酸に大過剰のアンモニア水を添加した水溶液であると好ましく、リフトオフ層LFがインジウムの場合、エッチング液は塩酸又は希硫酸であると好ましい。
リフトオフ層LFがタングステンの場合、エッチング液は次亜塩素酸ナトリウム水溶液であると好ましく、リフトオフ層LFが金の場合、エッチング液はシアン化カリウム水溶液であると好ましい。
【0081】
次に、電極層形成工程を行う。具体的には、図11に示すように、結晶基板11における裏側主面11SBの上、すなわち、p型半導体層13p及びn型半導体層13nのそれぞれに、例えば、マスクを用いたスパッタリング法により透明電極層17(17p、17n)を形成する(透明電極層形成工程)。
なお、透明電極層17(17p、17n)の形成は、スパッタリング法に代えて、以下のようにしてもよい。
【0082】
例えば、透明電極層17は、マスクを用いずに透明導電性酸化物膜を裏側主面11SB上の全面に成膜し、その後、フォトリソグラフィ法により、p型半導体層13p上及びn型半導体層13n上にそれぞれ透明導電性酸化物膜を残すエッチングを行って形成してもよい。
【0083】
その後、透明電極層17の上に、例えば開口部を有するメッシュスクリーン(不図示)を用いて、線状の金属電極層18(18p、18n)を形成する(金属電極層形成工程)。
このように、電極層形成工程は、透明電極層形成工程と金属電極層形成工程をこの順に含み、p型半導体層13pのn型半導体層13nからの露出部分に第1電極層15pが積層され、n型半導体層13n上に第2電極層15nが積層される。
【0084】
以上の工程により、裏面接合型の太陽電池10が形成される。
【0085】
(まとめ及び効果)
上述した太陽電池10の製造方法から以下のことがいえる。
【0086】
まず、図10に示すリフトオフ工程では、エッチング液により、リフトオフ層LFを除去すると、このリフトオフ層LFの上に堆積していた真性半導体層12n及びn型半導体層13nも結晶基板11から同時に除去される(いわゆるリフトオフ)。
この工程では、図7に示すリフトオフ層除去工程での、例えばフォトリソグラフィ法を用いた場合と比べて、フォトリソグラフィ法に使用するレジスト塗布工程及び現像工程を要しない。このため、n型半導体層13nが簡便にパターン化できる。
【0087】
リフトオフ層LFは金属を主成分として含み、真性半導体層12p、p型半導体層13p、及びリフトオフ層LFをパターニングするパターニング工程では、結晶基板11の面直方向の裏側から見て、真性半導体層12p及びp型半導体層13pのエッチング面積が、リフトオフ層LFのエッチング面積以下になるように、2種類以上の異なるエッチング液を用いたウエットエッチングにより真性半導体層12p、p型半導体層13p及びリフトオフ層LFが除去される。
【0088】
このように、真性半導体層12p及びp型半導体層13pのエッチング面積が、リフトオフ層LFのエッチング面積以下になるようにエッチングすることにより、真性半導体層12n及びn型半導体層13nを形成した段階で、結晶基板11の露出が防止される。
【0089】
すなわち、仮に、結晶基板11の面直方向の裏側から見て、真性半導体層12p及びp型半導体層13pのエッチング面積が、リフトオフ層LFのエッチング面積よりも大きい場合、図14(a)のように、真性半導体層12p及びp型半導体層13pがリフトオフ層LFよりも後退したような状態(サイドカットされた状態)になる。
この状態で、真性半導体層12n及びn型半導体層13nを形成すると、図14(b)のように、リフトオフ層LFがマスクのような役割を果たして、非形成領域NA上の真性半導体層12nの側面と、真性半導体層12p及びp型半導体層13pの側面との間に隙間Sが生じる。
【0090】
そして、リフトオフ層LF、それを覆う真性半導体層12n及びn型半導体層13nを除去すると、図14(c)のように、真性半導体層12p及びp型半導体層13pと、真性半導体層12n及びn型半導体層13nとの間において、結晶基板11の裏側主面11SBが露出した状態になる。結晶基板11の裏側主面11SBが露出した状態になれば、露出した面積分だけ正孔及び電子の回収できる有効面積が減少するため、太陽電池10の性能が劣化してしまう。
【0091】
これに対して、本実施形態のように、リフトオフ層LFが金属を主成分として含まれていると、真性半導体層12p及びp型半導体層13pのエッチング特性と、リフトオフ層LFのエッチング特性とが大きく異なる。そして、リフトオフ層LFをエッチングする際のエッチング液と、真性半導体層12p及びp型半導体層13pをエッチングする際のエッチング液とを異ならせることで、各層のエッチング面積のコントロール、特に、真性半導体層12p及びp型半導体層13pの幅方向におけるパターニング精度が高くなる。これにより、真性半導体層12p及びp型半導体層13pのエッチング面積が、リフトオフ層LFのエッチング面積以下になる。
【0092】
この結果、真性半導体層12p及びp型半導体層13pの側面とリフトオフ層LFの側面とが面一になるか、又は、リフトオフ層LFが真性半導体層12p及びp型半導体層13pよりも後退したような状態になる。この状態で、真性半導体層12n及びn型半導体層13nを形成すれば、真性半導体層12nは、少なくとも、真性半導体層12p及びp型半導体層13pの側面に接触するように形成される。そのため、結晶基板11の露出が抑制される。したがって、太陽電池10の性能の劣化が抑えられ、高性能な太陽電池10が製造される。
【0093】
これらのことから、本実施形態によれば、高性能なバックコンタクト型太陽電池を、効率良く製造される。
【0094】
前述のように、各層のエッチング面積をコントロールするためには、図7のリフトオフ層除去工程で用いられる第1エッチング液のエッチング速度が、以下の関係式(1):
真性半導体層12pのエッチング速度≦p型半導体層13pのエッチング速度<<リフトオフ層LFのエッチング速度・・・(1)
を満たすとともに、図8に示す第1半導体層除去工程で用いられる第2エッチング液のエッチング速度が、以下の関係式(2):
真性半導体層12pのエッチング速度≦p型半導体層13pのエッチング速度≦リフトオフ層LFのエッチング速度・・・(2)
を満たすことが好ましい。
【0095】
すなわち、第1エッチング液は、真性半導体層12pのエッチング速度がp型半導体層13pのエッチング速度以下であることが好ましい。第1エッチング液は、p型半導体層13pのエッチング速度がリフトオフ層LFのエッチング速度未満であって、かつリフトオフ層LFのエッチング速度よりも非常に遅いことが好ましい。
第1エッチング液は、p型半導体層13pのエッチング速度がリフトオフ層LFのエッチング速度の10分の1以下であることが好ましく、100分の1以下であることがより好ましい。
また、第2エッチング液は、真性半導体層12pのエッチング速度がp型半導体層13pのエッチング速度以下であることが好ましい。第2エッチング液は、p型半導体層13pのエッチング速度がリフトオフ層LFのエッチング速度以下であることが好ましい。
【0096】
第1エッチング液が前記関係式(1)を満たせば、図7に示すリフトオフ層除去工程において、リフトオフ層LFを選択的にかつ速く溶解させることができる。
そして、第2エッチング液が前記関係式(2)を満たすことにより、図8に示す第1半導体層除去工程において、真性半導体層12p及びp型半導体層13pを溶解させるときに、リフトオフ層LFも一緒に溶解する。
このため、真性半導体層12p及びp型半導体層13pのエッチング面積がリフトオフ層LFのエッチング面積よりも大きくなることがなく、真性半導体層12p及びp型半導体層13pのサイドカットが生じ難い。
【0097】
前述の関係式(1)及び(2)は、エッチング液の種類(濃度が相違するエッチング液も含む)により、満足させられる。
【0098】
リフトオフ層LFの膜厚は、20nm以上250nm以下であることが好ましく、特には50nm以上200nm以下であることが好ましい。すなわち、リフトオフ層LFの膜厚が厚すぎると、図7に示すリフトオフ層除去工程におけるエッチング不足又は生産性の低下が懸念される。また、リフトオフ層LFの膜厚が厚すぎると、サイドエッチングによりリフトオフ層LFに逆テーパー状のアンダーカットが生じる可能性がある。
【0099】
図15(a)のようにリフトオフ層LFに逆テーパー状のアンダーカットが生じると、リフトオフ層LFの幅が、p型半導体層13pに近づくほどリフトオフ層LFの表面と比べて狭くなる。このため、真性半導体層12p及びp型半導体層13pをエッチングした後の状態において、真性半導体層12p及びp型半導体層13pの端縁部が、リフトオフ層LFにおけるp型半導体層13pから最も遠い側の部分の端縁部よりも後退した状態になる。
【0100】
この状態で、図15(b)のように真性半導体層12n及びn型半導体層13nを形成すると、前述したように、リフトオフ層LFがマスクのような役割を果たして、非形成領域NA上の真性半導体層12nの側面と、真性半導体層12p及びp型半導体層13pの側面との間に隙間Sが生じて、最終的に、図15(c)のように結晶基板11の裏側主面11SBが露出してしまう。
【0101】
よって、リフトオフ層LFの膜厚は、前記のような逆テーパー状のアンダーカットを防止できる程度の膜厚にする必要がある。一方で、膜厚が薄すぎると、図7に示すリフトオフ層除去工程でリフトオフ層LFをパターニングする際にリフトオフ層LFが完全に除去される(リフトオフされる)おそれがある。そのため、ある程度の膜厚は必要になる。したがって、リフトオフ層LFの膜厚は、20nm以上250nm以下であることが好ましい。
【0102】
太陽電池10は、結晶基板11がテクスチャ構造TXを有しており、この結晶基板11の裏側主面11SBの上に形成されるp型半導体層13p及びn型半導体層13nの各面には、テクスチャ構造TXを反映したテクスチャ構造(第2テクスチャ構造)が含まれることが好ましい。すなわち、p型半導体層13p及びn型半導体層13nは、下地の結晶基板11のテクスチャ構造TXが反映された第2テクスチャ構造を備えていることが好ましい。
【0103】
表面にテクスチャ構造TXを有する導電型半導体層13であると、テクスチャ構造TXの凹凸に起因して、エッチング液が導電型半導体層13に染み込みやすくなる。このため、導電型半導体層13が除去されやすく、すなわちパターニングされやすくなる。
【0104】
なお、本実施形態においては、結晶基板11の両主面11S、すなわち、表側主面11SUと裏側主面11SBとにテクスチャ構造TX(第1テクスチャ構造)を設けたが、いずれか一方の主面にのみに設けてもよい。
【0105】
テクスチャ構造TXを表側主面11SUに設けた場合は、受光した光の取り込み効果及び閉じ込め効果が高くなる。
一方、テクスチャ構造TXを裏側主面11SBに設けた場合は、光の取り込み効果が向上すると共に、導電型半導体層13のパターニングが容易となる。
従って、結晶基板11のテクスチャ構造TXは、少なくとも一方の主面11Sに設ければよい。
また、本実施形態においては、両主面11Sのテクスチャ構造TXを同一パターンとしたが、これに限られず、表側主面11SUと裏側主面11SBとでテクスチャ構造TXの凹凸の大きさを変えてもよい。
【0106】
ここに開示された技術は、前記実施形態に限られるものではなく、請求の範囲の主旨を逸脱しない範囲で代用が可能である。
【0107】
例えば、前述の実施形態では、図8に示す第1半導体層除去工程では、結晶基板11の面直方向の裏側から見て、真性半導体層12p及びp型半導体層13pの幅が、リフトオフ層LFの幅よりも大きくなるように、真性半導体層12p及びp型半導体層13pをパターニングしている。
しかし、これに限らず、真性半導体層12p及びp型半導体層13pの幅が、リフトオフ層LFの幅と略同じ(実際には、リフトオフ層LFの幅が僅かに小さい)に形成されるようにパターニング(エッチング)してもよい。
【0108】
すなわち、真性半導体層12p及びp型半導体層13pの幅が、リフトオフ層LFの幅と略同じ場合、リフトオフ層LFの端縁部とp型半導体層13pの端縁部とは略同じ位置に位置する。この状態で、真性半導体層12n及びn型半導体層13nを形成すると、図16に示すように、真性半導体層12n及びn型半導体層13nは、p型半導体層13pの上には直接乗り上げずに形成される。
【0109】
これにより、リフトオフ層LFを除去することで、リフトオフ層LFの上に堆積したn型半導体層13n及び真性半導体層12nを結晶基板11から除去すると、図17に示すように、n型半導体層13nはp型半導体層13pの上には形成されず、幅方向において、真性半導体層12nを介してp型半導体層13pと分離される。なお、このようにして、p型半導体層13p及びn型半導体層13nを形成する場合、リークの発生を抑制する観点から、p型半導体層13pとn型半導体層13nとの境界部分に分離溝を形成することが好ましい。
【0110】
また、前述の実施形態では、図6で示す第1半導体層形成工程で使用する半導体層は、p型半導体層13pであったが、これに限らず、n型半導体層13nであっても構わない。また、結晶基板11の導電型も特に限定されず、p型であってもn型であってもよい。
すなわち、前述した実施形態において、p型とn型が入れ替わっていてもよい。
【0111】
上述の実施形態は単なる例示に過ぎず、本開示の技術の範囲を限定的に解釈してはならない。本開示の技術の範囲は請求の範囲によって定義され、請求の範囲の均等範囲に属する変形や変更は、全て本開示の技術の範囲内のものである。
【実施例
【0112】
以下、本開示に係る技術を実施例により具体的に説明する。但し、本開示に係る技術はこれらの実施例に限定されない。なお、以下の説明では、実施例1~8、並びに、比較例1において、条件が同じものについては、特に区別していない。
【0113】
[結晶基板]
まず、結晶基板として、厚さが200μmの単結晶シリコン基板を採用した。単結晶シリコン基板の両主面に異方性エッチングを行った。これにより、結晶基板にピラミッド型のテクスチャ構造が形成された。
【0114】
[真性半導体層]
結晶基板をCVD装置に導入し、導入した結晶基板の両主面に、シリコン製の真性半導体層(膜厚8nm)を形成した。製膜条件は、基板温度を150℃、圧力を120Pa、SiH/H流量比の値を3/10、及びパワー密度を0.011W/cmとした。
【0115】
[p型半導体層(第1導電型半導体層)]
両主面に真性半導体層を形成した結晶基板をCVD装置に導入し、裏側主面の真性半導体層の上に、p型水素化非晶質シリコン系薄膜(膜厚10nm)を形成した。製膜条件は、基板温度を150℃、圧力を60Pa、SiH/B流量比の値を1/3、及びパワー密度を0.01W/cmとした。また、Bガスの流量は、BがHにより5000ppmまで希釈された希釈ガスの流量である。
【0116】
[リフトオフ層]
実施例1~5及び実施例7~8では、電子線(EB)蒸着装置(アルバック社製:EBX-2000)を用いて、p型水素化非晶質シリコン系薄膜の上に、表1に示す金属を主成分とするリフトオフ層を100nmの膜厚になるように形成した。各金属を蒸着源とし、10-4Pa以下の圧力になるまで真空排気を行い、800VAの出力で、基板温度を室温として製膜を行った。すなわち、実施例1~5,7~8は、真空蒸着法によって製膜した。
【0117】
実施例6では、マグネトロンスパッタリング装置を用いて、p型水素化非晶質シリコン系薄膜の上に、タングステンを主成分とするリフトオフ層を100nmの膜厚になるように形成した。タングステンをターゲットとして使用し、基板温度を150℃とした装置のチャンバ内に、アルゴンガスを導入させて、そのチャンバ内の圧力を0.8Paとなるように設定した。交流電源を用いて0.4W/cmの電力密度で、製膜を行った。
【0118】
比較例1では、CVD装置を用いて、p型水素化非晶質シリコン系薄膜の上に、酸化ケイ素(SiO)を主成分とするリフトオフ層を150nmの膜厚になるように形成した。製膜条件は、基板温度を150℃とし、圧力が0.9kPa、SiH/CO/H流量比が1/10/750、パワー密度が0.15W/cmとした。
【0119】
[リフトオフ層及び第1導電型半導体層のパターニング]
まず、実施例1~8、並びに、比較例1のそれぞれに対して、リフトオフ層が形成された結晶基板の裏側主面に感光性レジスト膜を製膜した。これをフォトリソグラフィ法により露光・現像を行い、リフトオフ層、p型半導体層及び真性半導体層を除去する領域を露出させた。
【0120】
実施例1では、露光・現像後、3重量%の硝酸に浸漬し、露出された領域のリフトオフ層を除去した。大過剰のアンモニア水で洗浄後に、純水によるリンスを行い、その後5.5重量%のフッ化水素酸に20ppmのオゾンを混合したオゾン/フッ化水素酸液に浸漬し、露出された領域のp型半導体層及び真性半導体層を除去した。
【0121】
実施例2では、露光・現像後、5重量%の塩化鉄(III)水溶液に浸漬し、露出された領域のリフトオフ層を除去した。純水によるリンスの後に、5.5重量%のフッ化水素酸に20ppmのオゾンを混合したオゾン/フッ化水素酸液に浸漬し、露出された領域のp型半導体層及び真性半導体層を除去した。
【0122】
実施例3、4、7、8では、露光・現像後、3重量%の塩酸に浸漬し、露出された領域のリフトオフ層を除去した。純水によるリンスの後に、5.5重量%のフッ化水素酸に20ppmのオゾンを混合したオゾン/フッ化水素酸液に浸漬し、露出された領域のp型半導体層及び真性半導体層を除去した。
【0123】
実施例5では、露光・現像後、3重量%の硫酸に浸漬し、露出された領域のリフトオフ層を除去した。純水によるリンスの後に、5.5重量%のフッ化水素酸に20ppmのオゾンを混合したオゾン/フッ化水素酸液に浸漬し、露出された領域のp型半導体層及び真性半導体層を除去した。
【0124】
実施例6では、露光・現像後、30重量%の次亜塩素酸ナトリウム水溶液に浸漬し、露出された領域のリフトオフ層を除去した。純水によるリンスの後に、5.5重量%のフッ化水素酸に20ppmのオゾンを混合したオゾン/フッ化水素酸液に浸漬し、露出された領域のp型半導体層及び真性半導体層を除去した。
【0125】
比較例1では、露光・現像後、5重量%のフッ化水素酸に浸漬し、露出された領域のリフトオフ層を除去した。純水によるリンスの後に、5.5重量%のフッ化水素酸に20ppmのオゾンを混合したオゾン/フッ化水素酸液に浸漬し、露出された領域のp型半導体層及び真性半導体層を除去した。
【0126】
前記の工程をパターニング工程という。
【0127】
[n型半導体層(第2導電型半導体層)]
パターニング工程の後に、露出した裏側主面を濃度が2重量%のフッ化水素酸によって洗浄した結晶基板をCVD装置に導入し、裏側主面に真性半導体層(膜厚8nm)を1回目の真性半導体層と同様の成膜条件で形成した。
続いて、形成した真性半導体層の上に、n型水素化非晶質シリコン系薄膜(膜厚10nm)を形成した。製膜条件は、基板温度が150℃、圧力が60Pa、SiH/PH/H流量比の値が1/2、及びパワー密度が0.01W/cmとした。また、PHガスの流量は、PHがHにより5000ppmまで希釈された希釈ガスの流量である。
【0128】
[リフトオフ層及び第2導電型半導体層の除去]
実施例1では、n型半導体層が形成された結晶基板を、エッチング液として濃度が7重量%の硝酸に浸漬して、リフトオフ層、そのリフトオフ層を覆うn型半導体層、及びリフトオフ層とn型半導体層との間にある真性半導体層をまとめて除去した。
【0129】
実施例2では、n型半導体層が形成された結晶基板を、エッチング液として濃度が10重量%の塩化鉄(III)水溶液に浸漬して、リフトオフ層、そのリフトオフ層を覆うn型半導体層、及びリフトオフ層とn型半導体層との間にある真性半導体層をまとめて除去した。
【0130】
実施例3、4、7、8では、n型半導体層が形成された結晶基板を、エッチング液として濃度が7重量%の塩酸に浸漬して、リフトオフ層、該リフトオフ層の上のn型半導体層、及びリフトオフ層とn型半導体層との間にある真性半導体層をまとめて除去した。
【0131】
実施例5では、n型半導体層が形成された結晶基板を、エッチング液として濃度が7重量%の硫酸に浸漬して、リフトオフ層、そのリフトオフ層を覆うn型半導体層、及びリフトオフ層とn型半導体層との間にある真性半導体層をまとめて除去した。
【0132】
実施例6では、n型半導体層が形成された結晶基板を、エッチング液として濃度が50重量%の次亜塩素酸ナトリウム水溶液に浸漬して、リフトオフ層、そのリフトオフ層を覆うn型半導体層、及びリフトオフ層とn型半導体層との間にある真性半導体層をまとめて除去した。
【0133】
比較例1では、n型半導体層が形成された結晶基板を、エッチング液として濃度が5重量%のフッ化水素酸に浸漬して、リフトオフ層、該リフトオフ層の上のn型半導体層、及びリフトオフ層とn型半導体層との間にある真性半導体層をまとめて除去した。
【0134】
前記の工程をリフトオフ工程という。
【0135】
[電極層、低反射層]
マグネトロンスパッタリング装置を用いて、透明電極層の基となる酸化物膜(膜厚100nm)を、結晶基板の導電型半導体層の上に形成した。また、低反射層として、結晶基板の受光面側に窒化シリコン層を形成した。
透明導電性酸化物としては、酸化スズを濃度10重量%で含有した酸化インジウム(ITO)をターゲットとして使用した。装置のチャンバ内にアルゴンと酸素との混合ガスを導入し、チャンバ内の圧力を0.6Paに設定した。アルゴンと酸素との混合比率は、抵抗率が最も低くなる(いわゆるボトム)条件とした。また、直流電源を用いて、0.4W/cmの電力密度で成膜を行った。
【0136】
次に、フォトリソグラフィ法により、導電型半導体層(p型半導体層及びn型半導体層)上の透明導電性酸化物膜のみを残すようにエッチングして、透明電極層を形成した。このエッチングにより形成された透明電極層により、p型半導体層上の透明導電性酸化物膜と、n型半導体層上の透明導電性酸化物膜との間での導通が防止された。
【0137】
さらに、透明電極層の上に、銀ペースト(藤倉化成製:ドータイトFA-333)を希釈せずにスクリーン印刷し、温度が150℃のオーブンで60分間の加熱処理を行った。これにより、金属電極層が形成された。
【0138】
次に、バックコンタクト型の太陽電池に対する評価方法について説明する。評価結果は、[表1]を参照とする。
【0139】
[膜厚及びエッチング性の評価]
リフトオフ層の膜厚又はエッチング状態は、光学顕微鏡(BX51:オリンパス光学工業社製)とSEM(フィールドエミッション型走査型電子顕微鏡S4800:日立ハイテクノロジーズ社製)を用いて評価した。パターニング工程の後に、設計上のパターニング除去領域に従ってエッチングされるとともに、結晶基板の裏側主面から光学顕微鏡で観察して、p型半導体層がリフトオフ層よりもエッチングされていない(p型半導体層の端縁部がリフトオフ層の端縁部よりも後退していない)場合には「A」とした。それに対して、リフトオフ層が過剰にエッチングされ、太陽電池特性に悪影響が出た場合には「B」とした。
【0140】
リフトオフ工程では、リフトオフ層が除去された場合には「A」とし、リフトオフ層が残った場合には「B」とした。
【0141】
[変換効率の評価]
ソーラシミュレータにより、AM(エアマス:air mass)1.5の基準太陽光を100mW/cmの光量で照射して、太陽電池の変換効率(Eff(%))を測定した。比較例1の変換効率(太陽電池特性)を1.00とし、その相対値を[表1]に記載した。
【0142】
【表1】
【0143】
実施例1~8は、比較例1と同様、パターニング工程及びリフトオフ工程ともにA評価となり、B評価がなかった。
【0144】
実施例1~8は、パターン精度及び太陽電池特性の共に良好であった。また、リフトオフ層が金属を主成分とする実施例1~8は、リフトオフ層として金属酸化物層を使用した比較例1に比べて高い変換効率となった。
【0145】
特に実施例2については、銅を蒸着法により製膜することで、スパッタリング法による製膜と比べて結晶粒が大きな膜を形成することができた。これにより、パターニング工程でリフトオフ層LFのオーバーエッチングを抑制することができ、かつリフトオフ工程において除去ができた。
【0146】
ところで、実施例1~8は異なる種類のエッチング液を用いるところ、比較例1は1種類のフッ化水素酸を使用し、フッ化水素の濃度を変化させてエッチング液として用いる。
実施例1~8のような複数種類のエッチング液を用いることで、より効果的にリフトオフ層・第1導電型半導体層・真性半導体層のエッチングが好適に行われることが期待できる。これは、以下のように説明可能である。
【0147】
第1導電型の半導体層及び真性半導体層をエッチングするオゾン/フッ化水素酸は、第1導電型の半導体層及び真性半導体層のエッチングのみではなく、リフトオフ層も微量にエッチングする。このことから、第1導電型の半導体層及び真性半導体層のサイドカット(アンダーカット)が抑制される。
【0148】
一方で、第1導電型の半導体層及び真性半導体層のエッチングの間に、リフトオフ層が全くエッチングされない場合、エッチング液がリフトオフ層の表面からその層の結晶粒界等を通って、第1導電型の半導体層及び真性半導体層に到達する過程が優先されることがある。
【0149】
しかしながら、実施例1~8のような太陽電池の製造方法では、第1導電型の半導体層及び真性半導体層のエッチングの間に、リフトオフ層も微量にエッチングされる。これにより、第1導電型の半導体層及び真性半導体層の端縁部がエッチングにより後退するときには、リフトオフ層の端縁部もエッチングにより後退する。すなわち、第1半導体層除去工程が実施され、第1導電型の半導体層及び真性半導体層がエッチングされている最中にリフトオフ層のエッチングも同時に起こる。
また、実施例1~8のような太陽電池の製造方法では、エッチング液がリフトオフ層の表面からその層の結晶粒界等を通って、リフトオフ層の下に位置する第1導電型の半導体層及び真性半導体層をエッチングしてしまうことが抑制される。
【0150】
総括すると、金属を主成分とするリフトオフ層にするとともに、2種類のエッチング液を用いてウエットエッチングすることにより、太陽電池特性が良好になるという結果を得た。
これは、2種類のエッチング液を用いて各層を出来るだけ早くエッチングすること、及び、第1導電型の半導体層及び真性半導体層をエッチングする際に、エッチング液でリフトオフ層が微量にエッチングされることにより、パターニング工程及びリフトオフ工程のどちらも均一で且つ精度良くパターニングされる。
これは、第1導電型の半導体層及び第2導電型の半導体層の配列又は電極層との電気的なコンタクト(直列抵抗の上昇抑制)が良好になるためと考えられる。
【0151】
特に、第1導電型の半導体層及び真性半導体層をエッチングする際に、第2エッチング液でリフトオフ層が微量にエッチングされることにより、第1導電型の半導体層及び真性半導体層のサイドカットが抑制される。そのため、十分な太陽電池特性を得られると考えられる。
【0152】
以上のことから、半導体層上にリフトオフ層が積層された状態で、エッチング速度が異なる2種類以上のエッチング液を使用してエッチングを行う。こうすることで、パターニング工程及びリフトオフ工程のどちらも均一で且つ精度良くパターニングできることがわかった。
金属を主成分とするリフトオフ層を使用することで、金属酸化物を主成分とするリフトオフ層を使用した場合に比べて光電変換効率を向上できることがわかった。
【符号の説明】
【0153】
10 太陽電池
11 結晶基板(半導体基板)
12 真性半導体層
13 導電型半導体層
13p p型半導体層[第1導電型の第1半導体層/第2導電型の第2半導体層]
13n n型半導体層[第2導電型の第1半導体層/第1導電型の第2半導体層]
15 電極層
17 透明電極層
18 金属電極層
LF リフトオフ層
図1
図2
図3
図4
図5
図6
図7
図8
図9
図10
図11
図12
図13
図14
図15
図16
図17