(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2023-10-06
(45)【発行日】2023-10-17
(54)【発明の名称】熱処理方法
(51)【国際特許分類】
H01L 21/318 20060101AFI20231010BHJP
H01L 21/26 20060101ALI20231010BHJP
H01L 21/31 20060101ALI20231010BHJP
【FI】
H01L21/318 C
H01L21/26 F
H01L21/26 G
H01L21/31 E
(21)【出願番号】P 2020029254
(22)【出願日】2020-02-25
【審査請求日】2022-12-19
(73)【特許権者】
【識別番号】000207551
【氏名又は名称】株式会社SCREENホールディングス
(74)【代理人】
【識別番号】100088672
【氏名又は名称】吉竹 英俊
(74)【代理人】
【識別番号】100088845
【氏名又は名称】有田 貴弘
(72)【発明者】
【氏名】布施 和彦
【審査官】鈴木 智之
(56)【参考文献】
【文献】特開2005-019650(JP,A)
【文献】特開2012-191110(JP,A)
【文献】特開2017-045982(JP,A)
【文献】特開2003-100762(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
H01L 21/318
H01L 21/26
H01L 21/31
(57)【特許請求の範囲】
【請求項1】
シリコンの基板に光を照射することによって該基板を加熱して酸窒化膜を形成する熱処理方法であって、
前記基板を第1予備加熱温度に昇温する第1予備加熱工程と、
前記第1予備加熱温度に昇温されている前記基板に酸化雰囲気中にて光を照射し、前記基板の表面を1秒以下加熱して当該表面に酸化膜を形成する第1ミリ秒アニール工程と、
前記基板を降温させる降温工程と、
前記基板を第2予備加熱温度に昇温する第2予備加熱工程と、
前記第2予備加熱温度に昇温されている前記基板に窒化雰囲気中にて光を照射し、前記基板の表面を1秒以下加熱して前記酸化膜を窒化する第2ミリ秒アニール工程と、
を備え
、
前記第1ミリ秒アニール工程および前記第2ミリ秒アニール工程は同一のチャンバーにて行われ、
前記第1ミリ秒アニール工程は酸素を含む酸化雰囲気中にて行われ、
前記降温工程では、前記チャンバー内を減圧して酸素を排出し、
前記チャンバー内の酸素濃度が爆発限界以下のときに前記チャンバー内にアンモニアを供給し、
前記第2ミリ秒アニール工程は、前記チャンバー内に残留する酸素とアンモニアとの混合ガス中にて行われることを特徴とする熱処理方法。
【請求項2】
請求項1記載の熱処理方法において、
前記第2予備加熱温度は前記第1予備加熱温度よりも低いことを特徴とする熱処理方法。
【請求項3】
請求項2記載の熱処理方法において、
前記第1予備加熱温度は700℃以上1000℃以下であり、
前記第2予備加熱温度は500℃以上800℃以下であることを特徴とする熱処理方法。
【請求項4】
請求項1から請求項3のいずれかに記載の熱処理方法において、
前記第2ミリ秒アニール工程は大気圧未満の減圧雰囲気にて行われることを特徴とする熱処理方法。
【請求項5】
請求項1から請求項4のいずれかに記載の熱処理方法において、
前記第2予備加熱工程にて前記基板が前記第2予備加熱温度に到達した後、直ちに前記基板に光を照射して前記第2ミリ秒アニール工程を実行することを特徴とする熱処理方法。
【請求項6】
請求項1記載の熱処理方法において、
前記チャンバー内の酸素濃度が3%以下の爆発限界以下のときに前記チャンバー内にアンモニアを供給することを特徴とする熱処理方法。
【請求項7】
請求項
1記載の熱処理方法において、
前記第1予備加熱工程にて前記基板が所定の温度に到達したときに前記チャンバーに酸素の供給を開始することを特徴とする熱処理方法。
【請求項8】
請求項1から請求項
7のいずれかに記載の熱処理方法において、
前記第1予備加熱工程および前記第2予備加熱工程では前記基板に連続点灯ランプから光を照射して前記基板を昇温し、
前記第1ミリ秒アニール工程および前記第2ミリ秒アニール工程では前記基板にフラッシュランプからフラッシュ光を照射することを特徴とする熱処理方法。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、シリコンの半導体ウェハー等の薄板状精密電子基板(以下、単に「基板」と称する)に光を照射することによって該基板を加熱して酸窒化膜を形成する熱処理方法に関する。
【背景技術】
【0002】
従来より、電界効果トランジスタ(FET)のゲート絶縁膜としてはシリコン(Si)を酸化した二酸化ケイ素(SiO2)の薄膜が広く使用されてきたが、近年は二酸化ケイ素よりも誘電率の高い材料を用いた高誘電率膜(High-k膜)に置き換えられつつある。高誘電率膜は、ゲート絶縁膜の薄膜化の進展にともなってリーク電流が増大する問題を解決するために、ゲート電極に金属を用いたメタルゲート電極とともに新たなスタック構造として開発が進められているものである。
【0003】
ゲート絶縁膜として高誘電率膜を用いる場合であっても、シリコンの基層と高誘電率膜との間に界面層膜(下地膜)として二酸化ケイ素の薄膜が形成される(例えば、特許文献1)。これは、シリコンの基層上に直接高誘電率膜を成膜すると、界面の欠陥が多くなってリーク電流が増大するためである。シリコンの基層と高誘電率膜との間に二酸化ケイ素の薄膜を形成することにより、界面の整合性が向上してリーク電流が減少する。
【先行技術文献】
【特許文献】
【0004】
【発明の概要】
【発明が解決しようとする課題】
【0005】
シリコンの基層と高誘電率膜との間に界面層膜としては、二酸化ケイ素よりもさらに比誘電率の高い酸窒化シリコン(SiON)を成膜した方がトータルとしての容量を大きくすることができるため有利である。また、界面層膜として酸窒化シリコンを使用することにより、絶縁膜のリーク電流特性を向上させるとともに界面準位を低減することもできる。
【0006】
しかしながら、良質で非常に薄い酸窒化シリコンの薄膜を成膜することは困難であった。例えば、スパッタリングによって酸窒化シリコンを成膜した場合には、膜質の低下が避けられない。また、雰囲気炉によって酸窒化シリコンを成膜すると、良質な膜を形成できるものの膜厚が2nm以下の非常に薄い膜を成膜することはできなかった。
【0007】
本発明は、上記課題に鑑みてなされたものであり、良質で薄い酸窒化シリコン膜を形成することができる熱処理方法を提供することを目的とする。
【課題を解決するための手段】
【0008】
上記課題を解決するため、請求項1の発明は、シリコンの基板に光を照射することによって該基板を加熱して酸窒化膜を形成する熱処理方法において、前記基板を第1予備加熱温度に昇温する第1予備加熱工程と、前記第1予備加熱温度に昇温されている前記基板に酸化雰囲気中にて光を照射し、前記基板の表面を1秒以下加熱して当該表面に酸化膜を形成する第1ミリ秒アニール工程と、前記基板を降温させる降温工程と、前記基板を第2予備加熱温度に昇温する第2予備加熱工程と、前記第2予備加熱温度に昇温されている前記基板に窒化雰囲気中にて光を照射し、前記基板の表面を1秒以下加熱して前記酸化膜を窒化する第2ミリ秒アニール工程と、を備え、前記第1ミリ秒アニール工程および前記第2ミリ秒アニール工程は同一のチャンバーにて行われ、前記第1ミリ秒アニール工程は酸素を含む酸化雰囲気中にて行われ、前記降温工程では、前記チャンバー内を減圧して酸素を排出し、前記チャンバー内の酸素濃度が爆発限界以下のときに前記チャンバー内にアンモニアを供給し、前記第2ミリ秒アニール工程は、前記チャンバー内に残留する酸素とアンモニアとの混合ガス中にて行われることを特徴とする。
【0009】
また、請求項2の発明は、請求項1の発明に係る熱処理方法において、前記第2予備加熱温度は前記第1予備加熱温度よりも低いことを特徴とする。
【0010】
また、請求項3の発明は、請求項2の発明に係る熱処理方法において、前記第1予備加熱温度は700℃以上1000℃以下であり、前記第2予備加熱温度は500℃以上800℃以下であることを特徴とする。
【0011】
また、請求項4の発明は、請求項1から請求項3のいずれかの発明に係る熱処理方法において、前記第2ミリ秒アニール工程は大気圧未満の減圧雰囲気にて行われることを特徴とする。
【0012】
また、請求項5の発明は、請求項1から請求項4のいずれかの発明に係る熱処理方法において、前記第2予備加熱工程にて前記基板が前記第2予備加熱温度に到達した後、直ちに前記基板に光を照射して前記第2ミリ秒アニール工程を実行することを特徴とする。
【0015】
また、請求項6の発明は、請求項1の発明に係る熱処理方法において、前記チャンバー内の酸素濃度が3%以下の爆発限界以下のときに前記チャンバー内にアンモニアを供給することを特徴とする。
【0016】
また、請求項7の発明は、請求項1の発明に係る熱処理方法において、前記第1予備加熱工程にて前記基板が所定の温度に到達したときに前記チャンバーに酸素の供給を開始することを特徴とする。
【0017】
また、請求項8の発明は、請求項1から請求項7のいずれかの発明に係る熱処理方法において、前記第1予備加熱工程および前記第2予備加熱工程では前記基板に連続点灯ランプから光を照射して前記基板を昇温し、前記第1ミリ秒アニール工程および前記第2ミリ秒アニール工程では前記基板にフラッシュランプからフラッシュ光を照射することを特徴とする。
【発明の効果】
【0018】
請求項1から請求項8の発明によれば、酸化雰囲気中にて基板の表面を1秒以下加熱して当該表面に酸化膜を形成するとともに、窒化雰囲気中にて基板の表面を1秒以下加熱して酸化膜を窒化するため、基板の表面を1秒以下加熱することによりシリコン酸化膜を形成するとともに、そのシリコン酸化膜を窒化することとなり、良質で薄い酸窒化シリコン膜を形成することができる。
【0019】
特に、請求項4の発明によれば、第2ミリ秒アニール工程は大気圧未満の減圧雰囲気にて行われるため、酸窒化シリコンの膜質を向上させることができる。
【0020】
特に、請求項5の発明によれば、第2予備加熱工程にて基板が第2予備加熱温度に到達した後、直ちに基板に光を照射して第2ミリ秒アニール工程を実行するため、窒素がシリコン酸化膜を通り抜けてシリコンの基材との界面にまで到達してシリコンと反応することが防止される。
【図面の簡単な説明】
【0022】
【
図1】本発明に係る熱処理装置の構成を示す縦断面図である。
【
図7】複数のハロゲンランプの配置を示す平面図である。
【
図8】本発明に係る熱処理方法の手順を示すフローチャートである。
【
図9】半導体ウェハーの表面温度の変化を示す図である。
【
図10】チャンバーに対する処理ガス供給を示すタイミングチャートである。
【
図11】チャンバー内における圧力変化を示す図である。
【発明を実施するための形態】
【0023】
以下、図面を参照しつつ本発明の実施の形態について詳細に説明する。
【0024】
まず、本発明に係る熱処理装置について説明する。
図1は、本発明に係る熱処理装置1の構成を示す縦断面図である。
図1の熱処理装置1は、基板として円板形状の半導体ウェハーWに対してフラッシュ光照射を行うことによってその半導体ウェハーWを加熱するフラッシュランプアニール装置である。処理対象となる半導体ウェハーWのサイズは特に限定されるものではないが、例えばφ300mmやφ450mmである。なお、
図1および以降の各図においては、理解容易のため、必要に応じて各部の寸法や数を誇張または簡略化して描いている。
【0025】
熱処理装置1は、半導体ウェハーWを収容するチャンバー6と、複数のフラッシュランプFLを内蔵するフラッシュ加熱部5と、複数のハロゲンランプHLを内蔵するハロゲン加熱部4と、を備える。チャンバー6の上側にフラッシュ加熱部5が設けられるとともに、下側にハロゲン加熱部4が設けられている。また、熱処理装置1は、チャンバー6の内部に、半導体ウェハーWを水平姿勢に保持する保持部7と、保持部7と装置外部との間で半導体ウェハーWの受け渡しを行う移載機構10と、を備える。さらに、熱処理装置1は、ハロゲン加熱部4、フラッシュ加熱部5およびチャンバー6に設けられた各動作機構を制御して半導体ウェハーWの熱処理を実行させる制御部3を備える。
【0026】
チャンバー6は、筒状のチャンバー側部61の上下に石英製のチャンバー窓を装着して構成されている。チャンバー側部61は上下が開口された概略筒形状を有しており、上側開口には上側チャンバー窓63が装着されて閉塞され、下側開口には下側チャンバー窓64が装着されて閉塞されている。チャンバー6の天井部を構成する上側チャンバー窓63は、石英により形成された円板形状部材であり、フラッシュ加熱部5から出射されたフラッシュ光をチャンバー6内に透過する石英窓として機能する。また、チャンバー6の床部を構成する下側チャンバー窓64も、石英により形成された円板形状部材であり、ハロゲン加熱部4からの光をチャンバー6内に透過する石英窓として機能する。
【0027】
また、チャンバー側部61の内側の壁面の上部には反射リング68が装着され、下部には反射リング69が装着されている。反射リング68,69は、ともに円環状に形成されている。上側の反射リング68は、チャンバー側部61の上側から嵌め込むことによって装着される。一方、下側の反射リング69は、チャンバー側部61の下側から嵌め込んで図示省略のビスで留めることによって装着される。すなわち、反射リング68,69は、ともに着脱自在にチャンバー側部61に装着されるものである。チャンバー6の内側空間、すなわち上側チャンバー窓63、下側チャンバー窓64、チャンバー側部61および反射リング68,69によって囲まれる空間が熱処理空間65として規定される。
【0028】
チャンバー側部61に反射リング68,69が装着されることによって、チャンバー6の内壁面に凹部62が形成される。すなわち、チャンバー側部61の内壁面のうち反射リング68,69が装着されていない中央部分と、反射リング68の下端面と、反射リング69の上端面とで囲まれた凹部62が形成される。凹部62は、チャンバー6の内壁面に水平方向に沿って円環状に形成され、半導体ウェハーWを保持する保持部7を囲繞する。チャンバー側部61および反射リング68,69は、強度と耐熱性に優れた金属材料(例えば、ステンレススチール)にて形成されている。
【0029】
また、チャンバー側部61には、チャンバー6に対して半導体ウェハーWの搬入および搬出を行うための搬送開口部(炉口)66が形設されている。搬送開口部66は、ゲートバルブ185によって開閉可能とされている。搬送開口部66は凹部62の外周面に連通接続されている。このため、ゲートバルブ185が搬送開口部66を開放しているときには、搬送開口部66から凹部62を通過して熱処理空間65への半導体ウェハーWの搬入および熱処理空間65からの半導体ウェハーWの搬出を行うことができる。また、ゲートバルブ185が搬送開口部66を閉鎖するとチャンバー6内の熱処理空間65が密閉空間とされる。
【0030】
さらに、チャンバー側部61には、貫通孔61aおよび貫通孔61bが穿設されている。貫通孔61aは、後述するサセプタ74に保持された半導体ウェハーWの上面から放射された赤外光を上部放射温度計25に導くための円筒状の孔である。一方、貫通孔61bは、半導体ウェハーWの下面から放射された赤外光を下部放射温度計20に導くための円筒状の孔である。貫通孔61aおよび貫通孔61bは、それらの貫通方向の軸がサセプタ74に保持された半導体ウェハーWの主面と交わるように、水平方向に対して傾斜して設けられている。貫通孔61aの熱処理空間65に臨む側の端部には、上部放射温度計25が測定可能な波長領域の赤外光を透過させるフッ化カルシウム材料からなる透明窓26が装着されている。上部放射温度計25は、半導体ウェハーWの上面から放射された赤外光を透明窓26を介して受光し、その赤外光の強度から半導体ウェハーWの上面の温度を測定する。また、貫通孔61bの熱処理空間65に臨む側の端部には、下部放射温度計20が測定可能な波長領域の赤外光を透過させるフッ化バリウム材料からなる透明窓21が装着されている。下部放射温度計20は、半導体ウェハーWの下面から放射された赤外光を透明窓21を介して受光し、その赤外光の強度から半導体ウェハーWの下面の温度を測定する。
【0031】
また、チャンバー6の内壁上部には熱処理空間65に処理ガスを供給するガス供給孔81が形設されている。ガス供給孔81は、凹部62よりも上側位置に形設されており、反射リング68に設けられていても良い。ガス供給孔81はチャンバー6の側壁内部に円環状に形成された緩衝空間82を介してガス供給管83に連通接続されている。ガス供給管83は処理ガス供給源85に接続されている。また、ガス供給管83の経路途中にはバルブ84が介挿されている。バルブ84が開放されると、処理ガス供給源85から緩衝空間82に処理ガスが送給される。緩衝空間82に流入した処理ガスは、ガス供給孔81よりも流体抵抗の小さい緩衝空間82内を拡がるように流れてガス供給孔81から熱処理空間65内へと供給される。処理ガス供給源85は処理ガスとして、例えば窒素(N2)、アルゴン(Ar)等の不活性ガス、または、酸素(O2)、オゾン(O3)、水素(H2)、アンモニア(NH3)等の反応性ガス、或いはそれらを混合した混合ガスをチャンバー6内に供給することができる。
【0032】
一方、チャンバー6の内壁下部には熱処理空間65内の気体を排気するガス排気孔86が形設されている。ガス排気孔86は、凹部62よりも下側位置に形設されており、反射リング69に設けられていても良い。ガス排気孔86はチャンバー6の側壁内部に円環状に形成された緩衝空間87を介してガス排気管88に連通接続されている。ガス排気管88は排気部190に接続されている。また、ガス排気管88の経路途中にはバルブ89が介挿されている。バルブ89が開放されると、熱処理空間65の気体がガス排気孔86から緩衝空間87を経てガス排気管88へと排出される。なお、ガス供給孔81およびガス排気孔86は、チャンバー6の周方向に沿って複数設けられていても良いし、スリット状のものであっても良い。
【0033】
また、搬送開口部66の先端にも熱処理空間65内の気体を排出するガス排気管191が接続されている。ガス排気管191はバルブ192を介して排気部190に接続されている。バルブ192を開放することによって、搬送開口部66を介してチャンバー6内の気体が排気される。
【0034】
排気部190は、真空ポンプを備える。排気部190を作動させつつ、バルブ89,192を開放することによって、チャンバー6内の雰囲気がガス排気管88,191から排気部190へと排出される。ガス供給孔81から何らのガス供給を行うことなく、排気部190によって密閉空間である熱処理空間65の雰囲気を排気すると、チャンバー6内を大気圧未満の気圧に減圧することができる。すなわち、排気部190は、チャンバー6内を減圧する減圧部としても機能するものである。
【0035】
図2は、保持部7の全体外観を示す斜視図である。保持部7は、基台リング71、連結部72およびサセプタ74を備えて構成される。基台リング71、連結部72およびサセプタ74はいずれも石英にて形成されている。すなわち、保持部7の全体が石英にて形成されている。
【0036】
基台リング71は円環形状から一部が欠落した円弧形状の石英部材である。この欠落部分は、後述する移載機構10の移載アーム11と基台リング71との干渉を防ぐために設けられている。基台リング71は凹部62の底面に載置されることによって、チャンバー6の壁面に支持されることとなる(
図1参照)。基台リング71の上面に、その円環形状の周方向に沿って複数の連結部72(本実施形態では4個)が立設される。連結部72も石英の部材であり、溶接によって基台リング71に固着される。
【0037】
サセプタ74は基台リング71に設けられた4個の連結部72によって支持される。
図3は、サセプタ74の平面図である。また、
図4は、サセプタ74の断面図である。サセプタ74は、保持プレート75、ガイドリング76および複数の基板支持ピン77を備える。保持プレート75は、石英にて形成された略円形の平板状部材である。保持プレート75の直径は半導体ウェハーWの直径よりも大きい。すなわち、保持プレート75は、半導体ウェハーWよりも大きな平面サイズを有する。
【0038】
保持プレート75の上面周縁部にガイドリング76が設置されている。ガイドリング76は、半導体ウェハーWの直径よりも大きな内径を有する円環形状の部材である。例えば、半導体ウェハーWの直径がφ300mmの場合、ガイドリング76の内径はφ320mmである。ガイドリング76の内周は、保持プレート75から上方に向けて広くなるようなテーパ面とされている。ガイドリング76は、保持プレート75と同様の石英にて形成される。ガイドリング76は、保持プレート75の上面に溶着するようにしても良いし、別途加工したピンなどによって保持プレート75に固定するようにしても良い。或いは、保持プレート75とガイドリング76とを一体の部材として加工するようにしても良い。
【0039】
保持プレート75の上面のうちガイドリング76よりも内側の領域が半導体ウェハーWを保持する平面状の保持面75aとされる。保持プレート75の保持面75aには、複数の基板支持ピン77が立設されている。本実施形態においては、保持面75aの外周円(ガイドリング76の内周円)と同心円の周上に沿って30°毎に計12個の基板支持ピン77が立設されている。12個の基板支持ピン77を配置した円の径(対向する基板支持ピン77間の距離)は半導体ウェハーWの径よりも小さく、半導体ウェハーWの径がφ300mmであればφ270mm~φ280mm(本実施形態ではφ270mm)である。それぞれの基板支持ピン77は石英にて形成されている。複数の基板支持ピン77は、保持プレート75の上面に溶接によって設けるようにしても良いし、保持プレート75と一体に加工するようにしても良い。
【0040】
図2に戻り、基台リング71に立設された4個の連結部72とサセプタ74の保持プレート75の周縁部とが溶接によって固着される。すなわち、サセプタ74と基台リング71とは連結部72によって固定的に連結されている。このような保持部7の基台リング71がチャンバー6の壁面に支持されることによって、保持部7がチャンバー6に装着される。保持部7がチャンバー6に装着された状態においては、サセプタ74の保持プレート75は水平姿勢(法線が鉛直方向と一致する姿勢)となる。すなわち、保持プレート75の保持面75aは水平面となる。
【0041】
チャンバー6に搬入された半導体ウェハーWは、チャンバー6に装着された保持部7のサセプタ74の上に水平姿勢にて載置されて保持される。このとき、半導体ウェハーWは保持プレート75上に立設された12個の基板支持ピン77によって支持されてサセプタ74に保持される。より厳密には、12個の基板支持ピン77の上端部が半導体ウェハーWの下面に接触して当該半導体ウェハーWを支持する。12個の基板支持ピン77の高さ(基板支持ピン77の上端から保持プレート75の保持面75aまでの距離)は均一であるため、12個の基板支持ピン77によって半導体ウェハーWを水平姿勢に支持することができる。
【0042】
また、半導体ウェハーWは複数の基板支持ピン77によって保持プレート75の保持面75aから所定の間隔を隔てて支持されることとなる。基板支持ピン77の高さよりもガイドリング76の厚さの方が大きい。従って、複数の基板支持ピン77によって支持された半導体ウェハーWの水平方向の位置ずれはガイドリング76によって防止される。
【0043】
また、
図2および
図3に示すように、サセプタ74の保持プレート75には、上下に貫通して開口部78が形成されている。開口部78は、下部放射温度計20が半導体ウェハーWの下面から放射される放射光(赤外光)を受光するために設けられている。すなわち、下部放射温度計20が開口部78およびチャンバー側部61の貫通孔61bに装着された透明窓21を介して半導体ウェハーWの下面から放射された光を受光して当該半導体ウェハーWの温度を測定する。さらに、サセプタ74の保持プレート75には、後述する移載機構10のリフトピン12が半導体ウェハーWの受け渡しのために貫通する4個の貫通孔79が穿設されている。
【0044】
図5は、移載機構10の平面図である。また、
図6は、移載機構10の側面図である。移載機構10は、2本の移載アーム11を備える。移載アーム11は、概ね円環状の凹部62に沿うような円弧形状とされている。それぞれの移載アーム11には2本のリフトピン12が立設されている。移載アーム11およびリフトピン12は石英にて形成されている。各移載アーム11は水平移動機構13によって回動可能とされている。水平移動機構13は、一対の移載アーム11を保持部7に対して半導体ウェハーWの移載を行う移載動作位置(
図5の実線位置)と保持部7に保持された半導体ウェハーWと平面視で重ならない退避位置(
図5の二点鎖線位置)との間で水平移動させる。水平移動機構13としては、個別のモータによって各移載アーム11をそれぞれ回動させるものであっても良いし、リンク機構を用いて1個のモータによって一対の移載アーム11を連動させて回動させるものであっても良い。
【0045】
また、一対の移載アーム11は、昇降機構14によって水平移動機構13とともに昇降移動される。昇降機構14が一対の移載アーム11を移載動作位置にて上昇させると、計4本のリフトピン12がサセプタ74に穿設された貫通孔79(
図2,3参照)を通過し、リフトピン12の上端がサセプタ74の上面から突き出る。一方、昇降機構14が一対の移載アーム11を移載動作位置にて下降させてリフトピン12を貫通孔79から抜き取り、水平移動機構13が一対の移載アーム11を開くように移動させると各移載アーム11が退避位置に移動する。一対の移載アーム11の退避位置は、保持部7の基台リング71の直上である。基台リング71は凹部62の底面に載置されているため、移載アーム11の退避位置は凹部62の内側となる。なお、移載機構10の駆動部(水平移動機構13および昇降機構14)が設けられている部位の近傍にも図示省略の排気機構が設けられており、移載機構10の駆動部周辺の雰囲気がチャンバー6の外部に排出されるように構成されている。
【0046】
図1に戻り、チャンバー6には、下部放射温度計20および上部放射温度計25の2つの放射温度計(本実施形態ではパイロメーター)が設けられている。下部放射温度計20は、サセプタ74に保持された半導体ウェハーWの斜め下方に設けられている。下部放射温度計20は、半導体ウェハーWの下面から放射された赤外光を受光し、その赤外光の強度から当該下面の温度を測定する。一方、上部放射温度計25は、サセプタ74に保持された半導体ウェハーWの斜め上方に設けられている。上部放射温度計25は、半導体ウェハーWの上面から放射された赤外光を受光し、その赤外光の強度から当該上面の温度を測定する。上部放射温度計25は、フラッシュ光が照射された瞬間の半導体ウェハーWの上面の急激な温度変化に対応できるように、InSb(インジウムアンチモン)の光学素子を備えている。また、チャンバー6には圧力計95が設けられている。圧力計95は、チャンバー6内における気圧を測定する。
【0047】
チャンバー6の上方に設けられたフラッシュ加熱部5は、筐体51の内側に、複数本(本実施形態では30本)のキセノンフラッシュランプFLからなる光源と、その光源の上方を覆うように設けられたリフレクタ52と、を備えて構成される。また、フラッシュ加熱部5の筐体51の底部にはランプ光放射窓53が装着されている。フラッシュ加熱部5の床部を構成するランプ光放射窓53は、石英により形成された板状の石英窓である。フラッシュ加熱部5がチャンバー6の上方に設置されることにより、ランプ光放射窓53が上側チャンバー窓63と相対向することとなる。フラッシュランプFLはチャンバー6の上方からランプ光放射窓53および上側チャンバー窓63を介して熱処理空間65にフラッシュ光を照射する。
【0048】
複数のフラッシュランプFLは、それぞれが長尺の円筒形状を有する棒状ランプであり、それぞれの長手方向が保持部7に保持される半導体ウェハーWの主面に沿って(つまり水平方向に沿って)互いに平行となるように平面状に配列されている。よって、フラッシュランプFLの配列によって形成される平面も水平面である。複数のフラッシュランプFLが配列される領域は半導体ウェハーWの平面サイズよりも大きい。
【0049】
キセノンフラッシュランプFLは、その内部にキセノンガスが封入されその両端部にコンデンサーに接続された陽極および陰極が配設された円筒形状のガラス管(放電管)と、該ガラス管の外周面上に付設されたトリガー電極とを備える。キセノンガスは電気的には絶縁体であることから、コンデンサーに電荷が蓄積されていたとしても通常の状態ではガラス管内に電気は流れない。しかしながら、トリガー電極に高電圧を印加して絶縁を破壊した場合には、コンデンサーに蓄えられた電気がガラス管内に瞬時に流れ、そのときのキセノンの原子あるいは分子の励起によって光が放出される。このようなキセノンフラッシュランプFLにおいては、予めコンデンサーに蓄えられていた静電エネルギーが0.1ミリセカンドないし100ミリセカンドという極めて短い光パルスに変換されることから、ハロゲンランプHLの如き連続点灯の光源に比べて極めて強い光を照射し得るという特徴を有する。すなわち、フラッシュランプFLは、1秒未満の極めて短い時間で瞬間的に発光するパルス発光ランプである。
【0050】
フラッシュランプFLの発光回路には図示省略のIGBT(絶縁ゲートバイポーラトランジスタ)が組み込まれている。そのIGBTのゲートに印加するパルスの波形を調整することによって、フラッシュランプFLの発光時間を1ミリセカンドから100ミリセカンドの間で規定することができる。
【0051】
また、リフレクタ52は、複数のフラッシュランプFLの上方にそれら全体を覆うように設けられている。リフレクタ52の基本的な機能は、複数のフラッシュランプFLから出射されたフラッシュ光を熱処理空間65の側に反射するというものである。リフレクタ52はアルミニウム合金板にて形成されており、その表面(フラッシュランプFLに臨む側の面)はブラスト処理により粗面化加工が施されている。
【0052】
チャンバー6の下方に設けられたハロゲン加熱部4は、筐体41の内側に複数本(本実施形態では40本)のハロゲンランプHLを内蔵している。ハロゲン加熱部4は、複数のハロゲンランプHLによってチャンバー6の下方から下側チャンバー窓64を介して熱処理空間65への光照射を行って半導体ウェハーWを加熱する。
【0053】
図7は、複数のハロゲンランプHLの配置を示す平面図である。40本のハロゲンランプHLは上下2段に分けて配置されている。保持部7に近い上段に20本のハロゲンランプHLが配設されるとともに、上段よりも保持部7から遠い下段にも20本のハロゲンランプHLが配設されている。各ハロゲンランプHLは、長尺の円筒形状を有する棒状ランプである。上段、下段ともに20本のハロゲンランプHLは、それぞれの長手方向が保持部7に保持される半導体ウェハーWの主面に沿って(つまり水平方向に沿って)互いに平行となるように配列されている。よって、上段、下段ともにハロゲンランプHLの配列によって形成される平面は水平面である。
【0054】
また、
図7に示すように、上段、下段ともに保持部7に保持される半導体ウェハーWの中央部に対向する領域よりも周縁部に対向する領域におけるハロゲンランプHLの配設密度が高くなっている。すなわち、上下段ともに、ランプ配列の中央部よりも周縁部の方がハロゲンランプHLの配設ピッチが短い。このため、ハロゲン加熱部4からの光照射による加熱時に温度低下が生じやすい半導体ウェハーWの周縁部により多い光量の照射を行うことができる。
【0055】
また、上段のハロゲンランプHLからなるランプ群と下段のハロゲンランプHLからなるランプ群とが格子状に交差するように配列されている。すなわち、上段に配置された20本のハロゲンランプHLの長手方向と下段に配置された20本のハロゲンランプHLの長手方向とが互いに直交するように計40本のハロゲンランプHLが配設されている。
【0056】
ハロゲンランプHLは、ガラス管内部に配設されたフィラメントに通電することでフィラメントを白熱化させて発光させるフィラメント方式の光源である。ガラス管の内部には、窒素やアルゴン等の不活性ガスにハロゲン元素(ヨウ素、臭素等)を微量導入した気体が封入されている。ハロゲン元素を導入することによって、フィラメントの折損を抑制しつつフィラメントの温度を高温に設定することが可能となる。したがって、ハロゲンランプHLは、通常の白熱電球に比べて寿命が長くかつ強い光を連続的に照射できるという特性を有する。すなわち、ハロゲンランプHLは少なくとも1秒以上連続して発光する連続点灯ランプである。また、ハロゲンランプHLは棒状ランプであるため長寿命であり、ハロゲンランプHLを水平方向に沿わせて配置することにより上方の半導体ウェハーWへの放射効率が優れたものとなる。
【0057】
また、ハロゲン加熱部4の筐体41内にも、2段のハロゲンランプHLの下側にリフレクタ43が設けられている(
図1)。リフレクタ43は、複数のハロゲンランプHLから出射された光を熱処理空間65の側に反射する。
【0058】
制御部3は、熱処理装置1に設けられた上記の種々の動作機構を制御する。制御部3のハードウェアとしての構成は一般的なコンピュータと同様である。すなわち、制御部3は、各種演算処理を行う回路であるCPU、基本プログラムを記憶する読み出し専用のメモリであるROM、各種情報を記憶する読み書き自在のメモリであるRAMおよび制御用ソフトウェアやデータなどを記憶しておく磁気ディスクを備えている。制御部3のCPUが所定の処理プログラムを実行することによって熱処理装置1における処理が進行する。
【0059】
上記の構成以外にも熱処理装置1は、半導体ウェハーWの熱処理時にハロゲンランプHLおよびフラッシュランプFLから発生する熱エネルギーによるハロゲン加熱部4、フラッシュ加熱部5およびチャンバー6の過剰な温度上昇を防止するため、様々な冷却用の構造を備えている。例えば、チャンバー6の壁体には水冷管(図示省略)が設けられている。また、ハロゲン加熱部4およびフラッシュ加熱部5は、内部に気体流を形成して排熱する空冷構造とされている。また、上側チャンバー窓63とランプ光放射窓53との間隙にも空気が供給され、フラッシュ加熱部5および上側チャンバー窓63を冷却する。
【0060】
次に、本発明に係る熱処理方法について説明する。
図8は、本発明に係る熱処理方法の手順を示すフローチャートである。本実施形態において処理対象となる半導体基板はシリコン(Si)の半導体ウェハーWである。半導体ウェハーWの表面において、少なくとも一部は基材のシリコンが露出している。なお、本発明に係る熱処理方法に先立って、半導体ウェハーWの表面にフッ酸等による洗浄処理を行ってシリコンの露出部位に形成されている自然酸化膜を除去しておくようにしても良い。以下に説明する熱処理装置1における処理手順は、制御部3が熱処理装置1の各動作機構を制御することにより進行する。
【0061】
まず、シリコンの半導体ウェハーWが熱処理装置1のチャンバー6内に搬入される(ステップS1)。具体的には、ゲートバルブ185が開いて搬送開口部66が開放され、装置外部の搬送ロボットにより搬送開口部66を介して半導体ウェハーWがチャンバー6内の熱処理空間65に搬入される。このときに、バルブ84を開放してチャンバー6内に窒素ガスを供給し、搬送開口部66から窒素ガスを流出させて半導体ウェハーWの搬入にともなう外部雰囲気の巻き込みを最小限に抑制するようにしても良い。
【0062】
搬送ロボットによって搬入された半導体ウェハーWは保持部7の直上位置まで進出して停止する。そして、移載機構10の一対の移載アーム11が退避位置から移載動作位置に水平移動して上昇することにより、リフトピン12が貫通孔79を通ってサセプタ74の保持プレート75の上面から突き出て半導体ウェハーWを受け取る。このとき、リフトピン12は基板支持ピン77の上端よりも上方にまで上昇する。
【0063】
半導体ウェハーWがリフトピン12に載置された後、搬送ロボットが熱処理空間65から退出し、ゲートバルブ185によって搬送開口部66が閉鎖される。そして、一対の移載アーム11が下降することにより、半導体ウェハーWは移載機構10から保持部7のサセプタ74に受け渡されて水平姿勢にて下方より保持される。半導体ウェハーWは、保持プレート75上に立設された複数の基板支持ピン77によって支持されてサセプタ74に保持される。また、半導体ウェハーWは、シリコンが露出している表面を上面として保持部7に保持される。複数の基板支持ピン77によって支持された半導体ウェハーWの裏面(表面とは反対側の主面)と保持プレート75の保持面75aとの間には所定の間隔が形成される。サセプタ74の下方にまで下降した一対の移載アーム11は水平移動機構13によって退避位置、すなわち凹部62の内側に退避する。
【0064】
半導体ウェハーWが保持部7に保持され、ゲートバルブ185によって搬送開口部66が閉鎖されて熱処理空間65が密閉空間とされた後、第1予備加熱が開始される(ステップS2)。
図9は、半導体ウェハーWの表面温度の変化を示す図である。
図10は、チャンバー6に対する処理ガス供給を示すタイミングチャートである。また、
図11は、チャンバー6内における圧力変化を示す図である。半導体ウェハーWがチャンバー6内に搬入された時点では、チャンバー6内に不活性ガスである窒素が供給されている。すなわち、バルブ84が開放されて処理ガス供給源85からチャンバー6内に窒素が供給される。また、バルブ89が開放されてガス排気孔86からチャンバー6内の気体が排気される。これにより、チャンバー6内の熱処理空間65の上部から供給された窒素が下方へと流れて熱処理空間65の下部から排気され、チャンバー6内には窒素雰囲気が形成される。また、バルブ192が開放されることによって、搬送開口部66からもチャンバー6内の気体が排気される。さらに、図示省略の排気機構によって移載機構10の駆動部周辺の雰囲気も排気される。
【0065】
チャンバー6内が窒素雰囲気とされた後、時刻t1にハロゲン加熱部4の40本のハロゲンランプHLが一斉に点灯して半導体ウェハーWの第1予備加熱が開始される。ハロゲンランプHLから出射されたハロゲン光は、石英にて形成された下側チャンバー窓64およびサセプタ74を透過して半導体ウェハーWの裏面から照射される。ハロゲンランプHLからの光照射を受けることによって半導体ウェハーWが加熱されて温度が上昇する。なお、移載機構10の移載アーム11は凹部62の内側に退避しているため、ハロゲンランプHLによる加熱の障害となることは無い。
【0066】
ハロゲンランプHLによる加熱を行うときには、半導体ウェハーWの温度が下部放射温度計20によって測定されている。すなわち、サセプタ74に保持された半導体ウェハーWの下面から開口部78を介して放射された赤外光を透明窓21を通して下部放射温度計20が受光して昇温中のウェハー温度を測定する。測定された半導体ウェハーWの温度は制御部3に伝達される。制御部3は、ハロゲンランプHLからの光照射によって昇温する半導体ウェハーWの温度が所定の酸素供給温度T1に到達したか否かを監視しつつ、ハロゲンランプHLの出力を制御する。すなわち、制御部3は、下部放射温度計20による測定値に基づいて、半導体ウェハーWの温度が酸素供給温度T1となるようにハロゲンランプHLの出力をフィードバック制御する。
【0067】
第1予備加熱にて半導体ウェハーWが昇温している途中で半導体ウェハーWの温度が酸素供給温度T1に到達したことが検知されると、チャンバー6内に酸素が導入される(ステップS3)。具体的には、半導体ウェハーWの温度が酸素供給温度T1に到達した時刻t2にチャンバー6内への窒素の供給が停止されるとともに、酸素の供給が開始される(
図10)。チャンバー6内に酸素が供給されることによって、チャンバー6内には酸素を含む雰囲気、すなわち酸化雰囲気が形成される。本実施形態では、半導体ウェハーWの温度が酸素供給温度T1に到達したことをトリガーとして、チャンバー6内が不活性ガス雰囲気から酸化雰囲気に切り替えられるのである。半導体ウェハーWの温度が酸素供給温度T1に到達した後も半導体ウェハーWはハロゲンランプHLからの光照射によって継続して昇温される。
【0068】
次に、半導体ウェハーWの温度が第1予備加熱温度T2に到達した後、制御部3は半導体ウェハーWの温度をその第1予備加熱温度T2に暫時維持する。具体的には、下部放射温度計20によって測定される半導体ウェハーWの温度が第1予備加熱温度T2に到達した時刻t3に制御部3がハロゲンランプHLの出力を調整し、半導体ウェハーWの温度をほぼ第1予備加熱温度T2に維持している。酸素を含む酸化雰囲気中にて半導体ウェハーWの温度が第1予備加熱温度T2に維持されることにより、半導体ウェハーWの表面におけるシリコンの露出部位が熱酸化されて当該露出部位にシリコン酸化膜(SiO2の薄膜)が成長する。
【0069】
第1予備加熱における第1予備加熱温度T2は700℃以上1000℃以下である。第1予備加熱温度T2が700℃未満であると、続くフラッシュ光照射時に半導体ウェハーWの表面温度が所望の温度に到達しない。一方、第1予備加熱温度T2が1000℃を超えると、シリコン酸化膜が過度に成長してその膜厚が厚くなる。このため、第1予備加熱温度T2は700℃以上1000℃以下としている。
【0070】
半導体ウェハーWの温度が第1予備加熱温度T2に到達してから所定時間が経過した時刻t4に、フラッシュ加熱部5のフラッシュランプFLから半導体ウェハーWの表面に第1のフラッシュ光照射を行う(ステップS4)。このとき、フラッシュランプFLから放射されるフラッシュ光の一部は直接にチャンバー6内へと向かい、他の一部は一旦リフレクタ52により反射されてからチャンバー6内へと向かい、これらのフラッシュ光の照射により半導体ウェハーWのフラッシュ加熱が行われる。
【0071】
フラッシュランプFLから照射されるフラッシュ光は、予めコンデンサーに蓄えられていた静電エネルギーが極めて短い光パルスに変換された、照射時間が1ミリセカンド以上100ミリセカンド以下の極めて短く強い閃光である。フラッシュランプFLの発光時間は発光回路に接続されたIGBTによって1ミリセカンドから100ミリセカンドの間で規定される。半導体ウェハーWの表面に照射時間が1ミリセカンド以上100ミリセカンド以下のフラッシュ光が照射されることによって、当該表面が瞬間的にピーク温度にまで昇温した後、急速に降温する。フラッシュ光の照射時間は1ミリセカンド以上100ミリセカンド以下であるため、半導体ウェハーWの表面がフラッシュ加熱される時間は1秒以下である。このときの半導体ウェハーWの表面のピーク温度は1200℃以上1300℃以下であり、第1予備加熱温度T2よりも高温である。また、第1のフラッシュ光照射を行うときのチャンバー6内の酸素濃度は適宜の値とすることができ、100%であっても良い。
【0072】
第1のフラッシュ光照射は酸素を含む酸化雰囲気中にて実行される。酸素を含む酸化雰囲気中にて半導体ウェハーWにフラッシュ光が照射されて半導体ウェハーWの表面が1秒以下フラッシュ加熱されることにより、半導体ウェハーWの表面にてシリコン酸化膜が成長する。第1予備加熱および第1のフラッシュ光照射によって成長するシリコン酸化膜の膜厚は20オングストローム(2nm)以下である。第1のフラッシュ光照射時には半導体ウェハーWの表面が1200℃以上の高温に到達するため、形成されたシリコン酸化膜と基層のシリコンとの間の界面の整合性は良好であり、界面準位は少ない。また、1200℃以上の高温に加熱されることによって緻密なシリコン酸化膜が形成される。すなわち、フラッシュ光照射によって界面準位が少なくかつ高密度の良質なシリコン酸化膜が形成されるのである。なお、第1のフラッシュ光照射が完了する時刻t4(フラッシュ光の照射時間は極めて短いため、フラッシュ光照射は実行されるとほぼ同時に完了する)まではチャンバー6内の圧力がほぼ大気圧(約100kPa)に維持されている(
図11)。
【0073】
時刻t4に第1のフラッシュ光照射が完了するのとほぼ同時にハロゲンランプHLが消灯する。ハロゲンランプHLが消灯することにより、半導体ウェハーWの温度は第1予備加熱温度T2からも降温する。また、第1のフラッシュ光照射が完了する時刻t4には、バルブ84が閉止されてチャンバー6への処理ガスの供給が停止される。チャンバー6への処理ガスの供給が停止された後もチャンバー6からの排気は継続して行われる。チャンバー6にガス供給を行うことなくチャンバー6内の雰囲気を排気することにより、チャンバー6内が大気圧未満に減圧される(ステップS5)。すなわち、時刻t4から時刻5までは、半導体ウェハーWの温度が降温するのと並行してチャンバー6内が減圧されるのである。チャンバー6内が減圧されることにより、チャンバー6から酸化雰囲気を形成していた酸素が排出される。このときに、チャンバー6内を減圧するとともに、チャンバー6内に窒素を供給して処理ガスの置換効率を高めるようにしても良い。供給された窒素は冷却ガスとしても作用し、半導体ウェハーWの降温速度を高めることもできる。
【0074】
チャンバー6内が0.1kPaにまで減圧されたことが圧力計95によって検知された時刻t5にチャンバー6内にアンモニアが導入される(ステップS6)。すなわち、チャンバー6内から酸素がほぼ完全に排出された時刻t5に再びバルブ84が開放されてチャンバー6内へのアンモニアの供給が開始される。チャンバー6内にアンモニアが供給されることによって、チャンバー6内の圧力が上昇するとともに、チャンバー6内にアンモニアを含む窒化雰囲気が形成される。なお、チャンバー6内へのアンモニアの供給が開始された後も、チャンバー6内の雰囲気は継続して排気されている。
【0075】
また、時刻t5には再びハロゲンランプHLが点灯して半導体ウェハーWの第2予備加熱が開始される(ステップS7)。半導体ウェハーWはハロゲンランプHLからの光照射を受けることによって再度昇温する。
図8のステップS6とステップS7とは並行して行われる工程である。
【0076】
第2予備加熱にて半導体ウェハーWが昇温している途中でチャンバー6内の圧力が10kPaにまで復圧したことが圧力計95によって検知された時刻t6に、チャンバー6内へのアンモニアを含む処理ガスの供給流量とチャンバー6からの排気流量とが等しくされてチャンバー6内の圧力が10kPaに維持される。すなわち、チャンバー6内は大気圧未満の減圧雰囲気に維持されることとなる。
【0077】
次に、半導体ウェハーWの温度が第2予備加熱温度T3に到達した時刻t7に、フラッシュランプFLから半導体ウェハーWの表面に第2のフラッシュ光照射を行う(ステップS8)。第2のフラッシュ光照射におけるフラッシュ光の照射時間も1ミリセカンド以上100ミリセカンド以下の範囲で調整されている。
【0078】
第2予備加熱における第2予備加熱温度T3は500℃以上800℃以下である。第2予備加熱温度T3は第1予備加熱温度T2よりも低い。第2予備加熱温度T3が高すぎると、アンモニアから供給された窒素がシリコン酸化膜を通り抜けてシリコンの基材と反応して窒化シリコン(SiN)を形成するおそれがあるところ、第2予備加熱温度T3が第1予備加熱温度T2よりも低いため、窒素がシリコン酸化膜を通り抜けてシリコンの基材との界面にまで到達することは抑制される。
【0079】
第2のフラッシュ光照射においても、フラッシュ光の照射時間は1ミリセカンド以上100ミリセカンド以下であるため、半導体ウェハーWの表面がフラッシュ加熱される時間は1秒以下である。半導体ウェハーWの表面にフラッシュ光が照射されることによって、当該表面が瞬間的にピーク温度にまで昇温した後、急速に降温する。このときの半導体ウェハーWの表面のピーク温度は1200℃以下である。
【0080】
第2のフラッシュ光照射はアンモニアを含む窒化雰囲気中にて実行される。アンモニアを含む窒化雰囲気中にて半導体ウェハーWにフラッシュ光が照射されて半導体ウェハーWの表面が1秒以下フラッシュ加熱されることにより、半導体ウェハーWの表面に形成されていたシリコン酸化膜が窒化されて酸窒化シリコン(SiON)が形成される。
【0081】
また、第2のフラッシュ光照射は大気圧未満の減圧雰囲気にて行われる。これにより、形成される酸窒化シリコンの膜質を向上させることができる。
【0082】
さらに、第2のフラッシュ光照射は、第2予備加熱にて半導体ウェハーWの温度が第2予備加熱温度T3に到達した後直ちに実行される。すなわち、第2予備加熱にて昇温される半導体ウェハーWが第2予備加熱温度T3に到達するのと同時に半導体ウェハーWの表面にフラッシュ光が照射される。このため、半導体ウェハーWが第2予備加熱温度T3に維持されている時間はほとんど無く、アンモニアから供給された窒素がシリコン酸化膜を通り抜けてシリコンの基材との界面にまで到達してシリコンと反応することが防止される。また、シリコン酸化膜が過度に成長することも抑制される。なお、酸素が排出された雰囲気中で行われる第2予備加熱および第2のフラッシュ光照射ではシリコン酸化膜はほとんど成長せず、第2のフラッシュ光照射完了後の酸窒化シリコンの膜厚は20オングストローム以下である。
【0083】
時刻t7に第2のフラッシュ光照射が完了するのとほぼ同時にハロゲンランプHLが消灯する。ハロゲンランプHLが消灯することにより、半導体ウェハーWの温度は第2予備加熱温度T3からも降温する。また、第2のフラッシュ光照射が完了する時刻t7には、バルブ84が閉止されてチャンバー6への処理ガスの供給が停止される。チャンバー6への処理ガスの供給が停止された後もチャンバー6からの排気は継続して行われる。チャンバー6にガス供給を行うことなくチャンバー6内の雰囲気を排気することにより、チャンバー6内が再度減圧されてアンモニアが排出される。
【0084】
チャンバー6内が0.1kPaにまで減圧された時刻t8に再びバルブ84が開放されてチャンバー6内への窒素の供給が開始される。チャンバー6内に窒素が供給されることによって、チャンバー6内の圧力が上昇して大気圧にまで復圧するとともに、チャンバー6内が窒素雰囲気に置換される(ステップS9)。
【0085】
チャンバー6内の圧力が大気圧に復圧した後、熱処理後の半導体ウェハーWがチャンバー6から搬出される(ステップS10)。具体的には、移載機構10の一対の移載アーム11が再び退避位置から移載動作位置に水平移動して上昇することにより、リフトピン12がサセプタ74の上面から突き出て熱処理後の半導体ウェハーWをサセプタ74から受け取る。続いて、ゲートバルブ185により閉鎖されていた搬送開口部66が開放され、リフトピン12上に載置された半導体ウェハーWが装置外部の搬送ロボットにより搬出され、熱処理装置1における半導体ウェハーWの加熱処理が完了する。
【0086】
本実施形態においては、ハロゲンランプHLからの光照射によって半導体ウェハーWの温度を第1予備加熱温度T2に昇温し、その半導体ウェハーWに酸素を含む酸化雰囲気中にてフラッシュ光を照射して半導体ウェハーWの表面にシリコン酸化膜を形成している。続いて、半導体ウェハーWを一旦降温させた後、ハロゲンランプHLからの光照射によって半導体ウェハーWの温度を第2予備加熱温度T3に再度昇温し、その半導体ウェハーWにアンモニアを含む窒化雰囲気中にてフラッシュ光を照射して半導体ウェハーWの表面のシリコン酸化膜を窒化している。極めて照射時間の短いフラッシュ光の照射によって半導体ウェハーWの表面を1秒以下加熱することによりシリコン酸化膜を形成するとともに、そのシリコン酸化膜を窒化しているため、良質で膜厚が20オングストローム以下の薄い酸窒化シリコン膜を形成することができる。特に、第2のフラッシュ光照射の照射時間も1ミリセカンド以上100ミリセカンド以下であって、照射時の半導体ウェハーWの表面のピーク温度が1200℃以下であるため、窒素がシリコン酸化膜を通り抜けてシリコンの基材との界面にまで到達することが抑制される。
【0087】
ところで、単に酸窒化シリコンを形成するだけであれば、チャンバー6内に酸素とアンモニアとの混合ガスの雰囲気を形成し、その混合ガスの雰囲気中にて半導体ウェハーWのフラッシュ加熱を行っても良いように考えられる。しかし、酸素とアンモニアとの混合ガスの雰囲気中で加熱処理を行うと、アンモニアが爆発する懸念がある。本実施形態においては、まず酸素を含む酸化雰囲気中にてシリコン酸化膜を形成した後に、アンモニアを含む窒化雰囲気中にてシリコン酸化膜を窒化している。このように、酸素を含む酸化雰囲気中での処理とアンモニアを含む窒化雰囲気中での処理とを分離することにより、アンモニアの爆発を防止して安全に酸窒化シリコン膜を形成することができる。
【0088】
特に、本実施形態では、第1のフラッシュ光照射が完了するのとほぼ同時にチャンバー6内の減圧を開始し、チャンバー6内の圧力を0.1kPaにまで減圧して酸素を排出している。そして、チャンバー6内から酸素をほぼ完全に排出してからアンモニアを供給しているため、より確実にアンモニアの爆発を防止することができる。
【0089】
また、酸化処理と窒化処理とを異なる装置によって個別に行うようにしても酸窒化シリコンを形成することは可能である。但し、このようすると、酸化処理が終了した後に、半導体ウェハーWが一旦大気雰囲気に曝されることとなり、不純物が混入するおそれがある。また、酸化処理と窒化処理とを異なる装置にて行うと、それぞれの処理にて雰囲気置換が必要となり、全体としての処理時間が長くなる。本実施形態においては、共通の1つのチャンバー6内にて酸化処理と窒化処理とを連続して行っているため、半導体ウェハーWを大気雰囲気に曝すことに起因した不純物の混入を防ぐことができ、良質な酸窒化シリコン膜を形成することができる。さらに、第1のフラッシュ光照射後に酸素を排出して直ぐにアンモニアを供給しているため、酸窒化シリコン膜を形成するための全体としての処理時間を短くしてスループットを向上させることができる。
【0090】
以上、本発明の実施の形態について説明したが、この発明はその趣旨を逸脱しない限りにおいて上述したもの以外に種々の変更を行うことが可能である。例えば、上記実施形態においては、チャンバー6内から酸素をほぼ完全に排出してからアンモニアを供給していたが、アンモニアの爆発の懸念がなければ、チャンバー6内に酸素が残留している状態でアンモニアを供給するようにしても良い。具体的には、チャンバー6内の酸素濃度が3%以下の爆発限界以下にまで酸素が排出されていれば、アンモニアを供給しても爆発の懸念はないため、チャンバー6内に酸素が残留している状態でアンモニアを供給する。この場合、チャンバー6内に残留する酸素とアンモニアとの混合ガス中にて第2のフラッシュ光照射を行うこととなる。このようにすれば、酸素の排出時間を短縮して全体としての処理時間を短くすることができる。
【0091】
また、上記実施形態においては、酸素によって酸化雰囲気を形成していたが、オゾンまたは酸素とオゾンとの混合ガスによって酸化雰囲気を形成するようにしても良い。
【0092】
また、第2予備加熱にて半導体ウェハーWの温度が第2予備加熱温度T3に到達した後、半導体ウェハーWの温度を所定時間第2予備加熱温度T3に維持してから第2のフラッシュ光照射を行うようにしても良い。
【0093】
また、上記実施形態においては、1つのチャンバー6内にて酸化処理と窒化処理とを行っていたが、これに限定されるものではなく、酸化処理と窒化処理とをそれぞれ異なるチャンバーにて行うようにしても良い。もっとも、上述したように、1つのチャンバー6内にて酸化処理と窒化処理とを行った方が不純物の混入を防止して良質な酸窒化シリコン膜を形成できるとともに、全体としての処理時間を短くすることができる。
【0094】
また、上記実施形態においては、フラッシュランプFLから照射時間の短いフラッシュ光を照射することによって半導体ウェハーWの表面を1秒以下加熱していたが、フラッシュ光に代えてレーザー光を照射して半導体ウェハーWを加熱するようにしても良い。レーザー光も照射時間が極めて短いため、半導体ウェハーWの表面の加熱時間を1秒以下とすることができる。すなわち、半導体ウェハーWの表面を1秒以下加熱する熱源であれば良い。
【0095】
また、上記実施形態においては、フラッシュ加熱部5に30本のフラッシュランプFLを備えるようにしていたが、これに限定されるものではなく、フラッシュランプFLの本数は任意の数とすることができる。また、フラッシュランプFLはキセノンフラッシュランプに限定されるものではなく、クリプトンフラッシュランプであっても良い。また、ハロゲン加熱部4に備えるハロゲンランプHLの本数も40本に限定されるものではなく、任意の数とすることができる。
【0096】
また、上記実施形態においては、1秒以上連続して発光する連続点灯ランプとしてフィラメント方式のハロゲンランプHLを用いて半導体ウェハーWの予備加熱を行っていたが、これに限定されるものではなく、ハロゲンランプHLに代えて放電型のアークランプ(例えば、キセノンアークランプ)を連続点灯ランプとして用いて予備加熱を行うようにしても良い。
【符号の説明】
【0097】
1 熱処理装置
3 制御部
4 ハロゲン加熱部
5 フラッシュ加熱部
6 チャンバー
7 保持部
10 移載機構
65 熱処理空間
74 サセプタ
75 保持プレート
77 基板支持ピン
85 処理ガス供給源
190 排気部
FL フラッシュランプ
HL ハロゲンランプ
W 半導体ウェハー