(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2023-10-06
(45)【発行日】2023-10-17
(54)【発明の名称】太陽電池アセンブリを含む太陽電池モジュール
(51)【国際特許分類】
H02S 40/34 20140101AFI20231010BHJP
H01L 31/05 20140101ALI20231010BHJP
H02S 40/36 20140101ALI20231010BHJP
【FI】
H02S40/34
H01L31/04 570
H02S40/36
(21)【出願番号】P 2022001693
(22)【出願日】2022-01-07
(62)【分割の表示】P 2020020383の分割
【原出願日】2014-07-02
【審査請求日】2022-01-31
(32)【優先日】2013-07-05
(33)【優先権主張国・地域又は機関】GB
(73)【特許権者】
【識別番号】514138145
【氏名又は名称】アールイーシー ソーラー プライベート リミテッド
(74)【代理人】
【識別番号】100152984
【氏名又は名称】伊東 秀明
(72)【発明者】
【氏名】スリダラ, シャンカー ゴウリ
(72)【発明者】
【氏名】ディエスタ, ノエル ジー.
(72)【発明者】
【氏名】ロスタン, フィリップ ヨハネス
(72)【発明者】
【氏名】ワド, ロバート
【審査官】桂城 厚
(56)【参考文献】
【文献】特開2007-235113(JP,A)
【文献】特開2001-135847(JP,A)
【文献】独国特許出願公開第102011105019(DE,A1)
【文献】米国特許出願公開第2011/0284052(US,A1)
【文献】中国実用新案第202585481(CN,U)
【文献】中国実用新案第202651144(CN,U)
【文献】国際公開第2005/112133(WO,A1)
【文献】特開2001-339088(JP,A)
【文献】特開2007-234795(JP,A)
【文献】登録実用新案第3168519(JP,U)
【文献】特開2010-245176(JP,A)
【文献】特開2010-016131(JP,A)
【文献】中国実用新案第201859877(CN,U)
(58)【調査した分野】(Int.Cl.,DB名)
H01L 31/00-31/078
H01L 31/18-31/20
H10K 30/00-30/57
H10K 30/80-39/18
H02S 10/00-10/40
H02S 30/00-99/00
IEEE Xplore
(57)【特許請求の範囲】
【請求項1】
太陽電池アセンブリを備える太陽電池モジュールであって、
前記太陽電池アセンブリは、
第1太陽電池ユニットと、
前記第1太陽電池ユニットと直列に接続される第2太陽電池ユニットと、を有し、
前記第1太陽電池ユニットは、
直列に接続される複数の太陽電池を含む第1太陽電池直列体と、
前記第1太陽電池直列体と並列に連結され、直列に接続される複数の太陽電池を含む第2太陽電池直列体と、
前記第1太陽電池直列体、および前記第2太陽電池直列体と並列に連結される第1バイパスダイオードと、を有し、
前記第2太陽電池ユニットは、
直列に接続される複数の太陽電池を含む第3太陽電池直列体と、
前記第3太陽電池直列体と並列に連結され、直列に接続される複数の太陽電池を含む第4太陽電池直列体と、
前記第3太陽電池直列体、および前記第4太陽電池直列体と並列に連結される第2バイパスダイオードと、を有し、
前記第1バイパスダイオードは、前記太陽電池モジュールの裏面側に配置される接続箱内に取り付けられ、前記第2バイパスダイオードは、前記太陽電池モジュールの内部に一体的に統合され
ており、
前記第1バイパスダイオードおよび前記第2バイパスダイオードは、前記太陽電池アセンブリの中心線に配置され、
前記第2バイパスダイオードは、前記太陽電池アセンブリの中央に配置され、前記第1バイパスダイオードは、前記第2バイパスダイオードより前記太陽電池アセンブリの端部の近くに配置される太陽電池モジュール。
【請求項2】
さらに、前記第1および第2太陽電池ユニットと直列に接続される第3太陽電池ユニットを有し、
前記第3太陽電池ユニットは、
直列に接続される複数の太陽電池を含む第5太陽電池直列体と、
前記第5太陽電池直列体と並列に連結され、直列に接続される複数の太陽電池を含む第6太陽電池直列体と、
前記第5太陽電池直列体、および前記第6太陽電池直列体と並列に連結される第3バイパスダイオードと、を有し、
前記第
3バイパスダイオードは、別の接続箱に搭載され、前記第
2バイパスダイオードは、前記太陽電池アセンブリの中央に配置され、前記第1
バイパスダイオードおよび
前記第
3バイパスダイオードは、
前記第2バイパスダイオードより太陽電池の端部の
近くに配置される請求項1に記載の太陽電池モジュール。
【請求項3】
前記第1
バイパスダイオード、
前記第2
バイパスダイオード、および
前記第
3バイパスダイオードは、前記太陽電池アセンブリの中心線に配置されている請求項
2に記載の太陽電池モジュール。
【請求項4】
さらに、前記第
2バイパスダイオードを隣接するバイパスダイオードに接続するための少なくとも1つのクロスコネクタを含む請求項1~
3のいずれか1項に記載の太陽電池モジュール。
【請求項5】
前記接続箱は、外部デバイスまたは他の太陽電池アセンブリに接続するクロスコネクタを収容する請求項1~
4のいずれか1項に記載の太陽電池モジュール。
【請求項6】
前記第1太陽電池ユニット、および前記第2太陽電池ユニットは、太陽電池モジュールを形成する請求項1に記載の太陽電池モジュール。
【請求項7】
前記第1太陽電池ユニット、および前記第2太陽電池ユニットは、太陽電池モジュールの一部を形成する請求項1に記載の太陽電池モジュール。
【請求項8】
前記第1太陽電池直列体は、前記第1太陽電池ユニット内の前記第2太陽電池直列体と同じ開回路電圧Vocを有し、前記第3太陽電池直列体は、前記第2太陽電池ユニット内の前記第4太陽電池直列体と同じ開回路電圧Vocを有する請求項1~
7のいずれか1項に記載の太陽電池モジュール。
【請求項9】
前記第1太陽電池直列体、および前記第2太陽電池直列体は、前記第1バイパスダイオードに対して互いに鏡像であり、前記第3太陽電池直列体、および前記第4太陽電池直列体は、前記第2バイパスダイオードに対して互いに鏡像である請求項1~
8のいずれか1項に記載の太陽電池モジュール。
【請求項10】
前記第1太陽電池直列体、および前記第2太陽電池直列体は、第1クロスコネクタを介して前記第1バイパスダイオードと連結される請求項1~
9のいずれか1項に記載の太陽電池モジュール。
【請求項11】
前記第1バイパスダイオードは、アノード、およびカソードを有し、前記第1バイパスダイオードの前記アノード、および前記カソードは、前記第1クロスコネクタに連結される請求項
10に記載の太陽電池モジュール。
【請求項12】
前記第1クロスコネクタは、前記第1バイパスダイオード、および前記第1バイパスダイオードと前記第1クロスコネクタとの間の機械的接続に、電気的あるいは機械的な過大応力による亀裂が発生するのを防ぐためのストレス緩和としてコルゲーション構造体を有する請求項
10、または
11に記載の太陽電池モジュール。
【請求項13】
前記第3太陽電池直列体、および前記第4太陽電池直列体は、第2クロスコネクタを介して前記第2バイパスダイオードと連結される請求項1~
12のいずれか1項に記載の太陽電池モジュール。
【請求項14】
前記第2バイパスダイオードは、アノード、およびカソードを有し、前記第2バイパスダイオードの前記アノード、および前記カソードは、前記第2クロスコネクタに連結される請求項
13に記載の太陽電池モジュール。
【請求項15】
前記第2クロスコネクタは、前記第2バイパスダイオード、および前記第2バイパスダイオードと前記第2クロスコネクタとの間の機械的接続に、電気的あるいは機械的な過大応力による亀裂が発生するのを防ぐためのストレス緩和としてコルゲーション構造体を有する請求項
13、または
14に記載の太陽電池モジュール。
【請求項16】
更に、前記第1太陽電池直列体、および前記第2太陽電池直列体と、前記第1バイパスダイオードとを連結する第1クロスコネクタ、および前記第3太陽電池直列体、および前記第4太陽電池直列体と、前記第2バイパスダイオードとを連結する第2クロスコネクタを、単一のアセンブリとして結合する中心クロスコネクタアセンブリを有する請求項
10~
15のいずれか1項に記載の太陽電池モジュール。
【請求項17】
前記中心クロスコネクタアセンブリは、前記太陽電池アセンブリの中心線内に配置される請求項
16に記載の太陽電池モジュール。
【発明の詳細な説明】
【技術分野】
【0001】
発明の分野
本発明は、太陽電池アセンブリおよびこのような太陽電池アセンブリを含む太陽電池モジュールに関する。
【背景技術】
【0002】
太陽電池は、光起電力効果を使用して、太陽光を電気に変換するために使用される。
図1aに示されるように、結晶シリコン系太陽電池を基礎とする太陽電池モジュール100は通常、相互接続された6つの平行な太陽電池ストリング内に配置可能な、寸法が15.6×15.6cm
2の太陽電池104を6×10個含んでいてもよい。各ストリングは、銅リボン106によって直列に接続される10個あるいは12個の単結晶あるいは多結晶系太陽電池を含んでいてもよい。ストリングは、次に、モジュール内の全ての太陽電池が直列に接続されるように、いわゆるクロスコネクタ105によってさらに直列に接続されてもよい。同型の構成の太陽電池を、例えば4×9個、6×8個、あるいは6×12個備えた太陽電池モジュールもまた一般的である。
【0003】
正常な動作状態において、全ての太陽電池は光に当てられ、約0.5Vのその最大電力点で動作することができる。したがって、太陽電池が6×10個の太陽電池モジュールでは、モジュール電圧の合計は約30Vになる。しかしながら、特定の状況においては、モジュールに部分日陰が生じ得る。太陽電池が日陰になる場合、生成される電流は、照光レベルに比例して減少する。直列接続により、最も低い電流の太陽電池が、モジュール内の総電流を決定する。1つの太陽電池のみが陰になる状況において、これは、モジュール全体の完全な電力損失を招くおそれがある。
【0004】
このような完全な電力損失を避けるために、いわゆるバイパスダイオード101がモジュール内に組み込まれてもよい。バイパスダイオードは、一定数の太陽電池と並列に接続される。陰が生じる場合に、陰になる太陽電池と同じバイパスダイオードと並列である太陽電池のみが電力損失による影響を受ける可能性がある。1モジュール当たりのバイパスダイオードの数は、部分陰による影響を受ける太陽電池の数とバイパスダイオードを組み込むための費用との間の妥協である。通常は、最大で20個の太陽電池を含む2つのストリングが、1つのバイパスダイオードに接続される。バイパスダイオードは、モジュールを隣接するモジュールに接続するのに使用されるケーブルの固定具としての役割を果たす接続箱102内に配置されてもよい。
図1bは、接続箱102内に搭載される3つのバイパスダイオード101を備える典型的なモジュール100の電気概略図を示す。ストリングは、クロスコネクタ103によって接続箱に接続されており、その反対側で、ストリングは、クロスコネクタ105によって互いに直列に接続されている。
【0005】
部分陰が生じる状況において、1つの太陽電池104のみが完全に陰になる場合、バイパスダイオードは、そのダイオードに並列に接続されている太陽電池の全てを短絡する。この状況において、照明されている太陽電池は、まだ、それぞれがその最大電力点とその開回路電圧の間の、約0.5~0.6Vで動作しているのに対して、陰になった太陽電池は、電圧を生成しない。その一方、照射された太陽電池の合成電圧は、約0.5~0.6Vの19倍で、最大約11.4Vの電圧となり、これは陰になった太陽電池に逆バイアス方向に印加される。
【0006】
太陽電池のダイオード特性によって、逆バイアス電圧が印加される場合には無視できる程度の逆方向飽和電流が流れるだけである。しかしながら、太陽電池は、急激な熱発生を引き起こし、最終的に太陽電池の破壊につながるかもしれないダイオードのアバランシェ降伏が起こる前に、一定の最大逆バイアスに耐えることができるだけである。破壊の前であっても、局所的シャントあるいは「ホットスポット」は、熱発生の増加につながる可能性があり、この熱発生の増加によりモジュールの封止に損傷を与え、火災さえ発生する可能性がある。
【0007】
したがって、最大印加逆バイアス電圧は、通常約13Vの降伏電圧を超えるべきではない。正確な降伏電圧は、ウェハの材料および太陽電池の電池設計に依存する。太陽電池の所定の開回路電圧で、降伏電圧は、1つのバイパスダイオードに接続することができる太陽電池の数を限定する。
【0008】
上記の数値は、モジュールの狭小側でクロスコネクタおよび接続箱を備える一般的なモジュールレイアウト内において、1バイパスダイオード当たりの太陽電池の数がすでに最大に近づいていることを示している。
【0009】
モジュールの出力電力を増加させるためのアプローチは、リボン106によって太陽電池が相互接続される方向における太陽電池の長さを減らすことであり、これは太陽電池を半分に切断することで通常は達成される。このようにすることで、電池の長さに対して放物線状に依存する抵抗損失を効果的に減少させることができる。このアプローチにより、電力出力を約2%向上させることができる。しかしながら、各ストリング内の太陽電池の数は2倍になり、1バイパスダイオード当たりの太陽電池の数も2倍になる。
【0010】
別のアプローチは、半分に切断された太陽電池を使用して、各ストリングに付き1つのバイパスダイオードを使用すること、つまり、反対側においてストリングの1つの端部を接続箱に接続するためにコネクタリボンを組み込むことによるものである。この解決法の欠点は、コネクタリボン内でおよそ0.5%の電力損失があること、およびリボンについて実質的な追加の費用が生じること、ならびにシャントを避けるために、リボンが配置される場所に複数の裏面シート層を供給する必要性があることである。
【0011】
したがって、最大逆方向降伏電圧を超えないように、および過度の長さのコネクタリボンの使用を避けるように、太陽電池モジュールにおいて最適な太陽電池の構成を有することが望まれる。
【発明の概要】
【0012】
太陽電池アセンブリが提示される。太陽電池アセンブリは、直列に接続される1つ以上の太陽電池ユニットを含む。太陽電池ユニットは、並列に接続される第1太陽電池直列体および第2太陽電池直列体を含む。第1および第2太陽電池直列体は、それぞれ直列に接続される複数の太陽電池を含む。太陽電池アセンブリは、また、各太陽電池ユニットに接続されるバイパスダイオードを含み、該バイパスダイオードは、第1太陽電池直列体および第2太陽電池直列体のそれぞれに並列に接続される、つまり、前記バイパスダイオードは、各太陽電池ユニット内の第1および第2太陽電池直列体の間で共有されるものとして解釈されてもよい。
【0013】
目的、ならびに本願明細書に開示された本発明の利点および特徴は、以下の説明および添付図面を参照することによって明らかになるであろう。さらに、本願明細書に記載のさまざまな実施態様の特徴は相互に排他的ではなく、様々な組み合わせおよび順序で存在しうることを理解されたい。
【図面の簡単な説明】
【0014】
図面の簡単な説明
以下の図面においては、複数の異なる図面を通じて同じ参照符号は、概して、同じあるいは類似の部分を指す。また、図面は単に概略的に示されたものであり、必ずしも一定の縮尺ではなく、概して、本発明の原理を例示することに重点が置かれている。以下の説明において、様々な実施形態が、以下の図面を参照して説明される。
【
図2a】太陽電池アセンブリレイアウトの一実施形態および対応する電気概略図を示す。
【
図2b】太陽電池アセンブリレイアウトの一実施形態および対応する電気概略図を示す。
【
図3a】太陽電池アセンブリレイアウトの別の一実施形態および対応する電気概略図を示す。
【
図3b】太陽電池アセンブリレイアウトの別の一実施形態および対応する電気概略図を示す。
【
図4a】太陽電池アセンブリレイアウトのさらに別の一実施形態および対応する電気概略図を示す。
【
図4b】太陽電池アセンブリレイアウトのさらに別の一実施形態および対応する電気概略図を示す。
【発明を実施するための形態】
【0015】
実施形態は、全体として、装置に関し、例えば、光のエネルギーを電気エネルギーに変換する装置に関する。特に、該装置は、太陽電池素子、あるいは複数の太陽電池素子を含む太陽電池モジュールであってもよい。
【0016】
図2aは、太陽電池アセンブリレイアウト200の一実施形態を示し、
図2bは、対応する電気概略図を示す。1つの実施形態において、太陽電池アセンブリは、太陽電池モジュールである。別の一実施形態において、太陽電池アセンブリは、太陽電池モジュールの一部である。太陽電池アセンブリは、1つ以上の太陽電池ユニット内に配置されてもよい太陽電池204を含んでいてもよい。
図2aに示されるように、太陽電池アセンブリ200は、3つの太陽電池ユニットを含んでおり、例えば、第1太陽電池ユニット211、第2太陽電池ユニット212、および第3太陽電池ユニット213を含んでいる。別の数の太陽電池ユニットを含む太陽電池アセンブリもまた有用であろう。
【0017】
1つの実施形態において、太陽電池ユニットは、第1太陽電池直列体および第2太陽電池直列体を含む。例えば、第1太陽電池ユニット211は、第1太陽電池直列体221および第2太陽電池直列体222を含んでいてもよい。各太陽電池直列体内で、複数の太陽電池は、直列に接続されていてもよい。例えば、6×10太陽電池モジュールの形式における太陽電池アセンブリについては、第1太陽電池直列体は、寸法が15.6×15.6cm
2の太陽電池を10個含んでいてもよい。太陽電池直列体はまた、その他の数の太陽電池を含んでいてもよく、例えば、6×12太陽電池モジュールについては、寸法が15.6×15.6cm
2の太陽電池を12個含むこともまた有用であろう。別の一実施形態において、太陽電池ユニットは、複数部分に切断された太陽電池を含む。例えば、
図2aに示されるように、太陽電池は半分に切断され、各太陽電池直列体内で互いに直列に接続されている。太陽電池を半分に切断することによって、太陽電池の長さに対して放物線状に依存する抵抗損失を、効率的に低減することができる。電力出力は約2%向上することができる。
【0018】
1つの実施形態において、同じ太陽電池ユニット内の第1、および第2太陽電池直列体は、同じバイパスダイオードを共有する。バイパスダイオードは、2つの端子が取り付けられたシリコン等の半導体材料を含んでいてもよい。バイパスダイオードは、ホットスポット加熱の破壊的な影響を回避するのに使用されてもよい。1つの実施形態において、バイパスダイオードは、太陽電池あるいは直列に接続される太陽電池の一群に並列に接続されるが、逆極性に接続される。通常の動作において、一群内の各太陽電池は、順方向にバイアスされ、バイパスダイオードは、逆方向にバイアスされてもよい。しかしながら、太陽電池の一群の一部が陰になる場合、バイパスダイオードは順方向にバイアスされ、陰にならない部分によって生成された電流がバイパスダイオードに流れることを可能にすることによって、陰になる部分の高抵抗を避けて、ホットスポット加熱を防ぐことが可能になる。
【0019】
例えば、第1太陽電池ユニット内の第1および第2太陽電池直列体221および222は、第1バイパスダイオード2011を共有してもよい。1つの実施形態において、第1太陽電池直列体は、第1太陽電池直列体と実質的に同じ開回路電圧Vocを有してもよい第2太陽電池直列体と並列に接続されている。より具体的には、第1および第2太陽電池直列体は、第1バイパスダイオードに対する互いの鏡像であってもよい。同じVocを達成する、1つの太陽電池ユニット内の第1および第2太陽電池直列体のその他の構成も有用であろう。1つの実施形態において、第1バイパスダイオード、第1太陽電池直列体および第2太陽電池直列体は、互いに並列に接続されている。1つの実施形態において、第1バイパスダイオードのカソードは、第1および第2太陽電池直列体の両方の正のノードに接続されてもよく、第1バイパスダイオードのアノードは、第1および第2太陽電池直列体の両方の負のノードに接続されてもよい。その他の太陽電池ユニット内の第1および第2太陽電池直列体およびバイパスダイオードの構成は、第1太陽電池ユニット内のそれと類似していてもよい。
【0020】
1つの実施形態において、太陽電池直列体は、クロスコネクタ203を介してバイパスダイオードに接続されている。クロスコネクタは、例えば、銅、アルミニウム、銀、あるいはこれらの合金を含む金属等の導電性材料で作製されてもよい。例えば、クロスコネクタは、銅リボンであってもよい。その他の種類の導電性材料もまた、クロスコネクタに使用されてもよい。
【0021】
1つの実施形態において、太陽電池直列体内の太陽電池は、直列に接続される1つ以上のストリング内に配置されている。例えば、寸法が15.6×15.6cm
2の太陽電池を6×10個有する太陽電池アセンブリについては、第1太陽電池ユニット内の第1太陽電池直列体は、2つのストリングを含んでいてもよく、各ストリングは、直列に接続される太陽電池を5個含んでいてもよい。その他の寸法のその他の数の太陽電池を備えるストリングも、また有用であろう。例えば、
図2aに示されるように、寸法が15.6×7.8cm
2の半分に切断された太陽電池を6×20個有する太陽電池アセンブリについては、第1太陽電池ユニット内の第1太陽電池直列体は、2つのストリングを含んでいてもよく、各ストリングは、直列に接続される半分に切断された太陽電池を10個含んでいてもよい。第1太陽電池直列体内の2つのストリングは、クロスコネクタ205によって直列に接続されてもよい。
【0022】
太陽電池アセンブリ内のその他の太陽電池ユニットは、第1太陽電池ユニットのそれと類似の太陽電池の構成を有していてもよい。1つの実施形態において、太陽電池ユニットは、それらが互いに実質的に同じ出力電流を生成するならば、互いに直列に接続される。1つの実施形態において、アセンブリ内の一部、あるいは全ての太陽電池ユニットのクロスコネクタ203は、1つの中心クロスコネクタアセンブリとして結合され、
図2aに示されるように、太陽電池アセンブリ/モジュールの中心線内に実質的に配置される。太陽電池アセンブリの対称性により、それは電気装置構造に違いを生じさせないであろう。したがって、一般的な太陽電池アセンブリ/モジュールレイアウトと比較すると、わずかの量の追加のクロスコネクタが要求されるだけであり、クロスコネクタ203および205に必要な追加の面積が最小限に抑えられる。製造時において、モジュールの面積が増加しないことが重要であり、それによって、一般的なモジュールを製造するものと同じ装置を使用することができる。さらに、モジュール領域および標準照射パワーに正規化されるモジュール電力であるモジュール効率は犠牲にならないであろう。
【0023】
例えば、第1太陽電池ユニット211内の全ての太陽電池が正常に動作し、負荷に十分な電流を供給する場合、第1太陽電池ユニット211に接続される第1バイパスダイオード2011は、逆方向にバイアスされてもよく、第1太陽電池ユニット内の全ての太陽電池は、最大電力点(MPP)の近くで動作する。しかしながら、第1太陽電池ユニットの一部が負荷に対して十分な電流を生成することができなくなった場合、例えば、第1太陽電池直列体の一部が太陽から陰になっているあるいは損傷さえ受けている場合、陰になっているあるいは損傷を受けている部分は逆方向にバイアスされて、並列に接続されている第1バイパスダイオード2011は、電流を流すために順方向にバイアスされてもよい。陰になっているあるいは損傷を受けている第1太陽電池直列体は、アセンブリの電力出力に貢献できない可能性があり、一方で陰になってないあるいは損傷していない第2太陽電池直列体はまだ、小さい程度にアセンブリの電力出力に貢献することが可能である。この実施形態は、バイバスダイオードが順方向にバイアスされる場合に、バイパスダイオードに並列に接続されている全ての太陽電池が、電力に貢献しないという太陽電池モジュールの一般的な構成よりも良好な性能を持つことが可能である。
【0024】
例えば、半分に切断された太陽電池を6×20個含む太陽電池アセンブリについては、
図2aに示されるように、10個の半分に切断された太陽電池が1つのストリング内で直列に接続されている。太陽電池アセンブリは、3つの太陽電池ユニットに分割され、1つの太陽電池ユニットに対して1つのバイパスダイオードが接続されているので、この構成は、最大印加逆バイアス電圧が降伏電圧を超えることなく、1バイパスダイオード当たり40個の太陽電池を許可する。したがって、太陽電池の「ホットスポット」あるいは破壊を低減することができる。
【0025】
1つの実施形態において、バイパスダイオードは、1つ以上の接続箱内に収容されている。
図5は、接続箱550の一実施形態を示す。接続箱は、少なくとも1つのバイパスダイオード501を含んでいてもよい。接続箱は、また、各太陽電池ストリングに電気的に接続するための入力端子503、および外部装置、例えば、パワーコンディショナに接続するための出力端子505を含んでいてもよい。1つの実施形態において、接続箱は、一部、あるいは全ての太陽電池ユニット内の太陽電池直列体の両方から電力を集めて、その電力を外部装置に出力する。
【0026】
1つの実施形態において、
図2aに示されるように、太陽電池アセンブリ内の全てのバイパスダイオードは、単一の接続箱内に搭載される。別の一実施形態において、複数の接続箱が使用され、各接続箱は、太陽電池ユニットに接続されるバイパスダイオードのサブセットを収納する。例えば、バイパスダイオードと同じ数の接続箱が使用されてもよく、各接続箱は、1つのバイパスダイオードを収容する。例として、3つのバイパスダイオードを収容するのに3つの接続箱が使用されてもよく、各接続箱は、1つのバイパスダイオードを収納する。その他の数の接続箱もまた使用されてもよい。例えば、2つの接続箱を使用して、第1の接続箱に2つのバイパスダイオードを収容して、第2の接続箱に1つのバイパスダイオードを収容してもよい。
【0027】
1つの実施形態において、接続箱は、太陽電池アセンブリの裏面側に配置されている。接続箱は、太陽電池アセンブリの裏面側の中心線内に実質的に配置されてもよい。例えば、全てのバイパスダイオードを収容する単一の接続箱を含む太陽電池アセンブリ/モジュールについては、接続箱は、太陽電池アセンブリ/モジュールの裏面側の中央に実質的に配置されてもよい。複数の接続箱を含む太陽電池アセンブリ/モジュールについては、接続箱は、太陽電池アセンブリの裏面側の中心線内に実質的に配置されてもよく、互いに、あるいはアセンブリ/モジュールの端部から実質的に等距離に配置されていてもよい。クロスコネクタの量を最小限にする接続箱のその他の配置もまた有用であろう。
【0028】
さらに別の一実施形態において、太陽電池アセンブリ内のバイパスダイオードのサブセット、あるいはその全ては、接続箱内に収容される代わりに、太陽電池アセンブリ/モジュールの積層体内に統合された統合バイパスダイオードを含む。1つの実施形態において、接続箱と統合バイパスダイオードとの組み合わせが使用される。例えば、3つのバイパスダイオードを含む太陽電池アセンブリについては、接続箱と統合バイパスダイオードとの組み合わせが使用されてもよい。より具体的には、第2バイパスダイオードは、太陽電池アセンブリ/モジュールの積層体内に統合された統合バイパスダイオードであってもよく、第1、および第3バイパスダイオードは、外部装置あるいはその他のアセンブリ/モジュールに接続するためのクロスコネクタと共に接続箱内に収容されてもよい。第2バイパスダイオードは、アセンブリ/モジュールの中央に実質的に配置されてもよく、第1、および第3バイパスダイオードは、アセンブリ/モジュールの端部近傍に配置されてもよい。
【0029】
図6a~6bは、積層体内に統合された統合バイパスダイオードユニット650の一実施形態を示す。1つの実施形態において、統合バイパスダイオードユニットは、統合バイパスダイオード601、および隣接するバイパスダイオードあるいは外部端子に接続するための2つのクロスコネクタ605を含む。クロスコネクタは、統合バイパスダイオードおよび統合バイパスダイオードとクロスコネクタとの機械的接続に、電気的あるいは機械的な過大応力による亀裂が発生するのを防ぐためのストレス緩和としてコルゲーション構造体655を含んでいてもよい。その他のストレス緩和目的の構造体も、また、統合バイパスダイオードユニット内に組み込まれてもよい。
【0030】
図3a~3bに示すように、太陽電池アセンブリ内の全てのバイパスダイオードを統合バイパスダイオードとすることも可能である。
図3aは、太陽電池アセンブリレイアウト300の別の一実施形態を示し、
図3bは、対応する電気概略図を示す。この実施形態における特徴は、
図2a~2bに記載されているものと類似しているので、詳述しない。この実施形態において、太陽電池ユニットに接続される全てのバイパスダイオード301は、太陽電池アセンブリ/モジュールの積層体内に統合された統合バイパスダイオードを含む。このような場合において、モジュールの端部近傍にある2つの統合バイパスダイオードは、外部装置、あるいはその他のアセンブリ/モジュールに接続するために、2つの外部端子302にそれぞれ接続されてもよい。2つの外部端子は2つの端子箱内に配置されてもよい。
【0031】
このアプローチは、クロスコネクタの長さを減らして、クロスコネクタ内の電気的損失を減らすことで、モジュールの電力出力が増加するといった利点を有することができる。電力出力がより高くなることに加えて、モジュール領域もまた減少するので、モジュール効率がさらに増加する。このアプローチは、より少ない量のクロスコネクタ、より安価なコネクタ端子、およびより少ないポッティング剤を要求するだけなので、モジュールの製造コストを効果的に減らすことができる。コネクタ端子およびケーブルをモジュールの端部近傍に配置できるので、光起電力アレイ内でのモジュールの接続を容易に行うことができる。
図2aに示されるような接続箱を搭載するという解決法に比べて、ケーブルをより短くすることができる。これにより、ケーブル内の抵抗損失およびコストを減少させて、モジュールの設置時の取り扱いをより容易にすることが可能となる。ケーブルコネクタの代わりに、抵抗損失をさらに減らすために、モジュールフレームの側面にコネクタプラグを統合することも可能である。
【0032】
図4aは、太陽電池モジュール400の一実施形態を示し、
図4bは、対応する電気概略図を示す。この実施形態における特徴は、
図3a~3bに記載されているものと類似しているので、詳述しない。1つの実施形態において、太陽電池モジュールは、第1太陽電池アセンブリ431、および第2太陽電池アセンブリ432を含む。第1太陽電池アセンブリ431は、寸法が15.6×3.9cm
2の太陽電池を含む。この太陽電池は、寸法が15.6×15.6cm
2の太陽電池を4分の1に切断することで得ることができる。第1太陽電池アセンブリは、第1太陽電池直列体421および第2太陽電池直列体422を有する1つ以上の太陽電池ユニット412を含んでいてもよい。太陽電池直列体内で、複数の太陽電池は直列に接続されてもよい。例えば、寸法が15.6×3.9cm
2の太陽電池を6×20個備える太陽電池アセンブリについては、第1太陽電池直列体は、このような太陽電池を20個含んでいてもよい。第1太陽電池直列体は、また、その他の数の太陽電池を含んでいてもよく、例えば、寸法が15.6×3.9cm
2の太陽電池を6×24個備える太陽電池アセンブリについては、寸法が15.6×3.9cm
2の太陽電池を24個含んでいてもよい。太陽電池ユニットの構成は、
図2a~2bおよび
図3a~3bに記載されるものと類似していてもよい。例えば、実質的に同じVocを有する第1、および第2太陽電池直列体は、並列に接続されてもよく、第1バイパスダイオード401を共有してもよい。より具体的には、第1、および第2太陽電池直列体は、第1バイパスダイオード401に対する互いの鏡像であってもよい。1つの実施形態において、太陽電池直列体は、クロスコネクタ403を介して第1バイパスダイオードに接続される。第1太陽電池アセンブリ内の一部、あるいは全ての太陽電池ユニットのクロスコネクタ403は、1つの中心クロスコネクタアセンブリとして結合されてもよく、第1太陽電池アセンブリの中央線内に実質的に配置されてもよい。1つの実施形態において、コネクタ端子406は、クロスコネクタ、あるいは中央クロスコネクタアセンブリに接続するのに使用される。
【0033】
図4a~4bの太陽電池アセンブリ内に含まれるバイパスダイオードおよびクロスコネクタの構成は、
図2a~2bおよび
図3a~3bに示されるものと類似していてもよい。
【0034】
1つの実施形態において、
図4a~4bに示されるように、2つの太陽電池アセンブリが1つの太陽電池モジュール内に含まれる。太陽電池およびモジュールの要求および構成によって、その他の数の太陽電池アセンブリもまた、太陽電池モジュール内に含まれていてもよい。1つの太陽電池モジュール内の太陽電池アセンブリは、1つのコネクタによって互いに接続されてもよく、この1つのコネクタは太陽電池アセンブリの第1端部と第2コネクタを接続し、この第2コネクタは太陽電池アセンブリの第2端部を接続するものである。これは、太陽電池モジュールの一般的な設計よりも陰になることに対する耐性をより強くすることができる設計である。
【0035】
本発明は、本発明の範囲から逸脱することなく、他の特有の形態で実施することができる。したがって、上記の実施形態は、あらゆる点において、ここで記載される発明の限定ではなく例示を目的とすると見なされるものとする。したがって、本発明の範囲は、上記の説明ではなく添付の特許請求の範囲によって示され、特許請求の範囲の均等の意味および範囲内に入るあらゆる変更は、その中に包含されるものとする。
【0036】
特定の距離、あるいはサイズとともに使用される「約」等の用語は、その特定の距離あるいはサイズからの些細な偏差を除外しないものとして解釈されるものとし、例えば、最大20%の偏差を含んでいてもよい。さらに、「実質的に平行」あるいは「実質的に直角」等の用語は、特定の配置からの些細な偏差を除外しないものと解釈されるものとし、例えば、最大20°の偏差を含んでいてもよい。
【0037】
最後に、「有する」という用語は他の要素又は工程を排除するものではなく、また、単数形で記載されていても複数を排除するものではないことに留意すべきである。また、異なる実施形態に関連して説明した要素を組み合わせてもよい。また、請求項における参照符号は、請求項の範囲を限定するものとして解釈されるべきではないことに留意すべきである。