(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2023-10-10
(45)【発行日】2023-10-18
(54)【発明の名称】窒化イットリウムの製造方法
(51)【国際特許分類】
C01B 21/06 20060101AFI20231011BHJP
【FI】
C01B21/06 A
(21)【出願番号】P 2019223023
(22)【出願日】2019-12-10
【審査請求日】2022-09-15
(73)【特許権者】
【識別番号】000000240
【氏名又は名称】太平洋セメント株式会社
(74)【代理人】
【識別番号】110000084
【氏名又は名称】弁理士法人アルガ特許事務所
(72)【発明者】
【氏名】鈴木 将治
(72)【発明者】
【氏名】高野 美育
(72)【発明者】
【氏名】一坪 幸輝
【審査官】磯部 香
(56)【参考文献】
【文献】特開昭60-131810(JP,A)
【文献】特開2012-007096(JP,A)
【文献】特開2009-173489(JP,A)
【文献】特開2013-121887(JP,A)
【文献】特開2016-179928(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
C01B 21/06
CAplus/REGISTRY(STN)
JSTPlus(JDreamIII)
JST7580(JDreamIII)
JSTChina(JDreamIII)
(57)【特許請求の範囲】
【請求項1】
窒素ガス及びアンモニアガスの混合ガスの流通下、
1辺の長さが0.1~50mmの範囲内にある金属イットリウム
のバルクを900℃以上の温度で焼成する工程
と、
焼成物を粉砕する工程
を含む窒化イットリウムの製造方法であって、
混合ガス中の窒素ガスとアンモニアガスとの体積比(窒素/アンモニア)が0.3~9である、窒化イットリウムの製造方法。
【請求項2】
窒化イットリウムは、初期かさ密度が1.3g/cm
3以上であり、かつタップかさ密度が2g/cm
3以上である、請求項
1記載の窒化イットリウムの製造方法。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、窒化イットリウムの製造方法に関する。
【背景技術】
【0002】
窒化イットリウムは、大気中のわずかな水分と反応し、水酸化イットリウムに変質するという特異な性質を有するため、ハンドリングや保管は、通常、グローブボックス等の不活性ガス雰囲気下で行われている。そのため、窒化イットリウムの製造も、不活性ガス雰囲気下で行われており、例えば、金属イットリウムを窒素又はアンモニア雰囲気中で加熱する窒化イットリウムの製造方法が知られている。また、アンモニア又はアンモニアと窒素若しくはアンモニア及び/又は窒素と水素の雰囲気中で800℃~1400℃で加熱する窒化イットリウムの製造方法も提案されているが、窒素ガスよりもアンモニアガスの方が窒化反応の促進性に優れるため、アンモニアガス及び水素ガスの混合ガスが好ましいとされている(特許文献1)。
【先行技術文献】
【特許文献】
【0003】
【発明の概要】
【発明が解決しようとする課題】
【0004】
窒化イットリウムの用途としては、例えば、白色LED用蛍光体(YSi3N5)が挙げられる。白色LED用蛍光体は、例えば、窒化イットリウム及び窒化ケイ素からなる混合原料を窒化ホウ素製坩堝に入れ、真空加圧焼結炉にて加圧焼成することで製造することができるが、原料の混合や加圧焼成前の準備は不活性ガス雰囲気中で行わなければならず、僅かな大気混入が品質の悪化に繋がるため、通常雰囲気調整が容易なバッチ式で製造されている。バッチ式製造においては、混合原料の割合が窒化イットリウムに富む支配的条件となるため、窒化イットリウムとして、よりかさ密度の高いものが求められている。しかし、特許文献1では、窒化イットリウムの純度について検討されているのみであり、かさ密度について一切検討されてない。加えて、これまで窒化イットリウムのかさ密度の制御法について有効な報告もない。
かさ密度を高める方法として、ホットプレス等で焼結体を製造したのちにミル等で粉砕し、かさ密度の高い粉末を採取する方法が考えられるが、この方法を窒化イットリウムに適用した場合、焼結体製造時に酸素が混入しやすいだけでなく、粉砕時にミル媒体が混入しやすいため、純度の低下といった問題が生ずることが判明した。
本発明の課題は、かさ密度の高い窒化イットリウムの製造方法を提供することにある。
【課題を解決するための手段】
【0005】
本発明者らは、上記課題を解決すべく検討した結果、窒素ガス及びアンモニアガスの割合が特定範囲内に制御された混合ガスの流通下にて、金属イットリウムを特定温度以上で焼成することにより、かさ密度の高い窒化イットリウムが得られることを見出した。
【0006】
すなわち、本発明は、次の〔1〕~〔3〕を提供するものである。
〔1〕窒素ガス及びアンモニアガスの混合ガスの流通下、金属イットリウムを900℃以上の温度で焼成する工程を含む窒化イットリウムの製造方法であって、
混合ガス中の窒素ガスとアンモニアガスとの体積比(窒素/アンモニア)が0.3~9である、窒化イットリウムの製造方法。
〔2〕焼成後、焼成物を粉砕する工程を含む、前記〔1〕記載の窒化イットリウムの製造方法。
〔3〕窒化イットリウムは、初期かさ密度が1.3g/cm3以上であり、かつタップかさ密度が2g/cm3以上である、前記〔1〕又は〔2〕記載の窒化イットリウムの製造方法。
【発明の効果】
【0007】
本発明によれば、かさ密度の高い窒化イットリウムを簡便な操作で製造することができる。
【発明を実施するための形態】
【0008】
以下、本発明について詳細に説明する。
本発明の窒化イットリウムの製造方法は、窒素ガス及びアンモニアガスの混合ガスの流通下、金属イットリウムを900℃以上の温度で焼成する工程を含み、混合ガス中の窒素ガスとアンモニアガスとの体積比(窒素/アンモニア)が0.3~9であることを特徴とする。
【0009】
(金属イットリウム)
金属イットリウムは、市販品を使用することができるが、高純度であるものが好ましい。例えば、金属イットリウムとして、純度99.99%以上のものを使用することができる。
また、金属イットリウムの形態は、バルクでも、粉末でも構わないが、かさ密度向上、変質防止の観点から、バルクが好ましい。バルクの大きさは、通常0.1~50mmであり、好ましくは1~30mmであり、更に好ましくは3~20mmである。なお、バルクは、1辺の長さがいずれも上記範囲内にあればよい。このような大きさとするには、例えば、金属イットリウムの板状物やインゴットを切断又は切削すればよい。
【0010】
(混合ガス)
混合ガスは、窒素ガスとアンモニアガスとからなるものである。
窒素ガスとしては、例えば、純度99.9容積%以上の窒素ボンベガス、液化窒素を使用することができる。また、アンモニアガスとしては、例えば、純度99.8質量%以上の液化アンモニアを使用することができる。
【0011】
混合ガス中の窒素ガスとアンモニアガスとの体積比(窒素/アンモニア)は0.3~9であるが、かさ密度向上の観点から、0.4~9が好ましく、0.5~8.5がより好ましく、0.6~8が更に好ましく、0.8~7.5がより更に好ましい。
【0012】
混合ガスの供給方法としては、所定量の窒素ガスと所定量のアンモニアガスを混合して反応装置に供給しても、両者を別個の配管から反応装置に供給してもよい。
また、窒素ガス及びアンモニアガスは、両者の体積比が上記範囲内となるように、各ガスの供給速度を、通常0.01~100L/min、好ましくは0.1~10L/minの範囲内で制御される。
【0013】
(焼成)
焼成に使用する装置は、装置内に混合ガスを流通でき、かつ焼成温度に耐えられる装置であれば特に限定されないが、例えば、管状炉、電気炉、バッチ式キルン、ロータリーキルンを挙げることができる。
焼成は、常圧で行えばよく、加圧又は真空とすることを要しない。
【0014】
焼成温度は、900℃未満では窒化反応が進行し難いため、通常900℃以上であるが、950℃以上が好ましく、1000℃以上が更に好ましい。また、2690℃を超えると、生成した窒化イットリウムが液化するため、焼成温度は、通常2500℃未満であるが、2200℃以下が好ましく、1500℃以下がより好ましい。
焼成時間は、反応スケールにより一様ではないが、例えば、金属イットリウム100gを使用する場合、通常0.5~60時間、好ましくは1~20時間、更に好ましくは3~10時間である。
【0015】
金属イットリウムの焼成後、冷却することができる。また、窒化イットリウムの粉砕、分析、計量等を行うため、常温(20±15℃)まで冷却してもよい。
【0016】
(粉砕)
焼成後、焼成物を粉砕してもよい。
粉砕は、粉砕装置を使用することができる。粉砕装置としては、窒化イットリウムを粉砕可能であり、且つ密閉状態とすることができれば特に限定されないが、例えば、媒体粉砕機を挙げることができる。媒体粉砕機としては、例えば、ミルが挙げられ、具体的には、遊星ボールミル、ボールミル、ディスクミル等の容器駆動媒体ミルを挙げることができる。なお、粉砕媒体及び粉砕容器の材質としては、窒化イットリウムを粉砕可能であり、かつ不純物の混入を防止できれば特に限定されない。
【0017】
粉砕条件は、粉砕装置の種類、製造スケールにより適宜設定可能であるが、例えば、通常回転数50~400rpmで、1~1440分である。また、粉砕する際の温度は、例えば、常温(20℃±15℃)である。
【0018】
粉砕時の雰囲気は、変質防止の観点から、酸素非含有雰囲気下が好ましい。酸素非含有雰囲気としては、例えば、不活性ガス雰囲気が挙げられ、具体的には、窒素ガス雰囲気、アルゴンガス雰囲気、窒素水素混合ガス雰囲気、アルゴン水素混合ガス雰囲気等を挙げることができる。なお、窒素水素混合ガス又はアルゴン水素混合ガスを用いる場合は、水素を3~5体積%とすることが好ましい。
粉砕時の雰囲気を酸素非含有雰囲気とするには、例えば、ミルを使用する場合、酸素非含有雰囲気のグローブボックス内で、粉砕容器内の気相を置換した後、該粉砕容器に粉砕媒体、窒化物及び酸素吸収剤を収容し、粉砕媒体の開口部を密閉すればよい。
【0019】
このようにして得られた窒化イットリウムは、かさ密度が高められている。具体的には、初期かさ密度を、通常1.3g/cm3以上、好ましくは1.35g/cm3以上、更に好ましくは1.4g/cm3以上とすることができる。また、タップかさ密度を、通常2g/cm3以上、好ましくは2.1g/cm3以上、更に好ましくは2.2g/cm3以上とすることができる。ここで、本明細書において「初期かさ密度」とは、試料を分散させて容器に入れたときのかさ密度をいい、また「タップかさ密度」とは、試料を分散させて容器に入れた後、容器にタップによる衝撃を与え、試料の体積変化がなくなったときのかさ密度をいう。なお、初期かさ密度及びタップかさ密度は、いずれもJIS R 1628「ファインセラミックス粉末のかさ密度測定方法」に準拠して測定するものとする。
【0020】
また、窒化イットリウムの平均粒子径は、50μm以下が好ましく、40μm以下がより好ましく、30μm以下が更に好ましい。なお、かかる平均粒子径の下限値は特に限定されないが、平均粒子径が小さいと変質しやすいため、1μm以上が好ましく、5μm以上がより好ましく、10μm以上が更に好ましい。ここで、本明細書において「平均粒子径」とは、JIS R 1629「ファインセラミックス原料のレーザ回折・散乱法による粒子径分布測定方法」に準拠して試料の粒度分布を体積基準で作成したときに積算分布曲線の50%に相当する粒子径(D50)を意味する。なお、レーザ回折・散乱法による粒子径分布測定装置として、例えば、マイクロトラックMT3300EX II(マイクロトラック・ベル社製)を使用することができる。
【実施例】
【0021】
以下、実施例を挙げて、本発明の実施の形態を更に具体的に説明する。但し、本発明は、下記の実施例に限定されるものではない。
【0022】
1.窒化イットリウムの鉱物相の同定
窒化イットリウムの鉱物相は、粉末X線回折装置(ブルカー・エイエックスエス株式会社製、Bruker D8 advance)を用いて測定し、同定を行った。
【0023】
2.かさ密度(初期かさ密度及びタップかさ密度)の測定
窒化イットリウム粉末の初期かさ密度及びタップかさ密度を、JIS R 1628「ファインセラミックス粉末のかさ密度測定方法」に準拠して測定した。
【0024】
3.平均粒子径の測定
窒化イットリウム粉末の粒度分布を、JIS R 1629「ファインセラミックス原料のレーザ回折・散乱法による粒子径分布測定方法」に準拠して体積基準で作成した。そして、積算分布曲線の50%に相当する粒子径(D50)を求めた。なお、レーザ回折・散乱法による粒子径分布測定装置として、マイクロトラックMT3300EX II(マイクロトラック・ベル社製)を使用した。
【0025】
4.評価
下記の要件(1)~(3)のすべてを満たすものを「〇」とし、いずれか1以上を満たさないものを「×」と評価した。
(1)鉱物相がYN単相であること
(2)初期かさ密度が1.3g/cm3以上であること
(3)タップかさ密度が2g/cm3以上であること
【0026】
実施例1
アルミナ製ボートに金属イットリウム(三津和化学社製、10mm角)を74g量り取り、炉心管の中央部に仕込み、管状炉に設置した。次いで、窒素ガス1L/minとアンモニアガス1L/minをそれぞれ炉心管内に流通させ、1050℃の温度まで5℃/minで昇温し、10時間保持して焼成を行った。焼成後、室温まで徐冷し、生成物をボールミルにて350rpm、3分間の条件で粉砕し、窒化イットリウム粉末を得た。得られた窒化イットリウム粉末の鉱物相を同定するためにX線回折(XRD)測定を行い、YN単相であることを確認した。また、窒化イットリウム粉末の初期かさ密度及びタップかさ密度、並びに平均粒子径を測定した。その結果を表1に示す。
【0027】
実施例2
アンモニアガス及び窒素ガスの流通量を表1に示す割合に変更したこと以外は、実施例1と同様の操作により、窒化イットリウム粉末を得た。得られた窒化イットリウム粉末について、実施例1と同様に鉱物相の同定を行い、YN単相であることを確認した。また、窒化イットリウム粉末の初期かさ密度及びタップかさ密度、並びに平均粒子径を測定した。その結果を表1に示す。
【0028】
実施例3
アンモニアガス及び窒素ガスの流通量を表1に示す割合に変更したこと以外は、実施例1と同様の操作により、窒化イットリウム粉末を得た。得られた窒化イットリウム粉末について、実施例1と同様に鉱物相の同定を行い、YN単相であることを確認した。また、窒化イットリウム粉末の初期かさ密度及びタップかさ密度、並びに平均粒子径を測定した。その結果を表1に示す。
【0029】
実施例4
アンモニアガス及び窒素ガスの流通量を表1に示す割合に変更したこと以外は、実施例1と同様の操作により、窒化イットリウム粉末を得た。得られた窒化イットリウム粉末について、実施例1と同様に鉱物相の同定を行い、YN単相であることを確認した。また、窒化イットリウム粉末の初期かさ密度及びタップかさ密度、並びに平均粒子径を測定した。その結果を表1に示す。
【0030】
実施例5
アンモニアガス及び窒素ガスの流通量を表1に示す割合とし、焼成温度を900℃に変更したこと以外は、実施例1と同様の操作により、窒化イットリウム粉末を得た。得られた窒化イットリウム粉末について、実施例1と同様に鉱物相の同定を行い、YN単相であることを確認した。また、窒化イットリウム粉末の初期かさ密度及びタップかさ密度、並びに平均粒子径を測定した。その結果を表1に示す。
【0031】
実施例6
アンモニアガス及び窒素ガスの流通量を表1に示す割合とし、焼成温度を1450℃に変更したこと以外は、実施例1と同様の操作により、窒化イットリウム粉末を得た。得られた窒化イットリウム粉末について、実施例1と同様に鉱物相の同定を行い、YN単相であることを確認した。また、窒化イットリウム粉末の初期かさ密度及びタップかさ密度、並びに平均粒子径を測定した。その結果を表1に示す。
【0032】
比較例1
窒素ガスを供給しなかったこと以外は、実施例1と同様の操作により、窒化イットリウム粉末を得た。得られた窒化イットリウム粉末について、実施例1と同様に鉱物相の同定を行い、YN単相であることを確認した。また、窒化イットリウム粉末の初期かさ密度及びタップかさ密度、並びに平均粒子径を測定した。その結果を表1に示す。
【0033】
比較例2
アンモニアガス及び窒素ガスの流通量を表1に示す割合に変更したこと以外は、実施例1と同様の操作により、窒化イットリウム粉末を得た。得られた窒化イットリウム粉末について、実施例1と同様に鉱物相の同定を行い、YN単相であることを確認した。また、窒化イットリウム粉末の初期かさ密度及びタップかさ密度、並びに平均粒子径を測定した。その結果を表1に示す。
【0034】
比較例3
アンモニアガス及び窒素ガスの流通量を表1に示す割合に変更したこと以外は、実施例1と同様の操作により、窒化イットリウム粉末を得た。得られた窒化イットリウム粉末について、実施例1と同様に鉱物相の同定を行ったところ、YN及びYの複相であることが判明した。そのため、その後の分析を断念した。
【0035】
比較例4
アンモニアガス及び窒素ガスの流通量を表1に示す割合とし、焼成温度を800℃に変更したこと以外は、実施例1と同様の操作により、窒化イットリウム粉末を得た。得られた窒化イットリウム粉末について、実施例1と同様に鉱物相の同定を行ったところ、YN及びYの複相であることが判明した。そのため、その後の分析を断念した。
【0036】
比較例5
窒素ガスに代えて水素ガスを用い、アンモニアガス及び水素ガスの流通量を表1に示す割合とし、焼成温度を1000℃に変更したこと以外は、実施例1と同様の操作により、窒化イットリウム粉末を得た。得られた窒化イットリウム粉末について、実施例1と同様に鉱物相の同定を行ったところ、YN及びYH2の複相であることが判明した。そのため、その後の分析を断念した。
【0037】
比較例6
アンモニアガスに代えて水素ガスを用い、窒素ガス及び水素ガスの流通量を表1に示す割合としたこと以外は、実施例1と同様の操作により、窒化イットリウム粉末を得た。得られた窒化イットリウム粉末について、実施例1と同様に鉱物相の同定を行ったところ、YN及びYの複相であることが判明した。そのため、その後の分析を断念した。
【0038】
【0039】
比較例1から、窒素ガスを含まない、アンモニアガスのみの雰囲気であると、窒化イットリウムが得られたとしても、かさ密度が低くなることがわかる。
比較例2、3から、窒素ガス及びアンモニアガスの混合ガスの雰囲気であっても、それらの体積比が0.3~9に満たないと、窒化イットリウム単相が得られないか、得られたとしてもかさ密度が低くなることがわかる。
比較例4から、窒素ガス及びアンモニアガスの体積比が0.3~9に制御された混合ガスの雰囲気であっても、焼成温度が900℃に満たないと、未反応イットリウムが残存し、窒化イットリウム単相が得られないことがわかる。
比較例5は、アンモニアガス及び水素ガスの雰囲気を採用する特許文献1に記載された方法であるが、水素化イットリウムが混入し、窒化イットリウム単相は得られないことがわかる。
比較例6から、アンモニアガスを含まない、窒素ガス及び水素ガスの雰囲気であると、未反応のイットリウムが残存し、窒化イットリウム単相が得られないことがわかる。
以上から、窒素ガス及びアンモニアガスの体積比が0.3~9に制御された混合ガスの流通下にて、金属イットリウムを900℃以上で焼成することで、かさ密度の高い窒化イットリウムが得られることがわかる。