IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ 株式会社豊田自動織機の特許一覧 ▶ 株式会社豊田中央研究所の特許一覧

<>
  • 特許-スクロール型圧縮機 図1
  • 特許-スクロール型圧縮機 図2
  • 特許-スクロール型圧縮機 図3
  • 特許-スクロール型圧縮機 図4
  • 特許-スクロール型圧縮機 図5
  • 特許-スクロール型圧縮機 図6
  • 特許-スクロール型圧縮機 図7
  • 特許-スクロール型圧縮機 図8
  • 特許-スクロール型圧縮機 図9
  • 特許-スクロール型圧縮機 図10
  • 特許-スクロール型圧縮機 図11
  • 特許-スクロール型圧縮機 図12
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2023-10-10
(45)【発行日】2023-10-18
(54)【発明の名称】スクロール型圧縮機
(51)【国際特許分類】
   F04C 18/02 20060101AFI20231011BHJP
【FI】
F04C18/02 311Q
【請求項の数】 2
(21)【出願番号】P 2020064556
(22)【出願日】2020-03-31
(65)【公開番号】P2021161942
(43)【公開日】2021-10-11
【審査請求日】2023-02-03
(73)【特許権者】
【識別番号】000003218
【氏名又は名称】株式会社豊田自動織機
(73)【特許権者】
【識別番号】000003609
【氏名又は名称】株式会社豊田中央研究所
(74)【代理人】
【識別番号】100105957
【弁理士】
【氏名又は名称】恩田 誠
(74)【代理人】
【識別番号】100068755
【弁理士】
【氏名又は名称】恩田 博宣
(72)【発明者】
【氏名】前田 拓巳
(72)【発明者】
【氏名】太田 貴之
(72)【発明者】
【氏名】友田 達規
(72)【発明者】
【氏名】近藤 靖裕
(72)【発明者】
【氏名】堀 英津子
(72)【発明者】
【氏名】柴田 一騎
【審査官】大瀬 円
(56)【参考文献】
【文献】特開2019-173752(JP,A)
【文献】特許第6625297(JP,B1)
【文献】特開2017-089491(JP,A)
【文献】特開2020-016165(JP,A)
【文献】特開平07-035058(JP,A)
【文献】特開昭57-186085(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
F04C 18/02
(57)【特許請求の範囲】
【請求項1】
回転軸と、
固定側基板、及び、前記固定側基板から起立した固定側渦巻壁を有する固定スクロールと、
前記固定側基板と対向する旋回側基板、及び、前記旋回側基板から前記固定側基板に向けて起立し、かつ前記固定側渦巻壁と噛み合う旋回側渦巻壁を有する旋回スクロールと、を備え、
前記回転軸の回転によって前記旋回スクロールが旋回することにより、前記固定スクロールと前記旋回スクロールとによって区画された圧縮室内の流体を圧縮するスクロール型圧縮機において、
前記回転軸の軸方向から見て、前記固定側渦巻壁の外周に前記旋回側渦巻壁の内周が接触又は近接し前記圧縮室を区画する点を外接区画点とし、
前記固定側渦巻壁が描くインボリュート曲線の基礎円の中心と前記旋回側渦巻壁が描くインボリュート曲線の基礎円の中心との両方を通る直線と前記外接区画点との距離を外接区画点距離とし、
前記旋回スクロールの旋回角について、前記圧縮室が形成され流体の圧縮が開始される旋回角を旋回開始角とし、
前記旋回スクロールが前記旋回開始角から180°旋回するまでの間に、前記外接区画点距離が、極小値をとった後に極大値をとり、
前記極大値は前記基礎円の半径より大きく、前記極小値は前記基礎円の半径より小さいことを特徴とするスクロール型圧縮機。
【請求項2】
回転軸と、
固定側基板、及び、前記固定側基板から起立した固定側渦巻壁を有する固定スクロールと、
前記固定側基板と対向する旋回側基板、及び、前記旋回側基板から前記固定側基板に向けて起立し、かつ前記固定側渦巻壁と噛み合う旋回側渦巻壁を有する旋回スクロールと、を備え、
前記回転軸の回転によって前記旋回スクロールが旋回することにより、前記固定スクロールと前記旋回スクロールとによって区画された圧縮室内の流体を圧縮するスクロール型圧縮機において、
前記回転軸の軸方向から見て、前記固定側渦巻壁の内周に前記旋回側渦巻壁の外周が接触又は近接し前記圧縮室を区画する点を内接区画点とし、
前記固定側渦巻壁が描くインボリュート曲線の基礎円の中心と前記旋回側渦巻壁が描くインボリュート曲線の基礎円の中心との両方を通る直線と前記内接区画点との距離を内接区画点距離とし、
前記旋回スクロールの旋回角について、前記圧縮室が形成され流体の圧縮が開始される旋回角を旋回開始角とし、
前記旋回スクロールが前記旋回開始角から180°旋回するまでの間に、前記内接区画点距離が、極小値をとった後に極大値をとり、
前記極大値は前記基礎円の半径より大きく、前記極小値は前記基礎円の半径より小さいことを特徴とするスクロール型圧縮機。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、固定スクロールと旋回スクロールとによって区画された圧縮室の流体を圧縮するスクロール型圧縮機に関する。
【背景技術】
【0002】
スクロール型圧縮機は、ハウジング内に固定された固定スクロールと、この固定スクロールに対して公転運動する旋回スクロールとを有する。固定スクロールは、固定側基板と、固定側基板から立設された固定側渦巻壁とを有するとともに、旋回スクロールは、旋回側基板と、旋回側基板から立設された旋回側渦巻壁とを有する。そして、固定側渦巻壁と旋回側渦巻壁とが互いに噛み合わされることで、旋回スクロールの公転運動に基づいて容積減少して冷媒(流体)を圧縮する圧縮室が区画されている。
【0003】
通常、このようなスクロール型圧縮機では、固定側渦巻壁及び旋回側渦巻壁は、所定の半径の真円を基礎円とするインボリュート曲線を用いて、全体の輪郭が円形となるよう形成されている。近年、電動車両に搭載させるなどの事情から、スクロール型圧縮機には更なる静粛性が求められており、これに対し、例えば特許文献1のように、スクロール全体の輪郭や渦巻壁形状を円形から偏平させることで、限られた空間内におけるスクロールひいては圧縮室の容積を大きくさせる技術がある。圧縮室の容積を大きくすれば、その分、渦巻体の回転数を減少できるので、回転に伴う振動に起因する騒音を低減でき、圧縮機の静粛性を高める効果が得られる。
【先行技術文献】
【特許文献】
【0004】
【文献】特開平10-54380号公報
【発明の概要】
【発明が解決しようとする課題】
【0005】
特許文献1に記載のスクロールは長方形に近い形状となっており、これによって圧縮機全体が小型化される旨が記載されているが、スクロールの一部である基板の形状について充分に考慮されていない。流体の圧縮中において渦巻壁は旋回するため、重量バランスや生産性の理由から、渦巻壁の端部と一体化されている基板は真円もしくはそれに近い輪郭を有する。よって、特許文献1に記載のスクロールは、真円状の基板上から長方形状の渦巻壁が延出する形状となる。よって、基板の輪郭と渦巻壁の外周との間には隔たりが大きく、圧縮室の容積を充分に大きくできているとは言い難い。なお、渦巻壁の形状が円形である通常のスクロール圧縮機についても、旋回スクロールにおいて基板の輪郭と渦巻壁の外周との間に隔たりがあるため、上記の問題が存在している。
【0006】
本発明の目的は、圧縮室の容積を大きくでき、ひいては静粛性を高められるスクロール型圧縮機を提供することにある。
【課題を解決するための手段】
【0007】
上記問題点を解決するためのスクロール型圧縮機は、回転軸と、固定側基板、及び、前記固定側基板から起立した固定側渦巻壁を有する固定スクロールと、前記固定側基板と対向する旋回側基板、及び、前記旋回側基板から前記固定側基板に向けて起立し、かつ前記固定側渦巻壁と噛み合う旋回側渦巻壁を有する旋回スクロールと、を備え、前記回転軸の回転によって前記旋回スクロールが旋回することにより、前記固定スクロールと前記旋回スクロールとによって区画された圧縮室内の流体を圧縮するスクロール型圧縮機において、前記回転軸の軸方向から見て、前記固定側渦巻壁の外周に前記旋回側渦巻壁の内周が接触又は近接し前記圧縮室を区画する点を外接区画点とし、前記固定側渦巻壁が描くインボリュート曲線の基礎円の中心と前記旋回側渦巻壁が描くインボリュート曲線の基礎円の中心との両方を通る直線と前記外接区画点との距離を外接区画点距離とし、前記旋回スクロールの旋回角について、前記圧縮室が形成され流体の圧縮が開始される旋回角を旋回開始角とし、前記旋回スクロールが前記旋回開始角から180°旋回するまでの間に、前記外接区画点距離が、極小値をとった後に極大値をとり、前記極大値は前記基礎円の半径より大きく、前記極小値は前記基礎円の半径より小さいことを要旨とする。
【0008】
これによれば、圧縮室が区画形成されて流体圧縮が開始される旋回開始角において、旋回側渦巻壁のうち圧縮室を形成しつつも最も外周側にある部位は、径方向外側へ突出する形状となる。旋回スクロールにおいて旋回側基板の輪郭と旋回側渦巻壁の外周との間に隔たりがあるのは、旋回側渦巻壁の上記の部位が繋がる箇所においてである。よって、旋回側渦巻壁の上記部位が径方向外側へ突出することにより、旋回スクロールにおいて旋回側基板の輪郭と旋回側渦巻壁との隔たりを小さくすることができ、圧縮室の容積をより大きく確保することができる。
【0009】
上記問題点を解決するためのスクロール型圧縮機は、回転軸と、固定側基板、及び、前記固定側基板から起立した固定側渦巻壁を有する固定スクロールと、前記固定側基板と対向する旋回側基板、及び、前記旋回側基板から前記固定側基板に向けて起立し、かつ前記固定側渦巻壁と噛み合う旋回側渦巻壁を有する旋回スクロールと、を備え、前記回転軸の回転によって前記旋回スクロールが旋回することにより、前記固定スクロールと前記旋回スクロールとによって区画された圧縮室内の流体を圧縮するスクロール型圧縮機において、前記回転軸の軸方向から見て、前記固定側渦巻壁の内周に前記旋回側渦巻壁の外周が接触又は近接し前記圧縮室を区画する点を内接区画点とし、前記固定側渦巻壁が描くインボリュート曲線の基礎円の中心と前記旋回側渦巻壁が描くインボリュート曲線の基礎円の中心との両方を通る直線と前記内接区画点との距離を内接区画点距離とし、前記旋回スクロールの旋回角について、前記圧縮室が形成され流体の圧縮が開始される旋回角を旋回開始角とし、前記旋回スクロールが前記旋回開始角から180°旋回するまでの間に、前記内接区画点距離が、極小値をとった後に極大値をとり、前記極大値は前記基礎円の半径より大きく、前記極小値は前記基礎円の半径より小さいことを要旨とする。
【0010】
これによれば、圧縮室が区画形成されて流体圧縮が開始される旋回開始角において、固定側渦巻壁のうち圧縮室を形成しつつも最も外周側にある部位は、径方向外側へ突出する形状となる。旋回側基板の外縁は、旋回開始角において圧縮室が外部と連通しないよう、固定側渦巻壁のうち圧縮室を形成しつつも最も外周側にある部位と、旋回側渦巻壁の外周側端部との両方を包絡円が外縁となるよう通常設計される。さらに、旋回側基板は、重量バランスや生産性などの理由から、外縁が真円状となるよう通常設計される。よって、固定側渦巻壁の上記部位が径方向外側へ突出することにより、上記の包絡円は、その輪郭が旋回側渦巻壁へと近づくことになる。従って、旋回スクロールにおいて旋回側基板の輪郭と旋回側渦巻壁との隔たりを小さくすることができ、圧縮室の容積をより大きく確保することができる。
【発明の効果】
【0011】
本発明によれば、圧縮室の容積を大きくでき、ひいては静粛性を高められる。
【図面の簡単な説明】
【0012】
図1】実施形態のスクロール型圧縮機を示す縦断面図。
図2】旋回角0°における実施形態の固定側渦巻壁及び旋回側渦巻壁を示す図。
図3】旋回角30°における実施形態の固定側渦巻壁及び旋回側渦巻壁を示す図。
図4】旋回角60°における実施形態の固定側渦巻壁及び旋回側渦巻壁を示す図。
図5】旋回角90°における実施形態の固定側渦巻壁及び旋回側渦巻壁を示す図。
図6】旋回角120°における実施形態の固定側渦巻壁及び旋回側渦巻壁を示す図。
図7】旋回角150°における実施形態の固定側渦巻壁及び旋回側渦巻壁を示す図。
図8】旋回角180°における実施形態の固定側渦巻壁及び旋回側渦巻壁を示す図。
図9】固定側渦巻壁と旋回側渦巻壁の第1端部及び円弧部を示す拡大図。
図10】旋回角と区画点距離の関係を示すグラフ。
図11】従来(a)と実施形態(b)の固定側渦巻壁及び旋回側渦巻壁の比較を示す図。
図12】従来と実施形態の旋回側基板の位置の比較を示す図。
【発明を実施するための形態】
【0013】
以下、スクロール型圧縮機を具体化した一実施形態を図1図12にしたがって説明する。
図1に示すように、スクロール型圧縮機10は、流体が吸入される吸入口11a及び流体が吐出される吐出口11bが形成されたハウジング11を備えている。ハウジング11は、全体として略円筒形状である。ハウジング11は、円筒形状の第1パーツ12及び第2パーツ13を有している。第1パーツ12と第2パーツ13とは、互いに開口端同士が突き合わさった状態で組み付けられている。吸入口11aは、第1パーツ12の周壁部12a、詳細には当該周壁部12aのうち第1パーツ12の端壁12b側の位置に設けられている。吐出口11bは、第2パーツ13の端壁13aに設けられている。
【0014】
スクロール型圧縮機10は、回転軸14と、吸入口11aから吸入された吸入流体を圧縮して吐出口11bから吐出する圧縮部15と、圧縮部15を駆動する電動モータ16とを備えている。回転軸14、圧縮部15及び電動モータ16は、ハウジング11内に収容されている。電動モータ16は、ハウジング11内において吸入口11aの近くに配置されており、圧縮部15は、ハウジング11内において吐出口11bの近くに配置されている。
【0015】
回転軸14は、回転可能な状態でハウジング11内に収容されている。詳細には、ハウジング11内には、回転軸14を軸支する軸支部材21が設けられている。軸支部材21は、例えば圧縮部15と電動モータ16との間の位置にてハウジング11に固定されている。軸支部材21には、回転軸14が挿通可能なものであって第1軸受22が設けられた挿通孔23が形成されている。また、軸支部材21と第1パーツ12の端壁12bとは対向しており、当該端壁12bから円筒状のボス24が突出している。ボス24の内側には第2軸受25が設けられている。回転軸14は、両軸受22,25によって回転可能な状態で支持されている。
【0016】
圧縮部15は、ハウジング11に固定された固定スクロール31と、回転軸14の回転によって固定スクロール31に対して旋回し、公転運動可能な旋回スクロール32とを備えている。
【0017】
固定スクロール31は、回転軸14と同一軸線上に設けられた円板状の固定側基板31aと、固定側基板31aから起立した固定側渦巻壁31bとを有する。同様に、旋回スクロール32は、円板状であって固定側基板31aと対向する旋回側基板32aと、旋回側基板32aから固定側基板31aに向けて起立した旋回側渦巻壁32bとを備えている。
【0018】
固定スクロール31と旋回スクロール32とは互いに噛み合っている。詳細には、固定側渦巻壁31bと旋回側渦巻壁32bとは互いに噛み合っており、固定側渦巻壁31bの先端面は旋回側基板32aに接触しているとともに、旋回側渦巻壁32bの先端面は固定側基板31aに接触している。そして、固定スクロール31と旋回スクロール32とによって、流体を圧縮する複数の圧縮室33が区画されている。
【0019】
図2は、固定スクロール31と旋回スクロール32とにより流体が圧縮室33に最初に閉じ込められた時点における、固定スクロール31と旋回スクロール32とを示している。この時点では、固定側渦巻壁31bの内周面と旋回側渦巻壁32bの外周面によって形成される第1圧縮室33aと、固定側渦巻壁31bの外周側と旋回側渦巻壁32bの内周側によって形成される第2圧縮室33bが形成される。すなわち、複数の圧縮室33は、第1圧縮室33aと第2圧縮室33bとを含む。さらに、複数の圧縮室33は、第1圧縮室33a及び第2圧縮室33bよりも内側に区画された圧縮室33も含む。また、図5に示すように、旋回スクロール32の公転運動に伴い、第1圧縮室33aと第2圧縮室33bが繋がって固定スクロール31の中央部に中央側圧縮室33cが形成されるようになっている。したがって、スクロール型圧縮機10では、複数の圧縮室33が同時に形成されるようになっている。
【0020】
図1に示すように、軸支部材21には、吸入流体を圧縮室33に吸入する吸入通路34が形成されている。また、旋回スクロール32は、回転軸14の回転に伴って公転運動するように構成されている。詳細には、回転軸14の一部は、軸支部材21の挿通孔23を介して圧縮部15に向けて突出している。そして、回転軸14における圧縮部15に対応する側の端面には、偏心軸35が設けられている。偏心軸35の軸線は、回転軸14の軸線Lに対して偏心している。そして、偏心軸35にはブッシュ36が設けられている。ブッシュ36と旋回スクロール32(詳細には旋回側基板32a)とは軸受37を介して連結されている。
【0021】
また、スクロール型圧縮機10は、旋回スクロール32の公転運動を許容する一方、旋回スクロール32の自転を規制する複数の自転規制部38を備えている。回転軸14が予め定められた正方向に回転すると、旋回スクロール32の正方向の公転運動が行われる。旋回スクロール32は、固定スクロール31の軸線(すなわち回転軸14の軸線L)の周りで正方向に公転する。これにより、圧縮室33の容積が減少するため、吸入通路34を介して圧縮室33内に吸入された吸入流体が圧縮される。圧縮された流体は、固定側基板31aに設けられた吐出ポート41から吐出され、その後、吐出口11bから吐出される。固定側基板31aには、吐出ポート41を覆う吐出弁42が設けられている。圧縮室33にて圧縮された流体は、吐出弁42を押し退けて吐出ポート41から吐出される。
【0022】
電動モータ16は、回転軸14を回転させることにより、旋回スクロール32を公転運動させるものである。電動モータ16は、回転軸14と一体的に回転するロータ51と、ロータ51を取り囲むステータ52とを備えている。ロータ51は、回転軸14に連結されている。ロータ51には永久磁石(図示略)が設けられている。ステータ52は、ハウジング11(詳細には第1パーツ12)の内周面に固定されている。ステータ52は、筒状のロータ51に対して径方向に対向するステータコア53と、ステータコア53に捲回されたコイル54とを有している。
【0023】
スクロール型圧縮機10は、電動モータ16を駆動させる駆動回路であるインバータ55を備えている。インバータ55は、ハウジング11、詳細には第1パーツ12の端壁12bに取り付けられた円筒形状のカバー部材56内に収容されている。インバータ55とコイル54とは電気的に接続されている。
【0024】
図2図8では、固定スクロール31の固定側渦巻壁31b及び旋回スクロール32の旋回側渦巻壁32bのみを示している。固定側渦巻壁31b及び旋回側渦巻壁32bの各々は、渦巻の中心側に位置する第1端部Eと、渦巻の外周側に位置する第2端部Sと、を有し、第1端部Eから第2端部Sに向かって渦巻状に延びる。
【0025】
固定側渦巻壁31b及び旋回側渦巻壁32bにおいて、図9の1点鎖線に示すように、第1端部Eは円弧Cによって形成されている。また、図9の実線に示すように、固定側渦巻壁31b及び旋回側渦巻壁32bの外周面は、第2端部Sから第1端部Eの円弧Cの一端に繋がるまでインボリュート曲線に基づいて形成されている。さらに、固定側渦巻壁31b及び旋回側渦巻壁32bの内周面は、第2端部Sから第1端部Eの直前までインボリュート曲線に基づいて形成されるとともに、図9の2点鎖線に示すように、インボリュート曲線の終点Fから第1端部Eの円弧Cの他端に至るまで円弧によって形成されている。なお、インボリュート曲線の終点Fと第1端部Eの円弧Cとの間に形成される円弧を円弧部Rと記載する。この円弧部Rは、固定側渦巻壁31b及び旋回側渦巻壁32bにおける先端(第1端部E)に連なる円弧である。固定側渦巻壁31b及び旋回側渦巻壁32bの内周面において、インボリュート曲線と円弧部Rとは終点Fによって切り換わる。
【0026】
インボリュート曲線は、基礎円に設定された一つの法線が常にその基礎円に接するように移動させたときの法線の先端が描く軌跡によって形成される平面曲線であり、伸開線とも呼ばれる。インボリュート曲線は、基礎円に巻きつけた糸を引きほどくとき、糸の先端が描く曲線ともいえ、伸開角と巻出線長さによって軌跡が表現される。そして、固定側渦巻壁31b及び旋回側渦巻壁32bの内周面では、第1端部Eの直前の終点Fがインボリュート曲線の巻き始めに該当し、第2端部Sがインボリュート曲線の巻き終わりに該当する。また、固定側渦巻壁31b及び旋回側渦巻壁32bの外周面では、第1端部Eの円弧Cの一端がインボリュート曲線の巻き始めに該当し、第2端部Sがインボリュート曲線の巻き終わりに該当する。本実施形態では、後に説明する区画点距離が特徴を有するよう、伸開角に応じて伸開線の長さを調整している。
【0027】
第1端部Eの直前において、固定側渦巻壁31b及び旋回側渦巻壁32bの内周面に円弧部Rを形成する。これによって、図2に示すように、固定側渦巻壁31b及び旋回側渦巻壁32bの一方の第1端部Eが他方の渦巻壁の内周面に接触したとき、中央側圧縮室33cにおける流体漏れが抑制される。
【0028】
図2に示すように、固定側渦巻壁31bが描くインボリュート曲線の基礎円(図示せず)の中心を固定側基礎円中心P1と称し、旋回側渦巻壁32bが描くインボリュート曲線の基礎円(図示せず)の中心を旋回側基礎円中心P2と称する。この固定側基礎円中心P1と旋回側基礎円中心P2との両方を通る直線を半径方向線Mと称する。半径方向線Mは、基礎円の半径方向に延びる直線である。
【0029】
図2図8に示すように、固定側渦巻壁31bと旋回側渦巻壁32bとが互いに接触する区画点Tは複数存在する。区画点Tの数は、渦巻壁31b,32bの巻き数によって異なる。
【0030】
区画点Tとしては、回転軸14の軸方向から見て、固定側渦巻壁31bの外周面に旋回側渦巻壁32bの内周面が外接する外接区画点T1と、固定側渦巻壁31bの内周面に旋回側渦巻壁32bの外周面が内接する内接区画点T2がある。つまり、外接区画点T1は、回転軸14の軸方向から見て、固定側渦巻壁31bの外周に旋回側渦巻壁32bの内周が接触し圧縮室33を区画する点であり、内接区画点T2は、回転軸14の軸方向から見て、固定側渦巻壁31bの内周に旋回側渦巻壁32bの外周が接触し圧縮室33を区画する点である。さらに、区画点Tとしては、固定側渦巻壁31bの第1端部Eが旋回側渦巻壁32bの内周面に当接する中央側区画点T3(図示せず)と、旋回側渦巻壁32bの第1端部Eが固定側渦巻壁31bの内周面に当接する中央側区画点T4(図示せず)がある。旋回スクロール32の公転運動に伴い、外接区画点T1は固定側渦巻壁31bの外周面に沿って第1端部Eに向けて移動していくとともに、第2圧縮室33bの容積が減少していき、最終的に外接区画点T1は中央側区画点T3へと切り替わる。また、旋回スクロール32の公転運動に伴い、内接区画点T2は固定側渦巻壁31bの内周面に沿って第1端部Eに向けて移動していくとともに、第1圧縮室33aの容積が減少していき、最終的に内接区画点T2は中央側区画点T4へと切り替わる。中央側区画点T3および中央側区画点T4は固定スクロール31の中央部において吐出ポート41に連通する中央側圧縮室33c(図示せず)を形成する。
【0031】
図2は、巻き数を2巻き程度である固定側渦巻壁31b及び旋回側渦巻壁32bを示す。図2に示すように、固定側渦巻壁31bの第2端部Sの近くに形成された1つの内接区画点T2は、固定側渦巻壁31bを辿って固定側渦巻壁31bの第1端部Eまで移動するとき、2巻き程度移動することとなる。旋回側渦巻壁32bの第2端部Sの近くに形成された1つの外接区画点T1は、旋回側渦巻壁32bを辿って旋回側渦巻壁32bの第1端部Eまで移動するとき、2巻き程度移動する。各渦巻壁31b,32bに沿って移動する外接区画点T1および内接区画点T2の位置が、旋回スクロール32の旋回角に対応する。旋回角の最大値は旋回終了角である。なお、第2端部Sの各々の近くに1つの区画点T1および内接区画点T2が形成された時点、すなわち、圧縮室33内に閉じ込まれた流体の圧縮が開始された時点の旋回角を旋回開始角と称する。
【0032】
そして、図4に示すように、旋回角が旋回終了角となった時点で外接区画点T1および内接区画点T2は、固定側渦巻壁31b及び旋回側渦巻壁32bの第1端部Eに到達する。詳細には、外接区画点T1および内接区画点T2が一致する。区画点Tが第1端部Eに到達した時点が、中央側圧縮室33cの容積がゼロになり、中央側圧縮室33c内の流体の圧縮が完了した時点となる。
【0033】
図2に示すように、外接区画点T1と半径方向線Mとの距離を外接区画点距離K1とする。外接区画点距離K1は、具体的には、外接区画点T1から半径方向線Mに対して引いた垂線の長さである。また、内接区画点T2と半径方向線Mとの距離を内接区画点距離K2とする。内接区画点距離K2は、具体的には、内接区画点T2から半径方向線Mに対して引いた垂線の長さである。外接区画点T1および内接区画点T2は、旋回角の変化に応じて、その長さがそれぞれ変動する。外接区画点距離K1は、旋回終了角付近において、中央側区画点T3と半径方向線Mとの距離K3(図示せず)に切り替わる。内接区画点距離K2は、旋回終了角付近において、中央側区画点T4と半径方向線Mとの距離K4(図示せず)に切り替わる。これらの距離をまとめて区画点距離Kと称する。
【0034】
図10のグラフに、旋回角と区画点距離Kの関係を示す。区画点距離Kは、中央側圧縮室33cによる流体の圧縮完了の前において急増(急変)する。これは、区画点Tの位置がインボリュート曲線から円弧部Rに移動することによる。
【0035】
なお、以下の説明において、第1端部Eと円弧部Rとの接触が開始される位置での旋回角を先端接触開始角とする。この先端接触開始角は、中央側圧縮室33cでの圧縮が完了する前に、旋回側渦巻壁32bの第1端部Eが、固定側渦巻壁31bの内周面で描く円弧部Rに接触を開始する旋回角である。図4に示すように、先端接触開始角は、固定側渦巻壁31b及び旋回側渦巻壁32bの内周面において、区画点Tの位置が終点Fにてインボリュート曲線から円弧部Rに切り替わる位置でもある。そして、区画点距離Kは、区画点Tが先端接触開始角を通過した後、円弧部Rに沿って区画点Tが移動することで急増した後、急減し、圧縮完了時にゼロになる。
【0036】
ここで、旋回開始角から旋回終了角までの区画点距離Kについて説明する。
図10のグラフに示すように、外接区画点距離K1と内接区画点距離K2はともに、旋回開始角(0°)から180°を超える所定の旋回角まで、一定の周期と幅の振幅を示すよう常に変動している。外接区画点距離K1と内接区画点距離K2における振幅の周期(旋回角)と幅(区画点距離)は同じであるが、互いに半周期(半波長)だけずれており、一方が極大となる旋回角と他方が極小となる旋回角は同じである。外接区画点距離K1と内接区画点距離K2は、夫々に異なる旋回角以降から先端接触開始角までにおいて一定の値をとる。なお、この一定値である区画点距離Kaは、インボリュート基礎円の半径に相当する。そして、外接区画点距離K1及び内接区画点距離K2の極大値は、インボリュート基礎円の半径、つまり区画点距離Kaより大きく、外接区画点距離K1及び内接区画点距離K2の極小値は、インボリュート基礎円の半径、つまり区画点距離Kaより小さい。
【0037】
図10では、旋回開始角(0°)において、外接区画点距離K1が極小となる一方で内接区画点距離K2が極大となり、旋回角180°において外接区画点距離K1が極大となる一方で内接区画点距離K2が極小となる。つまり、外接区画点距離K1は、旋回開始角から180°旋回するまでの間に極小値をとった後に極大値をとる。また、外接区画点距離K1と内接区画点距離K2における振幅の周期はそれぞれ同じ120°である。よって、外接区画点距離K1は、図2図4に示すように極小から極大へと増加したのち、図4図6に示すように極大から極小へと減少する。さらに、図6図8に示すように再び極小から極大へと増加したところで旋回角が180°に到達する。また、内接区画点距離K2は、図2図4に示すように極大から極小へと減少したのち、図4図6に示すように極小から極大へと増加する。さらに、図6図8に示すように再び極大から極小へと減少したところで旋回角が180°に到達する。つまり、内接区画点距離K2は、旋回開始角から180°旋回するまでの間に極小値をとった後に極大値をとる。
【0038】
通常のインボリュート曲線を描く渦巻壁同士が噛み合って形成される一般的なスクロール圧縮機では、伸開角の増加に伴い渦巻壁の曲率が一様に増加する円形であるため、外接区画点距離K1と内接区画点距離K2は旋回角に関わらず一定である。一方、本実施形態では、渦巻壁の曲率変化が一様でないため、外接区画点距離K1と内接区画点距離K2は旋回角によって変化する。固定側渦巻壁31bと旋回側渦巻壁32bは、伸開角の増加に伴い、曲率が大きい部位と曲率が小さい部位が交互に連続しながら、全体として大きくなるよう曲率が変化している。固定スクロール31と旋回スクロール32は、ある旋回角では曲率が大きい部位同士が接しつつ、またある旋回角では曲率が小さい部位同士が接しつつしながら、圧縮室を区画している。ここで、曲率が大きい部位は、旋回角の増加に伴って区画点距離Kが増加する部位であり、曲率が小さい部位は、旋回角の増加に伴って区画点距離Kが減少する部位である。図10より、本実施形態の旋回側渦巻壁32bでは、旋回角0°~60°,120°~180°において固定側渦巻壁31bに外接する部位の曲率が比較的大きく、旋回角60°~120°において固定側渦巻壁31bに外接する部位の曲率が比較的小さい。また、固定側渦巻壁31bでは、旋回角0°~60°,120°~180°において旋回側渦巻壁32bが内接する部位の曲率が比較的小さく、旋回角60°~120°において旋回側渦巻壁32bが内接する部位の曲率が比較的大きい。
【0039】
図11に示すように、旋回側基板32aには、圧縮室が外部と連通しないよう、旋回開始角における第1圧縮室33a全体と旋回側渦巻壁32bの第2端部Sとを覆う形状が要求される。さらに、製造コストを下げる、重量バランスを安定させる、複数の自転規制部を設ける領域を大きくする、などの観点から、旋回側基板32aには真円またはそれに近い形状が要求される。結果として、図11に示すように旋回側基板32aの外縁32cは、第1圧縮室33a全体と旋回側渦巻壁32bの第2端部Sとを包絡する真円状となる。ここで、図11(a)に通常のインボリュート曲線を描く渦巻壁同士が噛み合って形成される固定スクロール31および旋回スクロール32を示す。また、図11(b)に本実施形態の固定スクロール31および旋回スクロール32を示す。図11(a)と図11(b)に示す旋回側基板32aは同じ形状であり同じ面積である。図11(b)において、旋回側渦巻壁32bは、旋回角0°~60°,120°~180°で固定側渦巻壁31bに外接する部位について、外縁32cに向けて突出した形状となっている。この結果、本実施形態の旋回側渦巻壁32bは、通常のスクロールにおける旋回側渦巻壁32bよりも、外縁32cとの距離が近く、同じ旋回側基板32a上において圧縮室33bの容積をより大きく確保することができる。
【0040】
図12に、通常のスクロールにおける外縁32c(二点鎖線)と本実施形態における外縁32c(破線)とを比較した図を示す。双方の外縁32cは旋回側渦巻壁32bの基礎円中心を一致させている。本実施形態の固定側渦巻壁31bは、旋回角60°~120°で旋回側渦巻壁32bが内接する部位について、通常の固定側渦巻壁31bよりも外方に向けて突出した形状となっている。外縁32cは、第1圧縮室33a全体と旋回側渦巻壁32bの第2端部Sとを包絡する真円状であるが、その位置は通常のスクロールにおける位置(二点鎖線)よりも固定側渦巻壁31bの局所的な突出方向にずれた位置(破線)となる。この結果、本実施形態の外縁32cは、通常のスクロールにおける外縁32cよりも、旋回側渦巻壁32bとの距離が近く、同じ旋回側基板32a上において圧縮室33の容積をより大きく確保することができる。
【0041】
上記実施形態によれば、以下のような効果を得ることができる。
(1)スクロール型圧縮機10において、旋回スクロール32が旋回開始角から180°旋回するまでの間に、外接区画点距離K1が、極小値をとった後に極大値をとるように構成した。これにより、最外周にある旋回側渦巻壁32bの一部が、外縁32cに向けて突出した形状となり、限られた大きさの旋回側基板32aの上において圧縮室33bの容積をより大きく確保することができる。この結果、圧縮機10の回転数を低減させることができ、回転に伴う振動に起因する騒音も低減できる。
【0042】
(2)スクロール型圧縮機10において、旋回スクロール32が旋回開始角から180°旋回するまでの間に、内接区画点距離K2が、極小値をとった後に極大値をとるように構成した。これにより、最外周にある固定側渦巻壁31bの一部が、外方に向けて突出した形状となり、外縁32cが旋回側渦巻壁32bへと近づく。よって、限られた大きさの旋回側基板32aの上において圧縮室33bの容積をより大きく確保することができる。この結果、圧縮機10の回転数を低減させることができ、回転に伴う振動に起因する騒音も低減できる。
【0043】
なお、上記実施形態は以下のように変更してもよい。
○ 実施形態では、区画点距離Kを、固定側渦巻壁31bと旋回側渦巻壁32bが接触し圧縮室33を区画する点と半径方向線Mとの距離としたが、これに限らない。隙間を介した流体漏れが無ければ、固定側渦巻壁31bと旋回側渦巻壁32bが近接して圧縮室33を区画する点を区画点とし、この区画点と半径方向線Mとの距離を区画点距離Kとしてもよい。
【符号の説明】
【0044】
P1…固定側基礎円中心、P2…旋回側基礎円中心、K1…外接区画点距離、K2…内接区画点距離、M…直線としての半径方向線、T1…外接区画点、T2…内接区画点、10…スクロール型圧縮機、14…回転軸、31…固定スクロール、31a…固定側基板、31b…固定側渦巻壁、32…旋回スクロール、32a…旋回側基板、32b…旋回側渦巻壁、33…圧縮室。
図1
図2
図3
図4
図5
図6
図7
図8
図9
図10
図11
図12