(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B1)
(11)【特許番号】
(24)【登録日】2023-10-12
(45)【発行日】2023-10-20
(54)【発明の名称】クレーン操作シミュレーションシステム、及び、クレーン操作シミュレーション方法
(51)【国際特許分類】
G09B 9/04 20060101AFI20231013BHJP
G06F 3/01 20060101ALI20231013BHJP
G09B 9/00 20060101ALI20231013BHJP
G09B 9/05 20060101ALI20231013BHJP
G06T 19/00 20110101ALN20231013BHJP
【FI】
G09B9/04 Z
G06F3/01 510
G09B9/00 Z
G09B9/05 E
G06T19/00 600
(21)【出願番号】P 2023064786
(22)【出願日】2023-04-12
【審査請求日】2023-05-02
【早期審査対象出願】
(73)【特許権者】
【識別番号】596119571
【氏名又は名称】サン・シールド株式会社
(74)【代理人】
【識別番号】110003214
【氏名又は名称】弁理士法人服部国際特許事務所
(72)【発明者】
【氏名】米森 清祥
【審査官】三沢 岳志
(56)【参考文献】
【文献】特開2022-083611(JP,A)
【文献】特開2021-042045(JP,A)
【文献】特開2021-051519(JP,A)
【文献】特開2022-133929(JP,A)
【文献】国際公開第2020/204007(WO,A1)
(58)【調査した分野】(Int.Cl.,DB名)
G09B 9/04
G06F 3/01
G09B 9/00
G09B 9/05
G06T 19/00
(57)【特許請求の範囲】
【請求項1】
荷吊り作業の現地において、MR技術を用いてクレーンの操作シミュレーションを行うシミュレーションシステムであって、
現実のクレーンに対応する一種類以上の仮想クレーン(10V)の3次元データ
、及び、サイズデータに加えて重量データを含む一種類以上の仮想吊荷(20V)の3次元データを仮想データとして作成する仮想データ作成部(31)と、
前記仮想データが保存されるストレージ(32)と、
ソフトウェアがインストールされたヘッドマウントディスプレイで構成され、装着したユーザが、表示された画像を視認可能であるMRデバイス(33)と、
を備え、
前記MRデバイスは、
前記ストレージから読み出した前記仮想データを現実空間の画像に投影して複合空間の画像を表示する画像表示部(34)と、
複合空間において、前記仮想クレーンの構成要素のうち少なくとも一部をユーザの指示により動かして操作シミュレーションを行う仮想クレーン操作部(35)と、
を有し、
前記仮想クレーンは、サイズデータに加えて、定格総荷重表及び作業範囲表を含む能力表のデータが組み込まれており、前記能力表に基づく範囲でブーム(12V)の長さ及び角度を変更可能に作成されており、
前記仮想吊荷の前記仮想データは、吊荷が分解された状態でのデータを含み、
前記仮想クレーン操作部は、複合空間において、前記仮想クレーンのブームを操作
し、前記仮想クレーンが前記能力表による最大荷重以下の前記仮想吊荷を吊り上げて目的場所に吊り下ろすように操作可能であり、さらに、分解された前記仮想吊荷のデータを用いて吊荷重を変更可能であるクレーン操作シミュレーションシステム。
【請求項2】
前記仮想クレーンは、さらにアウトリガー(13V)の張り出し量を変更可能に作成されており、
前記仮想クレーン操作部は、複合空間において、前記仮想クレーンのアウトリガーを操作可能である請求項1に記載のクレーン操作シミュレーションシステム。
【請求項3】
現実空間の画像を撮影するカメラ(39)をさらに備え、
前記MRデバイスは、前記カメラが撮影した画像データを記憶する画像データ記憶部(37)をさらに有する請求項1
または2に記載のクレーン操作シミュレーションシステム。
【請求項4】
荷吊り作業の現地において、MR技術を用いてクレーンの操作シミュレーションを行うシミュレーション方法であって、
サイズデータに加えて、定格総荷重表及び作業範囲表を含む能力表のデータが組み込まれており、前記能力表に基づく範囲でブーム(12V)の長さ及び角度を変更可能に作成された、現実のクレーンに対応する一種類以上の仮想クレーン(10V)の3次元データ
、及び、サイズデータに加えて重量データを含み、且つ吊荷が分解された状態でのデータを含む一種類以上の仮想吊荷(20V)の3次元データが仮想データとして作成される仮想データ作成ステップ(S1)と、
前記仮想データがストレージ(32)に保存される仮想データ保存ステップ(S2)と、
ソフトウェアがインストールされたヘッドマウントディスプレイで構成されたMRデバイス(33)が、前記ストレージから読み出した仮想データを現実空間の画像に投影して複合空間の画像を表示し、当該MRデバイスを装着したユーザに視認させる複合空間画像表示ステップ(S3)と、
複合空間において、
少なくとも前記仮想クレーンの
ブームがユーザの指示により操作され、
前記仮想クレーンが前記能力表による最大荷重以下の前記仮想吊荷を吊り上げて目的場所に吊り下ろすように操作される操作シミュレーションステップ(S4)と、
前記仮想クレーンの選定、配置が適切であるか否か判断される判断ステップ(S5)と、
前記判断ステップで前記仮想クレーンの選定、配置が適切でないと判断された場合、前記仮想クレーンの選定、配置を変更するか、分解された前記仮想吊荷のデータを用いて吊荷重を変更し、前記複合空間画像表示ステップに戻る計画変更ステップ(S6)と、
を含
むクレーン操作シミュレーション方法。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、クレーン操作シミュレーションシステム、及び、クレーン操作シミュレーション方法に関する。
【背景技術】
【0002】
従来、移動式クレーンの事故を回避する技術が知られている。例えば特許文献1に開示された「可動式ジブを備えたクレーンの安全管理システム」では、クレーンの荷吊り作業において転倒支点周りのモーメントが限界値に近いとき、安全装置は転倒の危険性があると判定する。この技術は、あくまで現実空間のシステムである。
【0003】
また近年、VR技術を利用して仮想空間でユーザが作業訓練を行う装置及び方法が知られている。例えば特許文献2に開示された作業訓練装置では、表示制御部は、ユーザが装着したHMD(ヘッドマウントディスプレイ)に、仮想設備を含む仮想空間の画像を表示させる。デバイス情報取得部は、HMDの向きが変化したことの情報やその変化量の情報をデバイス情報として取得する。アクション認識部は、デバイス情報を基に、ユーザの仮想的なアクションを認識する。表示制御部は、アクション認識部により認識された仮想的なアクションに応じて、仮想空間のアバターを動かすように画像を更新する。
【先行技術文献】
【特許文献】
【0004】
【文献】特開2002-226178号公報
【文献】特開2019-197165号公報
【発明の概要】
【発明が解決しようとする課題】
【0005】
特許文献2の従来技術ではユーザのアクションに応じてアバターを動かすことができるが、ユーザの指示により、仮想設備を自由に動かすことは記載されていない。特許文献2の技術を、特許文献1に開示された移動式クレーンを操作する作業に応用したとしても、クレーン運転席におけるオペレータの動作を仮想空間でシミュレーションすることができるに過ぎない。したがって、荷吊り作業の現地において、MR技術を用いたクレーンの操作シミュレーションを行うことはできなかった。
【0006】
本発明はこのような点に鑑みて創作されたものであり、その目的は、荷吊り作業の現地において実行可能な、MR技術を用いたクレーン操作シミュレーションシステム及びクレーン操作シミュレーション方法を提供することにある。
【課題を解決するための手段】
【0007】
本発明の一態様は、荷吊り作業の現地において、MR技術を用いてクレーンの操作シミュレーションを行うシミュレーションシステムである。このシステムは、仮想データ作成部(31)と、ストレージ(32)と、MRデバイス(33)と、を備える。
【0008】
仮想データ作成部は、現実のクレーンに対応する一種類以上の仮想クレーン(10V)の3次元データ、及び、サイズデータに加えて重量データを含む一種類以上の仮想吊荷(20V)の3次元データを仮想データとして作成する。ストレージは、仮想データが保存される。MRデバイスは、ソフトウェアがインストールされたヘッドマウントディスプレイで構成され、装着したユーザが、表示された画像を視認可能である。
【0009】
MRデバイスは、画像表示部(34)と、仮想クレーン操作部(35)と、を有する。画像表示部は、ストレージから読み出した仮想データを現実空間の画像に投影して複合空間の画像を表示する。仮想クレーン操作部は、複合空間において、仮想クレーンの構成要素のうち少なくとも一部をユーザの指示により動かして操作シミュレーションを行う。
【0010】
仮想クレーンは、サイズデータに加えて、定格総荷重表及び作業範囲表を含む能力表のデータが組み込まれており、能力表に基づく範囲でブーム(12V)の長さ及び角度を変更可能に作成されている。仮想吊荷の仮想データは、吊荷が分解された状態でのデータを含む。仮想クレーン操作部は、複合空間において、仮想クレーンのブームを操作し、仮想クレーンが能力表による最大荷重以下の仮想吊荷を吊り上げて目的場所に吊り下ろすように操作可能である。さらに仮想クレーン操作部は、分解された仮想吊荷のデータを用いて吊荷重を変更可能である。
【0011】
本発明では、MRデバイスを装着したユーザが、現実空間に表示された仮想クレーンのブームの伸長、起伏、旋回などの動作を自由自在に操作することができる。したがって、例えばクレーンの作業半径内に架空線や構造物などが有る場合、ブームの動きに障害とならないかなど、現実に近い判断が可能となる。
【0012】
好ましくは、仮想クレーンは、さらにアウトリガー(13V)の張り出し量を変更可能に作成されており、仮想クレーン操作部は、複合空間において、仮想クレーンのアウトリガーを操作可能である。これにより、クレーン配置場所が狭く、アウトリガーの最大張り出しが可能であるかが問題になる場合に、有効な配置検討が可能になる。
【0013】
本発明のもう一つの態様は、荷吊り作業の現地において、MR技術を用いてクレーンの操作シミュレーションを行うシミュレーション方法である。この方法は、仮想データ作成ステップ(31)と、仮想データ保存ステップ(S2)と、複合空間画像表示ステップ(S3)と、操作シミュレーションステップ(S4)と、判断ステップ(S5)と、計画変更ステップ(S6)と、を含む。
【0014】
仮想データ作成ステップでは、現実のクレーンに対応する一種類以上の仮想クレーン(10V)の3次元データ、及び、一種類以上の仮想吊荷(20V)の3次元データが仮想データとして作成される。仮想クレーンの3次元データは、サイズデータに加えて、定格総荷重表及び作業範囲表を含む能力表のデータが組み込まれており、能力表に基づく範囲でブーム(12V)の長さ及び角度を変更可能に作成されている。仮想吊荷の3次元データは、サイズデータに加えて重量データを含み、且つ吊荷が分解された状態でのデータを含む。仮想データ保存ステップでは、仮想データがストレージ(32)に保存される。
【0015】
複合空間画像表示ステップでは、ソフトウェアがインストールされたヘッドマウントディスプレイで構成されたMRデバイス(33)が、ストレージから読み出した仮想データを現実空間の画像に投影して複合空間の画像を表示し、当該MRデバイスを装着したユーザに視認させる。操作シミュレーションステップでは、複合空間において、仮想クレーンの構成要素のうち少なくとも一部がユーザの指示により動かされる。
【0016】
操作シミュレーションステップでは、複合空間において、少なくとも仮想クレーンのブームがユーザの指示により操作され、仮想クレーンが能力表による最大荷重以下の仮想吊荷を吊り上げて目的場所に吊り下ろすように操作される。判断ステップでは、仮想クレーンの選定、配置が適切であるか否か判断される。
【0017】
判断ステップで仮想クレーンの選定、配置が適切でないと判断された場合、計画変更ステップでは、仮想クレーンの選定、配置を変更するか、分解された仮想吊荷のデータを用いて吊荷重を変更し、複合空間画像表示ステップに戻る。本発明のクレーン操作シミュレーション方法では、上記のクレーン操作シミュレーションシステムと同様の効果が得られる。
【図面の簡単な説明】
【0018】
【
図1】クレーン操作シミュレーションシステムのブロック図。
【
図4】MRデバイス(HMD)を装着したユーザの動作を示す図。
【
図5】クレーン操作シミュレーション方法のフローチャート。
【
図6】実施例1による(a)現実空間、(b)複合空間の図。
【
図7】実施例2による(a)現実空間、(b)複合空間の図。
【
図8】実施例2で用いられる13tクレーンの定格総荷重表。
【
図9】実施例2で用いられる13tクレーンの作業範囲図。
【
図10】実施例3による仮想クレーンのブームの伸長、起伏操作を示す図。
【
図12】配置計画で用いられる25tクレーンの定格総荷重表(1)。
【
図13】配置計画で用いられる25tクレーンの定格総荷重表(3)
【
図14】配置計画で用いられる25tクレーンの作業範囲図。
【発明を実施するための形態】
【0019】
本発明によるクレーン操作シミュレーションシステム及びクレーン操作シミュレーション方法の一実施形態について図面に基づいて説明する。このシステム及び方法は、荷吊り作業で要求される吊り上げ能力に応じたクレーンの選定及び配置計画においてMR技術による操作シミュレーションを行うシステム及び方法である。クレーンの荷吊り作業では、第一に転倒防止の安全を確保した上で、作業効率をできるだけ向上させるようにクレーンの配置や吊荷となる機材等の配置を計画することが望まれる。
【0020】
[従来技術によるクレーン作業の計画・踏査(現地調査)]
最初に、MR技術を用いない従来技術によりクレーン作業の計画・踏査を行う手順、及び、従来技術での懸念事項について
図11~
図15を参照して説明する。
【0021】
<1.机上計画>
資材や品物等の荷をクレーンで吊り、予定の場所に配置する計画を机上で立てる。まず例1として、推進工法において地中を掘進する掘進機の発進立坑付近の敷地に資材や品物等の荷をクレーンで吊って配置する作業を想定する。
図11に敷地の配置計画図を示す。発進立坑Hから図の上方に向かって、推進工法により地中に鋼管が設置される。
【0022】
(1)荷吊り作業の対象となる荷の重さを測るか諸元表等から予め把握する。例えば真空発生装置の重量は2,500Kgであることを把握する。
【0023】
(2)吊荷を置く位置を決める。吊荷が配置される場所は、推進工事の作業に伴う導線から概ね決まる。敷地の形状によっては搬入ルートに応じて機材を置く順番が計画される必要もある。
図11に示す例では、敷地の周辺に沿ってA~Gの場所に置き場が設定される。場所Aには推進管、場所Bには油圧ユニット及びコンプレッサ、場所Cには排土貯留槽、場所Dには重量を例示した真空発生装置、場所Eには発電機、場所Fには送泥設備、場所Gには通信配線設備が置かれる。敷地中央付近にクレーン10が設置され、奥側の資機材から順に配置されるように計画される。出入口側のスペースは、運搬車両(機材搬入車や排泥バキューム車等)Jの搬入、搬出用に確保される。
【0024】
(3)クレーンが吊り上げ可能な荷重を能力表(定格総荷重表及び作業範囲図を含む)より調べ、使用するクレーンを選択する。敷地の形状や機材を置く順番を考慮しながら、クレーンを旋回させてブームをどの角度でどれくらい伸ばせば決めた位置に荷を置くことができるか検討する。そして、敷地中央付近にクレーン10が設置でき、運搬車両Jが敷地内に搬入でき、運搬車両Jの荷台から機材を吊って計画場所に吊り下ろすことができるように搬入計画を立てる。
【0025】
次に、
図12に示す定格総荷重表(1)を参照し、搬入計画が可能な位置、状態でクレーンの概ねの作業半径を決める。例えば、25tクレーンを使用してブーム長を30.5mとし、荷重3.8~4.5tを吊り上げ可能な作業半径は13~15mとなる。定格総荷重表には、アウトリガーを最大に張り出すことを前提とし、クレーンが転倒しないように安全が保証された荷重が規定されている。なお、
図12の定格総荷重表は下記のWebサイトから引用された。
http://www.suzuki-crane.co.jp/list/r_25.html
【0026】
<2.現地踏査>
施工開始が近づくと、机上で選定したクレーンが現地に設置できるか(例えば、クレーンの使用にあたり障害になる建物や架空線などがないか)、机上で選定したクレーンで吊り上げたい荷が吊り上げられるか等、スタッフが現地に行って調査(現地踏査)する。
【0027】
(1)
図13に示す定格総荷重表(3)(引用元は同上)を参照し、クレーンのブーム角度と吊り上げ荷重を確認する。25tクレーンで、ブーム長30.5mとし、7.9mパワージブをオフセット角度5°で使用した場合、ブーム角度70~72°での吊り上げ荷重が2.8~3.0tとなる。すなわち、
図14に示す作業範囲図(作業半径-地上揚程図)において、ブーム角度70°~83°のハッチング範囲で作業を行うことになる。作業条件によっては、クレーン能力に十分な余裕が無いと考えられる場合がある。
【0028】
(2)最終的にクレーンオペレータに立ち会いを求め、現地に合ったクレーンを選定する必要がある。しかし現実的な懸念事項として、クレーンオペレータとの現地踏査の日程調整が難航したり、必要なクレーンを運転できるクレーンオペレータが作業予定日に手配できなかったりするなど、人材不足を背景とする懸念事項もある。
【0029】
<クレーンの能力選定及び設置計画が困難なケース>
次に例2として、
図15を参照し、クレーンの能力選定及び設置計画が困難なケースについて説明する。地形は、図の左下から中央部にかけて平坦な高台であり、図の中央部から右上にかけて下り斜面となっている。図の右下に記載された発進立坑Hから推進工法により、斜面の地下を通って鋼管が設置される。図の中央部に設置されたクレーン10から推進経路途中のP部に荷重1tの機材を吊り上げる計画である。
【0030】
仮に機材の付近にクレーンが設置できるならば、荷重1tの機材は、5t程の能力を有したクレーンで吊り上げ可能であるが、この場合、機材近くにクレーンが設置できない。そのため、斜面を避けた離れた場所(直線距離で26m弱)から能力の大きいクレーンを用いて機材を吊り上げる必要がある。クレーン能力表(図示省略)より、70tクレーンを用いると、作業半径26mのとき、ブーム長45m(最大)で荷重2.7tまで、ブーム長31.45mで荷重1.3tまで吊り上げ可能である。そこで、70tクレーンを用いる配置計画を立てたと仮定する。
【0031】
しかし、70tクレーンの車体が大きく、地図上の配置計画でも安全マージンが確保できない。実際にアウトリガー13を最大に伸ばすことができるか、また、クレーンが計画位置まで走行可能であるか等も懸念される。最終的にクレーンオペレータに立ち会いを求めて、70tクレーンが計画位置に配置不可能、或いは計画位置まで走行不可能であった場合、クレーンをスケールダウンするように計画変更しなければならない。その場合、吊り上げ荷重を抑えるために、吊荷を細かく分割もしくは分解しなければならなくなる。
【0032】
さらに、クレーン周辺の道路や通路が狭い場合、トラックやトレーラーなどの運搬車両やクレーンの搬入計画時に、車両の高さや旋回半径など、道路の曲がり角や建物、木などの通行上の支障物に対しての検討の必要性も生じる。
【0033】
以上をまとめると、クレーン作業を行うにあたっては、机上計画だけでなく、現地踏査における適切な評価やそれに基づく計画変更の判断が重要である。クレーンオペレータの立ち会いを含め、現地踏査のスタッフには高度な知識や経験等が要求されるため、人材育成の観点からも課題となっている。
【0034】
この課題に対し本発明では、踏査の現地スタッフが装着したMRデバイスにおいて現実空間の画像に仮想クレーンの3次元データを投影させることで、クレーン配置や荷吊り作業の可否を容易かつ適切に判断できるようにすることを目的とする。また、現地スタッフ自身が判断しなくても、MRデバイスのデータを通信して熟練技術者が遠隔で検討することで、迅速で信頼性の高い判断が可能になる。現地スタッフには高度な知識や経験が必要とされないため、人材不足に対する解決策としても期待される。
【0035】
(一実施形態)
次に
図1~
図5を参照し、一実施形態のシミュレーションシステムの具体的な構成について説明する。
図1に示すように、一実施形態のシミュレーションシステム30は、仮想データ作成部31、クラウド32、MRデバイス33、カメラ39を含む。MRデバイス33の装着者をこのシステムのユーザという。ユーザは、MRデバイス33を通して現実区間に仮想データが投影された複合空間を見ながら、クレーンの操作シミュレーションを行う。「操作シミュレーション」には「配置シミュレーション」及び「転倒防止シミュレーション」が含まれる。
【0036】
仮想データ作成部31は、「仮想データ」として仮想クレーン10V及び仮想吊荷20Vの3次元データを作成する。仮想データ作成部31で作成された仮想データは「ストレージ」としてのクラウド32に保存される。なお、他の実施形態では、ストレージとしてUSB等の可搬型記憶媒体に仮想データが保存されてもよい。
【0037】
図2に仮想クレーン10Vの例を示す。仮想クレーン10Vは、15t、25t、35t、50t、75t等、使用可能性のある現実のクレーンに対応する一種類以上が作成される。同じトン数でもメーカーや仕様の異なる複数の機種を使用する可能性があれば、それぞれの仮想データが作成される。仮想クレーン10Vは、サイズデータに加えて、定格総荷重表及び作業範囲表を含む能力表のデータを含んでいる。
【0038】
仮想クレーン10Vは、車体11V、ブーム12V、アウトリガー13V等から構成されている。仮想クレーン10Vの構成要素のうち荷吊り作業時に現実に動く一部は、ユーザの指示により動かすことが可能になっている。この「仮想クレーン10Vの構成要素のうち、ユーザの指示により動かすことが可能な部分」を「可動部」という。具体的に仮想クレーン10Vは、能力表に基づく範囲でブーム12Vの長さ及び角度を変更可能に作成されている。また、仮想クレーン10Vは、車体11Vの操作室と共に、ブーム12Vが旋回可能に作成されている。また、仮想クレーン10Vは、アウトリガー13Vの張り出し量を変更可能に作成されている。
【0039】
図3に仮想吊荷20Vの例として掘進機の仮想データを示す。仮想吊荷20Vは、吊り上げられる吊荷のうち、少なくとも重量やサイズの大きい一種類以上の吊荷について作成され、サイズデータに加えて重量データを含んでいる。例えば荷吊り作業時に分解される吊荷は、分解された状態での仮想データが作成される。
【0040】
MRデバイス33は、ソフトウェアがインストールされたヘッドマウントディスプレイ(図中「HMD」)で構成されている。ソフトウェアには、画像表示部34、仮想クレーン操作部35、画像データ記憶部37等が含まれる。画像表示部34は、クラウド32から読み出した仮想データを現実空間の画像に投影して複合空間の画像を表示する。
【0041】
仮想クレーン操作部35は、複合空間において、仮想クレーン10Vの構成要素のうち少なくとも一部をユーザの指示により動かして操作シミュレーションを行う。具体的に仮想クレーン操作部35は、複合空間において、仮想クレーン10Vのブーム12V及びアウトリガー13Vを操作可能である。また、仮想クレーン操作部35は、複合空間において、仮想クレーン10Vが能力表による最大荷重以下の仮想吊荷20Vを吊り上げて目的場所に吊り下ろすように操作可能である。
【0042】
図4に、MRデバイス33を装着したユーザによる操作のイメージを示す。ユーザは、目の前の仮想空間に表示される操作パネルの仮想スイッチを指の動きで操作することで、仮想クレーン操作部35に指示を与える。こうして作成、操作された複合空間の画像は、クラウド32に保存される。
【0043】
カメラ39は現実空間の画像を撮影する。画像データ記憶部37は、カメラ39が撮影した現実空間の画像データを記憶する。これにより、現地にいるユーザがリアルタイムに現実空間を見ながら操作シミュレーションを行うだけでなく、別の場所に移動した後に、自分が現地の画像を読み出して操作シミュレーションを行うこともできるし、他のスタッフが二重チェックや指導の目的で操作シミュレーションを行うこともできる。後日、同じ現地で再び荷吊り作業を行う場合に、前回撮影された画像と対比することもできる。
【0044】
ここで、仮想クレーンを現実空間に表示させるだけのAR技術は既に知られている。既存のAR技術でも、仮想クレーンを現実空間に投影し、現実の障害物等との接点を静的に確認することは可能である。しかし、仮想クレーンを現実空間で自由に動かしながら様々な視点で検討するには不十分である。
【0045】
それに対し本実施形態のシミュレーションシステム30では、仮想クレーン10Vに可動部が作成され、且つ、MRデバイス33が仮想クレーン操作部35を有している。したがって、MRデバイス33を装着したユーザが、現実空間に表示された仮想クレーン10Vのアウトリガー13Vの張り出し量やブーム12Vの伸長、起伏、旋回などの動作を自由自在に操作することができる。MR技術により仮想クレーン10Vの操作シミュレーションを行うことで、既存のAR技術に比べ、より多角的な検討を行うことが可能になる。
【0046】
図5のフローチャートに、本実施形態によるクレーン操作シミュレーション方法の処理を示す。仮想データ作成ステップS1では、一種類以上の仮想クレーン10V及び仮想吊荷20Vの3次元データが仮想データとして作成される。仮想データ保存ステップS2では、仮想データがクラウド32に保存される。複合空間画像表示ステップS3では、MRデバイス33が、クラウド32から読み出した仮想データを現実空間の画像に投影して複合空間の画像を表示し、現地踏査でMRデバイス33を装着したユーザに視認させる。
【0047】
操作シミュレーションステップS4では、複合空間において、仮想クレーン10Vの構成要素のうち少なくとも一部がユーザの指示により動かされる。ユーザは、計画したクレーンに対応する仮想クレーン10Vで操作シミュレーションを行い、計画したクレーンを現地に配置可能であるか、また、転倒防止を確保しつつクレーンでの荷吊り作業が可能であるか検討する。
【0048】
操作シミュレーションステップS4では、複合空間において、少なくとも仮想クレーン10Vのブーム12V及びアウトリガー13Vが操作される。さらに、仮想クレーン10Vが能力表による最大荷重以下の仮想吊荷20Vを吊り上げて目的場所に吊り下ろすように操作される。ユーザは、アウトリガー13Vの最大張り出しが可能であり、且つ、架空線等の障害物との接触を避けながらブーム12Vを所望の長さ及び角度に設定可能であるか検討する。また、ユーザは、仮想クレーン10Vが仮想吊荷20Vを吊り上げて目的場所に吊り下ろし可能であるか検討する。
【0049】
判断ステップS5では、仮想クレーン10Vの選定、配置が適切であるか否か判断される。操作シミュレーションステップS4にて問題がなければ、S5でYESと判断され、ルーチンを終了する。作業範囲内に障害物がある、アウトリガー13Vの最大張り出しが難しいなどの理由によりS5でNOと判断された場合、S6に移行する。計画変更ステップS6では、仮想クレーン10Vの選定や配置を変更するか、場合によっては仮想吊荷20Vを分割又は分解し、吊荷重を小さく変更してS3に戻る。S5でYESと判断されるまで、このルーチンが繰り返される。
【0050】
つまりユーザは、必要に応じて、複数の候補クレーンについて仮想クレーン10Vのデータを読み出し、操作シミュレーションのトライアンドエラーを繰り返して、予定の荷吊り作業を行うのに最適なクレーンを選定し、また、クレーンを配置する最適な場所を決定する。これにより、現地踏査で配置計画の適否を容易に判断することができる。
【0051】
<実施例1>
図6を参照する。
図6(a)にはクレーンが配置計画された場場所の周辺の現実空間を示し、
図6(b)には、MRデバイス33を装着したユーザが見ている複合空間を示す。複合空間には仮想クレーン10V及び仮想吊荷20Vが投影されている。仮想クレーン10Vは能力表のデータを含んでおり、仮想吊荷20Vは重量データを含んでいるため、リアルで自由自在な操作シミュレーションが可能となる。
【0052】
例えば、同一のクレーンで異なる重量の吊荷を移動させる場合、軽い吊荷はどこまで移動させられ、最大重量に近い重い吊荷はどこまで移動させられるか、といった検討がその場でできる。したがって、クレーン能力の選定に留まらず、吊り下ろされた機材や資材等の配置計画を含めた検討時間が短縮されることが期待される。
【0053】
MRデバイス33を装着したユーザは、複合空間で仮想クレーン10Vを操作し、仮想吊荷20Vを吊り上げて旋回して目的場所に吊り下ろす。この操作シミュレーションにより、仮想クレーン10Vの作業半径、及び、作業半径内の障害物の有無の確認ができる。また、仮想クレーン10Vは能力表のデータを含んでおり、仮想吊荷20Vは重量データを含んでいるため、仮想吊荷20Vの重量が、仮想クレーン10Vのブーム12Vの長さ、角度等の操作条件に応じた最大荷重以下であるか否かが即座に判断される。
【0054】
仮に仮想吊荷20Vの重量が仮想クレーン10Vの能力表の最大荷重を超えている場合、例えばMRデバイス33にアラーム表示され、荷吊り作業が実行不能となるようにしてもよい。複合空間で荷吊り作業ができるということは、仮想クレーン10Vに相当する能力の現実のクレーンで、仮想吊荷20Vに相当する現実の吊荷の吊り作業ができることを意味する。よって、現実の荷吊り作業でのクレーン転倒防止が保証される。
【0055】
<実施例2>
図7~
図9を参照する。実施例1に比べて実施例2では、クレーン配置場所が狭いケースを想定する。クレーンの配置にあたって問題になるのは、アウトリガーの最大張り出しが可能であるかという点と、ブームの旋回に障害となる架空線や構造物などがないかという点である。
【0056】
アウトリガー張り出しに関しては、構造物との物理的な干渉の問題以外に、例えば道路の一車線に設置したクレーンのアウトリガーが私有地にはみ出し、借地交渉が必要になる場合がある。また、隣接する車線にはみ出し、通行規制範囲が広がる場合もある。特に、アウトリガー最大張り出しができない状況で定格総荷重表に基づく能力のクレーンを選定すると重大な転倒事故に繋がるおそれがある。
【0057】
例えば、設置場所の地盤が緩いことや傾斜になっており平坦な地面でない場合、側溝の上など反力として不適な場所である場合など、平面図だけではクレーン配置計画の適否判断が難しい。道路での工事においても、私有地や隣接車線へのアウトリガーのはみ出しが平面図の検討だけでは不透明である場合がある。そのような場合に適否判断を適切に行うためには、計画された仮想クレーン10VをMR技術により現地に投影し、3次元で視覚的に検討する方法が効果的である。現地に仮想クレーン10Vを投影することで、配置の可否が容易に判断できる、また、アウトリガーの伸縮によって定格総荷重が変化しても最大重量以下に収まるのかどうかの検討も容易にできる。
【0058】
図7(a)にはクレーンが配置計画された場所の周辺の現実空間を示し、
図7(b)には、MRデバイス33を装着したユーザが見ている複合空間を示す。
図7(a)に示す現実空間では、狭い配置予定場所の周囲に多くの架空線が張られている。
図7(b)に示す複合空間では、ブーム12Vが架空線に接触しないように仮想クレーン10Vを配置可能か、アウトリガー13Vの最大張り出しは可能か判断される。また、架空線に接触しないようにブーム12Vの角度をあまり上げられないため、なるべくブーム12Vの長さを伸ばし、角度を起こさないようにする必要がある。
【0059】
上述のように、従来技術による配置計画では、クレーンの設置位置から吊り下ろし場所までの作業半径、吊荷の重量、ブームの長さと角度などから定格総荷重表を用いて必要なクレーン能力の選定を行っていた。例えば、最大作業半径10m、最大吊荷重量1.7tの作業で13tクレーンを用いるとする。
図8の定格総荷重表、
図9の作業範囲図によると、アウトリガー最大張り出しを前提として、ブーム長16.52m、ブーム角度50°、定格総荷重2.05tである。
【0060】
図8によると、クレーンのブーム長が長くなるほど定格総荷重は減少するため、ブーム12Vを伸ばすために、より能力の高いクレーンへの計画変更が必要となる場合がある。仮想クレーン10Vに能力表のデータを組み込むことで、MRデバイス33内でその判断が可能となる。したがって、シミュレーションシステム30により、平面図だけでは判断が難しかった検討が容易になり、クレーンの転倒防止に役立つ。
【0061】
<実施例3>
図10を参照する。MRデバイス33を装着したユーザは、複合空間において、仮想モデルであるレッカー10Vのブーム12Vの伸長(上の図)、起伏(下の図)及び旋回の操作を自由自在に行うことができる。VR技術を用いた仮想空間での操作シミュレーションは従来知られているが、本実施形態のシミュレーションシステム30では、現実空間での操作シミュレーションが可能となる。したがって、現地に存在する架空線や障害物等に合わせて、より実践的なシミュレーションが可能となる。
【0062】
<その他の実施例>
クレーンの荷吊り作業において、強風等の天候条件は転倒リスクを高める要因となる。そこで、仮想クレーン10Vに組み込まれる能力表のデータには、例えば風速、風向等に応じて安全率を変更するような補正機能が追加されてもよい。現地踏査を行うユーザは、標準の能力表を用いた操作シミュレーションに加え、より安全率の厳しい能力表を用いた操作シミュレーションを行うことで、計画したクレーンで、どの程度の風速、風向の条件まで安全に作業可能か検討することができる。よって、作業当日の天候条件によって変わる可能性のある転倒リスクに対し、より確実な転倒防止を図ることができる。
【0063】
以上、本発明は、上記実施形態になんら限定されるものではなく、その趣旨を逸脱しない範囲において種々の形態で実施可能である。
【符号の説明】
【0064】
10V・・・仮想クレーン、 12V・・・ブーム、 13V・・・アウトリガー、
20V・・・仮想吊荷、
30・・・シミュレーションシステム、
31・・・仮想データ作成部、
32・・・クラウド(ストレージ)、
33・・・MRデバイス(ヘッドマウントディスプレイ、HMD)
34・・・画像表示部、
35・・・仮想クレーン操作部。
【要約】
【課題】荷吊り作業の現地において実行可能な、MR技術を用いたクレーン操作シミュレーションシステムを提供する。
【解決手段】仮想データ作成部31は、仮想クレーン10Vの3次元データを仮想データとして作成する。MRデバイス33は、装着したユーザが、表示された画像を視認可能である。MRデバイス33の画像表示部34は、クラウド(ストレージ)32から読み出した仮想データを現実空間の画像に投影して複合空間の画像を表示する。仮想クレーン操作部35は、複合空間において、仮想クレーン10Vの構成要素のうち少なくとも一部をユーザの指示により動かして操作シミュレーションを行う。仮想クレーン10Vは、サイズデータに加えて、能力表のデータが組み込まれており、能力表に基づく範囲でブームの長さ及び角度を変更可能に作成されている。仮想クレーン操作部35は、複合空間において、仮想クレーン10Vのブームを操作可能である。
【選択図】
図1