(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2023-10-12
(45)【発行日】2023-10-20
(54)【発明の名称】冷凍・冷蔵ショーケース
(51)【国際特許分類】
F25D 21/04 20060101AFI20231013BHJP
A47F 3/04 20060101ALI20231013BHJP
F25B 47/02 20060101ALI20231013BHJP
F25D 11/00 20060101ALI20231013BHJP
F25D 21/06 20060101ALI20231013BHJP
【FI】
F25D21/04 S
A47F3/04 H
F25B47/02 510J
F25B47/02 570D
F25B47/02 570K
F25D11/00 101E
F25D21/06 H
(21)【出願番号】P 2019150689
(22)【出願日】2019-08-20
【審査請求日】2022-07-12
(73)【特許権者】
【識別番号】000000561
【氏名又は名称】株式会社オカムラ
(74)【代理人】
【識別番号】100098729
【氏名又は名称】重信 和男
(74)【代理人】
【氏名又は名称】溝渕 良一
(74)【代理人】
【識別番号】100204467
【氏名又は名称】石川 好文
(74)【代理人】
【識別番号】100148161
【氏名又は名称】秋庭 英樹
(74)【代理人】
【氏名又は名称】堅田 多恵子
(74)【代理人】
【識別番号】100195833
【氏名又は名称】林 道広
(72)【発明者】
【氏名】入江 憲二
(72)【発明者】
【氏名】峯尾 昌希
(72)【発明者】
【氏名】松岡 淳雄
【審査官】笹木 俊男
(56)【参考文献】
【文献】特開2008-209016(JP,A)
【文献】特開平07-318229(JP,A)
【文献】米国特許出願公開第2002/0184900(US,A1)
【文献】特開2018-31487(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
F25D 11/00
F25D 21/04 ~ 21/06
F25B 47/02
A47F 3/04
(57)【特許請求の範囲】
【請求項1】
蒸発器の除霜運転と次の除霜運転との間に庫内を冷却する冷却運転を行う冷凍・冷蔵ショーケースであって、
前記蒸発器内の流量を制限する電磁弁が前記蒸発器の上流側および下流側に設けられており、
前記上流側の電磁弁は、前記蒸発器の上流側に設けられた膨張弁よりもさらに上流側に設けられており、
前記冷却運転において前記上流側の電磁弁および前記下流側の電磁弁を閉動作させた後、前記下流側の電磁弁よりも先に前記上流側の電磁弁を開動作させることを特徴とする冷凍・冷蔵ショーケース。
【請求項2】
前記上流側の電磁弁を開動作させてから予め設定された時間経過後に前記下流側の電磁弁を開動作させることを特徴とする請求項1に記載の冷凍・冷蔵ショーケース。
【請求項3】
前記庫内の庫内温度が庫内基準温度よりも下がったときに前記上流側の電磁弁および前記下流側の電磁弁が閉動作されることを特徴とする請求項1または2に記載の冷凍・冷蔵ショーケース。
【請求項4】
前記上流側の電磁弁および前記下流側の電磁弁が略同時に閉動作されることを特徴とする請求項1ないし3のいずれかに記載の冷凍・冷蔵ショーケース。
【請求項5】
圧縮機に対して複数の冷凍・冷蔵ショーケースが接続され、隣接する前記冷凍・冷蔵ショーケースの庫内同士が繋がっていることを特徴とする請求項1ないし4のいずれかに記載の冷凍・冷蔵ショーケース。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、冷凍・冷蔵ショーケースに関する。
【背景技術】
【0002】
スーパーマーケットやコンビニエンスストア等には、冷凍食品や生鮮食品等の物品を冷凍または冷蔵しながら陳列するために、冷凍・冷蔵ショーケースが配置されている。冷凍・冷蔵ショーケースは、ケース本体を構成する外箱と内箱との間に通風路が形成されており、該通風路内には冷凍サイクルの一部である蒸発器が送風機と共に備えられている。蒸発器は、内部に流入する冷媒が蒸発する際の気化熱により該蒸発器周辺の空気の熱を奪って冷却できるようになっており、蒸発器で冷却された空気が送風機によりケース本体の庫内に送り出されて、庫内に陳列する物品を冷凍または冷蔵している。また、冷凍・冷蔵ショーケースは、使用される環境に応じて冷凍サイクルに冷媒を循環させる量が調整されることにより、庫内を所望の温度で保冷できるようになっている。
【0003】
このような冷凍・冷蔵ショーケースにあっては、蒸発器の冷却運転を続けることによって当該蒸発器に着霜が生じるようになり、該着霜が進行すると蒸発器の冷却能力が低下するため、着霜した霜を除霜する除霜運転を有する冷凍・冷蔵ショーケースが知られている。
【0004】
例えば、特許文献1に示される冷凍・冷蔵ショーケースは、冷却器(蒸発器)の下方に配設されたヒータを加熱し、着霜した霜をすべて溶かすことで冷却器を除霜する、いわゆる加熱方式の除霜運転を行うことで、冷却器の冷却能力を保つようになっている。
【0005】
また、このような冷凍・冷蔵ショーケースでは、物品の出し入れがされない夜間や営業時間外等にナイトカバーを用いて外気が庫内へ流入することを防止して、冷却器を低出力で動作させている。
【先行技術文献】
【特許文献】
【0006】
【文献】実公平7-12861号公報(第2頁、第1図)
【発明の概要】
【発明が解決しようとする課題】
【0007】
しかしながら、特許文献1の冷凍・冷蔵ショーケースにあっては、適当間隔で除霜運転を行うことにより、冷却器の冷却能力を保てるものの、例えば営業時間が長時間である場合には、営業時間中に除霜運転をすることがあり、大きな熱量を有するヒータを使用して冷却器に着霜した霜を全体的に溶かして除霜することで庫内の温度が急激に上昇し、冷凍または冷蔵されている物品の温度も上昇してしまうため、物品が十分に冷却されずに傷んでしまう虞があった。
【0008】
本発明は、このような問題点に着目してなされたもので、略一定の温度帯で物品を長い時間保冷し続けることができる冷凍・冷蔵ショーケースを提供することを目的とする。
【課題を解決するための手段】
【0009】
前記課題を解決するために、本発明の冷凍・冷蔵ショーケースは、
蒸発器の除霜運転と次の除霜運転との間に庫内を冷却する冷却運転を行う冷凍・冷蔵ショーケースであって、
前記蒸発器内の流量を制限する電磁弁が前記蒸発器の上流側および下流側に設けられており、
前記上流側の電磁弁は、前記蒸発器の上流側に設けられた膨張弁よりもさらに上流側に設けられており、
前記冷却運転において前記上流側の電磁弁および前記下流側の電磁弁を閉動作させた後、前記下流側の電磁弁よりも先に前記上流側の電磁弁を開動作させることを特徴としている。
この特徴によれば、冷却運転における着霜抑制冷却では、上流側および下流側の電磁弁を閉動作させて蒸発器内の流量を制限し、その後、下流側の電磁弁を閉じた状態で上流側の電磁弁を開動作させることにより蒸発器内に減圧された冷媒を流入させるようにしたので、当初は蒸発器内における冷媒の蒸発圧力および蒸発温度を速やかに上昇させ、その後、緩やかに上昇させることができるため、短い時間で着霜を抑制しながら過度な温度上昇をさせることなく、略一定の温度帯で物品を長い時間保冷し続けることができる。
【0010】
前記上流側の電磁弁を開動作させてから予め設定された時間経過後に前記下流側の電磁弁を開動作させることを特徴としている。
この特徴によれば、冷媒の蒸発圧力および蒸発温度が緩やかに上昇する状態が所定時間継続されるため、過度な温度上昇をさせることなく着霜を確実に抑制することができる。
【0011】
前記庫内の庫内温度が庫内基準温度よりも下がったときに前記上流側の電磁弁および前記下流側の電磁弁が閉動作されることを特徴としている。
この特徴によれば、庫内が十分に冷却されたことを確認して着霜抑制冷却を行うことができるため、庫内の物品温度に影響を与えることなく、略一定の温度帯で物品を長い時間保冷し続けることができる。
【0012】
前記上流側の電磁弁および前記下流側の電磁弁が略同時に閉動作されることを特徴としている。
この特徴によれば、蒸発器内に一定量の冷媒が閉じ込められるため、冷媒の蒸発圧力および蒸発温度を確実に上昇させることができる。
【0013】
圧縮器に対して複数の冷凍・冷蔵ショーケースが接続され、隣接する前記冷凍・冷蔵ショーケースの庫内同士が繋がっていることを特徴としている。
この特徴によれば、隣接する一方の冷凍・冷蔵ショーケースにおいて着霜抑制冷却が行われている間、他方の冷凍・冷蔵ショーケースにより庫内が冷却されるため、庫内温度が適正に維持されやすい。
【図面の簡単な説明】
【0014】
【
図1】本発明の実施例における冷凍・冷蔵ショーケースの構造を示す断面図である。
【
図2】冷凍サイクルの配管系統の構造を示すブロック図である。
【
図4】冷凍・冷蔵ショーケースの制御部に接続される機器配置を示す模式図である。
【
図5】通常冷却パターンにおける蒸発器、上流側および下流側の電磁弁の構成を示すブロック図である。
【
図6】着霜抑制冷却パターンにおける蒸発器、上流側および下流側の電磁弁の構成を示すブロック図である。
【
図7】着霜抑制冷却パターンにおける蒸発器、上流側および下流側の電磁弁の構成を示すブロック図である。
【
図8】物品温度、庫内温度、吹出口温度および蒸発温度を示すグラフである。
【
図9】着霜抑制冷却パターンにおける物品温度、庫内温度、吹出口温度および蒸発温度を示すグラフである。
【
図10】着霜抑制冷却パターンにおける蒸発器、伝熱管の表面温度(蒸発温度)、各電磁弁の動作、各サーモスタット動作、およびタイマ制御の推移を示す表図である。
【
図11】(a)は、伝熱管への霜柱発生期を示す断面図であり、(b)は、伝熱管への霜層成長期を示す断面図であり、(c)は、伝熱管への霜層成熟期を示す断面図である。
【発明を実施するための形態】
【0015】
本発明に係る冷凍・冷蔵ショーケースを実施するための形態を実施例に基づいて以下に説明する。
【実施例】
【0016】
実施例に係る冷凍・冷蔵ショーケースにつき、
図1から
図11を参照して説明する。以下、
図1の紙面左側を冷凍・冷蔵ショーケースの正面側(前方側)とし、その前方側から見たときの上下左右方向を基準として説明する。
【0017】
図1に示されるように、冷凍・冷蔵ショーケース1は、主に商店やスーパーマーケットやコンビニエンスストア等の食品等の商品(物品)を取り扱う販売店舗に設置され、商品を低温に保ったまま保冷、または冷凍した状態で陳列するために設置されるものであり、正面側が開口された内箱3により囲まれた保冷室5(庫内)には、商品を陳列する棚板6,6,…が上下方向に複数設置され、内箱3の下部に設けられた底部3bにも商品を陳列可能になっている。尚、本実施例の冷凍・冷蔵ショーケース1は、商品を冷蔵した状態で陳列する態様を例に挙げ説明する。
【0018】
冷凍・冷蔵ショーケース1は、前面(図の左方)が開放された略コ字形をなす断熱構造の外箱2と、その内方の、同じく前面が開放された略コ字形の内箱3とからなるケース本体を備え、その内部空間は保冷室5となっている。内箱3の背面部3aには、前後に延びるブラケット28,28,…の後端が取付けられており、ブラケット28,28,…の上に棚板6,6,…が配設されている。この各棚板6,6,…と内箱3の底部3bとの上面に、商品が陳列されるようになっている。
【0019】
外箱2と内箱3との間には、通風路7が形成され、この通風路7の垂直部と水平底部には、それぞれ蒸発器8と送風機9が設置されている。また、蒸発器8の前面側には、断熱材29が設けられており、蒸発器8と内箱3を介した保冷室5側との熱交換が抑えられている。ケース本体の上部の前端には、通風路7と連通する冷気吹出口10が下向きに形成され、ケース本体の下部前端の上端には、上方に開口する冷気の吸込口11が形成されている。
【0020】
蒸発器8は、冷却運転時(営業時間中)における冷却設定温度(吹出口温度)が-1.5度前後となるように設定されており、本実施例の条件下において、庫内温度が1.0度前後、物品温度が3.5度前後となっている(
図8参照)。尚、冷却設定温度は、冷凍・冷蔵ショーケース1が使用される環境や保冷室5内に陳列される商品に応じて図示しない操作部を操作することで変更することができる。また、ここでいう庫内温度は、棚板6,6,…および底部3b付近(商品に近い場所)の平均温度を指し、物品温度は、棚板6,6,…および底部3bに陳列された各商品の平均温度を指す。さらに尚、本実施例において説明する各温度については、その温度を限定されるものではなく、適宜変更されればよいものであって、他の数値についても同様である。
【0021】
送風機9を作動させると、蒸発器8により冷却された冷気は、
図1の矢印で示されるように、通風路7内を上方に向かって流れ、冷気吹出口10より、下方の吸込口11に向かって吹き出される(以降、このように循環される空気(冷気)を、単に「循環空気」と表記)。これにより、ケース本体の前面の開放面に冷気のエアカーテン12が形成されるとともに、その冷気の一部が保冷室5内に流入することにより、陳列商品が保冷されるようになる。
【0022】
次いで、冷凍・冷蔵ショーケース1における蒸発器8について説明する。
図3に示されるように、蒸発器8は、その内部に冷媒16が流れる銅管である伝熱管15を備え、この伝熱管15は、複数のフィン30,30,…を貫通して蛇行するように延びている。これにより、伝熱管15と周囲の空気との接触面積が増え、送風機9からの送風(
図3において白矢印で図示)が効率よく当たり、冷却効率が向上している。尚、この伝熱管15は、銅管に限らず、熱伝導率の高い金属製や樹脂製の管であってもよい。
【0023】
伝熱管15は、複数のフィン30,30,…(説明の便宜上、一部図示)を貫通する複数の直管部15a,15a,…と、隣接する直管部15a,15aの端部同士を繋ぐUベンド部15b,15b,…と、から構成されており、組み立てが容易となっている。
【0024】
伝熱管15は、構造上、Uベンド部15b,15b,…が端部に位置しており、Uベンド部15b,15b,…に対して送風機9からの送風が当たりづらくなっているため、Uベンド部15b,15b,…には、直管部15a,15a,…に比べて着霜しやすくなっている。
【0025】
また、蒸発器8の伝熱管15において熱交換が起こりにくいUベンド部15b,15b,…の中でも、通風路7上流側に位置するUベンド部15b’は、通風路7内の冷却前の空気と接触するため、着霜が最も大きくなる。このUベンド部15b’の下流側に接続される直管部15a’には、上流側に第1温度センサH1が、下流側に第2温度センサH2が、それぞれ設けられている。
【0026】
第1温度センサH1および第2温度センサH2が検出した検出信号(伝熱管15の表面温度)は制御部4(
図4参照)に入力される。制御部4は、第1温度センサH1および第2温度センサH2から入力された検出信号と設定された蒸発器所定温度とを比較しON/OFF信号を出力するサーモスタットT1,T2(サーモスタットT1は第1温度センサH1に、サーモスタットT2は第2温度センサH2に基づいて動作)(
図10参照)の機能や、設定された各所定時間の計測を行うタイマ(例えばタイマM1(
図10参照))の機能を有している。また、制御部4は、後述するサクション電磁弁である第1電磁弁S1(下流側の電磁弁)および液電磁弁である第2電磁弁S2(上流側の電磁弁)に接続され、これらを開閉制御する。さらに、制御部4には、棚板6,6,…の近傍、内箱3の底部3bの近傍、冷気吹出口10の近傍に設けられた複数の庫内温度センサH3(
図4参照)が接続されており、庫内温度センサH3が検出した検出信号(棚板6,6,…の近傍の温度、内箱3の底部3bの近傍の温度、冷気吹出口10の近傍の温度)がそれぞれ入力されている。尚、制御部4は、庫内温度センサH3から入力された検出信号から平均温度として庫内温度を算出している。
【0027】
図2に示されるように、蒸発器8は、冷凍サイクルの配管系統Fの一部である。詳しくは、蒸発器8の伝熱管15の上流側端部には、液化状態の冷媒16を所定の蒸発圧力となるように減圧して気化状態とする膨張弁17が設けられているとともに、該膨張弁17の上流側には第2電磁弁S2が設けられた供給管19が接続され、該第2電磁弁S2の上流側に受液器18が該供給管19を介して接続されている。第2電磁弁S2は、膨張弁17と受液器18との間の供給管19の流路を適宜開閉可能となっている。
【0028】
また、蒸発器8の伝熱管15の下流側端部には、第1電磁弁S1が設けられる導出管23が接続され、該第1電磁弁S1の下流側には、蒸発器8内で蒸発した気化状態の冷媒16を吸い込むとともに、該冷媒16を圧縮して受液器18側に送り出す圧縮器21が接続されており、該圧縮器21は、凝縮器22を介して受液器18に接続されている。この凝縮器22は、圧縮器21により圧縮された高圧気化状態の冷媒16の熱を外部に放出して冷媒16を液化状態にするものである。尚、第1電磁弁S1は、第2電磁弁S2と連動して開閉可能となっている。また、本実施例においては、1台の圧縮器21に対して複数の冷凍・冷蔵ショーケース1(蒸発器8)が直線状に連結・接続されており、隣接する冷凍・冷蔵ショーケース1の保冷室5同士が左右方向に繋がっている。
【0029】
尚、
図2では、液体(液化)状態の冷媒16を実線で、気体(気化)状態の冷媒16を破線で示した。また、受液器18内の液化状態の冷媒16の温度は、例えば夏場では、35度から40度程度となっており、冬場では、20度程度となっている。
【0030】
図2および
図5~
図7に示されるように、第1電磁弁S1は、伝熱管15と導出管23とを連通させる態様(
図5参照)と、伝熱管15と導出管23とを遮断する態様(
図6,
図7参照)と、に切り換え可能となっている。また、第2電磁弁S2は、供給管19と伝熱管15とを連通させる態様(
図5,
図7参照)と、供給管19と伝熱管15とを遮断する態様(
図6参照)と、に切り換え可能となっている。
【0031】
また、第1電磁弁S1および第2電磁弁S2は、通電時において開状態であり、非通電時において閉状態である、いわゆるノーマルクローズの弁である。また、液バック現象の発生を防止するために、第1電磁弁S1と圧縮器21との間に、逆止弁を配置してもよい。尚、第1電磁弁S1および第2電磁弁S2は、通電時において閉状態であり、非通電時において開状態である、いわゆるノーマルオープンの弁であってもよく、これにより、停電等の非通電時には、第1電磁弁S1および第2電磁弁S2が開状態となり、蒸発器8内に冷媒16が残留することを防止できるとともに、運転を再開させた際に液バック現象の発生を防ぐことができる。
【0032】
本実施例における冷凍・冷蔵ショーケース1は、
図8に示されるように、設定された時間(12時間)毎に蒸発器8の除霜を行うための除霜運転Dが行われ、除霜運転Dと次の除霜運転Dとの間に、保冷室5を冷却するための冷却運転Cが行われる。この冷却運転Cでは、通常冷却パターンP1と着霜抑制冷却パターンP2とが繰り返し行われる。次に、これら通常冷却パターンP1、着霜抑制冷却パターンP2および除霜運転Dにおける冷凍サイクルの配管系統Fの運転態様について、
図5~
図11を用いて、個別に説明する。尚、本実施例における、着霜抑制(着霜を抑制)とは、霜を大きくしない、霜を減らす、または、霜が完全に取り除かれることを含む。
【0033】
先ず、冷却運転Cの通常冷却パターンP1における冷凍サイクルの配管系統Fの運転態様について説明する。
図5に示されるように、第1電磁弁S1および第2電磁弁S2は開状態とされており、伝熱管15と導出管23、伝熱管15と供給管19とがそれぞれ連通されている。圧縮器21の作動により、受液器18に貯留された液化状態の冷媒16が、蒸発器8に向けて供給管19および膨張弁17を介して送り出される。この液化状態の冷媒16は、膨張弁17によって所定の蒸発圧力となるように減圧され、気化状態となる。蒸発器8の伝熱管15内に流入した気化状態の冷媒16が蒸発する際の気化熱によって、通風路7内の空気から熱を奪うことにより、通風路7内の空気が冷却される。
【0034】
蒸発器8の伝熱管15を通過した気化状態の冷媒16は、伝熱管15に連通された導出管23に流入し、圧縮器21および凝縮器22を介して受液器18に戻される。この循環を繰り返すことにより、蒸発器8の通常冷却パターンP1が連続して行われる。尚、蒸発器8が通常冷却パターンP1における伝熱管15の表面温度、すなわち冷媒16の蒸発温度は、伝熱管15内に流入した気化状態の冷媒16によって-10.0度前後となっている(
図8参照)。また、蒸発器8が通常冷却パターンP1における冷却設定温度(吹出口温度)は-4.0度前後、庫内温度は0度前後、物品温度は3.0度前後である(
図8参照)。
【0035】
尚、通常冷却パターンP1は、着霜抑制冷却パターンP2または除霜運転Dの前に必ず行われるように制御部4により制御されている。
【0036】
ここで、通常冷却パターンP1の経過時間に応じた伝熱管15への着霜量について説明する。
図11(a)に示されるように、通常冷却パターンP1を開始すると、空気中の水分を凝縮した水滴が伝熱管15の外表面に付着し、そこから霜柱33,33,…が発生する(霜柱発生期)。次いで、
図11(b)に示されるように、霜柱33,33,…を骨格としてその周囲に氷・空気混合体34,34,…が発生する(霜層成長期)。次いで、
図11(c)に示されるように、氷・空気混合体34,34,…が時間の経過とともに増加し、霜柱33,33,…間の隙間を埋めて密度を高め、凝固して一体の霜層となる(霜層成熟期)。この霜層成熟期に到達すると、蒸発器8の冷却能力が顕著に低下することから、除霜を行う必要がある。
【0037】
次に、着霜抑制冷却パターンP2における冷凍サイクルの配管系統Fの運転態様について説明する。尚、蒸発器8が通常冷却パターンP1における冷凍サイクルの配管系統Fの運転態様の説明と重複する点については説明を省略する。
【0038】
図8~
図10に示されるように、通常冷却パターンP1が開始されてから制御部4に予め設定される庫内基準温度(本実施例では庫内温度1度)よりも庫内温度が下がり庫内所定温度0度に到達すると、第2電磁弁S2と第1電磁弁S1とが連動して略同時に閉動作され(
図6参照)、着霜抑制冷却パターンP2の温度上昇過程α1が開始される。
【0039】
着霜抑制冷却パターンP2の温度上昇過程α1においては、第2電磁弁S2と第1電磁弁S1とが連動して略同時に閉動作されることにより、慣性による冷媒16の蒸発器8への流入や蒸発器8からの流出が生じず、第1電磁弁S1と第2電磁弁S2との間に一定量の冷媒16が留まり、通常冷却パターンP1と比べて膨張弁17に流入する冷媒16が減ることにより、冷媒16の蒸発圧力が十分に減圧されなくなるため、蒸発器8内の冷媒16の蒸発圧力が即座に上昇し、伝熱管15が急速に昇温(
図9参照)する。尚、第2電磁弁S2が閉動作されたときに、第1電磁弁S1が開いていると第2電磁弁S2の下流側(蒸発器8の伝熱管15および導出管23)の冷媒16は凝縮器22を介して受液器18にポンプダウン(冷媒回収)されるため、蒸発器8内の冷媒16の蒸発圧力が一時的に低下して着霜の原因となる過冷却が起こる虞があるが、本実施例のように第2電磁弁S2と第1電磁弁S1とが連動して略同時に閉動作されることにより、圧縮器21を停止させることなくポンプダウンによる過冷却が防止されている。
【0040】
第1温度センサH1および第2温度センサH2が個別に測定した伝熱管15の表面温度が共に蒸発器基準温度である-1度に到達したことを受けて(
図9参照)、サーモスタットT1,T2が共に作動状態(ON)となり、第2電磁弁S2が開動作される(
図7参照)とともに、タイマM1による時間の計測が開始され、温度一定過程α2が開始される。これにより、膨張弁17に流入する冷媒16が増加し、膨張弁17において十分に減圧された冷媒16が蒸発器8内に流入可能となるため、蒸発器8内の冷媒16の蒸発圧力が緩やかに上昇し、通常冷却パターンP1の平常時よりも高い圧力に保持される(
図9参照)。
【0041】
温度一定過程α2において、第1温度センサH1および第2温度センサH2が個別に測定した伝熱管15の表面温度が共に-1度以上であればタイマM1は時間の計測を継続し、-1度以上である時間が1分に到達する(
図9参照)と、制御部4は、第1電磁弁S1を開動作させ、言い換えれば、制御部4は、第1電磁弁S1の開動作を1分間遅延させ、通常冷却パターンP1に移行する。これにより、冷媒16が蒸発器8内を通過可能となるため、蒸発器8から高圧状態にあった冷媒16が圧縮器21に流入していくことで、蒸発器8内の冷媒16の蒸発圧力が通常冷却パターンP1の平常時の圧力に急速に復帰するとともに、蒸発器8の冷却が即座に開始されるため、蒸発器8内の冷媒16の蒸発圧力の過度な上昇を防止し、庫内温度や物品温度への影響を抑えることができる。
【0042】
このように、温度一定過程α2では、氷の融点(0度)に近い-1度以上に伝熱管15の表面温度が連続して1分間保持される、または伝熱管15の表面温度が蒸発器基準温度よりも高い蒸発器所定温度0度まで昇温されることから、霜の伝熱管15に付着している部分が該伝熱管15の内側から直接昇温され、溶かされやすい。加えて、伝熱管15の表面温度が-1度以上であるため、新たに着霜しにくい。尚、着霜抑制冷却パターンP2において第1電磁弁S1が閉動作されている時間は、第2電磁弁S2が閉動作されている時間の倍程度であり、言い換えれば温度上昇過程α1と温度一定過程α2との時間配分は、約1:1に設定されている。尚、この時間配分は、3:1~1:3、より好ましくは2:1~1:2の範囲であれば過度な温度上昇をさせることなく着霜を短時間で抑制できることが確認された。また、温度上昇過程α1と温度一定過程α2の合計時間は2分から10分程度が好ましいことが判明した。
【0043】
また、着霜抑制冷却パターンP2は、通常冷却パターンP1が開始されてから庫内基準温度(庫内温度1度)よりも庫内温度が下がり庫内所定温度0度に到達する度に行われるため、伝熱管15に着霜した霜は、概ね霜柱発生期から霜層成長期までの期間である着霜初期段階(霜の密度が疎密な状態)にある(
図11(a),(b)参照)ことから、霜柱33,33,…の根元が冷媒16の熱や循環空気の熱(外気より低温)により溶かされれば、霜柱33,33,…および氷・空気混合体34,34,…が伝熱管15から落下するため、霜柱33,33,…および氷・空気混合体34,34,…全体を溶かさなくてもよい。また、通過する循環空気により霜柱33,33,…および氷・空気混合体34,34,…の熱量が奪われることで霜柱33,33,…および氷・空気混合体34,34,…の一部を溶かすことができる。これらにより、短時間で着霜を抑制することができる。
【0044】
尚、着霜抑制冷却パターンP2の温度上昇過程α1を開始する庫内基準温度および設定温度と、温度一定過程α2を終了する伝熱管15(蒸発器8)の表面温度の蒸発器基準温度および蒸発器基準温度よりも高い蒸発器所定温度については、実際に使用される環境に応じて適宜変更してもよい。
【0045】
また、着霜抑制冷却パターンP2では、蒸発器8の表面温度が0度近傍に保たれているとともに、上述したように霜柱33,33,…および氷・空気混合体34,34,…の熱量を循環空気が奪うため、該蒸発器8を通過した循環空気の吹出口温度が平均0度前後(
図9参照)となっている。この循環空気により保冷室5の冷却が継続して行われていることから、保冷室5の過度な温度上昇が防止されている。さらに、着霜抑制冷却パターンP2では、後述する加熱方式やオフサイクル方式の除霜運転に比べて着霜抑制にかかる熱量が少ないため、庫内温度に影響を与え難く、冷凍・冷蔵ショーケース1の熱効率が高い。
【0046】
これらのことから、冷却運転Cにおいて、通常冷却パターンP1と着霜抑制冷却パターンP2とを繰り返し行うことにより、除霜運転Dを必要とする霜層成熟期に至るまでの時間(蒸発器8の所望以上の冷却能力)を、前回の除霜運転Dが開始されてから12時間以上(長時間)確保することができる。すなわち、着霜する霜の量を長時間に亘って抑制することができる。
【0047】
また、
図9に示されるように、着霜抑制冷却パターンP2において、庫内温度が最高で2.0度前後に上がるものの、通常冷却パターンP1よりも着霜抑制冷却パターンP2は相対的に短時間であり、上昇温度も小さいことから、冷却運転C全体を通して考えるとその影響は僅かであるとともに、通常冷却パターンP1によりすぐに復旧することができるため、冷却運転C全体では、庫内温度が平均約1.0度に、物品温度が約3.0度に略一定に保たれる。
【0048】
また、着霜抑制冷却パターンP2において、蒸発器8が低温度帯(-1度~0度前後)にあるときに、該着霜抑制冷却パターンP2から通常冷却パターンP1に切り換えられることから、物品温度が略一定に保たれる。
【0049】
また、除霜運転Dは、着霜抑制冷却パターンP2と略同一方式で蒸発温度が+3度以上の温度帯で行われ、伝熱管15の表面全体の霜が十分に除霜されるまで行われる。尚、除霜運転Dは、これに限らず、ヒータ等の外部熱源の輻射熱を利用した加熱方式のみの除霜、圧縮器21を停止させて自然昇温や外気によるオフサイクル方式のみの除霜、加熱方式とオフサイクル方式の除霜を組み合わせることにより行われてもよい。
【0050】
以上説明したように、本実施例の冷凍・冷蔵ショーケース1は、冷却運転Cの着霜抑制冷却パターンP2において、上流側の第2電磁弁S2および下流側の第1電磁弁S1を閉動作させて蒸発器8内における冷媒16の流量を制限し、その後、下流側の第1電磁弁S1を閉じた状態で上流側の第2電磁弁S2を開動作させることにより蒸発器8内に膨張弁17において減圧された冷媒16を流入させるようにしたので、当初は温度上昇過程α1により蒸発器8内における冷媒16の蒸発圧力および蒸発温度を速やかに上昇させ、その後、温度一定過程α2により緩やかに上昇させることができるため、短い時間で着霜を抑制しながら過度な温度上昇をさせることなく、略一定の温度帯(庫内温度平均約1.0度)で物品を長い時間(12時間以上)保冷し続けることができる。尚、本実施例における、制限とは、第1電磁弁S1または第2電磁弁S2の閉動作により流路が完全に閉鎖されるものに限らず、流路を絞る、または、例えばPWM制御により第1電磁弁S1および第2電磁弁S2の開閉動作により蒸発器8内への冷媒16の供給と停止を繰り返すことで、蒸発器8における冷媒16の循環量を減らすことを含む。
【0051】
また、冷却運転Cの着霜抑制冷却パターンP2において、上流側の第2電磁弁S2を開動作させて温度一定過程α2が開始されてから予め設定された時間(1分)経過後に下流側の第1電磁弁S1を開動作させて通常冷却パターンP1に移行することにより、温度一定過程α2において冷媒16の蒸発圧力および蒸発温度が緩やかに上昇する状態が所定時間継続されるため、過度な温度上昇をさせることなく着霜を確実に抑制することができる。
【0052】
また、冷却運転Cの通常冷却パターンP1が開始されてから庫内温度が庫内基準温度(庫内温度1度)よりも下がったときに、蒸発器8の上流側に設けられる第2電磁弁S2と第1電磁弁S1とを連動させて閉動作させることにより、保冷室5が十分に冷却されたことを確認して着霜抑制冷却を行うことができるため、保冷室5の物品温度に影響を与えることなく、略一定の温度帯で物品を長い時間保冷し続けることができる。また、上流側の第2電磁弁S2および下流側の第1電磁弁S1が略同時に閉動作されることにより、蒸発器8内に一定量の冷媒16が閉じ込められるため、冷媒16の蒸発圧力および蒸発温度を確実に上昇させることができる。
【0053】
また、圧縮器21に対して複数の冷凍・冷蔵ショーケース1(蒸発器8)が接続されており、隣接する冷凍・冷蔵ショーケース1の保冷室5同士が左右方向に繋がっているため、隣接する一方の冷凍・冷蔵ショーケース1において着霜抑制冷却パターンP2による着霜抑制が行われている間、他方の冷凍・冷蔵ショーケース1における通常冷却パターンP1により保冷室5が冷却されるため、庫内温度が適正に維持されやすい。
【0054】
また、冷却運転Cにおいて、通常冷却パターンP1と着霜抑制冷却パターンP2とを交互に行うことで、庫内温度の温度上昇を抑えつつ、蒸発器8に着霜する霜の量を低減できることから、除霜運転Dまでの間隔を長くすることができる。
【0055】
また、庫内温度の温度上昇が抑えられているため、蒸発器8における冷媒16の蒸発圧力を高く設定することができ、省エネルギー化することができる。また、季節、店内環境、圧縮器21の運転状況等に応じた冷却運転Cにおける通常冷却パターンP1と着霜抑制冷却パターンP2の切り換えが庫内基準温度に基づいて制御されるため、年間を通して自動制御が可能となる。さらに、第2電磁弁S2を閉じたときに、略同時に圧縮器21を停止させる、あるいは圧縮器21の出力を下げることにより、省エネルギー化することができる。
【0056】
尚、制御部4に第2電磁弁S2の稼働率を検出する稼働率検出手段を接続し、制御部4は、第2電磁弁S2の稼働率が低いときには、前述した庫内基準温度に基づく第2電磁弁S2の開閉制御に第1電磁弁S1を連動させ、第2電磁弁S2の稼働率が高いとき(通常冷却パターンP1により庫内温度が下がらず庫内基準温度に基づき第2電磁弁S2を閉動作させて着霜抑制冷却パターンP2に移行できないとき)には、通常冷却パターンP1が開始されてからの時間をタイマにより計測し、該タイマによる計測時間が所定時間に到達すると、通常冷却パターンP1から着霜抑制冷却パターンP2に移行させるように制御してもよい。
【0057】
以上、本発明の実施例を図面により説明してきたが、具体的な構成はこれら実施例に限られるものではなく、本発明の要旨を逸脱しない範囲における変更や追加があっても本発明に含まれる。
【0058】
例えば、冷却運転Cにおいて、庫内基準温度に基づいて蒸発器8の上流側の第2電磁弁S2と下流側の第1電磁弁S1とを連動させて略同時に閉動作させる態様について説明したが、これに限らず、第1電磁弁S1よりも先に第2電磁弁S2を閉動作させてもよい。これによれば、第1電磁弁S1が閉動作されるまでの間に蒸発器8内の冷媒16の一部が第1電磁弁S1を通して下流側に排出されるため、冷却運転Cを再開するときに第2電磁弁S2および膨張弁17を通して蒸発器8内に冷媒16が流入しやすくなり、蒸発器8内の冷媒16の蒸発圧力を速やかに低下させることができる。また、庫内基準温度に基づいて第1電磁弁S1を閉動作させ、第1電磁弁S1の閉動作後に第2電磁弁S2を連動させて閉動作させるようにしてもよい。
【0059】
また、前記実施例では、通常冷却パターンP1から着霜抑制冷却パターンP2への切り換えを行うときの庫内基準温度として庫内温度(制御部4で算出される平均温度)を用いる例について説明したが、これに限らず、庫内基準温度は、庫内の温度と関連する温度であれば、例えば冷却設定温度(吹出口温度)、特定の棚板6または底部3b付近の温度センサにより検出される温度、蒸発器8の表面温度等が用いられてもよい。また、これらの庫内の温度と関連する温度、例えば吹出口温度から庫内温度を換算して庫内基準温度として用いるようにしてもよい。
【0060】
また、前記実施例では、温度一定過程α2において、第1温度センサH1および第2温度センサH2が個別に測定した伝熱管15の表面温度が共に-1度以上であればタイマM1は時間の計測を継続し、-1度以上である時間が1分に到達すると、制御部4は、第1電磁弁S1を開動作させる態様について説明したが、これに限らず、温度一定過程α2において、第1温度センサH1および第2温度センサH2が個別に測定した伝熱管15の表面温度が共に-1度以上である時間が1分に到達する前に伝熱管15の表面温度が共に蒸発器基準温度(-1度)よりも高い蒸発器所定温度0度に到達することにより、制御部4は、第1電磁弁S1を開動作させ、通常冷却パターンP1に移行してもよい。一方で、温度一定過程α2において、第1温度センサH1または第2温度センサH2が個別に測定した伝熱管15の表面温度のいずれかが-1度を下回ると、タイマM1がリセットされた後、温度上昇過程α1に戻り、次の温度一定過程α2では、再び0からタイマM1による時間の計測が行われるようになっていてもよい。また、着霜抑制冷却パターンP2から通常冷却パターンP1への切り換えを行うときの蒸発器基準温度として蒸発器の表面温度を用いる例について説明したが、これに限らず、冷却設定温度(吹出口温度)、庫内温度(平均温度)、特定の棚板6または底部3b付近の温度センサによる検出温度等が用いられてもよい。
【0061】
また、前記実施例では、制御部4はタイマの機能を利用して、第1電磁弁S1の開動作を予め設定された時間だけ遅延させるように構成されるものとして説明したが、これに限らず、例えば制御部4に条件ソフトをインストールし、第1電磁弁S1と第2電磁弁S2の閉じている時間の合計を所定時間に制御するように条件設定を行い、季節に応じて変動する第2電磁弁S2の閉じている時間に応じて第1電磁弁S1の閉じている時間を調整可能とすることで、第1電磁弁S1の開動作の遅延時間を変化させるようにしてもよい。
【0062】
また、前記実施例では、第1温度センサH1および第2温度センサH2が伝熱管15の直管部15a’の上流側および下流側における表面温度を計測する形態を例示したが、伝熱管15の他の部位の表面温度を1つまたは3つ以上の温度センサで計測するようになっていてもよい。
【0063】
また、前記実施例では、タイマM1により時間計測を行う態様として説明したが、これに限らず、圧縮器21のモータの所定消費電力における回転数から時間を算出する等、時間を計測可能な構成であればよく、限定されるものではない。
【0064】
また、蒸発器8や霜の昇温を行うために、別途ヒータ等の外部熱源の輻射熱を利用してもよい。
【0065】
また、前記実施例では、冷凍サイクルは1台の圧縮器に複数の蒸発器が直線状に連結・接続される態様として説明したが、これに限らず、1台の圧縮器に1台の蒸発器が接続されるものであってもよい。
【符号の説明】
【0066】
1 冷凍・冷蔵ショーケース
4 制御部
5 保冷室(庫内)
8 蒸発器
21 圧縮器
C 冷却運転
D 除霜運転
P1 通常冷却パターン
P2 着霜抑制冷却パターン
S1 第1電磁弁
S2 第2電磁弁