IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ 日産自動車株式会社の特許一覧 ▶ ルノー エス.ア.エス.の特許一覧

<>
  • 特許-物体認識方法及び物体認識装置 図1
  • 特許-物体認識方法及び物体認識装置 図2
  • 特許-物体認識方法及び物体認識装置 図3
  • 特許-物体認識方法及び物体認識装置 図4A
  • 特許-物体認識方法及び物体認識装置 図4B
  • 特許-物体認識方法及び物体認識装置 図5
  • 特許-物体認識方法及び物体認識装置 図6
  • 特許-物体認識方法及び物体認識装置 図7
  • 特許-物体認識方法及び物体認識装置 図8A
  • 特許-物体認識方法及び物体認識装置 図8B
  • 特許-物体認識方法及び物体認識装置 図9
  • 特許-物体認識方法及び物体認識装置 図10
  • 特許-物体認識方法及び物体認識装置 図11
  • 特許-物体認識方法及び物体認識装置 図12
  • 特許-物体認識方法及び物体認識装置 図13
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2023-10-13
(45)【発行日】2023-10-23
(54)【発明の名称】物体認識方法及び物体認識装置
(51)【国際特許分類】
   G01S 13/04 20060101AFI20231016BHJP
   G01S 13/86 20060101ALI20231016BHJP
   G01S 13/931 20200101ALI20231016BHJP
   G08G 1/16 20060101ALI20231016BHJP
【FI】
G01S13/04
G01S13/86
G01S13/931
G08G1/16 C
G08G1/16 D
【請求項の数】 8
(21)【出願番号】P 2019201640
(22)【出願日】2019-11-06
(65)【公開番号】P2021076422
(43)【公開日】2021-05-20
【審査請求日】2022-08-02
(73)【特許権者】
【識別番号】000003997
【氏名又は名称】日産自動車株式会社
(73)【特許権者】
【識別番号】507308902
【氏名又は名称】ルノー エス.ア.エス.
【氏名又は名称原語表記】RENAULT S.A.S.
【住所又は居所原語表記】122-122 bis, avenue du General Leclerc, 92100 Boulogne-Billancourt, France
(74)【代理人】
【識別番号】100103850
【弁理士】
【氏名又は名称】田中 秀▲てつ▼
(74)【代理人】
【識別番号】100114177
【弁理士】
【氏名又は名称】小林 龍
(74)【代理人】
【識別番号】100066980
【弁理士】
【氏名又は名称】森 哲也
(72)【発明者】
【氏名】黒飛 朋子
(72)【発明者】
【氏名】野田 邦昭
(72)【発明者】
【氏名】池上 尭史
(72)【発明者】
【氏名】松尾 治夫
【審査官】梶田 真也
(56)【参考文献】
【文献】特開2015-230566(JP,A)
【文献】特開2019-057197(JP,A)
【文献】国際公開第2018/230344(WO,A1)
【文献】特開2005-128603(JP,A)
【文献】特開2006-047057(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
G01S 7/00 - 7/42
G01S 13/00 - 13/95
G08G 1/00 - 99/00
(57)【特許請求の範囲】
【請求項1】
レーダ装置からレーダ波を出射するとともに前記レーダ波の反射波を受信し、前記反射波の受信結果に基づいて周囲の複数の物体をそれぞれ検出した各々の検出位置を取得し、
前記検出位置に基づいて、前記複数の物体のうちの第1物体の検出位置と前記レーダ装置との間に第2物体が存在するか否かを判定し、前記第2物体が存在すると判定した場合に前記第1物体を処理対象として選択し、
前記第1物体を前記処理対象として選択した場合に、前記第2物体の前記レーダ装置に対向する面である反射面の位置及び角度を検出し、
前記反射面を対称面として前記第1物体の検出位置を反転させた鏡像位置と、前記複数の物体のうちの前記第1物体以外の他の物体の検出位置と、の間の距離に基づいて前記鏡像位置と前記他の物体の検出位置とが異なるか否かを判定し、
前記鏡像位置が、前記複数の物体のうちの前記第1物体以外の前記他の物体の検出位置のいずれとも異なると判定した場合に、前記鏡像位置に前記第1物体が存在すると認識する、
ことを特徴とする物体認識方法。
【請求項2】
走行車線の位置及び進行方向の情報を少なくとも有する地図上の、前記レーダ装置を搭載した車両の位置を測定し、
前記地図上の前記車両の位置に基づいて、前記地図上の前記第1物体の検出位置を算出し、
前記地図上の前記第1物体の検出位置の変化に基づいて、前記地図上の前記第1物体の検出位置の移動方向を算出し、
前記第1物体の検出位置が存在する走行車線の進行方向と前記第1物体の検出位置の移動方向とのなす角が第1閾値以上である場合に、前記第1物体を前記処理対象として選択する、
ことを特徴とする請求項1に記載の物体認識方法。
【請求項3】
走行車線の位置の情報を少なくとも有する地図上の、前記レーダ装置を搭載した車両の位置を測定し、
前記地図上の前記車両の位置に基づいて、前記地図上の前記第1物体の検出位置を算出し、
前記第1物体の検出位置が走行車線に存在しない場合に、前記第1物体を前記処理対象として選択する、
ことを特徴とする請求項1に記載の物体認識方法。
【請求項4】
レーダ以外の他のセンサによって周囲の物体を検出し、
前記第1物体が前記レーダ装置に検出され、かつ前記第1物体が前記他のセンサに検出されない場合に前記第1物体を前記処理対象として選択する、
ことを特徴とする請求項1~3のいずれか一項に記載の物体認識方法。
【請求項5】
走行車線の位置の情報を少なくとも有する地図上の、前記レーダ装置を搭載した車両の位置を測定し、
前記地図上の前記車両の位置に基づいて、前記地図上の前記鏡像位置を算出し、
前記鏡像位置が走行車線内である場合に、前記鏡像位置に前記第1物体が存在すると認識することを特徴とする請求項1に記載の物体認識方法。
【請求項6】
走行車線の位置及び進行方向の情報を少なくとも有する地図上の、前記レーダ装置を搭載した車両の位置を測定し、
前記地図上の前記車両の位置に基づいて、前記地図上の前記鏡像位置を算出し、
前記地図上の前記鏡像位置の位置変化に基づいて、前記鏡像位置の前記地図上の移動方向を算出し、
前記鏡像位置が存在する走行車線の進行方向と前記鏡像位置の移動方向とのなす角が第2閾値以下である場合に、前記鏡像位置に前記第1物体が存在すると認識する、
ことを特徴とする請求項1に記載の物体認識方法。
【請求項7】
道路上又は道路周辺の構造物情報を含む地図に基づいて前記反射面の位置及び角度の情報を取得することを特徴とする請求項1~6のいずれか一項に記載の物体認識方法。
【請求項8】
レーダ装置からレーダ波を出射するとともに前記レーダ波の反射波を受信し、前記反射波の受信結果に基づいて周囲の複数の物体をそれぞれ検出した各々の検出位置を取得するレーダ装置と、
前記検出位置に基づいて、前記複数の物体のうちの第1物体の検出位置と前記レーダ装置との間に第2物体が存在するか否かを判定し、前記第2物体が存在すると判定した場合に前記第1物体を処理対象として選択し、前記第1物体を前記処理対象として選択した場合に、前記第2物体の前記レーダ装置に対向する面である反射面の位置及び角度を検出し、前記反射面を対称面として前記第1物体の検出位置を反転させた鏡像位置と、前記複数の物体のうちの前記第1物体以外の他の物体の検出位置と、の間の距離に基づいて前記鏡像位置と前記他の物体の検出位置とが異なるか否かを判定し、前記鏡像位置が、前記複数の物体のうちの前記第1物体以外の前記他の物体の検出位置のいずれとも異なると判定した場合に、前記鏡像位置に前記第1物体が存在すると認識するコンピュータと、
を備えることを特徴とする物体認識装置。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、物体認識方法及び物体認識装置に関する。
【背景技術】
【0002】
特許文献1には、車両に搭載されてターゲットとの相対距離を検出するミリ波レーダ車間距離センサが記載されている。このミリ波レーダ車間距離センサは、検出した静止物のターゲットからゴーストを判定する基準として基本ラインを算出し、検出したターゲットが基本ラインの内側にあるか外側にあるかを判定し、外側にあるターゲットを消去する。
【先行技術文献】
【特許文献】
【0003】
【文献】特開2001-116839号公報
【発明の概要】
【発明が解決しようとする課題】
【0004】
上記特許文献1に記載のミリ波レーダ車間距離センサは、レーダ波のマルチパス(多重波伝播)によって実際には存在しない物標(いわゆる「ゴースト」)が発生した場合にゴーストを消去する。このようにゴーストを消去すると、実際に存在している物体を検出しそこなう可能性がある。例えばレーダの死角にいる物体を検出できなくなる。
本発明は、レーダで検出した物体が、マルチパスによって実際と異なる位置に検出された場合に、実際の位置を推定することを目的とする。
【課題を解決するための手段】
【0005】
本発明の一態様に係る物体認識方法では、レーダ装置からレーダ波を出射するとともにレーダ波の反射波を受信し、反射波の受信結果に基づいて周囲の複数の物体をそれぞれ検出した各々の検出位置を取得し、検出位置に基づいて、複数の物体のうちの第1物体nお検出位置とレーダ装置との間に第2物体が存在するか否かを判定し、第2物体が存在すると判定した場合に第1物体を処理対象として選択し、第1物体を処理対象として選択した場合に、第2物体のレーダ装置に対向する面である反射面の位置及び角度を検出し、反射面を対称面として第1物体の検出位置を反転させた鏡像位置に第1物体が存在すると認識する。
【発明の効果】
【0006】
本発明によれば、レーダで検出した物体が、マルチパスによって実際と異なる位置に検出された場合に、実際の位置を推定できる。
【図面の簡単な説明】
【0007】
図1】第1実施形態の車両制御装置の概略構成例を示す図である。
図2】第1実施形態の物体認識方法の概略説明図である。
図3】第1実施形態の車両制御装置の機能構成例のブロック図である。
図4A】自車両の周囲の物体のゴーストの検出位置の一例を示す図である。
図4B】仮想物体の位置の算出方法の一例の説明図である。
図5】第1実施形態の物体認識方法の一例のフローチャートである。
図6】第2実施形態の車両制御装置の機能構成例のブロック図である。
図7】処理対象選択処理の一例の説明図である。
図8A】仮想物体追加判定処理の第1例の説明図である。
図8B】仮想物体追加判定処理の第1例の説明図である。
図9】仮想物体追加判定処理の第2例の説明図である。
図10】第2実施形態の物体認識方法の一例のフローチャートである。
図11】処理対象選択処理の一例のフローチャートである。
図12】反射面・仮想物体算出処理の一例のフローチャートである。
図13】仮想物体追加判定処理の一例のフローチャートである。
【発明を実施するための形態】
【0008】
以下、図面を参照して、本発明の実施形態を説明する。図面の記載において、同一又は類似の部分には同一又は類似の符号を付し、重複する説明を省略する。各図面は模式的なものであり、現実のものとは異なる場合が含まれる。以下に示す実施形態は、本発明の技術的思想を具体化するための装置や方法を例示するものであって、本発明の技術的思想は、下記の実施形態に例示した装置や方法に特定するものでない。本発明の技術的思想は、特許請求の範囲に記載された技術的範囲内において、種々の変更を加えることができる。
【0009】
(第1実施形態)
(構成)
自車両1は、実施形態に係る車両制御装置10を搭載する。車両制御装置10は、自車両1の周囲の物体をレーダによって認識し、自車両1の周囲の物体の有無に基づいて自車両の走行を制御する。車両制御装置10は、特許請求の範囲に記載の「物体認識装置」の一例である。
車両制御装置10は、レーダ装置11と、物体認識コントローラ12と、走行制御部13と、アクチュエータ14を備える。
【0010】
レーダ装置11は、例えばミリ波レーダであり、レーダ波を自車両1の周囲に出射し、その反射波を受信することにより、レーダ波の反射点の自車両1に対する相対位置を検出したレーダ点群を、自車両1の周囲の物体の検出位置として取得する。レーダ装置11は、取得したレーダ点群を示す点群情報を物体認識コントローラ12に出力する。
【0011】
物体認識コントローラ12は、レーダ装置11から得られたレーダ点群に基づいて自車両1の周囲の物体を認識する電子制御ユニット(Electronic Control Unit)である。物体認識コントローラ12は、プロセッサ15とその周辺部品とを含む。プロセッサ15は、例えばCPU(Central Processing Unit)、やMPU(Micro-Processing Unit)であってよい。
【0012】
周辺部品には記憶装置16等が含まれる。記憶装置16は、半導体記憶装置、磁気記憶装置及び光学記憶装置のいずれかを備えてよい。記憶装置16は、レジスタ、キャッシュメモリ、主記憶装置として使用されるROM(Read Only Memory)及びRAM(Random Access Memory)等のメモリを含んでよい。
以下に説明する物体認識コントローラ12の機能は、例えばプロセッサ15が、記憶装置16に格納されたコンピュータプログラムを実行することにより実現される。
【0013】
なお、物体認識コントローラ12を、以下に説明する各情報処理を実行するための専用のハードウエアにより形成してもよい。
例えば、物体認識コントローラ12は、汎用の半導体集積回路中に設定される機能的な論理回路を備えてもよい。例えば物体認識コントローラ12は、フィールド・プログラマブル・ゲート・アレイ(FPGA:Field-Programmable Gate Array)等のプログラマブル・ロジック・デバイス(PLD:Programmable Logic Device)等を有していてよい。
【0014】
走行制御部13は、自車両1の走行を制御するコントローラである。走行制御部13は、物体認識コントローラ12による自車両1の周囲の物体の認識結果に基づいてアクチュエータ14を駆動し、自車両1の操舵制御、加速制御、または減速制御の少なくとも1つを実行する。
例えば走行制御部13は、プロセッサとその周辺部品とを含む。プロセッサは、例えばCPUやMPUであってよい。周辺部品には記憶装置が含まれる。記憶装置は、レジスタ、キャッシュメモリ、ROM、RAMなどのメモリや、半導体記憶装置、磁気記憶装置、光学記憶装置を含んでよい。走行制御部13が専用のハードウエアであってもよい。
【0015】
アクチュエータ14は、走行制御部13からの制御信号に応じて、自車両1の操舵機構、アクセル開度及びブレーキ装置を操作して、自車両1の車両挙動を発生させる。アクチュエータ14は、ステアリングアクチュエータと、アクセル開度アクチュエータと、ブレーキ制御アクチュエータを備える。ステアリングアクチュエータは、自車両1の操舵機構の操舵方向及び操舵量を制御する。アクセル開度アクチュエータは、自車両1のアクセル開度を制御する。ブレーキ制御アクチュエータは、自車両1のブレーキ装置の制動動作を制御する。
【0016】
次に、図2を参照して物体認識コントローラ12による自車両1の周囲の物体の認識処理について説明する。
例として右側通行の交通環境において、交差点の直前まで側道に壁20及び21がある状況で自車両1が右折する場面を想定する。以下、右側通行の交通環境を例として説明するが、本発明は左側通行の交通環境においても適用できる。
自車両1が走行する車線と交差する交差車線を走行する車両2rは、左方から交差点に接近している。車両2rは、自車両1から見て壁20の死角に入っているため、レーダ装置11は車両2rを直接検出できない。車両2rは特許請求の範囲に記載の「第1物体」の一例である。
【0017】
一方で、レーダ波が壁21で反射することにより、マルチパスによる反射点によって、車両2rのゴーストである物標2gがレーダ装置11によって検出されている。物標2gの検出位置は、特許請求の範囲に記載の「第1物体の検出位置」の一例である。
この場合に、上記特許文献1のように物標2gを消去すると、左方から交差点に接近する車両2rが存在しないと認識され、矢印23のように自車両1の右折を行う走行制御が行われるおそれがある。
【0018】
このため、物体認識コントローラ12は、物標2gの検出位置と自車両1との間(すなわち物標2gの検出位置とレーダ装置11との間)に、第2物体が存在するか否かを判定する。図2の例では、物標2gの検出位置と自車両1との間に壁21が存在する。
物標2gの検出位置と自車両1との間に壁21が存在する場合に、物体認識コントローラ12は、ゴースト2gの検出位置と自車両1との間に存在する壁21の、自車両1に対向する面(すなわちレーダ装置11に対向する面)21pの位置と角度を算出する。
【0019】
物体認識コントローラ12は、反射面21pを対称面としてゴースト2gの検出位置2gbを反転させた鏡像位置2rbに車両2rが存在すると認識する。
以上によって、物体認識コントローラ12は、レーダ装置11の死角にいる車両2rのゴースト2gを用いて車両2rの位置を検出することができる。これにより、レーダ装置11の死角にいる車両2rのゴースト2gが発生している場合に、車両2rを検出しそこなうのを防止できる。
【0020】
次に図3を参照して、第1実施形態の車両制御装置10の機能構成の一例を詳述する。物体認識コントローラ12は、第1物体検出部30と、追跡部31と、物体情報蓄積部32と、処理対象選択部33と、反射面算出部34と、仮想物体算出部35と、物体情報選択部36を備える。
【0021】
第1物体検出部30は、レーダ装置11が検出した自車両1の周囲の物体の検出位置を示すレーダ点群を受信する。第1物体検出部30は、レーダ点群に含まれる点を、互いの相対距離(近接度合)に応じてグループ化(クラスタリング)して個々の物体を抽出し、抽出した物体を示す点群の集合を各物体の物体情報として構成する。グループ化の方法としては既知の様々な方法を採用できる。
【0022】
図4Aを参照する。この例では、自車両1の走行路の壁21の検出位置を表す点群21a、21b、21c、21d及び21eと、壁21におけるレーダ波の反射によって発生した、壁20の死角にいる車両2rのゴーストの点群24a、24b、24c及び24dが検出されている。第1物体検出部30は、点群21a~21eをグループ化して1つの物体として検出し、点群24a~24dをグループ化して1つの物体として検出する。
【0023】
第1物体検出部30は、個々の物体の点群を、物体の概略の外形を表す矩形にあてはめる、いわゆる矩形フィッティングを行う。矩形フィッティングの方法としては、点群を包含する対象の矩形を算出するなど、既知の様々な方法を採用できる。
図4Bを参照する。第1物体検出部30は、点群21a~21eを矩形フィッティングすることにより壁21を矩形物体として認識する。また、点群24a~24dを矩形フィッティングすることにより矩形の物体24を認識する。以下、物体24を「ゴースト物体」と表記することがある。
【0024】
図3を参照する。追跡部31は、第1物体検出部30が検出した物体の物体情報を取得し、異なる時刻に検出された物体を時系列で追跡(トラッキング)する。追跡部31は、異なる時刻間における物体の同一性の検証(対応付け)を行い、時系列で同一物体として判定された物体に同一の識別情報を付与する。
さらに追跡部31は、異なる時刻における同一物体の位置変化に基づいて物体の速度ベクトルを算出する。
【0025】
物体情報蓄積部32は、追跡部31によって識別情報が付与された物体情報を、物体認識コントローラ12の記憶装置16に蓄積し、蓄積された物体情報を記憶装置16から読み出して、処理対象選択部33と物体情報選択部36に出力する。
処理対象選択部33は、ゴースト物体の真の位置を計算する計算処理の対象とする物体を、物体情報蓄積部32が蓄積した物体情報の中から選択する。
図4Bを参照する。以下の説明において、便宜上ゴースト物体の真の位置に仮想的に配置される物体25を「仮想物体」と表記する。また、ゴースト物体の真の位置(すなわち仮想物体25の配置位置)を計算する計算処理を「仮想物体の計算処理」と表記する。
【0026】
いま、物体24の検出位置として、例えば物体24の前端中央の物体基準点24eを選択する。また、自車両1の位置(すなわちレーダ装置11の位置)を表す自車両基準点1bとして、例えばレーダ装置11の前端位置を選択する。
処理対象選択部33は、自車両基準点1bと物体基準点24eとの間に他の物体があるか否かを判定する。
【0027】
自車両基準点1bと物体基準点24eとの間に他の物体が存在する場合、処理対象選択部33は、仮想物体の計算処理の処理対象として物体24を選択する。図4Bの例では、自車両基準点1bと物体基準点24eとの間に壁21が存在する。このため、仮想物体の計算処理の処理対象として物体24が選択される。
一方で、自車両基準点1bと物体基準点24eとの間に他の物体が存在しない場合には、処理対象選択部33は、仮想物体の計算処理の処理対象として物体24を選択しない。
【0028】
反射面算出部34と仮想物体算出部35は、処理対象選択部33により選択された物体24を真の位置に配置した仮想物体25の位置を計算する計算処理を実行する。
反射面算出部34は、物体24がゴースト物体であると仮定した場合に、このゴーストを生じさせたマルチパスの反射点の位置と反射面の方向とを算出する。
以下、本実施形態では、物体の位置情報が水平面上の2次元位置情報である場合の例について説明するが、物体の位置情報が3次元位置情報である場合についても同様に、3次元的に配置される反射面上の反射点の位置と反射面の方向を算出できる。
反射面算出部34は、他の物体21を表す矩形の辺のうち、自車両基準点1bから物体基準点24eまで延びる物体ベクトルPgと最初に交差する交差辺21sを算出する。
【0029】
反射面算出部34は、交差辺21sの長さLが閾値Lt以上であるか否かを判定する。交差辺21sの長さLが閾値Lt以上である場合、反射面算出部34は、物体24がゴースト物体であると判定し、物体ベクトルPgと交差辺21sとが交差する点をマルチパスの反射点として算出する。図4Bに示すベクトルPwは、自車両基準点1bから反射点まで延びる反射点ベクトルである。
また、反射面算出部34は、マルチパスの反射面の方向として交差辺21sの方向を算出する。図4Bに示すベクトルwは、交差辺21sの方向を示す壁方向ベクトルである。
【0030】
一方で、交差辺21sの長さLが閾値Lt未満である場合、反射面算出部34は、物体24がゴースト物体でないと判定し、反射点の位置及び反射面の方向を算出しない。この場合には、仮想物体25の位置を算出しない。
仮想物体算出部35は、物体ベクトルPgと、壁方向ベクトルwと、反射点ベクトルPwに基づいて仮想物体25の位置を算出する。具体的には、仮想物体算出部35は、マルチパスの反射面を対称面としてゴースト物体24の検出位置を反転させた鏡像位置を、仮想物体25の位置として算出する。
【0031】
物体ベクトルPgと壁方向ベクトルwとのなす角をθとすると、自車両基準点1bから仮想物体25の位置25b(例えば仮想物体25の前端中央の位置)までの仮想物体ベクトルPvは、次式(1)により算出できる。
Pv=Pw+R(-2θ)(Pg-Pw) …(1)
【0032】
式(1)中のR(x)は次式(2)で与えられる回転行列である。
【数1】
【0033】
また、ゴースト物体24の速度ベクトルvgと壁方向ベクトルwとのなす角をαとすると、仮想物体25の速度ベクトルvvは、次式(3)によって算出できる。
vv=R(-2α)vg …(3)
仮想物体算出部35は、算出した仮想物体25の位置及び速度を、物体2rの位置及び速度と認識して、仮想物体25の物体情報として蓄積する。
【0034】
物体情報選択部36は、物体情報蓄積部32が蓄積した物体情報のうちゴースト物体以外の物体情報に、仮想物体算出部35が算出した仮想物体25の物体情報を追加して、走行制御部13に送信する。
走行制御部13は、物体情報選択部36から受信した物体情報に基づいて、自車両1の操舵機構の操舵方向若しくは操舵量、アクセル開度、又はブレーキ装置の制動力の少なくとも1つを制御する。
【0035】
例えば、走行制御部13は、物体情報選択部36から受信した物体情報に基づいて、自車両1の周囲の他の物体である他車両の走行軌道を予測する。走行制御部13は、自車両1の予定走行軌道が他車両の走行軌道と干渉する場合や、自車両と他車両との距離が所定距離未満に近づく場合には、自車両1が他車両を回避するようにアクチュエータ14を駆動し、自車両1の操舵機構の操舵方向若しくは操舵量、アクセル開度、又はブレーキ装置の制動力の少なくとも1つを制御する。
【0036】
(動作)
次に、図5を参照して第1実施形態の物体認識方法の一例を説明する。
ステップS1において第1物体検出部30は、自車両1の周囲の物体の検出位置を示すレーダ点群を受信する。第1物体検出部30は、レーダ点群に含まれる点をグループ化(クラスタリング)して個々の物体を抽出し、抽出した物体を示す点群の集合を各物体の物体情報として構成する。
ステップS2において第1物体検出部30は、個々の物体の点群に対して矩形フィッティングを行うことにより、自車両1の周囲の物体を矩形物体として認識する。
【0037】
ステップS3において追跡部31は、第1物体検出部30が検出した物体を時系列で追跡し、時系列で同一物体として判定された物体に同一の識別情報を付与する。追跡部31は、異なる時刻における同一物体の位置変化に基づいて物体の速度ベクトルを算出する。物体情報蓄積部32は、追跡部31によって識別情報が付与された物体情報を記憶装置16に蓄積する。
【0038】
ステップS4において処理対象選択部33は、自車両の周囲で検出された複数の物体のいずれかを選択する。選択された物体を「注目物体」と表記する。処理対象選択部33は、注目物体の検出位置と自車両1との間に他の物体があるか否かを判定する。注目物体の検出位置と自車両1との間に他の物体がある場合(ステップS4:Y)に、処理対象選択部33は、仮想物体の計算処理の処理対象として注目物体を選択して、処理をステップS5に進める。
【0039】
注目物体の検出位置と自車両1との間に他の物体がない場合(ステップS4:N)に処理対象選択部33は、仮想物体の計算処理の対象として注目物体を選択せずに処理をステップS8へ進める。
ステップS5において反射面算出部34は、注目物体の検出位置と自車両1との間に存在する他の物体の矩形を形成する辺のうち、自車両から注目物体の検出位置まで延びる物体ベクトルPgと最初に交差する交差辺の長さLを算出する。反射面算出部34は、交差辺の長さLが閾値Lt以上であるか否かを判定する。
【0040】
交差辺の長さLが閾値Lt以上である場合(ステップS5:Y)に処理はステップS6に進む。交差辺の長さLが閾値Lt以上でない場合(ステップS5:N)に処理対象選択部33は、仮想物体の計算処理の対象として注目物体を選択せずに処理をステップS8へ進める。
ステップS6において反射面算出部34は、ゴーストを生じさせたマルチパスの反射点の位置と反射面の方向を算出する。仮想物体算出部35は、注目物体に対して上式(1)~(3)に基づいて仮想物体25の位置及び速度を算出する。
ステップS7において仮想物体算出部35は、仮想物体25の位置及び速度を、ゴースト物体の実際の位置及び速度と認識して蓄積する。
【0041】
ステップS8において処理対象選択部33は、追跡部31によって識別情報が付与された全ての物体について処理を行ったか否かを判定する。全ての物体について処理を行った場合(ステップS8:Y)に処理はステップS9に進む。未処理の物体が残っている場合(ステップS8:N)にステップS4に戻り、未処理の物体のうち何れかを注目物体として選択して同じ処理を繰り返す。
ステップS9において物体情報選択部36は、物体情報蓄積部32が蓄積した物体情報のうちゴースト物体以外の物体情報に、仮想物体算出部35が算出した仮想物体の物体情報を追加して、走行制御部13に送信する。
【0042】
(第1実施形態の効果)
(1)レーダ装置11は、自車両1の周囲へレーダ波を出射するとともにレーダ波の反射波を受信し、反射波の受信結果に基づいて自車両1の周囲の複数の物体をそれぞれ検出した各々の検出位置を取得する。
処理対象選択部33は、レーダ装置11が取得した検出位置に基づいて、自車両1の周囲の複数の物体のうちの第1物体の検出位置とレーダ装置11との間に第2物体が存在するか否かを判定し、第2物体が存在すると判定した場合に第1物体を仮想物体の計算処理の処理対象として選択する。
【0043】
処理対象選択部33が第1物体を処理対象として選択した場合に、反射面算出部34は、第2物体のレーダ装置11に対向する面である反射面の位置及び角度を検出する。仮想物体算出部35は、反射面を対称面として第1物体の検出位置を反転させた鏡像位置に第1物体が存在すると認識する。
これによって、レーダで検出した物体がマルチパスによって実際と異なる位置に検出された場合に、実際の位置を推定できる。例えば、レーダの死角にいる物体のゴーストを用いて物体の実際の位置を検出できる。これにより、レーダの死角にいる物体のゴーストが発生している場合に物体を検出しそこなうのを防止できる。
【0044】
(第2実施形態)
次に、第2実施形態を説明する。図6を参照する。第2実施形態の車両制御装置10は、レーダ装置11に加えて、レーダ以外の他のセンサも用いて自車両1の周囲の物体を検出する。例えば、車両制御装置10は、自車両1の周囲の物体を検出する他のセンサとして、レーザ測距装置40とカメラ41を備える。すなわち車両制御装置10は、自車両1の周囲の物体を検出する複数のセンサとして、レーダ装置11、レーザ測距装置40及びカメラ41を備える。
【0045】
レーザ測距装置40は、例えばレーザレーダ、LIDAR(Light Detection and Ranging、Laser Imaging Detection and Ranging)、レーザレンジファインダ(LRF:Laser Range-Finder)であり、自車両1の周囲にレーザ光を出射して、その反射波を受信することにより、反射点の自車両1に対する相対位置を検出したレーザ測距装置点群を、自車両1の周囲の物体の検出位置として取得する。
カメラ41は、自車両1の周囲を撮影して、自車両1の周囲の撮像画像を生成する。
【0046】
第2実施形態の物体認識コントローラ12は、図3を参照して説明した第1実施形態の物体認識コントローラ12と同様の構成を有しており、同様の機能については重複説明を省略する。第2実施形態の物体認識コントローラ12は、第2物体検出部44と、画像認識部45と、統合部46を備える。
【0047】
第2物体検出部44は、レーザ測距装置40が検出した自車両1の周囲の物体の検出位置を示すレーザ測距装置点群を受信する。第2物体検出部44は、レーザ測距装置点群に含まれる点を、互いの相対距離(近接度合)に応じてグループ化(クラスタリング)して個々の物体を抽出し、抽出した物体を示す点群の集合を各物体の物体情報として構成する。グループ化の方法としては既知の様々な方法を採用できる。
第2物体検出部44は、個々の物体の点群を、物体の概略の外形を表す矩形にあてはめる、いわゆる矩形フィッティングを行う。矩形フィッティングの方法としては、点群を包含する対象の矩形を算出するなど、既知の様々な方法を採用できる。
【0048】
画像認識部45は、カメラ41から得られる撮像画像に対して画像認識処理を実行し、撮像画像のどの位置に、どのような属性の物体が存在するかを認識する。
統合部46は、第1物体検出部30が検出した物体、第2物体検出部44が検出した物体及び画像認識部45が検出した物体の同一性を判断する。第1物体検出部30、第2物体検出部44及び画像認識部45が同一物体を検出している場合、統合部46は、第1物体検出部30、第2物体検出部44及び画像認識部45によってそれぞれ得られた同一物体の情報を統合する。
【0049】
物体情報は、既知の様々なフュージョン処理により統合できる。例えば統合部46は、レーザ測距装置40の検出結果から得られる物体の位置及び姿勢の情報と、カメラ41による撮像画像から得られる物体の属性情報と、レーダ装置11の検出結果から得られる物体の速度情報とを組み合わせて、個々の物体の物体情報を生成する。
追跡部31は、統合部46により統合された物体情報に基づいて、検出した物体を時系列で追跡し、時系列で同一物体として判定された物体に同一の識別情報を付与する。また追跡部31は、物体の速度ベクトルを算出する。物体情報蓄積部32は、追跡部31によって識別情報が付与された物体情報を記憶装置16に蓄積する。
【0050】
ここで、マルチパスによるゴーストは、カメラ41から得られる撮像画像や、レーザ測距装置40によるレーザ測距装置点群には発生しない。
このため、第2実施形態の処理対象選択部33は、物体情報蓄積部32によって蓄積された物体情報のうち、レーダ装置11にのみによって検出され、他のセンサ、すなわちカメラ41やレーザ測距装置40によって検出されなかった物体の中から、仮想物体の計算処理の処理対象を選択する。
【0051】
さらに、処理対象選択部33は、物体情報蓄積部32によって物体情報が蓄積された物体の移動方向がゴースト物体の移動速度として尤もらしいか否かを判定し、物体の移動方向がゴースト物体の移動速度として尤もらしくない場合には、仮想物体の計算処理の処理対象として選択しない。
図7を参照する。処理対象選択部33は、物体24の検出位置の移動方向ベクトルvmと、物体24の検出位置が存在する走行車線26の進行方向を示す進行方向ベクトルvt1とのなす角度φ1を算出する。処理対象選択部33は、角度φ1が閾値φt1以上の場合に、物体24の移動方向が尤もらしいと判定し、角度φ1が閾値φt1未満の場合に、物体24の移動方向が尤もらしくないと判定する。
【0052】
図6を参照する。走行車線26の進行方向を取得するために、第2実施形態の車両制御装置10は、測位装置42と、地図データベース43を備える。図6において地図データベースを「地図DB」と表記する。
測位装置42は、全地球型測位システム(GNSS)受信機を備え、複数の航法衛星から電波を受信して自車両1の現在位置を測定する。GNSS受信機は、例えば地球測位システム(GPS)受信機等であってよい。測位装置42は、例えば慣性航法装置であってもよい。測位装置42は、オドメトリにより自車両1の現在位置を測定してもよい。
【0053】
地図データベース43は、フラッシュメモリ等の記憶装置に格納され、自車両1の自己位置の推定に必要な道路形状や地物、ランドマーク等の物標の位置及び種類などの地図情報を記憶している。
地図データベース43として、例えば、自律走行用の地図として好適な高精度地図データ(以下、単に「高精度地図」という。)を記憶してよい。高精度地図は、ナビゲーション用の地図データ(以下、単に「ナビ地図」という。)よりも高精度の地図データであり、道路単位の情報よりも詳細な走行レーン(車線)単位の車線情報を含む。例えば、自律走行用の地図として好適な高精度地図データ(以下、単に「高精度地図」という。)を記憶してよい。高精度地図は、ナビゲーション用の地図データ(以下、単に「ナビ地図」という)よりも高精度の地図データであり、道路単位の情報よりも詳細な車線単位の情報を含む。
例えば、高精度地図は車線単位の情報として、車線基準線(例えば車線内の中央の線)上の基準点を示す車線ノードの情報と、車線ノード間の車線の区間態様を示す車線リンクの情報を含む。
【0054】
車線ノードの情報は、その車線ノードの識別番号、位置座標、接続される車線リンク数、接続される車線リンクの識別番号を含む。車線リンクの情報は、その車線リンクの識別番号、車線の種類、車線の走行方向、車線の幅員、車線区分線の種類、車線の形状、車線区分線の形状を含む。
高精度地図は更に、車線上又はその周辺に存在する信号機、停止線、標識、建物、電柱、縁石、横断歩道等の構造物の種類及び位置座標等の構造物情報を含む。
【0055】
処理対象選択部33は、測位装置42による自車両1の現在位置の測定結果に基づいて、高精度地図にて使用される共通座標系上(例えば世界座標系や地図座標系)の物体24の検出位置を算出する。
処理対象選択部33は、地図データベース43を参照して共通座標系上の物体24の検出位置が、走行車線に存在するか否かを判定する。共通座標系上の物体24の検出位置が走行車線に存在する場合に、処理対象選択部33は、地図データベース43を参照して、物体24の検出位置が存在する走行車線に進行方向が設定されているか否かを判定する。進行方向が設定されている場合には、進行方向の情報を取得する。
【0056】
処理対象選択部33は、共通座標系上の物体24の検出位置の変化に基づいて、共通座標系上の物体24の検出位置の移動方向を算出する。
物体24の移動方向と走行車線の進行方向とのなす角度φ1を算出する。処理対象選択部33は、角度φ1が閾値φt1以上の場合に物体24の移動方向が尤もらしいと判定し、角度φ1が閾値φt1未満の場合に物体24の移動方向が尤もらしくないと判定する。
【0057】
物体24の移動方向が尤もらしい場合には、処理対象選択部33は、仮想物体の計算処理の処理対象として物体24を選択する。物体24の移動方向が尤もらしくない場合には、処理対象選択部33は、仮想物体の計算処理の処理対象として物体24を選択しない。
一方で、共通座標系上の物体24の検出位置が走行車線に存在しない場合には、処理対象選択部33は、物体24の移動方向が尤もらしいか否かを判定できない。この場合に処理対象選択部33は、仮想物体の計算処理の処理対象として物体24を選択する。
【0058】
さらに、第2実施形態の物体認識コントローラ12は、仮想物体算出部35が算出した仮想物体の位置や移動方向が尤もらしいか否かを判断する。物体認識コントローラ12は、位置や移動方向が尤もらしい仮想物体の位置にのみ実際の物体が存在すると判断して、
当該仮想物体の物体情報のみを、ゴースト物体以外の物体情報に追加して走行制御部13に送信する。
このため第2実施形態の仮想物体算出部35は、仮想位置追加判定部47を備える。
【0059】
図8A及び図8Bを参照する。参照符号24はゴースト物体を示し、参照符号25はゴースト物体24を真の位置に配置した仮想物体を示し、参照符号27は、レーダ装置11に加えて、他のセンサ(レーザ測距装置40やカメラ41)にも検出されている他の物体を示す。
仮想位置追加判定部47は、仮想物体25と他の物体27との間隔dを算出する。例えば仮想位置追加判定部47は、仮想物体25の前端中央の基準点25bと物体27の前端中央の基準点27bとの間隔dを算出してよい。
【0060】
図8Aに示すように仮想物体25と他の物体27との間隔dが非常に短く、仮想物体25の位置と他の物体27の位置とがほぼ一致している場合には、他の物体27のゴーストをゴースト物体24としても検出している可能性が高い。このような場合には、仮想物体25の物体情報を破棄することにより計算量を削減できる。
【0061】
したがって、仮想位置追加判定部47は、図8Bに示すように仮想物体25と他の物体27との間隔dが十分に長く、仮想物体25の位置と他の物体27の位置とが異なる場合にのみ、仮想物体25の位置に実際の物体が存在すると判断する。例えば、仮想位置追加判定部47は、間隔dが閾値Dtより長いか否かを判断する。間隔dが閾値Dtより長い場合に、仮想物体25の位置に実際の物体が存在すると判断して、この仮想物体25の物体情報を、ゴースト物体以外の物体情報に追加して走行制御部13に送信することを許可する。
【0062】
図9を参照する。参照符号24はゴースト物体を示し、参照符号25はゴースト物体24を真の位置に配置した仮想物体を示し、参照符号28は他の物体を示す。
ゴースト物体24は、他の物体28の死角にいる物体のゴーストであり、レーダ装置11は、この物体の真の位置を直接検出しておらず、レーザ測距装置40及びカメラ41はこの物体そのものを検出していない。
【0063】
いま、ゴースト物体24の検出位置は、自車両1の周囲の走行車線26a、26b、26c、26d、26e、26f、26g及び26hの何れにも存在していない。このため、処理対象選択部33は、図7を参照して説明した方法のように走行車線26a~26hの進行方向を用いて、ゴースト物体24の検出位置の移動方向が尤もらしいか否かを判定できない。
そこで、仮想位置追加判定部47は、仮想物体25の位置や移動方向が尤もらしいか否かを判定する。
【0064】
具体的には、仮想位置追加判定部47は、測位装置42の自車両1の現在位置の測定結果に基づいて共通座標系上の仮想物体25の位置を算出する。
さらに仮想位置追加判定部47は、地図データベース43を参照して共通座標系上の仮想物体25の位置が、走行車線に存在するか否かを判定する。図9の例では、仮想物体25は、走行車線26aに存在する。
【0065】
共通座標系上の仮想物体25の位置が走行車線に存在する場合に、仮想位置追加判定部47は、地図データベース43を参照して、仮想物体25の位置が存在する走行車線に進行方向が設定されているか否かを判定する。進行方向が設定されている場合には進行方向の情報を取得する。図9の例では、走行車線26aの進行方向を示す進行方向ベクトルvt2を取得する。
【0066】
また、仮想位置追加判定部47は、共通座標系上の仮想物体25の位置変化に基づいて、共通座標系上の仮想物体25の移動方向を算出する。図9の例では、仮想物体25の移動方向ベクトルvmを算出する。仮想位置追加判定部47は、仮想物体25の移動方向と走行車線26aの進行方向とのなす角度φ2を算出する。
仮想位置追加判定部47は、角度φ2が閾値φt2以下の場合に仮想物体25の位置と移動方向が尤もらしいと判定する。この場合に、仮想位置追加判定部47は、仮想物体25の位置に実際の物体が存在すると判断して、この仮想物体25の物体情報を、ゴースト物体以外の物体情報に追加して走行制御部13に送信することを許可する。
【0067】
また、仮想位置追加判定部47は、仮想物体25が存在する走行車線26aの進行方向が設定されていない場合には、仮想物体25の位置が尤もらしいと判定する。この場合に、仮想位置追加判定部47は、仮想物体25の位置に実際の物体が存在すると判断して、この仮想物体25の物体情報を、ゴースト物体以外の物体情報に追加して走行制御部13に送信することを許可する。
【0068】
一方で、角度φ2が閾値φt2以上の場合には、仮想物体25の移動方向が尤もらしくないと判定する。この場合に仮想位置追加判定部47は、この仮想物体25の物体情報を、ゴースト物体以外の物体情報に追加して走行制御部13に送信することを許可しない。
物体情報選択部36は、物体情報蓄積部32が蓄積した物体情報のうち、ゴースト物体として選択された物体以外の物体情報に、仮想位置追加判定部47によって許可された仮想物体25の物体情報のみを追加して、走行制御部13に送信する。
【0069】
(動作)
次に、図10図13を参照して第2実施形態の物体認識方法の一例を説明する。
ステップS10及びS11の処理は、図5を参照して説明したステップS1及びS2の処理と同様である。
ステップS12において第2物体検出部44は、自車両1の周囲の物体の検出位置を示すレーザ測距装置点群を受信する。第2物体検出部44は、レーザ測距装置点群に含まれる点をグループ化(クラスタリング)して個々の物体を抽出し、抽出した物体を示す点群の集合を各物体の物体情報として構成する。
ステップS13において第2物体検出部44は、レーザ測距装置点群から抽出された個々の物体の点群に対して矩形フィッティングを行うことにより、自車両1の周囲の物体を矩形物体として認識する。
【0070】
ステップS14においてカメラ41から得られる撮像画像に対して画像認識処理を実行し、撮像画像のどの位置に、どのような属性の物体が存在するかを認識する。
なお、ステップS10及びS11の処理と、ステップS12及びS13の処理と、ステップS14の処理は並列に実行してもよく、所定の順序で直列に実行してもよい。
ステップS15において統合部46は、同一の物体について第1物体検出部30、第2物体検出部44及び画像認識部45によってそれぞれ得られた物体情報を統合する。
【0071】
ステップS16において追跡部31は、統合部46により統合された物体情報に基づいて、検出した物体を時系列で追跡し、時系列で同一物体として判定された物体に同一の識別情報を付与する。追跡部31は、異なる時刻における同一物体の位置変化に基づいて物体の速度ベクトルを算出する。物体情報蓄積部32は、追跡部31によって識別情報が付与された物体情報を記憶装置16に蓄積する。
【0072】
ステップS17において処理対象選択部33は、物体情報蓄積部32によって物体情報が蓄積された物体のいずれかを「注目物体」として選択して、処理対象選択処理を実行する。処理対象選択処理において処理対象選択部33は、注目物体を、仮想物体の計算処理の処理対象として選択するか否かを判定する。図11を参照して処理対象選択処理の一例を説明する。
【0073】
ステップS30において処理対象選択部33は、注目物体がレーダ装置11のみによって検出され、かつ他のセンサ(すなわちカメラ41やレーザ測距装置40)によって検出されなかったか否かを判定する。注目物体がレーダ装置11のみによって検出された場合(ステップS30:Y)に処理はステップS31に進む。
注目物体が他のセンサにも検出された場合(ステップS30:N)に処理対象選択部33は、注目物体を処理対象として選択せずに処理対象選択処理を終了する。その後に処理は図10のステップS20へ進む。
【0074】
ステップS31において処理対象選択部33は、注目物体の検出位置が走行車線内に存在するか否かを判定する。注目物体の検出位置が走行車線内に存在する場合(ステップS31:Y)に処理はステップS32に進む。注目物体の検出位置が走行車線内に存在しない場合(ステップS31:N)に処理はステップS35に進む。
【0075】
ステップS32において処理対象選択部33は、注目物体の検出位置が存在する走行車線に進行方向が設定されているか否かを判定する。走行車線に進行方向が設定されている場合(ステップS32:Y)に処理はステップS33に進む。走行車線に進行方向が設定されていない場合(ステップS32:N)に処理はステップS35に進む。
【0076】
ステップS33において処理対象選択部33は、注目物体の検出位置の移動方向と走行車線の進行方向とのなす角度φ1を算出する。
ステップS34において処理対象選択部33は、角度φ1が閾値φt1以上であるか否かを判定する。角度φ1が閾値φt1以上である場合(ステップS34:Y)に処理はステップS35に進む。角度φ1が閾値φt1以上でない場合(ステップS34:N)に処理対象選択部33は、注目物体を処理対象として選択せずに処理対象選択処理を終了する。その後に処理は図10のステップS20へ進む。
【0077】
ステップS35において処理対象選択部33は、注目物体の検出位置と自車両1との間に他の物体があるか否かを判定する。注目物体の検出位置と自車両1との間に他の物体がある場合(ステップS35:Y)に処理対象選択部33は、注目物体を処理対象として選択して、処理対象選択処理を終了する。注目物体の検出位置と自車両1との間に他の物体がない場合(ステップS35:N)に処理対象選択部33は、注目物体を処理対象として選択せずに処理対象選択処理を終了する。その後に処理は図10のステップS20へ進む。なお、処理対象選択部33は、他の物体の情報を地図データベース43に含まれる道路上又は道路周辺の構造物情報から取得してよい。
【0078】
図10を参照する。ステップS18において反射面算出部34と仮想物体算出部35は、処理対象選択処理によって処理対象と選択された物体に対して、仮想物体を算出する反射面・仮想物体算出処理を実行する。図12を参照して反射面・仮想物体算出処理の一例を説明する。
ステップS40において反射面算出部34は、注目物体の検出位置と自車両1との間に存在する他の物体の矩形を形成する辺のうち、自車両から注目物体の検出位置まで延びる物体ベクトルPgと最初に交差する交差辺を算出する。
【0079】
ステップS41において反射面算出部34は、交差辺の長さLが閾値Lt以上であるか否かを判定する。
交差辺の長さLが閾値Lt以上である場合(ステップS41:Y)に処理はステップS42に進む。交差辺の長さLが閾値Lt以上でない場合(ステップS41:N)に、仮想物体を算出せずに処理は図10のステップS20へ進む。
【0080】
ステップS42において反射面算出部34は、ゴーストを生じさせたマルチパスの反射点の位置と反射面の方向を算出する。仮想物体算出部35は、処理対象選択処理によって処理対象と選択された物体に対して上式(1)~(3)に基づいて仮想物体の位置及び速度を算出する。なお、反射面算出部34は、地図データベース43に含まれる道路上又は道路周辺の構造物情報に基づいて、マルチパスの反射面の位置及び角度の情報を取得してもよい。その後に、反射面・仮想物体算出処理が終了する。
【0081】
図10を参照する。ステップS19において仮想位置追加判定部47は、仮想物体追加判定処理を実行する。仮想物体追加判定処理において仮想位置追加判定部47は、反射面・仮想物体算出処理で算出した仮想物体の物体情報を、ゴースト物体以外の物体情報に追加して走行制御部13に送信するか否かを判定する。図13を参照して仮想物体追加判定処理の一例を説明する。
【0082】
ステップS50において仮想位置追加判定部47は、仮想物体から距離Dt以内に他の物体が検出されているか否かを判定する。他の物体が検出されている場合(ステップS50:Y)に仮想位置追加判定部47は、仮想物体の物体情報の追加を許可せずに仮想物体追加判定処理を終了する。その後に処理は図10のステップS20へ進む。他の物体が検出されていない場合(ステップS50:N)に処理はステップS51へ進む。
【0083】
ステップS51において仮想位置追加判定部47は、仮想物体が走行車線に存在するか否かを判定する。仮想物体が走行車線に存在する場合(ステップS51:Y)に処理はステップS52へ進む。仮想物体が走行車線に存在しない場合(ステップS51:N)に仮想位置追加判定部47は、仮想物体の物体情報の追加を許可せずに仮想物体追加判定処理を終了する。その後に処理は図10のステップS20へ進む。
【0084】
ステップS52において仮想位置追加判定部47は、仮想物体が存在する走行車線に進行方向が設定されているか否かを判定する。進行方向が設定されている場合(ステップS52:Y)に処理はステップS53へ進む。進行方向が設定されていない場合(ステップS52:N)に処理はステップS55へ進む。
ステップS53において仮想位置追加判定部47は、仮想物体の移動方向と走行車線の進行方向とのなす角度φ2を算出する。
【0085】
ステップS54において仮想位置追加判定部47は、角度φ2が閾値φt2以下であるか否かを判定する。仮想位置追加判定部47は、角度φ2が閾値φt2以下である場合(ステップS54:Y)に処理はステップS55へ進む。角度φ2が閾値φt2以下でない場合(ステップS54:N)に仮想位置追加判定部47は、仮想物体の物体情報の追加を許可せずに仮想物体追加判定処理を終了する。その後に処理は図10のステップS20へ進む。
【0086】
ステップS55において仮想位置追加判定部47は、仮想物体25の物体情報を、ゴースト物体以外の物体情報に追加して走行制御部13に送信することを許可する。仮想物体算出部35は、仮想物体25の位置及び速度を、ゴースト物体の実際の位置及び速度と認識して蓄積する。その後に仮想物体追加判定処理は終了する。
【0087】
図10を参照する。ステップS20において処理対象選択部33は、追跡部31によって識別情報が付与された全ての物体について処理を行ったか否かを判定する。全ての物体について処理を行った場合(ステップS20:Y)に処理はステップS21に進む。未処理の物体が残っている場合(ステップS20:N)にステップS17に戻り、未処理の物体のうち何れかを注目物体として選択して同じ処理を繰り返す。
ステップS21の処理は、図5を参照して説明したステップS9の処理と同様である。
【0088】
(第2実施形態の効果)
(1)測位装置42は、走行車線の位置及び進行方向の情報を少なくとも有する地図上の、レーダ装置11を搭載した自車両1の位置を測定する。処理対象選択部33は、地図上の自車両1の位置に基づいて、自車両1の周囲の複数の物体のうちの第1物体の地図上の検出位置を算出してよい。処理対象選択部33は、地図上の第1物体の検出位置の変化に基づいて、地図上の第1物体の検出位置の移動方向を算出してよい。
【0089】
処理対象選択部33は、第1物体の検出位置が存在する走行車線の進行方向と第1物体の検出位置の移動方向とのなす角が第1閾値以上である場合に、第1物体を仮想物体の計算処理の処理対象として選択してよい。
これにより、マルチパスによって実際と異なる位置に検出された可能性が高い物体を、仮想物体の計算処理の処理対象として選択できる。
これにより、
【0090】
(2)測位装置42は、走行車線の位置の情報を少なくとも有する地図上の、レーダ装置11を搭載した自車両1の位置を測定してよい。処理対象選択部33は、地図上の自車両1の位置に基づいて、地図上の第1物体の検出位置を算出してよい。処理対象選択部33は、第1物体の検出位置が走行車線に存在しない場合に、第1物体を仮想物体の計算処理の処理対象として選択してよい。
これにより、マルチパスによって実際と異なる位置に検出された可能性が高い物体を、仮想物体の計算処理の処理対象として選択できる。
【0091】
(3)レーダ以外の他のセンサ(レーザ測距装置40やカメラ41)を用いて自車両1の周囲の物体を検出してもよい。処理対象選択部33は、第1物体がレーダ装置に検出され、かつ第1物体が他のセンサに検出されない場合に第1物体を仮想物体の計算処理の処理対象として選択してよい。
これにより、レーダ波のマルチパスによって発生したゴースト物体を、仮想物体の計算処理の処理対象として選択できる。
【0092】
(4)仮想位置追加判定部47は、仮想物体の位置として算出した第1物体の検出位置の鏡像位置が、他の物体の検出位置のいずれとも異なる場合に、鏡像位置に第1物体が存在すると認識してよい。
これにより、マルチパスによって同一物体の複数の像が検出されている場合に、ゴーストを削除して計算量を削減できる。
【0093】
(5)測位装置42は、走行車線の位置の情報を少なくとも有する地図上の、レーダ装置11を搭載した自車両1の位置を測定する。仮想位置追加判定部47は、地図上の自車両1の位置に基づいて、地図上の鏡像位置を算出してよい。仮想位置追加判定部47は、鏡像位置が走行車線内である場合に、鏡像位置に第1物体が存在すると認識してよい。
これにより、走行車線内にある第1物体のみを認識することができるので、計算量を削減できる。
【0094】
(6)測位装置42は、走行車線の位置及び進行方向の情報を少なくとも有する地図上の、レーダ装置11を搭載した自車両1の位置を測定する。仮想位置追加判定部47は、地図上の自車両1の位置に基づいて、地図上の鏡像位置を算出してよい。仮想位置追加判定部47は、地図上の鏡像位置の位置変化に基づいて、鏡像位置の地図上の移動方向を算出してよい。仮想位置追加判定部47は、鏡像位置が存在する走行車線の進行方向と鏡像位置の移動方向とのなす角が第2閾値以下である場合に、鏡像位置に第1物体が存在すると認識してよい。これにより、尤もらしい位置に存在する第1物体を認識できる。
【0095】
(7)反射面算出部34は、地図データベース43に含まれる道路上又は道路周辺の構造物情報に基づいて、反射面の位置及び角度の情報を取得してよい。これにより、仮想物体の位置の算出精度を向上できる。
【符号の説明】
【0096】
1…自車両、10…車両制御装置、11…レーダ装置、12…物体認識コントローラ、13…走行制御部、14…アクチュエータ、15…プロセッサ、16…記憶装置、30…第1物体検出部、31…追跡部、32…物体情報蓄積部、33…処理対象選択部、34…反射面算出部、35…仮想物体算出部、36…物体情報選択部、40…レーザ測距装置、41…カメラ、42…測位装置、43…地図データベース、44…第2物体検出部、45…画像認識部、46…統合部、47…仮想位置追加判定部
図1
図2
図3
図4A
図4B
図5
図6
図7
図8A
図8B
図9
図10
図11
図12
図13