IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ 旭化成株式会社の特許一覧

<>
  • 特許-非水系電解液及び非水系二次電池 図1
  • 特許-非水系電解液及び非水系二次電池 図2
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2023-10-13
(45)【発行日】2023-10-23
(54)【発明の名称】非水系電解液及び非水系二次電池
(51)【国際特許分類】
   H01M 10/052 20100101AFI20231016BHJP
   H01M 10/0569 20100101ALI20231016BHJP
   H01M 10/0568 20100101ALI20231016BHJP
   H01M 10/0567 20100101ALI20231016BHJP
【FI】
H01M10/052
H01M10/0569
H01M10/0568
H01M10/0567
【請求項の数】 5
(21)【出願番号】P 2020103002
(22)【出願日】2020-06-15
(65)【公開番号】P2021197281
(43)【公開日】2021-12-27
【審査請求日】2023-02-28
(73)【特許権者】
【識別番号】000000033
【氏名又は名称】旭化成株式会社
(74)【代理人】
【識別番号】100099759
【弁理士】
【氏名又は名称】青木 篤
(74)【代理人】
【識別番号】100123582
【弁理士】
【氏名又は名称】三橋 真二
(74)【代理人】
【識別番号】100108903
【弁理士】
【氏名又は名称】中村 和広
(74)【代理人】
【識別番号】100142387
【弁理士】
【氏名又は名称】齋藤 都子
(74)【代理人】
【識別番号】100135895
【弁理士】
【氏名又は名称】三間 俊介
(72)【発明者】
【氏名】野田 大介
(72)【発明者】
【氏名】加味根 丈主
【審査官】渡部 朋也
(56)【参考文献】
【文献】国際公開第2018/169028(WO,A1)
【文献】国際公開第2019/229366(WO,A1)
【文献】特開2018-35060(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
H01M 10/052
H01M 10/0566
(57)【特許請求の範囲】
【請求項1】
正極集電体の片面又は両面に正極活物質層を有する正極、負極集電体の片面又は両面に負極活物質層を有する負極、セパレータ、及び非水系電解液を具備する非水系二次電池であって、
前記非水系電解液は、非水系溶媒とリチウム塩を含有し、
前記非水系溶媒が、前記非水系溶媒の全量に対して、5体積%以上95体積%以下のアセトニトリルを含み、
前記リチウム塩が、LiN(SO2m+1{式中、mは0~2の整数である}で表される化合物とLiPFを含み、
前記非水系電解液中のSO 2-の含有量が10ppm以上100ppm以下、FSO の含有量が10ppm以上100ppm以下、かつFの含有量が10ppm以上100ppm以下であることを特徴とする非水系二次電池。
【請求項2】
前記リチウム塩が、リチウムビス(フルオロスルホニル)イミドを含む、請求項1に記載の非水系二次電池。
【請求項3】
前記正極活物質層が、正極活物質としてリチウム含有金属酸化物を含有し、
前記負極活物質層が、負極活物質として、リチウムイオンを0.4V vs.Li/Liよりも卑な電位で吸蔵することが可能な材料を含有する、請求項1又は2に記載の非水系二次電池。
【請求項4】
前記非水系溶媒が、環状カーボネートを含む、請求項1~3のいずれか一項に記載の非水系二次電池。
【請求項5】
前記環状カーボネートが、ビニレンカーボネート及びフルオロエチレンカーボネートより成る群から選択される少なくとも1種を含有する、請求項4に記載の非水系二次電池。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、非水系電解液及び非水系二次電池に関する。
【背景技術】
【0002】
非水系電解液を含む非水系二次電池は、軽量、高エネルギー及び長寿命であることが大きな特徴であり、ノートブックコンピューター、携帯電話、デジタルカメラ、ビデオカメラ等の携帯用電子機器電源として広範囲に用いられている。また、非水系二次電池は、低環境負荷社会への移行に伴い、ハイブリッド型電気自動車(Hybrid Electric Vehicle、以下「HEV」と略記する。)及びプラグインHEV(Plug-in Hybrid Electric Vehicle、以下「PHEV」と略記する。)の電源、更には住宅用蓄電システム等の電力貯蔵分野においても注目されている。
【0003】
自動車等の車両及び住宅用蓄電システムに非水系二次電池を搭載する場合、高温環境下におけるサイクル性能及び長期信頼性等の観点から、電池の構成材料には、化学的、電気化学的な安定性、強度、耐腐食性等に優れた材料が求められる。さらに、非水系二次電池は、携帯用電子機器電源とは使用条件が大きく異なり、寒冷地においても作動しなければならないことから、低温環境下における高出力性能及び長寿命性能も必要物性として求められる。
【0004】
上述のような状況では、出力性能を有する非水系二次電池を実現するために、非水溶媒として、粘度と比誘電率とのバランスに優れたニトリル系溶媒が提案されている。中でも、アセトニトリルは、突出した性能を有する溶媒であることが知られているが、ニトリル基を含有するこれらの溶媒は、電気化学的に還元分解するといった致命的な欠点があるため、幾つかの改善策が報告されてきた。例えば、以下の特許文献1及び2には、溶媒であるアセトニトリルを特定の電解質塩、添加剤等と組み合わせることによって、アセトニトリルの還元分解の影響を低減した電解液が報告されている。
【0005】
また、特許文献3には、溶媒としてアセトニトリルを用い、電解質塩にリチウムビス(フルオロスルホニル)イミド等のイミド塩とフッ素含有無機リチウム塩を組み合わせた系が、良好な例として報告されている。
【0006】
ところで、リチウムビス(フルオロスルホニル)イミドに代表されるイミド塩については、更なる蓄電デバイスの性能向上に寄与するために、不純物として含まれる遊離酸であるHF、HSOF、及びHSOをできるだけ低濃度に調整したものを使用することが、特許文献4、特許文献5に提案されている。
【先行技術文献】
【特許文献】
【0007】
【文献】国際公開第2012/057311号
【文献】国際公開第2013/062056号
【文献】特開2015-65049号公報
【文献】特許第6093516号公報
【文献】特許第6205451号公報
【発明の概要】
【発明が解決しようとする課題】
【0008】
アセトニトリルを非水系電解液の溶媒に用いた二次電池は、高温環境下で使用した場合に容量低下を生じる課題について、未だ十分な解決には至っておらず、その出力性能を十分に活かすことができていない。
【0009】
本発明は、上記の事情に鑑みて為されたものであり、したがって、その目的は、高温環境下でも性能劣化が少ない、アセトニトリル含有非水系電解液を用いた非水系二次電池を提供することである。
【課題を解決するための手段】
【0010】
本発明者らは、上述の課題を解決するために鋭意研究を重ね、その結果、以下の構成を有する非水系電解液又は非水系二次電池を用いることによって上記課題を解決できることを見出し、本発明を完成させるに至った。
[1]
正極集電体の片面又は両面に正極活物質層を有する正極、負極集電体の片面又は両面に負極活物質層を有する負極、セパレータ、及び非水系電解液を具備する非水系二次電池であって、
前記非水系電解液は、非水系溶媒とリチウム塩を含有し、
前記非水系溶媒が、前記非水系溶媒の全量に対して、5体積%以上95体積%以下のアセトニトリルを含み、
前記リチウム塩が、LiN(SO2m+1{式中、mは0~2の整数である}で表される化合物とLiPFを含み、
前記非水系電解液中のSO 2-の含有量が10ppm以上100ppm以下、FSO の含有量が10ppm以上100ppm以下、かつFの含有量が10ppm以上100ppm以下であることを特徴とする非水系二次電池。
[2]
前記リチウム塩が、リチウムビス(フルオロスルホニル)イミドを含む、項目1に記載の非水系二次電池。
[3]
前記正極活物質層が、正極活物質としてリチウム含有金属酸化物を含有し、
前記負極活物質層が、負極活物質として、リチウムイオンを0.4V vs.Li/Liよりも卑な電位で吸蔵することが可能な材料を含有する、項目1又は2に記載の非水系二次電池。
[4]
前記非水系溶媒が、環状カーボネートを含む、項目1~3のいずれか一項に記載の非水系二次電池。
[5]
前記環状カーボネートが、ビニレンカーボネート及びフルオロエチレンカーボネートより成る群から選択される少なくとも1種を含有する、項目4に記載の非水系二次電池。
【発明の効果】
【0011】
本発明によれば、非水系電解液中に特定の濃度でSO 2-、FSO 、及びFが含有されることで、高温環境下での電池特性の劣化が改善し、より幅広い用途で使用可能な非水系二次電池を提供できる。
【図面の簡単な説明】
【0012】
図1】本実施形態の非水系二次電池の一例を概略的に示す平面図である。
図2図1の非水系二次電池のA-A線断面図である。
【発明を実施するための形態】
【0013】
以下、本発明を実施するための形態(以下、単に「本実施形態」という。)について詳細に説明する。本発明は、以下の実施形態に限定されるものではなく、その要旨を逸脱しない範囲で様々な変形が可能である。本明細書において「~」を用いて記載される数値範囲は、その前後に記載される数値を含む。
【0014】
<非水系二次電池>
本実施形態の非水系電解液は、非水系二次電池に用いることができる。本実施形態の非水系二次電池としては、負極、正極、セパレータ、及び電池外装に対し、特に制限を与えるものではない。
【0015】
また、限定するものではないが、本実施形態の非水系二次電池としては、正極活物質としてリチウムイオンを吸蔵及び放出することが可能な正極材料を含有する正極と、負極活物質として、リチウムイオンを吸蔵及び放出することが可能な負極材料、及び/又は金属リチウムを含有する負極と、を備えるリチウムイオン電池が挙げられる。
【0016】
本実施形態の非水系二次電池としては、具体的には、図1及び2に図示される非水系二次電池であってもよい。ここで、図1は非水系二次電池を概略的に表す平面図であり、図2図1のA-A線断面図である。
【0017】
図1図2に示す非水系二次電池100は、パウチ型セルで構成される。非水系二次電池100は、2枚のアルミニウムラミネートフィルムで構成した電池外装110の空間120内に、正極150と負極160とをセパレータ170を介して積層して構成した積層電極体と、非水系電解液(図示せず)とを収容している。電池外装110は、その外周部において、上下のアルミニウムラミネートフィルムを熱融着することにより封止されている。正極150、セパレータ170、及び負極160を順に積層した積層体には、非水系電解液が含浸されている。ただしこの図2では、図面が煩雑になることを避けるために、電池外装110を構成している各層、並びに正極150及び負極160の各層を区別して示していない。
【0018】
電池外装110を構成しているアルミニウムラミネートフィルムは、アルミニウム箔の両面をポリオレフィン系の樹脂でコートしたものであることが好ましい。
【0019】
正極150は、非水系二次電池100内で正極リード体130と接続している。図示していないが、負極160も、非水系二次電池100内で負極リード体140と接続している。そして、正極リード体130及び負極リード体140は、それぞれ、外部の機器等と接続可能なように、片端側が電池外装110の外側に引き出されており、それらのアイオノマー部分が、電池外装110の1辺と共に熱融着されている。
【0020】
図1及び2に図示される非水系二次電池100は、正極150及び負極160が、それぞれ1枚ずつの積層電極体を有しているが、容量設計により正極150及び負極160の積層枚数を適宜増やすことができる。正極150及び負極160をそれぞれ複数枚有する積層電極体の場合には、同一極のタブ同士を溶接等により接合したうえで1つのリード体に溶接等により接合して電池外部に取り出してもよい。上記同一極のタブとしては、集電体の露出部から構成される態様、集電体の露出部に金属片を溶接して構成される態様等が可能である。
【0021】
正極150は、正極合剤から作製した正極活物質層と、正極集電体とから構成される。負極160は、負極合剤から作製した負極活物質層と、負極集電体とから構成される。正極150及び負極160は、セパレータ170を介して正極活物質層と負極活物質層とが対向するように配置される。
【0022】
これらの各部材としては、本実施形態における各要件を満たしていれば、従来のリチウムイオン電池に備えられる材料を用いることができる。以下、非水系二次電池の各部材について更に詳細に説明する。
【0023】
<正極>
正極150は、正極合剤から作製した正極活物質層と、正極集電体とから構成される。正極150は、非水系二次電池の正極として作用するものであれば特に限定されず、公知のものであってもよい。
【0024】
正極活物質層は、正極活物質を含有し、必要に応じて導電助剤及びバインダーを更に含有することが好ましい。
【0025】
正極活物質層は、正極活物質として、リチウムイオンを吸蔵及び放出することが可能な材料を含有することが好ましい。このような材料を用いる場合、高電圧及び高エネルギー密度を得ることができる傾向にあるので好ましい。
【0026】
正極活物質としては、例えば、Ni、Mn、及びCoから成る群より選ばれる少なくとも1種の遷移金属元素を含有する正極活物質が挙げられ、下記一般式(a):
LiNiCoMn・・・・・(a)
{式中、MはAl、Sn、In、Fe、V、Cu、Mg、Ti、Zn、Mo、Zr、Sr、Baから成る群から選ばれる少なくとも1種の金属であり、且つ、0<p<1.3、0<q<1.2、0<r<1.2、0≦s<0.5、0≦t<0.3、0.7≦q+r+s+t≦1.2、1.8<u<2.2の範囲であり、そしてpは、電池の充放電状態により決まる値である。}
で表されるリチウム(Li)含有金属酸化物から選ばれる少なくとも1種が好適である。
【0027】
正極活物質の具体例としては、例えば、LiCoOに代表されるリチウムコバルト酸化物;LiMnO、LiMn、及びLiMnに代表されるリチウムマンガン酸化物;LiNiOに代表されるリチウムニッケル酸化物;LiNi1/3Co1/3Mn1/3、LiNi0.5Co0.2Mn0.3、LiNi0.8Co0.2に代表されるLiMO{式中、MはNi、Mn、及びCoから成る群より選ばれる少なくとも1種の遷移金属元素を含み、且つ、Ni、Mn、Co、Al、及びMgから成る群より選ばれる2種以上の金属元素を示し、zは0.9超1.2未満の数を示す}で表されるリチウム含有複合金属酸化物等が挙げられる。
【0028】
特に、一般式(a)で表されるLi含有金属酸化物のNi含有比qが、0.5<q<1.2である場合には、レアメタルであるCoの使用量削減と、高エネルギー密度化の両方が達成されるため好ましい。そのような正極活物質としては、例えば、LiNi0.6Co0.2Mn0.2、LiNi0.75Co0.15Mn0.15、LiNi0.8Co0.1Mn0.1、LiNi0.85Co0.075Mn0.075、LiNi0.8Co0.15Al0.05、LiNi0.81Co0.1Al0.09、LiNi0.85Co0.1Al0.05、等に代表されるリチウム含有複合金属酸化物が挙げられる。
【0029】
他方、Ni含有比が高まるほど、低電圧で劣化が進行する傾向にある。一般式(a)で表されるLi含有金属酸化物の正極活物質には非水系電解液を酸化劣化させる活性点が本質的に存在するが、この活性点は負極を保護するために添加した化合物を正極側で意図せず消費してしまうことがある。中でも、酸無水物は、その影響を受け易い傾向にある。特に、非水系溶媒としてアセトニトリルを含有する場合には、酸無水物の添加効果は絶大であるが故に、正極側で酸無水物が消費されてしまうことは致命的な課題である。
【0030】
また、正極側に取り込まれて堆積したこれらの添加剤分解物は、非水系二次電池の内部抵抗増加要因となるだけでなく、リチウム塩の劣化も加速させる。更に、本来の目的であった負極表面の保護も不十分となってしまう。非水系電解液を本質的に酸化劣化させる活性点を失活させるにはヤーンテラー歪みの制御又は中和剤的な役割を担う成分の共存が重要である。そのため、正極活物質は、Al、Sn、In、Fe、V、Cu、Mg、Ti、Zn、Mo、Zr、Sr、及びBaから成る群より選ばれる少なくとも1種の金属を含有することが好ましい。
【0031】
同様の理由により、正極活物質の表面は、Zr、Ti、Al、及びNbから成る群より選ばれる少なくとも1種の金属元素を含有する化合物で被覆されていることが好ましい。また、正極活物質の表面は、Zr、Ti、Al、及びNbから成る群より選ばれる少なくとも1種の金属元素を含有する酸化物で被覆されていることがより好ましい。更に、正極活物質の表面は、ZrO、TiO、Al、NbO、及びLiNbOから成る群より選ばれる少なくとも1種の酸化物で被覆されていることが、リチウムイオンの透過を阻害しないため特に好ましい。
【0032】
正極活物質としては、式(a)で表されるLi含有金属酸化物以外のリチウム含有化合物であってもよく、リチウムを含有するものであれば特に限定されない。このようなリチウム含有化合物としては、例えば、リチウムと遷移金属元素とを含む複合酸化物、リチウムを有する金属カルコゲン化物、リチウムと遷移金属元素とを含むリン酸金属化合物、及びリチウムと遷移金属元素とを含むケイ酸金属化合物が挙げられる。より高い電圧を得る観点から、リチウム含有化合物としては、特に、リチウムと、Co、Ni、Mn、Fe、Cu、Zn、Cr、V、及びTiから成る群より選ばれる少なくとも1種の遷移金属元素と、を含むリン酸金属化合物が好ましい。
【0033】
リチウム含有化合物として、より具体的には、以下の式(Xa):
Li (Xa)
{式中、Dはカルコゲン元素を示し、Mは少なくとも1種の遷移金属元素を含む1種以上の遷移金属元素を示し、vの値は、電池の充放電状態により決まり、0.05~1.10の数を示す。}、
以下の式(Xb):
LiIIPO (Xb)
{式中、Dはカルコゲン元素を示し、MIIは少なくとも1種の遷移金属元素を含む1種以上の遷移金属元素を示し、wの値は、電池の充放電状態により決まり、0.05~1.10の数を示す。}、及び
以下の式(Xc):
LiIII SiO (Xc)
{式中、Dはカルコゲン元素を示し、MIIIは少なくとも1種の遷移金属元素を含む1種以上の遷移金属元素を示し、tの値は、電池の充放電状態により決まり、0.05~1.10の数を示し、そしてuは0~2の数を示す。}
のそれぞれで表される化合物が挙げられる。
【0034】
上述の式(Xa)で表されるリチウム含有化合物は層状構造を有し、上述の式(Xb)及び(Xc)で表される化合物はオリビン構造を有する。これらのリチウム含有化合物は、構造を安定化させる等の目的から、Al、Mg、又はその他の遷移金属元素により遷移金属元素の一部を置換したもの、これらの金属元素を結晶粒界に含ませたもの、酸素原子の一部をフッ素原子等で置換したもの、正極活物質表面の少なくとも一部に他の正極活物質を被覆したもの等であってもよい。
【0035】
本実施形態における正極活物質としては、上記のようなリチウム含有化合物のみを用いてもよいし、該リチウム含有化合物と共にその他の正極活物質を併用してもよい。
このようなその他の正極活物質としては、例えば、トンネル構造及び層状構造を有する金属酸化物又は金属カルコゲン化物;イオウ;導電性高分子等が挙げられる。トンネル構造及び層状構造を有する金属酸化物、又は金属カルコゲン化物としては、例えば、MnO、FeO、FeS、V、V13、TiO、TiS、MoS、及びNbSeに代表されるリチウム以外の金属の酸化物、硫化物、セレン化物等が挙げられる。導電性高分子としては、例えば、ポリアニリン、ポリチオフェン、ポリアセチレン、及びポリピロールに代表される導電性高分子が挙げられる。
【0036】
上述のその他の正極活物質は、1種を単独で又は2種以上を組み合わせて用いられ、特に制限はない。しかしながら、リチウムイオンを可逆安定的に吸蔵及び放出することが可能であり、且つ、高エネルギー密度を達成できることから、正極活物質層がNi、Mn、及びCoから選ばれる少なくとも1種の遷移金属元素を含有することが好ましい。
【0037】
正極活物質として、リチウム含有化合物とその他の正極活物質とを併用する場合、両者の使用割合としては、正極活物質の全部に対するリチウム含有化合物の使用割合として、80質量%以上が好ましく、85質量%以上がより好ましい。
【0038】
導電助剤としては、例えば、グラファイト、アセチレンブラック、及びケッチェンブラックに代表されるカーボンブラック、並びに炭素繊維が挙げられる。導電助剤の含有割合は、正極活物質100質量部に対して、10質量部以下とすることが好ましく、より好ましくは1~5質量部である。
【0039】
バインダーとしては、例えば、ポリフッ化ビニリデン(PVDF)、ポリテトラフルオロエチレン(PTFE)、ポリアクリル酸、スチレンブタジエンゴム、及びフッ素ゴムが挙げられる。バインダーの含有割合は、正極活物質100質量部に対して、6質量部以下とすることが好ましく、より好ましくは0.5~4質量部である。
【0040】
正極活物質層は、正極活物質と、必要に応じて導電助剤及びバインダーとを混合した正極合剤を溶剤に分散した正極合剤含有スラリーを、正極集電体に塗布及び乾燥(溶媒除去)し、必要に応じてプレスすることにより形成される。このような溶剤としては、特に制限はなく、従来公知のものを用いることができる。例えば、N―メチル-2-ピロリドン、ジメチルホルムアミド、ジメチルアセトアミド、水等が挙げられる。
【0041】
正極集電体は、例えば、アルミニウム箔、ニッケル箔、ステンレス箔等の金属箔により構成される。正極集電体は、表面にカーボンコートが施されていてもよく、メッシュ状に加工されていてもよい。正極集電体の厚みは、5~40μmであることが好ましく、7~35μmであることがより好ましく、9~30μmであることが更に好ましい。
【0042】
<負極>
負極160は、負極合剤から作製した負極活物質層と、負極集電体とから構成される。負極160は、非水系二次電池の負極として作用することができる。
負極活物質層は、負極活物質を含有し、必要に応じて導電助剤及びバインダーを含有することが好ましい。
【0043】
負極活物質としては、例えば、アモルファスカーボン(ハードカーボン)、黒鉛(例えば人造黒鉛、天然黒鉛など)、熱分解炭素、コークス、ガラス状炭素、有機高分子化合物の焼成体、メソカーボンマイクロビーズ、炭素繊維、活性炭、炭素コロイド、及びカーボンブラックに代表される炭素材料の他、金属リチウム、金属酸化物、金属窒化物、リチウム合金、スズ合金、シリコン合金、金属間化合物、有機化合物、無機化合物、金属錯体、有機高分子化合物等が挙げられる。負極活物質は1種を単独で又は2種以上を組み合わせて用いられる。
【0044】
負極活物質層は、電池電圧を高められるという観点から、負極活物質として、リチウムイオンを0.4V vs.Li/Liよりも卑な電位で吸蔵することが可能な材料を含有することが好ましい。
【0045】
導電助剤としては、例えば、グラファイト、アセチレンブラック、及びケッチェンブラックに代表されるカーボンブラック、並びに炭素繊維が挙げられる。導電助剤の含有割合は、負極活物質100質量部に対して、20質量部以下とすることが好ましく、より好ましくは0.1~10質量部である。
【0046】
バインダーとしては、例えば、カルボキシメチルセルロース、PVDF、PTFE、ポリアクリル酸、及びフッ素ゴムが挙げられる。また、ジエン系ゴム、例えばスチレンブタジエンゴム等も挙げられる。バインダーの含有割合は、負極活物質100質量部に対して、10質量部以下とすることが好ましく、より好ましくは0.5~6質量部である。
【0047】
負極活物質層は、負極活物質と必要に応じて導電助剤及びバインダーとを混合した負極合剤を溶剤に分散した負極合剤含有スラリーを、負極集電体に塗布及び乾燥(溶媒除去)し、必要に応じてプレスすることにより形成される。このような溶剤としては、特に制限はなく、従来公知のものを用いることができる。例えば、N―メチル-2-ピロリドン、ジメチルホルムアミド、ジメチルアセトアミド、水等が挙げられる。
【0048】
負極集電体は、例えば、銅箔、ニッケル箔、ステンレス箔等の金属箔により構成される。また、負極集電体は、表面にカーボンコートが施されていてもよいし、メッシュ状に加工されていてもよい。負極集電体の厚みは、5~40μmであることが好ましく、6~35μmであることがより好ましく、7~30μmであることが更に好ましい。
【0049】
<非水系電解液>
本明細書では、「非水系電解液」(以下、単に「電解液」ともいう)とは、電解液全量に対し、水が1質量%以下の電解液を指す。
【0050】
本実施形態に係る電解液は、水分を極力含まないことが好ましいが、本発明の課題解決を阻害しない範囲であれば、ごく微量の水分を含有してもよい。そのような水分の含有量は、非水系電解液の全量に対して300質量ppm以下であり、更に好ましくは200質量ppm以下である。非水系電解液については、本発明の課題解決を達成するための構成を具備していれば、その他の構成要素については、リチウムイオン電池に用いられる既知の非水系電解液における構成材料を、適宜選択して適用することができる。
【0051】
本実施形態に係る電解液は、アセトニトリルと、非水系溶媒と、リチウム塩と、を含むことができる。
【0052】
<非水系溶媒>
ここで、非水系溶媒について説明する。本実施形態でいう「非水系溶媒」とは、電解液中からリチウム塩及び各種添加剤を除いた要素をいう。電解液に電極保護用添加剤が含まれている場合、「非水系溶媒」とは、電解液中からリチウム塩及び電極保護用添加剤以外の添加剤を除いた要素をいう。非水系溶媒としては、例えば、メタノール、エタノール等のアルコール類;非プロトン性溶媒等が挙げられる。中でも、非プロトン性溶媒が好ましい。本発明の効果が損なわれない範囲であれば、非水系溶媒は非プロトン性溶媒以外の溶媒を含有していてもよい。
【0053】
非プロトン性溶媒の具体例としては、例えば、環状カーボネートが挙げられる。環状カーボネートとしては、例えば、エチレンカーボネート、プロピレンカーボネート、1,2-ブチレンカーボネート、トランス-2,3-ブチレンカーボネート、シス-2,3-ブチレンカーボネート、1,2-ペンチレンカーボネート、トランス-2,3-ペンチレンカーボネート、シス-2,3-ペンチレンカーボネート、ビニレンカーボネート、4,5-ジメチルビニレンカーボネート、及びビニルエチレンカーボネートに代表されるカーボネート;4-フルオロ-1,3-ジオキソラン-2-オン、4,4-ジフルオロ-1,3-ジオキソラン-2-オン、シス-4,5-ジフルオロ-1,3-ジオキソラン-2-オン、トランス-4,5-ジフルオロ-1,3-ジオキソラン-2-オン、4,4,5-トリフルオロ-1,3-ジオキソラン-2-オン、4,4,5,5-テトラフルオロ-1,3-ジオキソラン-2-オン、及び4,4,5-トリフルオロ-5-メチル-1,3-ジオキソラン-2-オンに代表されるフッ素化環状カーボネート;γ-ブチロラクトン、γ-バレロラクトン、γ-カプロラクトン、δ-バレロラクトン、δ-カプロラクトン、及びε-カプロラクトンに代表されるラクトン;が挙げられる。
【0054】
また、非プロトン性溶媒の具体例としては、例えば、エチレンサルファイト、プロピレンサルファイト、ブチレンサルファイト、ペンテンサルファイト、スルホラン、3-スルホレン、3-メチルスルホラン、1,3-プロパンスルトン、1,4-ブタンスルトン、1-プロペン1,3-スルトン、ジメチルスルホキシド、テトラメチレンスルホキシド、及びエチレングリコールサルファイトに代表される硫黄化合物;テトラヒドロフラン、2-メチルテトラヒドロフラン、1,4-ジオキサン、及び1,3-ジオキサンに代表される環状エーテル;が挙げられる。
【0055】
また、非プロトン性溶媒の具体例としては、例えば、鎖状カーボネートが挙げられる。鎖状カーボネートとしては、例えば、エチルメチルカーボネート、ジメチルカーボネート、ジエチルカーボネート、メチルプロピルカーボネート、メチルイソプロピルカーボネート、ジプロピルカーボネート、メチルブチルカーボネート、ジブチルカーボネート、及びエチルプロピルカーボネートに代表される鎖状カーボネート;トリフルオロジメチルカーボネート、トリフルオロジエチルカーボネート、及びトリフルオロエチルメチルカーボネートに代表される鎖状フッ素化カーボネート;が挙げられる。
【0056】
また、非プロトン性溶媒の具体例としては、例えば、アセトニトリル、プロピオニトリル、ブチロニトリル、バレロニトリル、ベンゾニトリル、及びアクリロニトリルに代表されるモノニトリル;メトキシアセトニトリル及び3-メトキシプロピオニトリルに代表されるアルコキシ基置換ニトリル;マロノニトリル、スクシノニトリル、グルタロニトリル、アジポニトリル、1,4-ジシアノヘプタン、1,5-ジシアノペンタン、1,6-ジシアノヘキサン、1,7-ジシアノヘプタン、2,6-ジシアノヘプタン、1,8-ジシアノオクタン、2,7-ジシアノオクタン、1,9-ジシアノノナン、2,8-ジシアノノナン、1,10-ジシアノデカン、1,6-ジシアノデカン、及び2,4-ジメチルグルタロニトリルに代表されるジニトリル;ベンゾニトリルに代表される環状ニトリル;酢酸メチル、プロピオン酸メチル、イソ酪酸メチル、酪酸メチル、イソ吉草酸メチル、吉草酸メチル、ピバル酸メチル、ヒドロアンゲリカ酸メチル、カプロン酸メチル、酢酸エチル、プロピオン酸エチル、イソ酪酸エチル、酪酸エチル、イソ吉草酸エチル、吉草酸エチル、ピバル酸エチル、ヒドロアンゲリカ酸エチル、カプロン酸エチル、酢酸プロピル、プロピオン酸プロピル、イソ酪酸プロピル、酪酸プロピル、イソ吉草酸プロピル、吉草酸プロピル、ピバル酸プロピル、ヒドロアンゲリカ酸プロピル、カプロン酸プロピル、酢酸イソプロピル、プロピオン酸イソプロピル、イソ酪酸イソプロピル、酪酸イソプロピル、イソ吉草酸イソプロピル、吉草酸イソプロピル、ピバル酸イソプロピル、ヒドロアンゲリカ酸イソプロピル、カプロン酸イソプロピル、酢酸ブチル、プロピオン酸ブチル、イソ酪酸ブチル、酪酸ブチル、イソ吉草酸ブチル、吉草酸ブチル、ピバル酸ブチル、ヒドロアンゲリカ酸ブチル、カプロン酸ブチル、酢酸イソブチル、プロピオン酸イソブチル、イソ酪酸イソブチル、酪酸イソブチル、イソ吉草酸イソブチル、吉草酸イソブチル、ピバル酸イソブチル、ヒドロアンゲリカ酸イソブチル、カプロン酸イソブチル、酢酸tert-ブチル、プロピオン酸tert-ブチル、イソ酪酸tert-ブチル、酪酸tert-ブチル、イソ吉草酸tert-ブチル、吉草酸tert-ブチル、ピバル酸tert-ブチル、ヒドロアンゲリカ酸tert-ブチル、及びカプロン酸tert-ブチルに代表される鎖状エステル;ジメトキシエタン、ジエチルエーテル、1,3-ジオキソラン、ジグライム、トリグライム、及びテトラグライムに代表される鎖状エーテル;Rf-OR(式中、Rfはフッ素原子を含有するアルキル基を表し、Rはフッ素原子を含有してもよい有機基を表す。)に代表されるフッ素化エーテル;アセトン、メチルエチルケトン、及びメチルイソブチルケトンに代表されるケトンが挙げられる。
【0057】
また、上記非プロトン性溶媒のH原子の一部または全部をハロゲン原子で置換した化合物としては、例えば、ハロゲン原子がフッ素である化合物;
を挙げることができる。
【0058】
ここで、鎖状カーボネートのフッ素化物としては、例えば、メチルトリフルオロエチルカーボネート、トリフルオロジメチルカーボネート、トリフルオロジエチルカーボネート、トリフルオロエチルメチルカーボネート、メチル2,2-ジフルオロエチルカーボネート、メチル2,2,2-トリフルオロエチルカーボネート、メチル2,2,3,3-テトラフルオロプロピルカーボネートが挙げられる。
【0059】
上記のフッ素化鎖状カーボネートは、下記の一般式:
-O-C(O)O-R
{式中、R及びRは、CH、CHCH、CHCHCH、CH(CH、及びCHRfから成る群より選択される少なくとも一つであり、Rfは、少なくとも1つのフッ素原子で水素原子が置換された炭素数1~3のアルキル基であり、そしてR及び/又はRは、少なくとも1つのフッ素原子を含有する}
で表すことができる。
【0060】
また、短鎖脂肪酸エステルのフッ素化物としては、例えば、酢酸2,2-ジフルオロエチル、酢酸2,2,2-トリフルオロエチル、及び酢酸2,2,3,3-テトラフルオロプロピルに代表されるフッ素化短鎖脂肪酸エステルが挙げられる。フッ素化短鎖脂肪酸エステルは、下記の一般式:
-C(O)O-R
{式中、Rは、CH、CHCH,CHCHCH、CH(CH、CFCFH、CFH、CFRf、CFHRf、及びCHRfから成る群より選択される少なくとも一つであり、RはCH、CHCH,CHCHCH、CH(CH、及びCHRfから成る群より選択される少なくとも一つであり、Rfは、少なくとも1つのフッ素原子で水素原子が置換されてよい炭素数1~3のアルキル基であり、Rfは、少なくとも1つのフッ素原子で水素原子が置換された炭素数1~3のアルキル基であり、そしてR及び/又はRは、少なくとも1つのフッ素原子を含有し、RがCFHである場合、RはCHではない}
で表すことができる。
【0061】
これらは1種を単独で又は2種以上を組み合わせて用いられる。また、これら非水系溶媒の中でも、環状カーボネート及び鎖状カーボネートのうちの1種以上を使用することが安定性向上の観点からより好ましい。ここで、環状カーボネート及び鎖状カーボネートとして前記に例示したもののうちの1種のみを選択して使用してもよく、2種以上(例えば、前記例示の環状カーボネートのうちの2種以上、前記例示の鎖状カーボネートのうちの2種以上、又は前記例示の環状カーボネートのうちの1種以上及び前記例示の鎖状カーボネートのうちの1種以上から成る2種以上)を使用してもよい。これらの中でも、環状カーボネートとしてはエチレンカーボネート、プロピレンカーボネート、ビニレンカーボネート、又はフルオロエチレンカーボネートがより好ましく、鎖状カーボネートとしてはエチルメチルカーボネート、ジメチルカーボネート、又はジエチルカーボネートがより好ましい。そして、非水系二次電池の充放電に寄与するリチウム塩の電離度が高まるため、環状カーボネートを使用することが更に好ましい。環状カーボネートを使用する場合、かかる環状カーボネートが、ビニレンカーボネート又はフルオロエチレンカーボネートの少なくとも一方を含むことが特に好ましい。
【0062】
非水系電解液の非水系溶媒がアセトニトリルを含有することにより、非水系電解液のイオン伝導性が向上することから、電池内におけるリチウムイオンの拡散性を高めることができる。そのため、電解液がアセトニトリルを含有する場合には、特に正極活物質層を厚くして正極活物質の充填量を高めた正極においても、高負荷での放電時にはリチウムイオンが到達し難い集電体近傍の領域にまで、リチウムイオンが良好に拡散できるようになる。よって、高負荷放電時にも十分な容量を引き出すことが可能となり、負荷特性に優れた非水系二次電池とすることができる。
【0063】
更に、非水系電解液の非水系溶媒がアセトニトリルを含有することにより、非水系二次電池の急速充電特性を高めることもできる。非水系二次電池の定電流(CC)-定電圧(CV)充電では、CV充電期間における単位時間当たりの充電容量よりも、CC充電期間における単位時間当たりの容量の方が大きい。非水系電解液の非水系溶媒にアセトニトリルを使用した場合には、CC充電できる領域を大きく(CC充電の時間を長く)できる他、充電電流を高めることもできるため、非水系二次電池の充電開始から満充電状態にするまでの時間を大幅に短縮できる。
【0064】
一方、アセトニトリルは、電気化学的に還元分解され易い。そのため、アセトニトリルを用いる場合には、かかるアセトニトリルを、別の溶媒と混合すること、及び、電極への保護被膜形成のための電極保護用添加剤を添加すること、のうちの少なくとも1つを行うことが好ましい。
【0065】
アセトニトリルの含有量については、非水系溶媒の全量に対して、5~95体積%であることが好ましい。アセトニトリルの含有量は、非水系溶媒の全量に対して、20体積%以上又は30体積%以上であることがより好ましく、40体積%以上であることが更に好ましい。この値は、85体積%以下であることがより好ましく、66体積%以下であることが更に好ましい。アセトニトリルの含有量が非水系溶媒の全量に対して5体積%以上である場合、イオン伝導度が増大して高出力特性を発現できる傾向にあり、更に、リチウム塩の溶解を促進することができる。後述の添加剤が電池の内部抵抗の増加を抑制するため、非水系溶媒中のアセトニトリルの含有量が上述の範囲内にある場合、アセトニトリルの優れた性能を維持しながら、高温サイクル特性及びその他の電池特性を一層良好なものとすることができる傾向にある。
【0066】
<リチウム塩>
本実施形態の非水系電解液は、リチウム塩について、上記で言及した場合を除き、特に限定するものではない。例えば、本実施形態では、非水系電解液は、リチウム塩として、LiPF又はイミド塩を含む。
【0067】
イミド塩とは、LiN(SO2m+1〔式中、mは0~2の整数である〕で表されるリチウム塩であり、具体的には、LiN(SOF)、及びLiN(SOCFのうち少なくとも1種を含むことが好ましい。これらイミド塩の一方のみ含んでも両方含んでもよい。又は、これらのイミド塩以外のイミド塩を含んでいてもよい。
【0068】
非水系溶媒にアセトニトリルが含まれる場合、アセトニトリルに対するイミド塩の飽和濃度がLiPFの飽和濃度よりも高いことから、LiPF≦イミド塩となるモル濃度でイミド塩を含むことが、低温でのリチウム塩とアセトニトリルの会合及び析出を抑制できるため好ましい。また、イミド塩の含有量が、非水系溶媒1Lに対して0.5mol以上3mol以下であることがイオン供給量の観点から好ましい。LiN(SOF)、及びLiN(SOCFのうち少なくとも1種を含むアセトニトリル含有非水系電解液によれば、-10℃、-30℃又は-40℃のような低温域でのイオン伝導率の低減を効果的に抑制でき、優れた低温特性を得ることができる。このように、含有量を限定することで、より効果的に、高温加熱時の抵抗増加を抑制することも可能となる。
【0069】
また、リチウム塩は、LiPF以外のフッ素含有無機リチウム塩を含んでもよく、例えば、LiBF、LiAsF、LiSiF、LiSbF、Li1212-b〔式中、bは0~3の整数である〕、等のフッ素含有無機リチウム塩を含んでもよい。「無機リチウム塩」とは、炭素原子をアニオンに含まず、アセトニトリルに可溶なリチウム塩をいう。また、「フッ素含有無機リチウム塩」とは、炭素原子をアニオンに含まず、フッ素原子をアニオンに含み、アセトニトリルに可溶なリチウム塩をいう。フッ素含有無機リチウム塩は、正極集電体である金属箔の表面に不働態被膜を形成し、正極集電体の腐食を抑制する点で優れている。これらのフッ素含有無機リチウム塩は、1種を単独で又は2種以上を組み合わせて用いられる。フッ素含有無機リチウム塩として、LiFとルイス酸との複塩である化合物が望ましく、中でも、リン原子を有するフッ素含有無機リチウム塩を用いると、遊離のフッ素原子を放出し易くなることからより好ましい。代表的なフッ素含有無機リチウム塩は、溶解してPFアニオンを放出するLiPFである。フッ素含有無機リチウム塩として、ホウ素原子を有するフッ素含有無機リチウム塩を用いた場合には、電池劣化を招くおそれのある過剰な遊離酸成分を捕捉し易くなることから好ましく、このような観点からはLiBFが特に好ましい。
【0070】
本実施形態の非水系電解液におけるフッ素含有無機リチウム塩の含有量については、特に制限はないが、非水系溶媒1Lに対して0.01mol以上であることが好ましく、0.1mol以上であることがより好ましく、0.25mol以上であることが更に好ましい。フッ素含有無機リチウム塩の含有量が上述の範囲内にある場合、イオン伝導度が増大し高出力特性を発現できる傾向にある。また、非水系溶媒1Lに対して2.8mol未満であることが好ましく、1.5mol未満であることがより好ましく、1mol未満であることが更に好ましい。フッ素含有無機リチウム塩の含有量が上述の範囲内にある場合、イオン伝導度が増大し高出力特性を発現できると共に、低温での粘度上昇に伴うイオン伝導度の低下を抑制できる傾向にあり、非水系電解液の優れた性能を維持しながら、高温サイクル特性及びその他の電池特性を一層良好なものとすることができる傾向にある。
【0071】
本実施形態の非水系電解液は、更に、有機リチウム塩を含んでいてもよい。「有機リチウム塩」とは、炭素原子をアニオンに含み、アセトニトリルに可溶なリチウム塩をいう。 有機リチウム塩としては、シュウ酸基を有する有機リチウム塩を挙げることができる。シュウ酸基を有する有機リチウム塩の具体例としては、例えば、LiB(C、LiBF(C)、LiPF(C)、及びLiPF(Cのそれぞれで表される有機リチウム塩等が挙げられ、中でもLiB(C及びLiBF(C)で表されるリチウム塩から選ばれる少なくとも1種のリチウム塩が好ましい。また、これらのうちの1種又は2種以上を、フッ素含有無機リチウム塩と共に使用することがより好ましい。このシュウ酸基を有する有機リチウム塩は、非水系電解液に添加する他、負極(負極活物質層)に含有させてもよい。
【0072】
シュウ酸基を有する有機リチウム塩の非水系電解液への添加量は、その使用による効果をより良好に確保する観点から、非水系電解液の非水系溶媒1L当たりの量として、0.005モル以上であることが好ましく、0.02モル以上であることがより好ましく、0.05モル以上であることが更に好ましい。ただし、前記シュウ酸基を有する有機リチウム塩の非水系電解液中の量が多すぎると析出する恐れがある。よって、前記シュウ酸基を有する有機リチウム塩の非水系電解液への添加量は、非水系電解液の非水系溶媒1L当たりの量で、1.0モル未満であることが好ましく、0.5モル未満であることがより好ましく、0.2モル未満であることが更に好ましい。
【0073】
シュウ酸基を有する有機リチウム塩は、極性の低い有機溶媒、特に鎖状カーボネートに対して難溶性であることが知られている。シュウ酸基を有する有機リチウム塩は、微量のシュウ酸リチウムを含有している場合があり、更に、非水系電解液として混合するときにも、他の原料に含まれる微量の水分と反応して、シュウ酸リチウムの白色沈殿を新たに発生させる場合がある。従って、本実施形態の非水系電解液におけるシュウ酸リチウムの含有量は、特に限定するものでないが、0~500ppmであることが好ましい。
【0074】
本実施形態におけるリチウム塩として、上記以外に、一般に非水系二次電池用に用いられているリチウム塩を補助的に添加してもよい。その他のリチウム塩の具体例としては、例えば、LiClO、LiAlO、LiAlCl、LiB10Cl10、クロロボランLi等のフッ素原子をアニオンに含まない無機リチウム塩;LiCFSO、LiCFCO、Li(SO、LiC(CFSO、LiC(2n+1)SO(式中、n≧2)、低級脂肪族カルボン酸Li、四フェニルホウ酸Li、LiB(C等の有機リチウム塩;LiPF(CF)等のLiPF(C2p+16-n〔式中、nは1~5の整数であり、pは1~8の整数である〕で表される有機リチウム塩;LiBF(CF)等のLiBF(C2s+14-q〔式中、qは1~3の整数であり、sは1~8の整数である〕で表される有機リチウム塩;多価アニオンと結合されたリチウム塩;下記式(a):
LiC(SO)(SO)(SO) (a)
{式中、R、R、及びRは、互いに同一であっても異なっていてもよく、炭素数1~8のパーフルオロアルキル基を示す。}、
下記式(b)
LiN(SOOR)(SOOR) (b)
{式中、R、及びRは、互いに同一であっても異なっていてもよく、炭素数1~8のパーフルオロアルキル基を示す。}、及び
下記式(c)
LiN(SO)(SOOR) (c)
{式中、R、及びRは、互いに同一であっても異なっていてもよく、炭素数1~8のパーフルオロアルキル基を示す。}
のそれぞれで表される有機リチウム塩等が挙げられ、これらのうちの1種又は2種以上を、フッ素含有無機リチウム塩と共に使用することができる。
【0075】
<電極保護用添加剤>
本実施形態における電解液には、電極を保護する添加剤が含まれていてもよい。電極保護用添加剤としては、本発明による課題解決を阻害しないものであれば特に制限はない。リチウム塩を溶解する溶媒としての役割を担う物質(すなわち上述の非水系溶媒)と実質的に重複してもよい。電極保護用添加剤は、本実施形態における電解液及び非水系二次電池の性能向上に寄与する物質であることが好ましいが、電気化学的な反応には直接関与しない物質をも包含する。
【0076】
電極保護用添加剤の具体例としては、例えば、4-フルオロ-1,3-ジオキソラン-2-オン、4,4-ジフルオロ-1,3-ジオキソラン-2-オン、シス-4,5-ジフルオロ-1,3-ジオキソラン-2-オン、トランス-4,5-ジフルオロ-1,3-ジオキソラン-2-オン、4,4,5-トリフルオロ-1,3-ジオキソラン-2-オン、4,4,5,5-テトラフルオロ-1,3-ジオキソラン-2-オン、及び4,4,5-トリフルオロ-5-メチル-1,3-ジオキソラン-2-オンに代表されるフルオロエチレンカーボネート;ビニレンカーボネート、4,5-ジメチルビニレンカーボネート、及びビニルエチレンカーボネートに代表される不飽和結合含有環状カーボネート;γ-ブチロラクトン、γ-バレロラクトン、γ-カプロラクトン、δ-バレロラクトン、δ-カプロラクトン、及びε-カプロラクトンに代表されるラクトン;1,4-ジオキサンに代表される環状エーテル;エチレンサルファイト、プロピレンサルファイト、ブチレンサルファイト、ペンテンサルファイト、スルホラン、3-スルホレン、3-メチルスルホラン、1,3-プロパンスルトン、1,4-ブタンスルトン、1-プロペン1,3-スルトン、及びテトラメチレンスルホキシドに代表される環状硫黄化合物;無水酢酸、無水プロピオン酸、無水安息香酸に代表される鎖状酸無水物;マロン酸無水物、無水コハク酸、グルタル酸無水物、無水マレイン酸、無水フタル酸、1,2-シクロヘキサンジカルボン酸無水物、2,3-ナフタレンジカルボン酸無水物、又は、ナフタレン-1,4,5,8-テトラカルボン酸二無水物に代表される環状酸無水物;異なる2種類のカルボン酸、又はカルボン酸とスルホン酸等、違う種類の酸が脱水縮合した構造の混合酸無水物が挙げられる。これらは1種を単独で又は2種以上を組み合わせて用いられる。
【0077】
本実施形態における電解液中の電極保護用添加剤の含有量については、特に制限はないが、非水系溶媒の全量に対する電極保護用添加剤の含有量として、0.1~30体積%であることが好ましく、0.3~15体積%であることがより好ましく、0.5~4体積%であることが更に好ましい。
【0078】
本実施形態においては、電極保護用添加剤の含有量が多いほど電解液の劣化が抑えられる。しかしながら、電極保護用添加剤の含有量が少ないほど非水系二次電池の低温環境下における高出力特性が向上することになる。従って、電極保護用添加剤の含有量を上述の範囲内に調整することによって、非水系二次電池としての基本的な機能を損なうことなく、電解液の高イオン伝導度に基づく優れた性能を最大限に発揮することができる傾向にある。このような組成で電解液を調製することにより、非水系二次電池のサイクル性能、低温環境下における高出力性能及びその他の電池特性の全てを一層良好なものとすることができる傾向にある。
【0079】
なお、非水系溶媒の一成分であるアセトニトリルは電気化学的に還元分解され易いため、該アセトニトリルを含む非水系溶媒は、負極への保護被膜形成のための電極保護用添加剤として環状の非プロトン性極性溶媒を1種以上含むことが好ましく、不飽和結合含有環状カーボネートを1種以上含むことがより好ましい。
【0080】
不飽和結合含有環状カーボネートとしてはビニレンカーボネートが好ましく、ビニレンカーボネートの含有量は、非水系電解液中、0.1体積%以上4体積%以下であることが好ましく、0.2体積%以上3体積%未満であることがより好ましく、0.5体積%以上2.5体積%未満であることが更に好ましい。これにより、低温耐久性をより効果的に向上させることができ、低温性能に優れた二次電池を提供することが可能になる。
【0081】
電極保護用添加剤としてのビニレンカーボネートは負極表面でのアセトニトリルの還元分解反応を抑制するため、必須である場合が多く、不足すると電池性能が急激に低下する可能性がある。一方で、過剰な被膜形成は低温性能の低下を招く。そこで、ビニレンカーボネートの添加量を上記の範囲内に調整することで、界面(被膜)抵抗を低く抑えることができ、低温時のサイクル劣化を抑制することができる。
【0082】
<その他の任意的添加剤>
本実施形態においては、非水系二次電池の充放電サイクル特性の改善、高温貯蔵性、安全性の向上(例えば過充電防止等)等の目的で、非水系電解液に、例えば、スルホン酸エステル、ジフェニルジスルフィド、シクロヘキシルベンゼン、ビフェニル、フルオロベンゼン、tert-ブチルベンゼン、リン酸エステル〔エチルジエチルホスホノアセテート(EDPA):(CO)(P=O)-CH(C=O)OC、リン酸トリス(トリフルオロエチル)(TFEP):(CFCHO)P=O、リン酸トリフェニル(TPP):(CO)P=O:(CH=CHCHO)P=O、リン酸トリアリル等〕、非共有電子対周辺に立体障害のない窒素含有環状化合物〔ピリジン、1-メチル-1H-ベンゾトリアゾール、1-メチルピラゾール等〕等、及びこれらの化合物の誘導体等から選択される任意的添加剤を、適宜含有させることもできる。特にリン酸エステルは、貯蔵時の副反応を抑制する作用があり、効果的である。
【0083】
本実施形態におけるその他の任意的添加剤の含有量は、非水系電解液を構成する全ての成分の合計質量に対する質量百分率にて算出される。その他の任意的添加剤の含有量について、特に制限はないが、非水系電解液の全量に対し、0.01質量%以上10質量%以下の範囲であることが好ましく、0.02質量%以上5質量%以下であることがより好ましく、0.05~3質量%であることが更に好ましい。その他の任意的添加剤の含有量を上述の範囲内に調整することによって、非水系二次電池としての基本的な機能を損なうことなく、より一層良好な電池特性を付加することができる傾向にある。
【0084】
<SO 2-、FSO 、F含有量調整工程>
リチウム塩として一般的に市販されているLiN(SOF)、LiPF等を使用した場合、原料不純物としてSO 2-、FSO 、及びFが一定量含まれる。本発明における非水系電解液は、これらの不純物を特定の濃度(含有量)範囲内に調整することで、高温環境下での電池特性の劣化を抑制する効果を与えるものである。この効果の要因は十分に解明できていないが、通常であれば電極界面で分解して抵抗となると考えられるSO 2-、FSO 、及びFのようなイオンを含む物質が、特定の濃度範囲内で電解液に含まれることで、逆に高温でもアセトニトリルの分解を抑制できる被膜を負極界面に形成し、高温安定性が向上したものと推定される。
【0085】
非水系電解液において、SO 2-、FSO 、及びFの含有量が少なすぎると、十分な被膜形成効果が得られず、また、多すぎても界面(被膜)抵抗を増大させて、出力性能の低下を招く。非水系電解液におけるSO 2-、FSO 、及びFの含有量としては、非水系電解液の質量に対して、それぞれ、10ppm以上100ppm以下の範囲であり、20ppm以上50ppm以下の範囲であることが好ましい。
【0086】
本発明におけるSO 2-、FSO 、及びFの含有量を調整する方法としては、例えば、非水系溶媒にLiN(SOF)、及びLiPFを溶解させた後、混合溶液中にモレキュラーシーブを加えて一定時間置くことで、SO 2-、FSO 及びFイオンを低減することができる。その後、混合溶液中のSO 2-、FSO 及びFの含有量を確認し、上記で説明された濃度範囲内にあれば良いので維持するが、多すぎる場合にはモレキュラーシーブとの接触時間を延ばし、少なすぎる場合は不足しているアニオンを含む塩を非水系電解液へ必要な量添加することで調整できる。この際に使用する塩のカチオンとしては、リチウムが好ましい。モレキュラーシーブは、市販のものを用いてもよく、合成したものを用いてもよい。また、混合溶液にモレキュラーシーブを加えた後は、適宜、加温または攪拌してもよい。
【0087】
<セパレータ>
本実施形態における非水系二次電池100は、正極150及び負極160の短絡防止、シャットダウン等の安全性付与の観点から、正極150と負極160との間にセパレータ170を備えることが好ましい。セパレータ170としては、限定されるものではないが、公知の非水系二次電池に備えられるものと同様のものを用いてもよく、イオン透過性が大きく、機械的強度に優れる絶縁性の薄膜が好ましい。セパレータ170としては、例えば、織布、不織布、合成樹脂製微多孔膜等が挙げられ、これらの中でも、合成樹脂製微多孔膜が好ましい。
【0088】
合成樹脂製微多孔膜としては、例えば、ポリエチレン又はポリプロピレンを主成分として含有する微多孔膜、又は、これらのポリオレフィンの双方を含有する微多孔膜等のポリオレフィン系微多孔膜が好適に用いられる。不織布としては、例えば、ガラス製、セラミック製、ポリオレフィン製、ポリエステル製、ポリアミド製、液晶ポリエステル製、アラミド製等の耐熱樹脂製の多孔膜が挙げられる。
【0089】
セパレータ170は、1種の微多孔膜を単層又は複数積層した構成であってもよく、2種以上の微多孔膜を積層したものであってもよい。セパレータ170は、2種以上の樹脂材料を溶融混錬した混合樹脂材料を用いて単層又は複数層に積層した構成であってもよい。
【0090】
機能付与を目的として、セパレータの表層又は内部に無機粒子を存在させてもよく、その他の有機層を更に塗工又は積層してもよい。また、架橋構造を含むものであってもよい。非水系二次電池の安全性能を高めるため、これらの手法は必要に応じ組み合わせてもよい。
【0091】
このようなセパレータ170を用いることで、特に上記の高出力用途のリチウムイオン二次電池に求められる良好な入出力特性、低い自己放電特性を実現することができる。微多孔膜の膜厚は、特に限定はないが、膜強度の観点から1μm以上であることが好ましく、透過性の観点より500μm以下であることが好ましい。安全性試験など、発熱量が比較的高く、従来以上の自己放電特性を求められる高出力用途に使用されるという観点および、大型の電池捲回機での捲回性の観点から、5μm以上30μm以下であることが好ましく、10μm以上25μm以下であることがより好ましい。なお、耐ショート性能と出力性能の両立を重視する場合には、15μm以上25μm以下であることが更に好ましいが、高エネルギー密度化と出力性能の両立を重視する場合には、10μm以上15μm未満であることが更に好ましい。気孔率は、高出力時のリチウムイオンの急速な移動に追従する観点から、30%以上90%以下が好ましく、35%以上80%以下がより好ましく、40%以上70%以下が更に好ましい。なお、安全性を確保しつつ出力性能の向上を優先に考えた場合には、50%以上70%以下が特に好ましく、耐ショート性能と出力性能の両立を重視する場合には、40%以上50%未満が特に好ましい。透気度は、膜厚、気孔率とのバランスの観点から、1秒/100cm以上400秒/100cm以下が好ましく、100秒/100cm以上350/100cm以下がより好ましい。なお、耐ショート性能と出力性能の両立を重視する場合には、150秒/100cm以上350秒/100cm以下が特に好ましく、安全性を確保しつつ出力性能の向上を優先に考えた場合には、100/100cm秒以上150秒/100cm未満が特に好ましい。一方で、イオン伝導度の低い非水系電解液と上記範囲内のセパレータを組み合わせた場合、リチウムイオンの移動速度がセパレータの構造ではなく、電解液のイオン伝導度の高さが律速となり、期待したような入出力特性が得られない傾向がある。そのため、非水系電解液のイオン伝導度は10mS/cm以上が好ましく、15mS/cmがより好ましく、20mS/cmが更に好ましい。ただし、セパレータの膜厚、透気度及び気孔率、並びに非水系電解液のイオン伝導度は上記の例に限定されない。
【0092】
<電池外装>
本実施形態における非水系二次電池100の電池外装110の構成は特に限定されないが、例えば、電池缶及びラミネートフィルム外装体のいずれかの電池外装を用いることができる。電池缶としては、例えば、スチール、ステンレス、アルミニウム、又はクラッド材等から成る角型、角筒型、円筒型、楕円型、扁平型、コイン型、又はボタン型等の金属缶を用いることができる。ラミネートフィルム外装体としては、例えば、熱溶融樹脂/金属フィルム/樹脂の3層構成から成るラミネートフィルムを用いることができる。
【0093】
ラミネートフィルム外装体は、熱溶融樹脂側を内側に向けた状態で2枚重ねて、又は熱溶融樹脂側を内側に向けた状態となるように折り曲げて、端部をヒートシールにより封止した状態で外装体として用いることができる。ラミネートフィルム外装体を用いる場合、正極集電体に正極リード体130(又は正極端子及び正極端子と接続するリードタブ)を接続し、負極集電体に負極リード体140(又は負極端子及び負極端子と接続するリードタブ)を接続してもよい。この場合、正極リード体130及び負極リード体140(又は正極端子及び負極端子のそれぞれに接続されたリードタブ)の端部が外装体の外部に引き出された状態でラミネートフィルム外装体を封止してもよい。
【0094】
<非水系二次電池の形状>
本実施形態の非水系二次電池の形状は、特に限定されず、例えば、円筒形、楕円形、角筒型、ボタン形、コイン形、扁平形、ラミネート形等に適用できる。
【0095】
<非水系二次電池の製造方法>
本実施形態における非水系二次電池100は、上述の非水系電解液、集電体の片面又は両面に正極活物質層を有する正極150、集電体の片面又は両面に負極活物質層を有する負極160、及び電池外装110、並びに必要に応じてセパレータ170を用いて、公知の方法により作製される。
【0096】
先ず、正極150及び負極160、並びに必要に応じてセパレータ170から成る積層体を形成する。例えば、長尺の正極150と負極160とを、正極150と負極160との間に該長尺のセパレータを介在させた積層状態で巻回して巻回構造の積層体を形成する態様;正極150及び負極160を一定の面積と形状とを有する複数枚のシートに切断して得た正極シートと負極シートとを、セパレータシートを介して交互に積層した積層構造の積層体を形成する態様;長尺のセパレータをつづら折りにして、該つづら折りになったセパレータ同士の間に交互に正極体シートと負極体シートとを挿入した積層構造の積層体を形成する態様;等が可能である。
【0097】
次いで、電池外装110(電池ケース)内に上述の積層体を収容して、本実施形態に係る電解液を電池ケース内部に注液し、積層体を電解液に浸漬して封印することによって、本実施形態における非水系二次電池を作製することができる。
【0098】
別の実施形態では、電解液を高分子材料から成る基材に含浸させることによって、ゲル状態の電解質膜を予め作製しておき、シート状の正極150、負極160、及び電解質膜、並びに必要に応じてセパレータ170を用いて積層構造の積層体を形成した後、電池外装110内に収容して非水系二次電池100を作製することもできる。
【0099】
なお、電極の配置が、負極活物質層の外周端と正極活物質層の外周端とが重なる部分が存在するように、又は負極活物質層の非対向部分に幅が小さすぎる箇所が存在するように設計されている場合、電池組み立て時に電極の位置ずれが生じることにより、非水系二次電池における充放電サイクル特性が低下するおそれがある。よって、該非水系二次電池に使用する電極体は、電極の位置を予めポリイミドテープ、ポリフェニレンスルフィドテープ、PPテープ等のテープ類、接着剤等により、固定しておくことが好ましい。
【0100】
本実施形態において、アセトニトリルを使用した非水系電解液を用いた場合、その高いイオン伝導性に起因して、非水系二次電池の初回充電時に正極から放出されたリチウムイオンが負極の全体に拡散してしまう可能性がある。非水系二次電池では、正極活物質層よりも負極活物質層の面積を大きくすることが一般的である。しかしながら、負極活物質層のうち正極活物質層と対向していない箇所にまでリチウムイオンが拡散して吸蔵されてしまうと、このリチウムイオンが初回放電時に放出されずに負極に留まることとなる。そのため、該放出されないリチウムイオンの寄与分が不可逆容量となってしまう。こうした理由から、アセトニトリルを含有する非水系電解液を用いた非水系二次電池では、初回充放電効率が低くなってしまう場合がある。
【0101】
一方、負極活物質層よりも正極活物質層の面積が大きいか、又は両者が同じである場合には、充電時に負極活物質層のエッジ部分で電流の集中が起こり易く、リチウムデンドライトが生成し易くなる。
【0102】
正極活物質層と負極活物質層とが対向する部分の面積に対する、負極活物質層全体の面積の比について特に制限はないが、上記の理由により、1.0より大きく1.1未満であることが好ましく、1.002より大きく1.09未満であることがより好ましく、1.005より大きく1.08未満であることが更に好ましく、1.01より大きく1.08未満であることが特に好ましい。アセトニトリルを含む非水系電解液を用いた非水系二次電池では、正極活物質層と負極活物質層とが対向する部分の面積に対する、負極活物質層全体の面積の比を小さくすることにより、初回充放電効率を改善できる。
【0103】
正極活物質層と負極活物質層とが対向する部分の面積に対する、負極活物質層全体の面積の比を小さくするということは、負極活物質層のうち、正極活物質層と対向していない部分の面積の割合を制限することを意味している。これにより、初回充電時に正極から放出されたリチウムイオンのうち、正極活物質層とは対向していない負極活物質層の部分に吸蔵されるリチウムイオンの量(すなわち、初回放電時に負極から放出されずに不可逆容量となるリチウムイオンの量)を可及的に低減することが可能となる。よって、正極活物質層と負極活物質層とが対向する部分の面積に対する、負極活物質層全体の面積の比を上記の範囲に設計することによって、アセトニトリルを使用することによる電池の負荷特性向上を図りつつ、電池の初回充放電効率を高め、更にリチウムデンドライトの生成も抑えることができるのである。
【0104】
本実施形態における非水系二次電池100は、初回充電により電池として機能し得るが、初回充電のときに電解液の一部が分解することにより安定化する。初回充電の方法について特に制限はないが、初回充電は0.001~0.3Cで行われることが好ましく、0.002~0.25Cで行われることがより好ましく、0.003~0.2Cで行われることが更に好ましい。初回充電が、途中に定電圧充電を経由して行われることも好ましい結果を与える。設計容量を1時間で放電する定電流が1Cである。リチウム塩が電気化学的な反応に関与する電圧範囲を長く設定することによって、安定強固なSEIが電極表面に形成され、内部抵抗の増加を抑制する効果があることの他、反応生成物が負極160のみに強固に固定化されることなく、何らかの形で、正極150、セパレータ170等の、負極160以外の部材にも良好な効果を与える。このため、非水系電解液に溶解したリチウム塩の電気化学的な反応を考慮して初回充電を行うことは、非常に有効である。
【0105】
本実施形態における非水系二次電池100は、複数個の非水系二次電池100を直列又は並列に接続した電池パックとして使用することもできる。電池パックの充放電状態を管理する観点から、1個当たりの使用電圧範囲は2~5Vであることが好ましく、2.5~5Vであることがより好ましく、2.75V~5Vであることが特に好ましい。
【0106】
以上、本発明を実施するための形態について説明したが、本発明は上述の実施形態に限定されるものではない。本発明は、その要旨を逸脱しない範囲で様々な変形が可能である。
【実施例
【0107】
以下、実施例によって本発明を更に詳細に説明するが、本発明は、これらの実施例に限定されるものではない。
【0108】
(1)非水系電解液の調製
不活性雰囲気下、各種非水系溶媒、各種酸無水物、及び各種添加剤を、それぞれが所定の濃度になるよう混合し、更に、混合物へ各種リチウム塩をそれぞれ所定の濃度になるよう添加することにより、非水系電解液(S1)~(S4)を調製した。これらの非水系電解液組成を表1に示す。
【0109】
表1における非水系溶媒、リチウム塩、及び添加剤の略称は、それぞれ以下の意味である。
(非水系溶媒)
AcN:アセトニトリル
DEC:ジエチルカーボネート
EC:エチレンカーボネート
VC:ビニレンカーボネート
(リチウム塩)
LiPF:ヘキサフルオロリン酸リチウム
LiFSI:リチウムビス(フルオロスルホニル)イミド(LiN(SOF)
【0110】
【表1】
【0111】
非水系電解液S1,S4は、調製後にモレキュラーシーブ(関東化学社製 5A 1/16)を非水系電解液10gに対して1g加え、時々攪拌しながら24時間放置した。その後、得られた非水系電解液のSO 2-、FSO 、及びF量を19F-NMR、及びイオンクロマトグラフィーを用いて測定した。S1についてはSO 2-、FSO 、及びF量を凡そ30ppm程度になるよう調整し、S4については調整を行わず電池評価に使用した。
また、非水系電解液S2,S3については、調製後のモレキュラーシーブによる処理は行わず電池評価に使用した。
【0112】
(2)コイン型非水系二次電池の作製
(2-1)正極の作製
(A)正極活物質としてオリビン型構造を有するリン酸鉄リチウム(LiFePO)と、(B)導電助剤として、カーボンブラック粉末と、バインダーとして、ポリフッ化ビニリデン(PVDF)とを、84:10:6の質量比で混合し、正極合剤を得た。
【0113】
得られた正極合剤に溶剤としてN-メチル-2-ピロリドンを固形分68質量%となるように投入して更に混合して、正極合剤含有スラリーを調製した。正極集電体となる厚さ15μm、幅280mmのアルミニウム箔の片面に、この正極合剤含有スラリーの目付量を調節しながら、塗工幅240~250mm、塗工長125mm、無塗工長20mmの塗布パターンになるよう3本ロール式転写コーターを用いて塗布し、熱風乾燥炉で溶剤を乾燥除去した。得られた電極ロールは、両サイドをトリミングカットし、130℃8時間の減圧乾燥を実施した。その後、ロールプレスで正極活物質層の密度が1.9g/cmになるように圧延することにより、正極活物質層と正極集電体とから成る正極を得た。正極集電体を除く目付量は17.5mg/cmであった。
【0114】
(2-2)負極の作製
負極活物質として、黒鉛粉末と、導電助剤としてカーボンブラック粉末と、バインダーとして、カルボキシメチルセルロース及びスチレンブタジエンゴムとを、負極活物質95.7:導電助剤0.5:バインダー3.8の固形分質量比で混合し、負極合剤を得た。
【0115】
得られた負極合剤に溶剤として水を固形分45質量%となるように投入して更に混合して、負極合剤含有スラリーを調製した。負極集電体となる厚さ8μm、幅280mmの銅箔の片面に、この負極合剤含有スラリーの目付量を調節しながら、塗工幅240~250mm、塗工長125mm、無塗工長20mmの塗布パターンになるよう3本ロール式転写コーターを用いて塗布し、熱風乾燥炉で溶剤を乾燥除去した。得られた電極ロールは、両サイドをトリミングカットし、80℃12時間の減圧乾燥を実施した。その後、ロールプレスで負極活物質層の密度が1.5g/cmになるよう圧延して、負極活物質層と負極集電体から成る負極を得た。負極集電体を除く目付量は7.5mg/cmであった。
【0116】
(2-3)コイン型非水系二次電池の組み立て
CR2032タイプの電池ケース(SUS304/Alクラッド)にポリプロピレン製ガスケットをセットし、その中央に上述のようにして得られた正極を直径15.958mmの円盤状に打ち抜いたものを、正極活物質層を上向きにしてセットした。その上からガラス繊維濾紙(アドバンテック社製、GA-100)を直径16.156mmの円盤状に打ち抜いたものをセットして、非水系電解液を150μL注入した後、上述のようにして得られた負極を直径16.156mmの円盤状に打ち抜いたものを、負極活物質層を下向きにしてセットした。更にスペーサーとスプリングをセットした後に電池キャップをはめ込み、カシメ機でかしめた。溢れた電解液はウエスで拭き取った。25℃で12時間保持し、積層体に非水系電解液を十分馴染ませてコイン型非水系二次電池を得た。
【0117】
(3)コイン型非水系二次電池の評価
上述のようにして得られたコイン型非水系二次電池について、まず、下記(3-1)の手順に従って初回充電処理及び初回充放電容量測定を行った。次に下記(3-2)~(3-3)の手順に従ってそれぞれのコイン型非水系二次電池を評価した。なお、充放電はアスカ電子(株)製の充放電装置ACD-M01A(商品名)及びヤマト科学(株)製のプログラム恒温槽IN804(商品名)を用いて行った。
ここで、1Cとは、満充電状態の電池を定電流で放電して1時間で放電終了となることが期待される電流値を意味する。
【0118】
(3-1)コイン型非水系二次電池の初回充放電処理
コイン型非水系二次電池の周囲温度を25℃に設定し、0.1Cに相当する0.46mAの定電流で充電して3.8Vに到達した後、3.8Vの定電圧で電流が0.05Cに減衰するまで充電を行った。その後、0.3Cに相当する1.38mAの定電流で2.5Vまで放電した。
【0119】
(3-2)25℃サイクル試験
上記(3-1)に記載の方法で初回充放電処理を行ったコイン型非水系二次電池について、周囲温度を25℃に設定し、1.5Cに相当する6.9mAの定電流で3.8Vに到達した後、3.8Vの定電圧で電流が0.05Cに減衰するまで充電を行った。その後、1.5Cに相当する6.9mAの電流値で2.5Vまで放電した。充電と放電とを各々1回ずつ行うこの工程を1サイクルとし、100サイクルの充放電を行った。なお、1サイクル目、50サイクル目、100サイクル目に1Cに相当する4.6mAの定電流で充電して、3.8Vに到達した後、3.8Vの定電圧で電流が0.05Cに減衰するまで充電を行い、その後、0.3Cに相当する1.38mAの定電流で2.5Vまで放電した。
初回充放電処理時の1サイクル目の放電容量を100%としたときの25℃サイクル試験時の99サイクル目の充電容量を、容量維持率として算出した。
【0120】
(3-3)50℃サイクル試験
上記(3-1)に記載の方法で初回充放電処理を行ったコイン型非水系二次電池について、周囲温度を50℃に設定し、1.5Cに相当する6.9mAの定電流で3.8Vに到達した後、3.8Vの定電圧で電流が0.05Cに減衰するまで充電を行った。その後、1.5Cに相当する6.9mAの電流値で2.5Vまで放電した。充電と放電とを各々1回ずつ行うこの工程を1サイクルとし、100サイクルの充放電を行った。なお、1サイクル目、50サイクル目、100サイクル目に1Cに相当する4.6mAの定電流で充電して、3.8Vに到達した後、3.8Vの定電圧で電流が0.05Cに減衰するまで充電を行い、その後、0.3Cに相当する1.38mAの定電流で2.5Vまで放電した。
初回充放電処理時の1サイクル目の放電容量を100%としたときの50℃サイクル試験時の99サイクル目の充電容量を、容量維持率として算出した。
【0121】
(3-4)-40℃放電試験
上記(3-1)に記載の方法で初回充放電処理を行ったコイン型非水系二次電池について、電池の周囲温度を25℃に設定し、0.5Cに相当する2.3mAの定電流で充電して3.8Vに到達した後、3.8Vの定電圧で電流が0.05Cに減衰するまで充電を行い、0.1Cに相当する0.46mAの電流値で2.5Vまで放電した。その後、0.5Cに相当する2.3mAの定電流で充電して3.8Vに到達した後、3.8Vの定電圧で電流が0.05Cに減衰するまで充電を行った。次に、電池の周囲温度を-40℃に設定し、3時間待機時間を設けた後、0.1Cに相当する0.46mAの電流値で2.5Vまで放電した。
25℃環境下の放電容量を100%としたときの-40℃の放電容量を、容量維持率として算出した。
【0122】
[実施例1及び比較例1~3]
正極、負極、表1に示される非水系電解液を用い、上述の(2)に記載の方法に従ってコイン型非水系二次電池を作製した。次に、上述の(3-1)~(3-4)の手順に従ってそれぞれのコイン型非水系二次電池を評価した。この試験結果を表2に示す。
【0123】
【表2】
【0124】
表2に示すように、実施例1は、SO 2-、FSO 、及びF含有量の調整工程を実施した電解液を用いており、25℃サイクル試験の容量維持率が84%以上、-40℃放電試験の容量維持率が56%以上、50℃サイクル試験の容量維持率が87%以上を示した。
【0125】
比較例1はアセトニトリル、LiFSIを含まない電解液を用いたものであるが、-40℃放電試験の容量維持率が20%以下に低下しており、実施例が優れた低温特性を有していることが分かる。
【0126】
一方で、比較例2は、SO 2-、FSO 、及びFイオンの低減工程を実施していない電解液を用いており、50℃サイクル試験の容量維持率が86%以上となり、実施例1と同等の性能を示し、かつ-40℃放電試験の容量維持率が55%以上となり、優れた低温性能を示したものの、25℃サイクル試験の容量維持率が73%以下に低下した。
【0127】
また、比較例3は、SO 2-、FSO 、及びFイオンの低減工程を実施した後に、SO 2-、FSO 、及びF含有量の調整を実施していない電解液を用いており、25℃サイクル試験の容量維持率は84%以上、-40℃放電試験の容量維持率は56%以上と優れた性能を示したものの、50℃サイクル試験の容量維持率が80%以下に低下した。
【0128】
本実験結果から、本発明に係る非水系電解液を用いることにより、非水系二次電池の高温環境下でのサイクル性能と低温での電池性能とを両立できることが明らかとなった。
【産業上の利用可能性】
【0129】
本発明の非水系二次電池は、例えば、アイドリングストップシステムの電源;ハイブリッド自動車、プラグインハイブリッド自動車、電気自動車等の自動車用充電池;12V級電源、24V級電源、48V級電源等の低電圧電源;住宅用蓄電システム等としての利用等が期待される。
【符号の説明】
【0130】
100 非水系二次電池
110 電池外装
120 電池外装110の空間
130 正極リード体
140 負極リード体
150 正極
160 負極
170 セパレータ
図1
図2