IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ ファナック株式会社の特許一覧

<>
  • 特許-分析装置 図1
  • 特許-分析装置 図2
  • 特許-分析装置 図3
  • 特許-分析装置 図4
  • 特許-分析装置 図5
  • 特許-分析装置 図6
  • 特許-分析装置 図7
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2023-10-16
(45)【発行日】2023-10-24
(54)【発明の名称】分析装置
(51)【国際特許分類】
   G06F 18/21 20230101AFI20231017BHJP
   G06F 18/15 20230101ALI20231017BHJP
   G05B 19/18 20060101ALI20231017BHJP
   G05B 19/418 20060101ALI20231017BHJP
   G06Q 50/04 20120101ALI20231017BHJP
   G05B 23/02 20060101ALI20231017BHJP
   G06F 123/02 20230101ALN20231017BHJP
【FI】
G06F18/21
G06F18/15
G05B19/18 W
G05B19/418 Z
G06Q50/04
G05B23/02 302Z
G06F123:02
【請求項の数】 6
(21)【出願番号】P 2019202079
(22)【出願日】2019-11-07
(65)【公開番号】P2021076998
(43)【公開日】2021-05-20
【審査請求日】2022-07-20
(73)【特許権者】
【識別番号】390008235
【氏名又は名称】ファナック株式会社
(74)【代理人】
【識別番号】110001151
【氏名又は名称】あいわ弁理士法人
(72)【発明者】
【氏名】上野 智史
【審査官】多賀 実
(56)【参考文献】
【文献】特開平08-320720(JP,A)
【文献】特開平06-020173(JP,A)
【文献】国際公開第2015/136586(WO,A1)
【文献】特開2007-148890(JP,A)
【文献】国際公開第2016/035338(WO,A1)
(58)【調査した分野】(Int.Cl.,DB名)
G06F 18/00-18/40
G06F 123/02
G06F 11/07
G06F 11/28-11/36
G05B 19/18
G05B 19/418
G06Q 50/04
G05B 23/02
(57)【特許請求の範囲】
【請求項1】
時系列データを含むデータを分析する分析装置であって、
前記データに含まれる時系列データを所定のスライド窓幅で切り取った区間データを抽出し、抽出した区間データの変化傾向の単純性を分析する事前分析部と、
前記事前分析部により分析された結果に基づいて設定されたスライド窓幅で、前記データを分割データへと分割するデータ分割部と、
前記分割データに基づいて、該分割データにおける変化傾向を示す文字列である組合せデータを生成するデータ生成部と、
前記組合せデータを分析するデータ分析部と、
を備えた分析装置。
【請求項2】
前記事前分析部は、
数値型の前記区間データの内の、その数値の変化が非単調性を示す区間データの数を求める非単調性区間計算部を備える、
請求項1に記載の分析装置。
【請求項3】
前記事前分析部は、
数値型以外の前記区間データについて、それぞれの区間データの取る状態数を算出し、算出した状態数毎の区間データの数を求める状態数計算部を備える、
請求項1に記載の分析装置。
【請求項4】
前記データ生成部は、数値型の前記分割データに基づいて、前記分割データの始点値から終点値への増減値を示す文字列を含む組合せデータを生成する、
請求項1に記載の分析装置。
【請求項5】
前記データ生成部は、数値型以外の前記分割データに基づいて、前記分割データの状態の変化の流れを示す文字列を含む組合せデータを生成する、
請求項1に記載の分析装置。
【請求項6】
時系列データを含むデータを分析する分析方法であって、
コンピュータが、
前記データに含まれる時系列データを所定のスライド窓幅で切り取った区間データを抽出し、抽出した区間データの変化傾向の単純性を分析する第1ステップと、
前記第1ステップで分析した結果に基づいてスライド窓幅を設定し、前記データを設定したスライド窓幅で分割データへと分割する第2ステップと、
前記分割データに基づいて、該分割データにおける変化傾向を示す文字列である組合せデータを生成する第3ステップと、
前記組合せデータを分析する第4ステップと、
を実行する分析方法。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、分析装置に関する。
【背景技術】
【0002】
工場等の製造現場では、製造ラインに設置されるロボットや工作機械等の産業機械の稼働状態を監視し、産業機械の稼働状態を管理する装置が導入されている。
【0003】
産業機械の稼働状態を管理する装置は、例えばネットワークを介してそれぞれの産業機械で検出されたモータの位置、速度、トルク等の時系列データや、所定の時刻における信号の変化を示すデータ、産業機械に取り付けられたセンサで検出された振動や音、動画像等の時系列データを監視し、各データの時間の推移に対する変化状態から異常を示す傾向を検出することで、産業機械の稼働状態を管理している(例えば、特許文献1,2等)。
【先行技術文献】
【特許文献】
【0004】
【文献】特許第6453504号公報
【文献】特開2019-012473号公報
【発明の概要】
【発明が解決しようとする課題】
【0005】
産業機械の稼働状態は、所定のデータを単独で判定するのではなく、それぞれのデータの間の関係に基づいて判定しなければならない場合がある。例えば、産業機械が備える2つの駆動系が同じタイミングで上昇/下降しているのか、又は全く関係が無いのか、ある部分が特定の状態にある時に所定の信号がON/OFFされているか、等といったことを、データ間の関係を分析して判定する。このような判定をする場合、それぞれのデータの関係性を予め把握した上で判定のためのアルゴリズムや条件を作成しておく必要がある。
【0006】
産業機械から取得されるデータ数が少ない場合、また、データを取得する期間が比較的短い場合等には、それぞれのデータをグラフ上に時間を揃えて表示し、作業者はその表示を目視してデータ間の関係性を把握することができる。しかしながら、産業機械から取得されるデータ数が多い場合、また、取得したデータが比較的長い期間に渡るものである場合には、データ間の関係性を人が判断することが困難である。
【0007】
そこで、データ間の関係性を分析する方法が必要となる。一般に、時系列の数値型のデータ同士の類似度はユークリッド距離、CCF(Cross-Correlation Function:相互相関関数)、DTW(Dynamic Time Warping:動的時間伸縮法)等によって計算できる。しかしながら、これらの方法を用いたとしても、長い期間に渡って取得されたデータの特徴的な部分に着目して複数のデータ間の関係性を同時に把握することは困難である。
そのため、複数の時系列データについて、各データ間の関係性を容易に分析できる仕組みが求められている。
【課題を解決するための手段】
【0008】
本発明は、時系列データを含む複数のデータの関係性の把握に公知のデータ分析手法であるアソシエーション分析の技術が適用できるようすることで、上記課題を解決する。一般にアソシエーション分析は時系列データに対して適用できないが、本発明の一態様による分析装置は、取得できる時系列データからその関係性に特徴がある区間を見出して抽出することで、アソシエーション分析を適用できるようにする。
【0009】
そして、本発明の一態様は、産業機械から取得される時系列データを含むデータを分析する分析装置であって、前記データに含まれる時系列データを所定のスライド窓幅で切り取った区間データを抽出し、抽出した区間データの変化傾向の単純性を分析する事前分析部と、前記事前分析部により分析された結果に基づいて設定されたスライド窓幅で、前記データを分割データへと分割するデータ分割部と、前記分割データに基づいて、該分割データにおける変化傾向を示す文字列である組合せデータを生成するデータ生成部と、前記組合せデータを分析するデータ分析部と、を備えた分析装置である。
【0010】
本発明の他の態様は、産業機械から取得される時系列データを含むデータを分析する分析方法であって、コンピュータが、前記データに含まれる時系列データを所定のスライド窓幅で切り取った区間データを抽出し、抽出した区間データの変化傾向の単純性を分析する第1ステップと、前記第1ステップで分析した結果に基づいてスライド窓幅を設定し、前記データを設定したスライド窓幅で分割データへと分割する第2ステップと、前記分割データに基づいて、該分割データにおける変化傾向を示す文字列である組合せデータを生成する第3ステップと、前記組合せデータを分析する第4ステップと、を実行する分析方法である。
【発明の効果】
【0011】
本発明の一態様により、時系列データを含む複数のデータ間の関係性を把握することができるようになり、データの活用がより行いやすくなる。
【図面の簡単な説明】
【0012】
図1】一実施形態による分析装置の概略的なハードウェア構成図である。
図2】第1実施形態による分析装置の概略的な機能ブロック図である。
図3】取得データ記憶部に記憶されるデータの例を示す図である。
図4】単調性の判定について説明する図である。
図5】非単調性区間数及び状態数の表示例を示す図である。
図6】第2実施形態による分析装置の概略的な機能ブロック図である。
図7】第3実施形態による分析装置の概略的な機能ブロック図である。
【発明を実施するための形態】
【0013】
以下、本発明の実施形態を図面と共に説明する。
図1は本発明の一実施形態による分析装置の要部を示す概略的なハードウェア構成図である。本発明の分析装置1は、例えば産業機械を制御する制御装置として実装することができる。また、本発明の分析装置1は、産業機械を制御する制御装置に併設されたパソコンや、有線/無線のネットワークを介して制御装置と接続されたパソコン、セルコンピュータ、フォグコンピュータ、クラウドサーバの上に実装することができる。本実施形態では、分析装置1を、ネットワークを介して産業機械を制御する制御装置と接続されたパソコンの上に実装した例を示す。
【0014】
本実施形態による分析装置1が備えるCPU11は、分析装置1を全体的に制御するプロセッサである。CPU11は、バス22を介してROM12に格納されたシステム・プログラムを読み出し、該システム・プログラムに従って分析装置1全体を制御する。RAM13には一時的な計算データや表示データ、及び外部から入力された各種データ等が一時的に格納される。
【0015】
不揮発性メモリ14は、例えば図示しないバッテリでバックアップされたメモリやSSD(Solid State Drive)等で構成され、分析装置1の電源がオフされても記憶状態が保持される。不揮発性メモリ14には、インタフェース15を介して外部機器72から読み込まれたデータ、入力装置71を介して入力されたデータ、インタフェース20を介して制御装置3から取得されたデータ等が記憶される。不揮発性メモリ14に記憶されたデータは、実行時/利用時にはRAM13に展開されても良い。また、ROM12には、公知の解析プログラムなどの各種システム・プログラムがあらかじめ書き込まれている。
【0016】
インタフェース15は、分析装置1のCPU11とUSB装置等の外部機器72と接続するためのインタフェースである。外部機器72側からは、例えば他の産業機械等で取得されたデータ等を読み込むことができる。また、分析装置1内で処理されたデータ等は、外部機器72を介して外部記憶手段に記憶させることができる。
【0017】
インタフェース20は、分析装置1のCPU11と有線乃至無線のネットワーク5とを接続するためのインタフェースである。ネットワーク5には、制御装置3やフォグコンピュータ、クラウドサーバ等が接続され、分析装置1との間で相互にデータのやり取りを行っている。
【0018】
表示装置70には、メモリ上に読み込まれた各データ、プログラム等が実行された結果として得られたデータ等がインタフェース17を介して出力されて表示される。また、キーボードやポインティングデバイス等から構成される入力装置71は、作業者による操作に基づく指令,データ等をインタフェース18を介してCPU11に渡す。
【0019】
図2は、本発明の第1実施形態による分析装置1が備える機能を概略的なブロック図として示したものである。本実施形態による分析装置1が備える各機能は、図1に示した分析装置1が備えるCPU11がシステム・プログラムを実行し、分析装置1の各部の動作を制御することにより実現される。
【0020】
本実施形態の分析装置1は、データ取得部100、事前分析部110、表示部120、前処理部130,データ分析部140を備える。また、分析装置1のRAM13乃至不揮発性メモリ14には、入力装置71、外部機器72、制御装置3等から取得したデータを記憶するための領域としての取得データ記憶部200、データの分析条件を記憶する領域としての分析条件記憶部210、データに対する前処理を行った結果を記憶する領域としての組合せデータ記憶部220が予め用意されている。
【0021】
データ取得部100は、図1に示した分析装置1が備えるCPU11がROM12から読み出したシステム・プログラムを実行し、主としてCPU11によるRAM13、不揮発性メモリ14を用いた演算処理と、インタフェース15、18又は20による入力制御処理とが行われることで実現される。データ取得部100は、産業機械4の動作時に検出された時系列データや、所定の時刻における信号の変化を示すデータ等を取得する。この所定の時刻における信号の変化を示すデータは、信号の変化を時間軸上に表すことで時系列データとして扱うことができる。データ取得部100は、産業機械4のモータの位置データ、速度データ、加速度データ、トルクデータ、産業機械4に取り付けら得ているセンサ6が検出した振動データ、音データ、画像データ、産業機械4を制御する制御装置3が記憶する各種データ等を取得する。データ取得部100は、ネットワーク5を介して制御装置3から産業機械4に係るデータを直接取得しても良い。データ取得部100は、外部機器72や、図示しないフォグコンピュータ、クラウドサーバ等が既に取得して記憶しているデータを取得しても良い。データ取得部100が取得したデータは、取得データ記憶部200に記憶される。
【0022】
事前分析部110は、図1に示した分析装置1が備えるCPU11がROM12から読み出したシステム・プログラムを実行し、主としてCPU11によるRAM13、不揮発性メモリ14を用いた演算処理が行われることで実現される。事前分析部110は、取得データ記憶部200に記憶されるデータに対する事前分析を行い、その分析結果を表示部120へと出力する。事前分析部110が実行する事前分析は、取得データ記憶部200に記憶されるデータについて、どのように区間を定めると単純な変化傾向を示す区間データが抽出できるのかを作業者が判断するためのものであり、データを所定の区間で区切った場合の区間データの変化傾向の単純性を事前に分析するためのものである。事前分析部110は、区間抽出部112、非単調性区間数計算部114,状態数計算部116を備える。
【0023】
区間抽出部112は、分析条件記憶部210に記憶されているスライド窓幅Swの値に基づいて、取得データ記憶部200に記憶されるデータからそれぞれスライド窓幅Swのスライド窓S1~iで切り取った区間データを抽出する。区間抽出部112は、時間t=0の位置がスライド窓S1の左端となるようにして、前のスライド窓の右端位置に後ろのスライド窓の左端が来るように配置して、時系列データを切り取って区間データを抽出する。スライド窓幅Swは、作業者が入力装置71を操作して分析条件として設定するようにすれば良い。図3は、取得データ記憶部200に記憶されるデータの例を示している。図3の例では、産業機械4としての工作機械において、加工部品を加工した際に取得されたデータを示している。例えば工作機械で加工された加工部品数、工作機械のサーボモータ温度、主軸モータ温度等の時系列データ、及び、工作機械の信号状態として、M01デコード信号の信号状態、切削送り信号の信号状態、シングルブロック確認信号の信号状態が取得データ記憶部に記憶されているものとする。この時、区間抽出部112は、それぞれのデータを時間軸上に並べ、該時間軸を設定されているスライド窓幅Swで分割した場合の各スライド窓内のデータを区間データとして抽出する。図3に例示されるデータとスライド窓幅Swとの関係は、表示部120により表示装置70に表示するようにしても良い。このようにすることで、作業者は各データとスライド窓幅Swとの関係を画面上で確認しながら、スライド窓幅Swの調整を行うことができる。なお、スライド窓S1は時間0が左端となるようにして区間データの切り出しを行うが、この位置を調整できるようにしても良い。このようにする場合、位置の調整量ewもスライド窓幅Swと共に分析条件記憶部210に記憶する。
【0024】
非単調性区間数計算部114は、区間抽出部112が抽出した区間データの内の数値型のデータである区間データについて、その数値の変化が非単調性を示す(単調性を示さない)区間データの数を求める。非単調性区間数計算部114は、数値型のデータである区間データについて、該区間データが単調増加乃至単調減少の傾向を示さない場合に非単調性を示すものとして判定する。この時の判定は、ある程度の余裕をもたせたものとして良い。例えば、図4に例示されるように、ある区間データDについて、始点値DSと終点値Deを結ぶ直線を求め、この区間データDの各時点での値と当該時点における該直線が取る値との距離が予め定めた所定の閾値を超える部分がある場合に、非単調性区間数計算部114は当該区間データDが非単調性を示すものとして判定しても良い。また、同様の場合において、区間データDの各時点での値と当該時点における該直線が取る値との比率が予め定めた所定の閾値を超える部分がある場合に、非単調性区間数計算部114は当該区間データDが非単調性を示すものとして判定するようにしても良い。更に、ある区間データD内に、予め定められた所定の幅(例えば、区間データDの幅の30%の幅等)の、所定の正閾値以上の正の傾きが連続する区間と、所定の負閾値以下の負の傾きが連続する区間とが同時に存在する場合に、非単調性区間数計算部114は当該区間データDが非単調性を示すものとして判定するようにしても良い。他にも、非単調性区間数計算部114は、データの特性に応じて一般的に非単調性を示すと判断される場合に該区間データが非単調性を示すと判定するようにしても良い。非単調性区間数計算部114が求める値は、数値型のデータにおける区間データの変化傾向の単純性を測る尺度として用いることができる。
【0025】
状態数計算部116は、区間抽出部112が抽出した区間データの内の信号などの数値型でないデータである区間データについて、それぞれの区間データ内で該データの取る状態数を算出した上で、状態数毎の区間データの数を求める。状態数計算部116は、例えば区間データがその区間においてON乃至OFFの値のままで変わらない場合、当該区間データの状態数を1と算出する。状態数計算部116は、例えば区間データがその区間においてON->OFF乃至OFF->ONと1回変化する場合、当該区間データの状態数を2と算出する。状態数計算部116は、例えば区間データがその区間においてON->OFF->ON乃至OFF->ON->OFFと2回変化する場合、当該区間データの状態数を3と算出する。状態数計算部116が求める値は、数値型以外のデータにおける区間データの変化傾向の単純性を測る尺度として用いることができる。
【0026】
表示部120は、図1に示した分析装置1が備えるCPU11がROM12から読み出したシステム・プログラムを実行し、主としてCPU11によるRAM13、不揮発性メモリ14を用いた演算処理と、インタフェース17による出力制御処理とが行われることで実現される。表示部120は、事前分析部110による事前分析の結果や、データ分析部140によるデータ分析の結果を表示装置70に表示する。表示部120は、例えば図3に例示されるデータとスライド窓幅Swとの関係を表示する。また、表示部120は、作業者が設定したスライド窓幅Swにおける事前分析部110による事前分析の結果として、非単調性区間数計算部114が求めた非単調を示す区間データの数、及び、状態数計算部116が求めた状態数毎の区間データの数を表示する。
【0027】
図5は、表示部120の表示の例を示している。図5の例では、取得データ記憶部200に記憶される各データとスライド窓幅Swとの関係と一緒に、非単調性区間数計算部114が求めた非単調を示す区間データの数、及び、状態数計算部116が求めた状態数毎の区間データの数を表示している。このような表示を見ることで、作業者は設定したスライド窓幅Swの妥当性について検討することができる。作業者は、図5に例示される表示を見て、より非単調性区間数が少なくなり、また、より状態数が大きい区間が少なくなるスライド窓幅Swの値を検討することができる。
【0028】
前処理部130は、図1に示した分析装置1が備えるCPU11がROM12から読み出したシステム・プログラムを実行し、主としてCPU11によるRAM13、不揮発性メモリ14を用いた演算処理が行われることで実現される。前処理部130は、取得データ記憶部200に記憶されるデータに対する前処理を行い、その結果として生成した組合せデータを組合せデータ記憶部220に記憶する。前処理部130が実行する前処理は、事前分析によって妥当であると判断されたスライド窓幅Swで取得データ記憶部200に記憶されるデータを分割し、その分割した分割データの変化傾向を表す所定の文字列へと変換した組合せデータを生成するものである。前処理部130は、データ分割部132、データ生成部134を備える。
【0029】
データ分割部132は、分析条件記憶部210に記憶されているスライド窓幅Swの値に基づいて、取得データ記憶部200に記憶されるデータをスライド窓幅Swのスライド窓S1~iで分割した分割データへと分割する。分析条件記憶部210に記憶されるスライド窓幅Swは、事前分析部110を用いた事前分析により、作業者が妥当であると判断した値である。分割データの作成に用いられるスライド窓幅Swは、作業者が最も妥当であると判断した1つの値でも良いが、作業者が定めた複数の値をそれぞれ用いるようにしても良い。なお、スライド窓は時間0を基準位置として区間データの切り出しを行うが、この基準位置を調整できるようにしても良い。なお、スライド窓S1~iの位置を調整できるようにしても良い。このようにする場合、スライド窓幅Swと共に分析条件記憶部210に記憶される位置の調整量ewを用いてスライド窓の位置を調整する。
【0030】
データ生成部134は、データ分割部132が作成した分割データについて、該分割データの変化傾向を表す所定の形式の文字列である組合せデータを生成する。データ生成部134は、分類データが数値型のデータである場合には、該分類データの始点値から終点値への増減値を示す文字列へと変換し、変換した文字列を含む組合せデータを生成する。例えば分割データがサーボモータ温度のデータであって、その区間の始点から終点までの間に値が5℃増えた場合、データ生成部134は、当該分割データから組合せデータ「サーボモータ温度(+5℃)」を生成する。また、例えば分割データが主軸モータ温度のデータであって、その区間の始点から終点までの間に値が8℃減る場合、データ生成部134は、当該分割データから組合せデータ「主軸モータ温度(-8℃)」を生成する。
【0031】
また、データ生成部134は、分類データが数値型以外のデータである場合には、該分割データの状態の変化の流れを示す文字列へと変換し、変換した文字列を含む組合せデータを生成する。例えば分割データが切削送り信号のデータであって、その区間においてONの値のままで変わらない場合、データ生成部134は、当該分割データから組合せデータ「切削送り信号ON」を生成する。また、例えば分割データがシングルブロック確認信号のデータであって、その区間においてOFF->ON->OFFと変化する場合、データ生成部134は、当該分割データから組合せデータ「シングルブロック確認信号OFF->ON->OFF」を生成する。
【0032】
データ分析部140は、図1に示した分析装置1が備えるCPU11がROM12から読み出したシステム・プログラムを実行し、主としてCPU11によるRAM13、不揮発性メモリ14を用いた演算処理が行われることで実現される。データ分析部140は、組合せデータ記憶部220に記憶された組合せデータに基づいた公知のアソシエーション分析を行う。アソシエーション分析は、データの集合から所定のパターン(相関ルール)を発見する分析方法である。例えば、アソシエーション分析では、「サーボモータ温度が増加する」ことと「主軸モータ温度が増加する」ことに相関性が有る、等といった相関ルールを発見する。データ取得部100が取得したデータには時系列データが含まれているため、このデータに対して一般的なアソシエーション分析を適用することは難しい。しかしながら、本願発明の分析装置1では、前処理部130による前処理が行われた段階で、データ種類とそのデータの変化傾向示す文字列である組合せデータが生成されている。そのため、この組合せデータに対してアソシエーション分析の手法を適用することで、数値データの変化や信号値の状態変化の間での相関性を分析することができる。データ分析部140は、アソシエーション分析を行う際に、同じ時間に検出されたデータに基づいて生成された組合せデータは、同時に起こる(共起性のある)組合せデータとみなす。なお、アソシエーション分析の詳細については、本願の出願以前に十分に公知となっているため、本明細書での説明は省略する。
【0033】
データ分析部140は、組合せデータに対してそのままアソシエーション分析を行うようにしても良いが、例えば所定の条件に基づいて複数の組合せデータを同値とみなした上でアソシエーション分析を行うようにしても良い。この場合、データ分析部140は、分析条件記憶部210に記憶されている同値条件に基づいて、複数の組合せデータを同値とみなすようにしても良い。例えば同値条件として、数値型のデータである温度は小数点以下を切り捨てる、という同値条件が設定されている場合、データ分析部140は、組合せデータ「サーボモータ温度:+5.2℃」と「サーボモータ温度:+5.8℃」は「サーボモータ温度:+5.0℃」と同値とみなしてアソシエーション分析を行う。また、例えば同値条件として、数値型以外のデータであるシングルブロック確認信号は、3以上の状態を取る場合は状態変化を「その他」と同値とみなす、という同値条件が設定されている場合、データ分析部140は、組合せデータ「シングルブロック確認信号:OFF->ON->OFF」や組合せデータ「シングルブロック確認信号:ON->OFF->ON」等のような、状態数が3以上のシングルブロック確認信号のデータを「シングルブロック確認信号:その他」と同値とみなしてアソシエーション分析を行う。同値条件は、データの特性などに基づいて適当な大きさになるように、作業者が同値とみなす範囲を定めるようにして良い。また、同値条件は、データの最大値と最小値の差のX%等といったように、同値とみなす範囲をそれぞれのデータが取り得る範囲に基づいて決定するようにしても良い。
【0034】
なお、データ分析部140は、アソシエーション分析以外でも、時系列データには適用が困難であるが、文字列等のデータに適用可能な他の分析方法で組合せデータを分析するようにしても良い。例えば、バスケット分析や因子分析、ABC分析などのような、事象を分析する公知の分析方法を行うようにしても良い。
【0035】
上記構成を備えた本実施形態による分析装置1は、産業機械から取得される様々な時系列データの関係性を、公知の分析方法により分析することを可能とする。そのため、データの活用がより行いやすくなる。本実施形態による分析装置1がアソシエーション分析することで求まった各データ間の関係性は、様々な目的で活用することができる。
例えば、データ間の関係性を、不要なデータの取得を止めるために活用することができる。分析した結果、ある2以上のデータの値がほぼ一致することがわかった場合、また、ある状態のときには必ず信号がONになる、などが判明した場合、これらのデータは重複したデータとみなすことができるので、いずれかのデータの取得を止める検討をすることができる。これにより、データ収集装置やデータ収集経路として用いられるネットワークの負荷の軽減や、また、データの収集先であるデータベースの容量の削減を検討することができる。
【0036】
また、データ間の関係性を、データの欠損時の補完に活用することもできる。分析した結果、ある2以上のデータの関係性が判明している場合、あるデータが欠損して収集できなかった場合であっても、該データと関係性が有る他のデータの値を使って予測した値で補完することができる。
【0037】
データ間の関係性を、加工の品質改善に活用することもできる。分析した結果、加工結果(良品・不良品)と加工時に収集されたデータの関係性が判明した場合、不良の原因を特定して不良品の発生を防止したり、機械の稼働中に収集されたデータから、不良品が出る徴候が検出された際に加工を停止することができる。
【0038】
データ間の関係性を、異常検知に活用することができる。分析した結果、例えば「サーボの温度が5度上がるならば、主軸の温度も5度上がる」という関係性が判明している場合に、サーボの温度が5度上がる際に主軸の温度が上がっていないならば異常が発生していると判断することができる。
【0039】
データ間の関係性を、故障やアラームの兆候の発見に活用することができる。分析した結果、正常動作時の信号の値の関係性が判明している場合、例えばあるアラームが発生する前に、信号の値の関係性が正常時と異なっている場合、その関係性が故障やアラームの兆候であると判断することができる。
【0040】
データ間の関係性をネットワーク分析することで信号の関係をグラフ化し、信号全体の関係性を把握することも可能となる。このようにすることで、アソシエーション分析だけではわからない、信号全体の関係性を視覚的に把握できる。全体を把握して得られた関係性の知見を使って、例えば機械学習で利用するデータの特徴量を抽出することが容易になる。また信号全体の関係性を視覚的に把握することで、他の活用方法の実施を容易にすることも期待できる。
【0041】
図6は、本発明の第2実施形態による分析装置1が備える機能を概略的なブロック図として示したものである。本実施形態による分析装置1が備える各機能は、図1に示した分析装置1が備えるCPU11がシステム・プログラムを実行し、分析装置1の各部の動作を制御することにより実現される。
【0042】
本実施形態の分析装置1は、前処理部130が同値区間変換部136を備える点で、第1実施形態による分析装置1と異なる。
同値区間変換部136は、分析条件記憶部210に記憶されている同値条件に基づいて、データ生成部134が生成した組合せデータを同値とみなす集合へと類別し、類別した組合せデータを組合せデータ記憶部220に記憶する。類別された組合せデータは、データ分析部140により分析される。
【0043】
図7は、本発明の第3実施形態による分析装置1が備える機能を概略的なブロック図として示したものである。本実施形態による分析装置1が備える各機能は、図1に示した分析装置1が備えるCPU11がシステム・プログラムを実行し、分析装置1の各部の動作を制御することにより実現される。
【0044】
本実施形態の分析装置1は、スライド窓幅調整部150を備える点で、第1実施形態による分析装置1と異なる。
スライド窓幅調整部150は、予め定めた所定のルールに基づいてスライド窓幅Swを調整し、非単調性区間数計算部114が求める非単調性を示す区間データの数及び状態数計算部116が求める状態数毎の区間データの数が妥当な値となるスライド窓幅Swを探索する。スライド窓幅調整部150は、例えば作業者が分析条件記憶部210に設定したスライド窓幅Swを基準として、予め定めた所定の調整量dw刻みで所定段階増減させたスライド窓幅Sw-j×dw~スライド窓幅Sw+j×dwを設定し、それぞれのスライド窓幅を設定した時の非単調性区間数計算部114が求める非単調性を示す区間データの数及び状態数計算部116が求める状態数毎の区間データの数を比較して、予め定めた妥当性の条件を満足するスライド窓幅を探索するようにしても良い。また、スライド窓幅調整部150は、例えばスライド窓による時系列データの区切り位置を予め定めた所定の調整量ewd刻みで所定段階ずらし、それぞれのスライド窓の位置を設定した時の非単調性区間数計算部114が求める非単調性を示す区間データの数及び状態数計算部116が求める状態数毎の区間データの数を比較して、予め定めた妥当性の条件を満足するスライド窓の調整量を探索するようにしても良い。
【0045】
本実施形態による分析装置1は、ある程度自動的により良いスライド窓幅やスライド窓の位置の調整量を求めることが可能となる。そのため、作業者によるスライド窓幅やスライド窓の位置の調整量の検討作業に係る労力をある程度軽減することが可能となる。
【0046】
以上、本発明の一実施形態について説明したが、本発明は上述した実施の形態の例のみに限定されることなく、適宜の変更を加えることにより様々な態様で実施することができる。
【符号の説明】
【0047】
1 分析装置
3 制御装置
4 産業機械
5 ネットワーク
6 センサ
11 CPU
12 ROM
13 RAM
14 不揮発性メモリ
15,17,18,20 インタフェース
22 バス
70 表示装置
71 入力装置
72 外部機器
100 データ取得部
110 事前分析部
112 区間抽出部
114 非単調性区間数計算部
116 状態数計算部
120 表示部
130 前処理部
132 データ分割部
134 データ生成部
136 同値区間変換部
140 データ分析部
200 取得データ記憶部
210 分析条件記憶部
220 組合せデータ記憶部
図1
図2
図3
図4
図5
図6
図7