(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2023-10-16
(45)【発行日】2023-10-24
(54)【発明の名称】電極層の作製方法および蓄電装置の作製方法
(51)【国際特許分類】
H01M 4/1391 20100101AFI20231017BHJP
H01M 4/505 20100101ALI20231017BHJP
H01M 4/525 20100101ALI20231017BHJP
【FI】
H01M4/1391
H01M4/505
H01M4/525
(21)【出願番号】P 2022136990
(22)【出願日】2022-08-30
(62)【分割の表示】P 2020065533の分割
【原出願日】2015-10-22
【審査請求日】2022-09-27
(31)【優先権主張番号】P 2014218659
(32)【優先日】2014-10-27
(33)【優先権主張国・地域又は機関】JP
(31)【優先権主張番号】P 2014218501
(32)【優先日】2014-10-27
(33)【優先権主張国・地域又は機関】JP
(31)【優先権主張番号】P 2014227325
(32)【優先日】2014-11-07
(33)【優先権主張国・地域又は機関】JP
(31)【優先権主張番号】P 2014227729
(32)【優先日】2014-11-10
(33)【優先権主張国・地域又は機関】JP
(73)【特許権者】
【識別番号】000153878
【氏名又は名称】株式会社半導体エネルギー研究所
(72)【発明者】
【氏名】川上 貴洋
(72)【発明者】
【氏名】落合 輝明
(72)【発明者】
【氏名】吉富 修平
(72)【発明者】
【氏名】廣橋 拓也
(72)【発明者】
【氏名】元吉 真子
(72)【発明者】
【氏名】門馬 洋平
(72)【発明者】
【氏名】後藤 準也
【審査官】結城 佐織
(56)【参考文献】
【文献】国際公開第2010/090028(WO,A1)
【文献】特開2005-190831(JP,A)
【文献】特開2005-026191(JP,A)
【文献】特許第5646088(JP,B1)
(58)【調査した分野】(Int.Cl.,DB名)
H01M 4/1391
H01M 4/505
H01M 4/525
(57)【特許請求の範囲】
【請求項1】
粒子と、バインダーと、溶媒と、を混合して混合物を作製し、
前記混合物を集電体上に設けて混合物層を作製し、
前記混合物層に加熱処理を行うことにより電極層を作製する電極層の作製方法であって、
前記粒子は、リチウム、マンガン、元素M、および酸素を有し、
前記元素Mは、クロム、コバルト、アルミニウム、ニッケル、鉄、マグネシウム、モリブデン、亜鉛、インジウム、ガリウム、銅、チタン、ニオブ、シリコンおよびリンから選ばれる一以上の元素であり、
前記加熱処理の温度は、160℃以上であり、
前記電極層は、リチウム、マンガン、元素M、および酸素の少なくともいずれか一と、前記バインダーの有する少なくとも一の元素と、の結合を有する化合物を有する、電極層の作製方法。
【請求項2】
請求項1において、
前記化合物は、リチウム、マンガン、または元素Mの少なくともいずれか一と、フッ素と、を有する、電極層の作製方法。
【請求項3】
粒子と、バインダーと、溶媒と、を混合して混合物を作製し、
前記混合物を集電体上に設けて混合物層を作製し、
前記混合物層に加熱処理を行うことにより電極層を作製する電極層の作製方法であって、
前記粒子は、リチウム、マンガン、元素M、および酸素を有し、
前記元素Mは、クロム、コバルト、アルミニウム、ニッケル、鉄、マグネシウム、モリブデン、亜鉛、インジウム、ガリウム、銅、チタン、ニオブ、シリコンおよびリンから選ばれる一以上の元素であり、
前記加熱処理の温度は、160℃以上であり、
前記電極層のXPS分析により、リチウム、マンガン、元素M、および酸素の少なくともいずれか一と、前記バインダーの有する少なくとも一の元素と、の結合に起因するピークが観察される、電極層の作製方法。
【請求項4】
請求項1乃至請求項3のいずれか一において、
前記結合は、金属-F結合である、電極層の作製方法。
【請求項5】
請求項1乃至請求項4のいずれか一において、
前記加熱処理の温度は、200℃以上である電極層の作製方法。
【請求項6】
請求項1乃至請求項5のいずれか一に記載された方法により作製された前記電極層を用いて蓄電装置を作製する、蓄電装置の作製方法。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、物、方法、または製造方法に関する。または、本発明は、プロセス、マシン
、マニュファクチャ、または、組成物(コンポジション・オブ・マター)に関する。特に
、本発明の一態様は、半導体装置、表示装置、発光装置、撮像装置、蓄電装置、記憶装置
、それらの駆動方法、またはそれらの製造方法に関する。特に、本発明の一態様は、蓄電
装置の構造及びその作製方法に関する。特にリチウムイオン二次電池の正極活物質に関す
る。
【背景技術】
【0002】
近年、スマートフォンやタブレット等の携帯用電子機器が急速に普及している。また、
環境問題のへの関心の高まりから、ハイブリッドカーや電気自動車への注目が集まり、二
次電池をはじめとする蓄電装置の重要性が増している。二次電池としては、ニッケル水素
電池や、鉛蓄電池や、リチウムイオン二次電池などが挙げられる。中でも、リチウムイオ
ン二次電池は、高容量、且つ、小型化が図れるため、開発が盛んに行われている。
【0003】
二次電池の基本的な構成は、正極と負極との間に電解質を介在させたものである。電解
質を有する物体としては固体電解質や、電解液等が挙げられる。正極及び負極としては、
それぞれ集電体と、集電体上に設けられた活物質層と、を有する構成が代表的である。リ
チウムイオン二次電池の場合は、リチウムを吸蔵及び放出することができる材料を、正極
及び負極の活物質として用いる。
【0004】
リチウムイオン二次電池において、正極活物質として、例えば、特許文献1に示されて
いる、リン酸鉄リチウム(LiFePO4)、リン酸マンガンリチウム(LiMnPO4
)、リン酸コバルトリチウム(LiCoPO4)、リン酸ニッケルリチウム(LiNiP
O4)などの、リチウム(Li)と鉄(Fe)、マンガン(Mn)、コバルト(Co)ま
たはニッケル(Ni)とを含むオリビン構造を有するリン酸化合物などが知られている。
【先行技術文献】
【特許文献】
【0005】
【発明の概要】
【発明が解決しようとする課題】
【0006】
本発明の一態様は、蓄電装置の体積あたり、または/および重量あたりの容量を高める
ことを課題の一とする。また、本発明の一態様は、電極の体積あたり、または/および重
量あたりの容量を高めることを課題の一とする。
【0007】
または、本発明の一態様は、正極活物質を有する粒子の体積あたり、または/および重
量あたりの容量を高めることを課題の一とする。または、本発明の一態様は、正極活物質
を有する粒子の体積あたり、または/および重量あたりのリチウムイオンの量を増大させ
、高いエネルギー密度を実現することを課題の一とする。
【0008】
または、本発明の一態様は、正極活物質を有する正極において、より高い電位で電池反
応を安定に行うことを課題の一とする。
【0009】
または、本発明の一態様は、充放電サイクルにおける容量低下の抑制された蓄電装置を
提供することを課題の一とする。または、本発明の一態様は、低コストで作製できる正極
活物質を提供することを課題の一とする。
【0010】
また、リチウムイオン二次電池の正極活物質としてイオン伝導度および電気伝導度が高
いことが望まれる。従って、本発明の一態様は、イオン伝導度および/または電気伝導度
が高い正極活物質を提供することを課題の一とする。
【0011】
または、本発明の一態様は、蓄電装置の電極の作製方法を提供することを課題の一とす
る。または、本発明の一態様は、二次電池の正極活物質の作製方法を提供することを課題
の一とする。
【0012】
または、本発明の一態様は、新規な物質を提供することを課題の一とする。または、本
発明の一態様は、新規な正極活物質を提供することを課題の一とする。または、本発明の
一態様は、正極活物質を有する新規な粒子を提供することを課題の一とする。または、本
発明の一態様は、新規な蓄電装置を提供することを課題の一とする。または、本発明の一
態様は、新規な電池を提供することを課題の一とする。または、本発明の一態様は、新規
なリチウムイオン二次電池を提供することを課題の一とする。
【0013】
なお、これらの課題の記載は、他の課題の存在を妨げるものではない。なお、本発明の
一態様は、必ずしも、これらの課題の全てを解決する必要はない。なお、これら以外の課
題は、明細書、図面、請求項などの記載から、自ずと明らかとなるものであり、明細書、
図面、請求項などの記載から、これら以外の課題を抽出することが可能である。
【課題を解決するための手段】
【0014】
本発明の一態様は、リチウムマンガン複合酸化物を有する粒子である。
【0015】
本発明の一態様である、リチウムマンガン複合酸化物を有する粒子は、第1の領域およ
び第2の領域を有する。また、本発明の一態様である、リチウムマンガン複合酸化物を有
する粒子は、第3の領域を有することが好ましい。
【0016】
第2の領域は、第1の領域の表面の少なくとも一部に接し、第1の領域の外側に位置す
る。ここで、外側とは、粒子の表面により近いことを示す。第3の領域は、第2の領域の
表面の少なくとも一部に接し、第2の領域の外側に位置することが好ましい。
【0017】
本発明の一態様の粒子が第2の領域を有することにより、本発明の一態様の粒子を蓄電
池の正極活物質として用いた場合に、放電容量を向上させることができる場合がある。ま
た、放電電圧を高めることができる場合がある。
【0018】
本発明の一態様の粒子が第3の領域を有することにより、本発明の一態様の粒子を蓄電
池の正極活物質として用いた場合に、放電容量を向上させることができる場合がある。ま
た、放電電圧を高めることができる場合がある。
【0019】
第1の領域および第2の領域は、リチウムと、酸素と、を有する。また、第1の領域お
よび第2の領域の少なくともいずれかはマンガンを有する。また、第1の領域および第2
の領域の少なくともいずれかは元素Mを有する。ここで、元素Mは、リチウム、マンガン
以外の金属元素、またはシリコン、リンであることが好ましく、Ni、Ga、Fe、Mo
、In、Nb、Nd、Co、Sm、Mg、Al、Ti、Cu、またはZnから選ばれた金
属元素、Si、またはPのいずれかであることがより好ましく、ニッケルであることがさ
らに好ましい。
【0020】
また、第1の領域および第2の領域は、マンガンと、元素Mと、の両方を有することが
より好ましい。
【0021】
また、第3の領域は、本発明の一態様であるリチウムマンガン複合酸化物を有する粒子
の、表面を含むことが好ましい。
【0022】
本発明の一態様である、リチウムマンガン複合酸化物を有する粒子を用いて蓄電装置を
作製した場合、電池反応、例えば充電や放電に対して、第3の領域は第1の領域および第
2の領域と比較して、より安定であることが好ましい。
【0023】
ここで、第2の領域は、第1の領域と異なる結晶構造を有してもよい。または、第2の
領域は、第1の領域と異なる向きの結晶を有してもよい。ここで、異なる向きとはそれぞ
れの結晶の向きが、例えば、10°よりも大きな角度で異なることを指す。
【0024】
例えば、第2の領域はスピネル型構造を有し、かつ第1の領域は層状岩塩型構造を有す
ることが好ましい。第2の領域がスピネル型構造を有することにより、本発明の一態様の
粒子を蓄電池の正極活物質として用いた場合に、放電容量を向上させることができる場合
がある。また、放電電圧を高めることができる場合がある。
【0025】
また、第2の領域は、第1の領域と異なる組成を有することが好ましい。
【0026】
また、第2の領域が有するマンガンは、第1の領域が有するマンガンと価数が異なって
もよい。また、第2の領域が有する元素Mは、第1の領域が有する元素Mと異なる価数を
有してもよい。
【0027】
また、第2の領域と第1の領域との間に、遷移層を有してもよい。または、第2の領域
と第1の領域との間に、混合層を有してもよい。
【0028】
本発明の一態様は、リチウムマンガン複合酸化物を有する粒子であり、第1の領域およ
び第2の領域を有し、第2の領域は、第1の領域の少なくとも一部と接し、第1の領域お
よび第2の領域は、リチウムと、酸素と、を有し、第1の領域または第2の領域の少なく
とも一方は、マンガンを有し、第1の領域または第2の領域の少なくとも一方は、Mで表
される元素を有し、第1の領域は層状岩塩型構造である第1の結晶を有し、第2の領域は
層状岩塩型構造である第2の結晶を有し、第1の結晶が有する{0 0 1}面は、第2
の結晶が有する{1 0 0}面、{1 3 -1}面または{-1 3 1}面の少な
くともいずれか一と平行な粒子である。ここで、2つの面が平行とは、例えば2つの面の
法線の角度が10°以下、より好ましくは5°以下、さらに好ましくは3°以下であるこ
とをいう。また、2つの線が平行とは、例えば2つの線の角度が10°以下、より好まし
くは5°以下、さらに好ましくは3°以下であることをいう。
【0029】
または、本発明の一態様は、リチウムマンガン複合酸化物を有する粒子であり、第1の
領域、第2の領域および第3の領域を有し、第2の領域は、第1の領域の少なくとも一部
と接し、第3の領域は、第2の領域の少なくとも一部と接し、第1の領域および第2の領
域は、リチウムと、酸素と、を有し、第1の領域または第2の領域の少なくとも一方は、
マンガンを有し、第1の領域または第2の領域の少なくとも一方は、Mで表される元素を
有し、第1の領域は層状岩塩型構造である第1の結晶を有し、第2の領域は層状岩塩型構
造である第2の結晶を有し、第1の結晶の向きと、第2の結晶の向きと、が異なる粒子で
ある。第3の領域は、炭素を有することが好ましい。
【0030】
また、上記構成において、第1の結晶が有する{0 0 1}面は、第2の結晶が有す
る{1 0 0}面、{1 3 -1}面または{-1 3 1}面の少なくともいずれ
か一と平行であることが好ましい。
【0031】
または、本発明の一態様は、リチウムマンガン複合酸化物を有する粒子であり、第1の
領域および第2の領域を有し、第2の領域は、第1の領域の少なくとも一部と接し、第1
の領域および第2の領域は、リチウムと、酸素と、を有し、第1の領域または第2の領域
の少なくとも一方は、マンガンを有し、第1の領域または第2の領域の少なくとも一方は
、Mで表される元素を有し、第1の領域は層状岩塩型構造である第1の結晶を有し、第2
の領域はスピネル型構造である第2の結晶を有する粒子である。
【0032】
または、本発明の一態様は、リチウムマンガン複合酸化物を有する粒子であり、第1の
領域および第2の領域を有し、第2の領域は、第1の領域の少なくとも一部と接し、第1
の領域および第2の領域は、リチウムと、酸素と、を有し、第1の領域または第2の領域
の少なくとも一方は、マンガンを有し、第1の領域または第2の領域の少なくとも一方は
、Mで表される元素を有し、第1の領域のリチウム、マンガン、元素M、および酸素の原
子数比はa1:b1:c1:d1で表され、第2の領域のリチウム、マンガン、元素M、
および酸素の原子数比はa2:b2:c2:d2で表され、d1÷(b1+c1)(=A
1とする)は2.2以上であり、d2÷(b2+c2)(=A2とする)は2.2未満で
ある粒子である。このように、A2がA1と比較して小さいことにより、本発明の一態様
の粒子を蓄電池の正極活物質として用いた場合に、第2の領域の充放電に対する安定性を
、第1の領域よりも高めることができる場合がある。また、本発明の一態様の粒子を蓄電
池の正極活物質として用いた場合に、放電容量を向上させることができる場合がある。ま
た、放電電圧を高めることができる場合がある。
【0033】
また、上記構成において、第2の領域の少なくとも一部と接する第3の領域を有するこ
とが好ましく、第3の領域は、炭素を有することが好ましい。
【0034】
また、上記構成において、第3の領域の厚さが0.1nm以上30nm以下であること
が好ましい。
【0035】
または、本発明の一態様は、リチウムマンガン複合酸化物を有する粒子であり、第1の
領域および第2の領域を有し、第2の領域は、第1の領域の少なくとも一部と接し、第1
の領域および第2の領域は、リチウムと、マンガンと、Mで表される元素と、酸素と、を
有し、第1の領域のリチウム、マンガン、元素M、および酸素の原子数比はa1:b1:
c1:d1で表され、第2の領域のリチウム、マンガン、元素M、および酸素の原子数比
はa2:b2:c2:d2で表され、d1÷(b1+c1)は2.2以上であり、d2÷
(b2+c2)は2.2未満であり、第1の領域は層状岩塩型構造である第1の結晶を有
し、第2の領域は層状岩塩型構造である第2の結晶を有し、第1の結晶が有する{0 0
1}面は、第2の結晶が有する{1 0 0}面、{1 3 -1}面または{-1
3 1}面の少なくともいずれか一と平行な粒子である。
【0036】
また、上記構成において、第2の領域は層状の領域を有し、層状の領域の厚さが0.1
nm以上30nm以下であることが好ましい。
【0037】
または、本発明の一態様は、上記に記載の粒子を有する正極を用いた二次電池である。
または、本発明の一態様は、該二次電池を搭載した電子機器である。
【0038】
ここで、本発明の一態様である、リチウムマンガン複合酸化物を有する粒子を用いて蓄
電装置を作製した場合、電池反応、例えば充電や放電により、該粒子が有するリチウム量
が変化する。例えば、充電を行う場合にはリチウムがリチウムイオンとして脱離し、該粒
子が有するリチウム量が減少し、充電の深度により減少量も変化する。
【0039】
本発明の一態様は、粒子と、バインダーと、溶媒と、を混合して混合物を作製し、粒子
は、リチウム、マンガン、元素M、および酸素を有し、元素Mは、クロム、コバルト、ア
ルミニウム、ニッケル、鉄、マグネシウム、モリブデン、亜鉛、インジウム、ガリウム、
銅、チタン、ニオブ、シリコン、およびリンから選ばれる一以上の元素であり、混合物を
集電体上に設けて混合物層を作製し、混合物層に加熱処理を行うことにより電極層を作製
し、電極層は、リチウム、マンガン、元素M、および酸素の少なくともいずれか一と、バ
インダーの有する少なくとも一の元素と、の結合を有する化合物を有する電極層の作製方
法である。また、上記構成において、化合物は、リチウム、マンガン、または元素Mの少
なくともいずれか一と、フッ素と、を有することが好ましい。また、粒子は、リチウム、
マンガン、元素M、および酸素を有する酸化物を有することが好ましい。
【0040】
または、本発明の一態様は、集電体上に設けられる電極層であり、電極層は、粒子と、
バインダーと、溶媒と、を有し、粒子は、リチウム、マンガン、元素M、および酸素を有
し、元素Mは、クロム、コバルト、アルミニウム、ニッケル、鉄、マグネシウム、モリブ
デン、亜鉛、インジウム、ガリウム、銅、チタン、ニオブ、シリコン、およびリンから選
ばれる一以上の元素であり、電極層は、リチウム、マンガン、元素M、および酸素の少な
くともいずれか一と、バインダーの有する少なくとも一の元素と、の結合を有する化合物
を有する電極層である。また、上記構成において、化合物は、リチウム、マンガン、また
は元素Mの少なくともいずれか一と、フッ素と、を有することが好ましい。また、粒子は
、リチウム、マンガン、元素M、および酸素を有する酸化物を有することが好ましい。
【0041】
ここで、本発明の一態様である、リチウムマンガン複合酸化物を有する粒子を用いて蓄
電装置を作製した場合、電池反応、例えば充電や放電により、該粒子が有するリチウム量
が変化する。例えば、充電を行う場合にはリチウムがリチウムイオンとして脱離し、該粒
子が有するリチウム量が減少し、充電の深度により減少量も変化する。
【発明の効果】
【0042】
本発明の一態様により、蓄電装置の体積あたり、または/および重量あたりの容量を高
めることができる。また、本発明の一態様により、電極の体積あたり、または/および重
量あたりの容量を高めることができる。
【0043】
また、本発明の一態様により、正極活物質を有する粒子の体積あたり、または/および
重量あたりの容量を高めることができる。また、本発明の一態様により、正極活物質を有
する粒子の体積あたり、または/および重量あたりのリチウムイオンの量を増大させ、高
いエネルギー密度を実現することができる。
【0044】
また、本発明の一態様により、正極活物質を有する正極において、より高い電位で電池
反応を安定に行うことができる。
【0045】
また、本発明の一態様により、充放電サイクルにおける容量低下の抑制された蓄電装置
を提供することができる。また、本発明の一態様により、低コストで作製できる正極活物
質を提供することができる。
【0046】
また、リチウムイオン二次電池の正極活物質として要求される特性として、イオン伝導
度および電気伝導度が高いことが望まれる。本発明の一態様により、イオン伝導度および
/または電気伝導度が高い正極活物質を提供することができる。
【0047】
また、本発明の一態様により、蓄電装置の電極の作製方法を提供するができる。また、
本発明の一態様により、二次電池の正極活物質の作製方法を提供することができる。
【0048】
また、本発明の一態様により、新規な物質を提供することができる。また、本発明の一
態様により、新規な正極活物質を提供することができる。また、本発明の一態様により、
正極活物質を有する新規な粒子を提供することができる。また、本発明の一態様により、
新規な蓄電装置を提供することができる。また、本発明の一態様により、新規な電池を提
供することができる。また、本発明の一態様により、新規なリチウムイオン二次電池を提
供することができる。
【0049】
なお、これらの効果の記載は、他の効果の存在を妨げるものではない。なお、本発明の
一態様は、必ずしも、これらの効果の全てを有する必要はない。なお、これら以外の効果
は、明細書、図面、請求項などの記載から、自ずと明らかとなるものであり、明細書、図
面、請求項などの記載から、これら以外の効果を抽出することが可能である。
【図面の簡単な説明】
【0050】
【
図1】活物質の製造方法を説明するフローチャート。
【
図30】本発明の一態様を説明するフローチャート。
【
図45】充放電サイクル数と放電容量の関係を示す図。
【発明を実施するための形態】
【0051】
以下では、本発明の実施の形態について図面を用いて詳細に説明する。ただし、本発明
は以下の説明に限定されず、その形態および詳細を様々に変更し得ることは、当業者であ
れば容易に理解される。また、本発明は以下に示す実施の形態の記載内容に限定して解釈
されるものではない。なお、図面を用いて発明の構成を説明するにあたり、同じものを指
す符号は異なる図面間でも共通して用いる。なお、同様のものを指す際にはハッチパター
ンを同じくし、特に符号を付さない場合がある。
【0052】
なお、図において、大きさ、膜(層)の厚さ、または領域は、明瞭化のために誇張され
ている場合がある。
【0053】
なお、第1、第2として付される序数詞は便宜的に用いるものであり、工程順または積
層順を示すものではない。そのため、例えば、「第1の」を「第2の」又は「第3の」な
どと適宜置き換えて説明することができる。また、本明細書等に記載されている序数詞と
、本発明の一態様を特定するために用いられる序数詞は一致しない場合がある。
【0054】
なお、活物質とは、キャリアであるイオンの挿入・脱離に関わる物質のみを指すが、本
明細書等においては、『活物質』を被覆する層を含む場合がある。
【0055】
(実施の形態1)
本実施の形態では、本発明の一態様である「リチウムマンガン複合酸化物を有する粒子
」について説明する。また、該粒子を有する電極についても説明する。
【0056】
本発明の一態様のリチウムマンガン複合酸化物は、組成式LiaMnbMcOdで表す
ことができる。ここで、元素Mは、リチウム、マンガン以外から選ばれた金属元素、また
はシリコン、リンを用いることが好ましい。また、0≦a/(b+c)<2、かつc>0
、かつ0.26≦(b+c)/d<0.5を満たすことが好ましい。なお、リチウムマン
ガン複合酸化物とは、少なくともリチウムとマンガンとを含む酸化物をいい、クロム、コ
バルト、アルミニウム、ニッケル、鉄、マグネシウム、モリブデン、亜鉛、インジウム、
ガリウム、銅、チタン、ニオブ、シリコン、およびリンなどからなる群から選ばれる少な
くとも一種の元素を含んでいてもよい。また、リチウムマンガン複合酸化物は、層状岩塩
型の結晶構造を有するものであることが好ましい。また、リチウムマンガン複合酸化物は
、層状岩塩型の結晶構造およびスピネル型の結晶構造を有するものであってもよい。また
、リチウムマンガン複合酸化物は、例えば、平均一次粒子径が、5nm以上50μm以下
であることが好ましい。
【0057】
<合成>
次に、本発明の一態様である「リチウムマンガン複合酸化物を有する粒子」の作製方法
について説明する。本実施の形態では、まず、リチウムマンガン複合酸化物を合成する。
その後、リチウムマンガン複合酸化物に被覆層を形成し、第1の領域、第2の領域および
第3の領域を有する粒子を得る。
【0058】
リチウムマンガン複合酸化物の原料としては、マンガン化合物およびリチウム化合物を
用いることができる。また、マンガン化合物およびリチウム化合物の原料と共に、クロム
、コバルト、アルミニウム、ニッケル、鉄、マグネシウム、モリブデン、亜鉛、インジウ
ム、ガリウム、銅、チタン、ニオブ、シリコン、およびリンなどからなる群から選ばれる
少なくとも一種の元素を含む化合物の原料を用いることができる。マンガン化合物として
は、例えば、二酸化マンガン、三二酸化マンガン、四三酸化マンガン、水和マンガン酸化
物、炭酸マンガン、硝酸マンガンなどを用いることができる。また、リチウム化合物とし
ては、例えば、水酸化リチウム、炭酸リチウム、硝酸リチウムなどを用いることができる
。
【0059】
本実施の形態では、マンガン化合物としてMnCO3、リチウム化合物としてLi2C
O3、およびNiOを出発原料として用いる。
【0060】
はじめに、
図1のステップS11に示すように、出発原料として、Li
2CO
3とMn
CO
3とNiOとを用い、それぞれを秤量する。
【0061】
例えば、出発原料として、Li2CO3とMnCO3とNiOとを用いる場合、秤量の
割合(モル比)をLi2CO3:MnCO3:NiO=1:0.7:0.3とすると、最
終生成物であるリチウムマンガン複合酸化物として、Li2Mn0.7Ni0.3O3が
作製されることとなる。この場合、リチウムマンガン複合酸化物の原子数比は、Li:(
Mn+Ni)=2:1となる。
【0062】
本実施の形態では、リチウムマンガン複合酸化物の原子数比がLi:(Mn+Ni)=
2:1からずれるように、出発原料の秤量の割合(モル比)を調整する。
【0063】
本実施の形態では、出発原料の秤量の割合(モル比)をLi2CO3:MnCO3:N
iO=0.84:0.8062:0.318となるように秤量する。
【0064】
次に、
図1のステップS12に示すように、Li
2CO
3、MnCO
3、およびNiO
を混合する。出発原料の混合方法については特に制限はなく、公知の解砕機や粉砕機を用
いることができる。例えば、ボールミル、ビーズミル、ジェットミル、ローラーミルなど
が挙げられる。また、解砕・粉砕の方式は、乾式でもよいし、湿式でもよい。湿式の際に
用いることができる溶媒としても特に制限はなく、例えば、水、アルコール、アセトンな
どを用いることができる。
【0065】
出発原料を混合する際に、湿式で行う場合には、
図1のステップS13に示すように、
混合された出発原料に含まれる溶媒を蒸発させるための加熱処理を行う。ここで行う加熱
処理は、50℃以上150℃以下で行えばよい。加熱処理を行うことにより、混合された
出発原料に含まれる溶媒を蒸発させて、混合原料を得る。
【0066】
次に、
図1のステップS14に示すように、坩堝に混合原料を入れ、800℃以上10
00℃以下で焼成を行う。焼成時間は、例えば、5時間以上20時間以下とし、焼成ガス
に乾燥空気を用い、流量を10L/minとする。焼成雰囲気は、大気雰囲気としてもよ
いし、酸素ガスを用いた雰囲気としてもよい。混合原料に焼成を行うことにより、焼成物
(リチウムマンガン複合酸化物)が形成される。
【0067】
図2(A)に示すように、焼成によって合成された複数の一次粒子が焼結したリチウム
マンガン複合酸化物は、複数の一次粒子が焼結して大きな二次粒子が形成された状態とな
っている。そこで、
図1のステップS15に示すように、複数の一次粒子が焼結したリチ
ウムマンガン複合酸化物に対して、解砕処理を行う。焼成物に解砕処理を行うことにより
、焼成物を砕いて一次粒子にする、又は一次粒子に近い粉末にする。本明細書等において
、解砕処理には、焼結物が粉砕される操作も含む。なお、粉砕とは、一次粒子をさらに砕
く操作をいう。解砕処理は、出発原料の混合方法と同様に、公知の解砕機や粉砕機を用い
ることができる。例えば、ボールミルや、ビーズミルなどを用いることができる。また、
解砕・粉砕の方式は、乾式でもよいし、湿式でもよい。湿式の際に用いることができる溶
媒としても特に制限はなく、例えば、水、アルコール、アセトンなどを用いることができ
る。
【0068】
ここで、解砕・粉砕を行った後の粒子の大きさについては、例えば粒子の比表面積を測
定することにより評価することができる。リチウムマンガン複合酸化物を有する粒子の比
表面積を増加させることにより、リチウムマンガン複合酸化物を有する粒子を正極に用い
た蓄電池を作製する場合に、例えば粒子と電解液との接触面積を増やすことができる。電
解液との接触面積を増やすことにより、蓄電池の反応速度を高めることができ、例えば出
力特性を向上させることができる。
【0069】
解砕処理を行うことにより、粒子の比表面積が増加する場合があり好ましい。リチウム
マンガン複合酸化物を有する粒子の比表面積は例えば、0.1m2/g以上が好ましい。
また、粒子の比表面積が大きくなり過ぎると、該粒子を用いて作製する電極において、表
面積に対してバインダー量が不足する場合があり、強度が低下する場合がある。ここでバ
インダー量を増やすと、単位重量および単位体積あたりの電極の容量が低下する場合があ
る。よって、リチウムマンガン複合酸化物を有する粒子の比表面積は例えば、1m2/g
以上50m2/g以下が好ましく、5m2/g以上30m2/g以下がより好ましい。
【0070】
本実施の形態では、一次粒子が焼結したリチウムマンガン複合酸化物の解砕処理を、ビ
ーズミルを用いて、アセトンを用いた湿式法により行う。
【0071】
解砕処理を行う際に、湿式で行う場合には、解砕処理後に溶媒を蒸発させるための加熱
処理を行う。ここで行う加熱処理は、ステップS13と同様に行えばよい。その後、真空
乾燥を行うことにより、粉末状のリチウムマンガン複合酸化物を得る。
【0072】
次に、加熱処理を行う。加熱処理は、
図1のステップS16に示すように、坩堝に解砕
処理後のリチウムマンガン複合酸化物を入れ、300℃以上1000℃以下、好ましくは
600℃以上900℃以下で加熱処理を行う。加熱時間は、例えば、5時間以上20時間
以下とし、ガスに乾燥空気を用い、流量を10L/minとする。加熱雰囲気は、大気雰
囲気としてもよいし、酸素ガスを用いた雰囲気としてもよい。
【0073】
以上の工程により、組成式LiaMnbMcOdで表されるリチウムマンガン複合酸化
物を形成することができる。本実施の形態では、原料材料の秤量の割合(モル比)を、L
i2CO3:MnCO3:NiO=0.84:0.8062:0.318とすることによ
り、組成式Li1.68Mn0.8062M0.318O3で表されるリチウムマンガン
複合酸化物を形成することができる。
【0074】
また、ステップS15に示す解砕処理を行った後のリチウムマンガン複合酸化物は、解
砕処理の衝撃により、結晶性の乱れが生じる場合がある。また、リチウムマンガン複合酸
化物に酸素欠損が生じる場合がある。よって、真空乾燥を行った後の粉末状のリチウムマ
ンガン複合酸化物に、再度加熱処理を行うことが好ましい。
【0075】
解砕処理後のリチウムマンガン複合酸化物に熱処理を行うことにより、酸素欠損を修復
するとともに、解砕処理時の結晶性の乱れを回復させることができる。また、再度加熱処
理を行った後の粉末状のリチウムマンガン複合酸化物に、再度、解砕処理を行っても良く
、この場合の解砕処理は、
図1のステップS15と同様の方法を用いて行うことができる
。
【0076】
ここで、Li
2CO
3:MnCO
3:NiO=0.84:0.8062:0.318の
原料を用い、
図1に示すステップS11乃至S16に沿ってリチウムマンガン複合酸化物
を作製し、その温度安定性を評価した。具体的には、示差走査熱量測定により評価を行っ
た。
図46に示差走査熱量(DSC)曲線を示す。縦軸に熱流、横軸に温度を示す。
図4
6に示すように、262.2℃において発熱を示すピークがみられた。それより低い温度
においては、DSC評価において安定であった。よって、本発明の一態様のリチウムマン
ガン複合酸化物は、260℃以下の高い温度においても安定であることがわかる。
【0077】
本実施の形態に示すリチウムマンガン複合酸化物は、原子数比をLi:(Mn+Ni)
=2:1からずれるように調整している。このため、原子数比がLi:(Mn+Ni)=
2:1となるリチウムマンガン複合酸化物を電極に用いる場合と比較して、電圧が増加し
、放電容量も増加する。
【0078】
以上の工程により、粒子状のリチウムマンガン複合酸化物を得ることができる。ここで
、リチウムマンガン複合酸化物は、第1の領域および第2の領域を有することが好ましい
。第2の領域は、第1の領域の表面の少なくとも一部に接し、かつ、第1の領域の外側に
位置する。ここで、外側とは、粒子の表面により近いことを示す。
【0079】
第1の領域および第2の領域は、リチウムと、酸素と、を有する。また、第1の領域お
よび第2の領域の少なくともいずれかはマンガンを有する。また、第1の領域および第2
の領域の少なくともいずれかは元素Mを有する。ここで、元素Mは、リチウム、マンガン
以外の金属元素、またはシリコン、リンであることが好ましく、Ni、Ga、Fe、Mo
、In、Nb、Nd、Co、Sm、Mg、Al、Ti、Cu、またはZnから選ばれた金
属元素、Si、またはPのいずれかであることがより好ましく、ニッケルであることがさ
らに好ましい。
【0080】
<被覆層>
次に、得られるリチウムマンガン複合酸化物に被覆層を設ける。被覆層は、炭素を有す
ることが好ましい。炭素は導電性が高いため、炭素で被覆された粒子を蓄電池の電極に用
いることにより、例えば電極の抵抗を低くすることができる。また、被覆層は酸化グラフ
ェンを有してもよく、還元した酸化グラフェンを有してもよい。
【0081】
または、被覆層は金属化合物を有してもよい。ここで、金属としては例えばコバルト、
アルミニウム、ニッケル、鉄、マンガン、チタン、亜鉛、リチウム、炭素等が挙げられる
。金属化合物の一例として、被覆層はこれらの金属との酸化物や、フッ化物などを有して
もよい。
【0082】
本実施の形態では、被覆層として、炭素を含む層を設ける。炭素を含む層として、グラ
フェンを用いることが好ましい。グラフェンは、高い導電性を有するという優れた電気特
性、および柔軟性並びに機械的強度が高いという優れた物理特性を有する。
【0083】
なお、本明細書において、グラフェンは、単層のグラフェン、又は2層以上100層以
下の単層グラフェンを有する多層グラフェンを含む。単層グラフェンとは、π結合を有す
る1原子層の炭素分子のシートのことをいう。また、酸化グラフェンとは、上記グラフェ
ンが酸化された化合物のことをいう。なお、酸化グラフェンを還元してグラフェンを形成
する場合、酸化グラフェンに含まれる酸素は全て脱離されずに、一部の酸素はグラフェン
に残存する。グラフェンに酸素が含まれる場合、酸素の割合は、X線光電子分光法(XP
S)で測定した場合にグラフェン全体の2atomic%以上20atomic%以下、
好ましくは3atomic%以上15atomic%以下である。
【0084】
炭素を含む層の膜厚は、1nm以上50nm以下とすることが好ましい。
【0085】
次に、リチウムマンガン複合酸化物に炭素を含む層を設ける方法について説明する。本
実施の形態では、炭素を含む層として、酸化グラフェン(Graphene Oxide
;GOと略記する)を還元することによって得られたグラフェン(Reduced Gr
aphene Oxide;RGOと略記する)を用いる。
【0086】
酸化グラフェンは、Hummers法、Modified Hummers法、又は黒
鉛類の酸化等、種々の合成法を用いて作製することができる。
【0087】
例えば、Hummers法は、鱗片状グラファイト等のグラファイトを酸化して、酸化
グラファイトを形成する手法である。形成された酸化グラファイトは、グラファイトがと
ころどころ酸化されることでカルボニル基、カルボキシル基、ヒドロキシル基等の官能基
が結合したものであり、グラファイトの結晶性が損なわれ、層間の距離が大きくなってい
る。このため超音波処理等により、容易に層間を分離して、酸化グラフェンを得ることが
できる。
【0088】
また、酸化グラフェンの一辺の長さ(フレークサイズともいう。)は50nm以上10
0μm以下、好ましくは800nm以上20μm以下である。フレークサイズが大きいほ
ど、リチウムマンガン複合酸化物の表面を覆いやすくなるため好ましい。
【0089】
まず、酸化グラフェンと水とを混練機に入れ、酸化グラフェンの分散溶液を作製する。
この時、酸化グラフェンは、0.5wt%以上5wt%以下とすることが好ましい。0.
5wt%未満であると、リチウムマンガン複合酸化物の表面を覆うことが困難となる。ま
た、5wt%を超えると、電極体積が嵩張り、電極重量が重くなってしまう。
【0090】
次に、
図1に示すステップS17に示すように、分散溶液にリチウムマンガン複合酸化
物を入れ、固練りを行う。なお、固練りとは、高粘度による混練をいう。固練りを行うこ
とにより、リチウムマンガン複合酸化物の粉末の凝集をほどくことができ、酸化グラフェ
ンとリチウムマンガン複合酸化物とを、より均一に分散させることができる。
【0091】
次に、酸化グラフェンとリチウムマンガン複合酸化物との混合物をベルジャーにて減圧
乾燥した後、乳鉢で解砕することにより、酸化グラフェンが被覆されたリチウムマンガン
複合酸化物を得る。
【0092】
次に、
図1に示すステップS18に示すように、リチウムマンガン複合酸化物の表面に
被覆された酸化グラフェンに還元処理を行う。酸化グラフェンの還元処理は、熱処理によ
って行っても良いし、還元剤を用いて溶媒中で反応させて行っても良い。本実施の形態で
は、酸化グラフェンを、還元剤を用いて溶媒中で反応させる。
【0093】
酸化グラフェンを、還元剤を用いて溶媒中で反応させることにより、リチウムマンガン
複合酸化物の表面に被覆された酸化グラフェンは還元され、グラフェンが形成される。な
お、酸化グラフェンに含まれる酸素は全て脱離されず、一部の酸素は、グラフェンに残存
していてもよい。グラフェンに酸素が含まれる場合、酸素の割合は、XPSで測定した場
合にグラフェン全体の2atomic%以上20atomic%以下、好ましくは3at
omic%以上15atomic%以下である。この還元処理は、室温以上150℃以下
、好ましくは室温以上80℃以下の温度で行うことが好ましい。還元処理の際、加熱を行
うことにより、還元反応を促進させることができる。また、酸化グラフェンの還元時間は
、3分以上10時間以下とすることができる。
【0094】
還元剤としては、アスコルビン酸、ヒドラジン、ジメチルヒドラジン、ヒドロキノン、
水素化硼素ナトリウム(NaBH4)、テトラブチルアンモニウムブロマイド(TBAB
)、水素化アルミニウムリチウム(LiAlH4)、N,N-ジエチルヒドロキシルアミ
ンあるいはそれらの誘導体を用いることができる。例えば、アスコルビン酸およびヒドロ
キノンは、ヒドラジンや水素化硼素ナトリウムに比べ還元力が弱いため安全性が高く、工
業的に利用しやすい点において好ましい。
【0095】
溶媒には、極性溶媒を用いることができる。還元剤を溶解することができるものであれ
ば、材料は限定されない。例えば、水、メタノール、エタノール、アセトン、テトラヒド
ロフラン(THF)、ジメチルホルムアミド(DMF)、1-メチル-2-ピロリドン(
NMP)およびジメチルスルホキシド(DMSO)、エチレングリコール、ジエチレング
リコール、グリセリンのいずれか一種又は二種以上の混合液を用いることができる。
【0096】
還元剤および溶媒を含む還元液としては、エタノールとアスコルビン酸を混合した液、
または水、アスコルビン酸および水酸化リチウムを混合した液を用いることができる。本
実施の形態では、アスコルビン酸、水、および水酸化リチウムを含む還元液を用いる場合
について説明する。
【0097】
リチウムマンガン複合酸化物に被覆した酸化グラフェンを、還元液中で反応させること
により、酸化グラフェンは、アスコルビン酸によりプロトンが付加される。その後、H2
Oが脱離することにより、酸化グラフェンが還元される。
【0098】
還元処理後、
図1に示すステップS19に示すように、粉末の回収を行う。ここでは、
還元液のろ過を行う。ここで得られる物質を、物質Aと呼ぶ。ろ過には、吸引濾過等を用
いればよい。または、遠心分離を用いて物質Aと、液体と、を分離してもよい。
【0099】
次に、得られた物質Aを洗浄する。洗浄は、例えば、還元液に含まれる溶媒として挙げ
た溶媒を用いて行うとよい。なお、還元液に含まれる溶媒と同一の溶媒としてもよいし、
異なる溶媒を用いてもよい。
【0100】
次に、乾燥を行う。この乾燥工程は、例えば、50℃以上500℃未満、より好ましく
は120℃以上400℃以下の温度で、1時間以上48時間以下で行うとよい。この乾燥
によって、極性溶媒や水分を蒸発あるいは除去させる。当該乾燥工程においても、酸化グ
ラフェンの還元を促進させることができる。減圧(真空)下又は還元雰囲気下にて行って
もよいし、大気圧でおこなってもよい。また、乾燥時の雰囲気として、空気を用いてもよ
いし窒素や、その他の不活性ガスを用いてもよい。
【0101】
ここで、物質Aが粒子である場合に、該粒子は例えば二次粒子を形成することが好まし
い。
【0102】
ここで、物質Aが二次粒子を形成する場合の二次粒子の粒径は、その平均値が例えば好
ましくは50μm以下、より好ましくは30μm以下、さらに好ましくは1μm以上20
μm以下である。ここで粒径は、例えば粒度分布計を用いて測定される粒径を指す。また
は、物質Aが二次粒子を形成する場合に、その二次粒子の粒径を指してもよい。二次粒子
の粒径は、前述の粒度分布計の他に、例えば顕微鏡による粒子の観察により算出すること
ができる。また、粒径は、例えばその断面の面積から円換算の直径を算出すればよい。
【0103】
なお、物質Aを洗浄した後に、物質Aを溶媒に分散させた液を作製し、溶液にスプレー
ドライ処理を行って、乾燥させてもよい。スプレードライ処理を行うことにより、物質A
が例えば二次粒子を形成して、粒径が変化する場合がある。
【0104】
また、スプレードライ処理後に、さらに熱処理を行うことが好ましい。例えば、50℃
以上500℃未満、より好ましくは120℃以上400℃以下の温度で、1時間以上48
時間以下で行うとよい。この熱処理によって、極性溶媒や水分を蒸発あるいは除去させる
。当該熱処理工程においても、酸化グラフェンの還元を促進させることができる。また、
熱処理は、減圧(真空)下又は大気圧でおこなってもよい。また、還元雰囲気下にて行っ
てもよい。また、加熱時の雰囲気として、空気を用いてもよいし窒素や、その他の不活性
ガスを用いてもよい。
【0105】
以上の工程により、酸化グラフェンは還元され、リチウムマンガン複合酸化物の表面に
グラフェンを形成することができる。
【0106】
なお、酸化グラフェンに含まれる酸素は全て脱離させる必要はなく、一部の酸素が、グ
ラフェンに残存していてもよい。グラフェンに酸素が含まれる場合、酸素の割合は、XP
Sで測定した場合に、グラフェン全体の2atomic%以上20atomic%以下、
好ましくは、3atomic%以上15atomic%以下である。
【0107】
還元処理後に熱処理を行うことにより、熱処理を行う前と比較して得られるグラフェン
の電気伝導度をより高めることができる場合がある。
【0108】
還元処理後に熱処理を行うことにより、例えば、本発明の一態様の「リチウムマンガン
複合酸化物を有する粒子」において、第1の領域乃至第3の領域が形成される場合がある
。「リチウムマンガン複合酸化物を有する粒子」が有する第1の領域乃至第3の領域は、
熱処理前に形成されてもよい。あるいは、熱処理の過程において形成されてもよい。また
、例えば被覆層形成前や、被覆層形成後、および還元処理後に形成された第1の領域乃至
第3の領域の厚さや組成、および結晶構造等が、熱処理の過程において変化してもよい。
【0109】
また、熱処理を行うことにより、例えば、バインダーが有する元素と、リチウムマンガ
ン複合酸化物を有する粒子と、が反応する場合がある。一例として、バインダーにPVd
Fを用いる場合において、PVdFが有するフッ素と、リチウムマンガン複合酸化物を有
する粒子のリチウム、マンガン、および元素Mのいずれかまたは複数と、が金属フッ化物
を形成してもよい。
【0110】
または、リチウムマンガン複合酸化物の被覆層、例えばここでは炭素を含む層の例を示
したが、被覆層に含まれる元素と、フッ素と、が結合を形成してもよい。例えば被覆層と
して炭素を含む層を用いる場合には、フッ化炭素が形成されてもよい。ここで、該被覆層
は、「リチウムマンガン複合酸化物を有する粒子」の有する第3の領域を含んでいてもよ
いし、第3の領域と、第1の領域または第2の領域の一部と、を有しても構わない。また
、「リチウムマンガン複合酸化物を有する粒子」の有する第2の領域は、例えば該被覆層
の一部を有してもよい。
【0111】
以上の工程により、リチウムマンガン複合酸化物の表面の少なくとも一部にグラフェン
が設けられた粒子を形成することができる。
【0112】
グラフェンは、高い導電性を有するという優れた電気特性、および柔軟性並びに機械的
強度が高いという優れた物理特性を有する。そのため、当該粒子を含む電極を電池に用い
ることにより、例えば当該電極の電気伝導性および物理特性をより高めることができる。
【0113】
以上の工程により、本発明の一態様の粒子を得ることができる。本発明の一態様の粒子
は、リチウムマンガン複合酸化物を有する。また、本発明の一態様の粒子は、第1の領域
乃至第3の領域を有することが好ましい。
【0114】
本発明の一態様は、リチウムマンガン複合酸化物を有する粒子である。
【0115】
本発明の一態様である、リチウムマンガン複合酸化物を有する粒子は、第1の領域およ
び第2の領域を有する。また、本発明の一態様である、リチウムマンガン複合酸化物を有
する粒子は、第3の領域を有することが好ましい。
【0116】
第2の領域は、第1の領域の表面の少なくとも一部に接し、かつ、第1の領域の外側に
位置する。ここで、外側とは、粒子の表面により近いことを示す。第3の領域は、第2の
領域の表面の少なくとも一部に接し、かつ、第2の領域の外側に位置することが好ましい
。
【0117】
また、第2の領域が層状の領域を有する場合に、例えばその厚さは0.1nm以上30
nm以下であることが好ましく、1nm以上15nm以下であることがより好ましい。
【0118】
第1の領域および第2の領域は、リチウムと、酸素と、を有する。また、第1の領域お
よび第2の領域の少なくともいずれかはマンガンを有する。また、第1の領域および第2
の領域の少なくともいずれかは元素Mを有する。
【0119】
また、第1の領域および第2の領域は、マンガンと、元素Mと、の両方を有することが
より好ましい。
【0120】
また、第3の領域は、本発明の一態様であるリチウムマンガン複合酸化物を有する粒子
の、表面を含むことが好ましい。
【0121】
また、第3の領域が層状の領域を有する場合に、例えばその厚さは0.1nm以上30
nm以下であることが好ましく、1nm以上20nm以下であることがより好ましく、2
nm以上10nm以下であることがさらに好ましい。
【0122】
図2(A)に、粒子が第1の領域として領域131、第2の領域として領域132、お
よび第3の領域として領域133を有する例を示す。
【0123】
図2(A)に示すように、領域132は、領域131の表面に少なくとも一部が接する
。また、領域133は、領域132の表面に少なくとも一部が接する。
【0124】
また、
図2(B)に示すように、領域131は、領域132に覆われない領域を有して
もよい。また、領域132は、領域133に覆われない領域を有してもよい。また、例え
ば領域131に領域133が接する領域を有してもよい。また、領域131は、領域13
2および領域133のいずれにも覆われない領域を有してもよい。
【0125】
本発明の一態様である、リチウムマンガン複合酸化物を有する粒子を用いて蓄電装置を
作製した場合、電池反応、例えば充電や放電に対して、第3の領域は第1の領域および第
2の領域と比較して、より安定であることが好ましい。
【0126】
ここで、第2の領域は、第1の領域と異なる結晶構造を有してもよい。または、第2の
領域は、第1の領域と異なる向きの結晶を有してもよい。
【0127】
例えば、第2の領域はスピネル型構造を有し、かつ第1の領域は層状岩塩型構造を有す
ることが好ましい。
【0128】
または、例えば、第1の領域および第2の領域は層状岩塩型構造を有し、かつ、第1の
領域の有する結晶の第1の面と、第2の領域の有する結晶の第2の面と、が平行であるこ
とが好ましい。
【0129】
ここで、第1の面が層状岩塩型構造の{0 0 1}面の場合、層状岩塩型構造の{0
0 1}面は、第2の領域の有する結晶が有する{1 0 0}面、{1 3 -1}
面または{-1 3 1}面の少なくともいずれか一と平行であることが好ましい。また
は、第1の面が層状岩塩型構造の{1 0 0}面の場合、層状岩塩型構造の{1 0
0}面は、第2の領域の有する結晶が有する{0 0 1}面、{1 3 -1}面また
は{-1 3 1}面の少なくともいずれか一と平行であることが好ましい。または、第
1の面が層状岩塩型構造の{1 3 -1}面の場合、層状岩塩型構造の{1 3 -1
}面は、第2の領域の有する結晶が有する{0 0 1}面、{1 0 0}面または{
-1 3 1}面の少なくともいずれか一と平行であることが好ましい。または、第1の
面が層状岩塩型構造の{-1 3 1}面の場合、層状岩塩型構造の{-1 3 1}面
は、第2の領域の有する結晶が有する{0 0 1}面、{1 0 0}面または{1
3 -1}面の少なくともいずれか一と平行であることが好ましい。
【0130】
また、例えば、第1の領域および第2の領域は層状岩塩型構造を有し、かつ、第1の領
域の有する結晶の第1の方位と、第2の領域の有する結晶の第2の方位と、が平行である
ことが好ましい。ここで、第1の領域が有する結晶と、第2の領域が有する結晶の、結晶
方位について説明する。
【0131】
ここで、<1 0 0>、<1 1 0>および<-1 1 0>の3つの結晶方位を
第1群とする。また、<0 0 1>、<0 1 1>および<0 1 -1>を第2群
とする。また、<-3 2 3>、<3 1 6>および<6 -1 3>を第3群とす
る。また、<3 2 -3>、<3 -1 6>および<6 1 3>を第4群とする。
【0132】
第1の領域が有する結晶は、第1群乃至第4群のうち一つの群から選ばれるいずれかの
方位を有する。第2の領域が有する結晶は、第1群乃至第4群のうち、第1の領域が有す
る結晶が有する方位が選ばれる群以外の3つの群のうち一つの群から選ばれるいずれかの
方位を有する。
【0133】
上記、組み合わせの一例について、以下に具体例をあげて説明する。ここでは(001
)面と(100)面について説明する。以下では具体的に記載するため、結晶の対称性を
考慮しない指数の記載方法を取る。
【0134】
図3にLi
2MnO
3の結晶構造をb軸の負の方向からみた図を示す。ここで、
図3に
示す破線Aで囲んだ領域が有する層A-1および層A-2を、層A-2側から、層A-1
および層A-2に垂直な方向から見た図を
図4(A)に示す。ここで層A-1は酸素を有
し、層A-2はリチウムおよびマンガンを有する。
【0135】
また、
図3に示す破線Bで囲んだ領域が有する層B-1および層B-2を、層B-2側
から層B-1と層B-2に垂直な方向から見た図を
図4(B)に示す。
【0136】
図4(A)では、酸素原子の上に、リチウムまたはマンガンが、[110]方向または
[-100]方向または[1-10]方向にずれて積層している。同様に
図4(B)では
酸素が形成する六角形構造の上に、リチウムまたはマンガンが、[0-11]方向または
[00-1]方向または[011]方向にずれて積層している。また、
図4(A)に破線
で囲む領域において、マンガンをリチウムに変えると、
図4(B)と同様の構成となる。
つまり、金属原子の種類は異なるものの、金属原子の位置は大よそ一致する。これらのこ
とから、2つの構造は共通点が多く、積層する場合の整合性が良いと考えられる。
【0137】
また、第2の領域は、第1の領域と異なる組成を有することが好ましい。
【0138】
例えば、第1の領域がリチウム、マンガン、元素Mおよび酸素を有し、第2の領域がリ
チウム、マンガン、元素Mおよび酸素を有し、第1の領域のリチウム、マンガン、元素M
、および酸素の原子数比はa1:b1:c1:d1で表され、第2の領域のリチウム、マ
ンガン、元素M、および酸素の原子数比はa2:b2:c2:d2で表される場合につい
て説明する。ここで、d1÷(b1+c1)は2.2以上が好ましく、2.3以上である
ことがより好ましく、2.35以上3以下であることがさらに好ましい。また、d2÷(
b2+c2)は2.2未満であることが好ましく、2.1未満であることがより好ましく
、1.1以上1.9以下であることがさらに好ましい。
【0139】
また、第2の領域が有するマンガンは、第1の領域が有するマンガンと異なる価数を有
してもよい。また、第2の領域が有する元素Mは、第1の領域が有する元素Mと異なる価
数を有してもよい。
【0140】
ここで、各領域の組成や、元素の価数に空間的な分布がある場合には、例えば複数の箇
所についてその組成や価数を評価し、その平均値を算出し、該領域の組成や価数としても
よい。
【0141】
また、第2の領域と第1の領域との間に、遷移層を有してもよい。ここで遷移層とは、
例えば組成が連続的、あるいは段階的に変化する領域である。または、遷移層とは、結晶
構造が連続的、あるいは段階的に変化する領域である。または、遷移層とは、結晶の格子
定数が連続的、あるいは段階的に変化する領域である。
【0142】
または、第2の領域と第1の領域との間に、混合層を有してもよい。ここで混合層とは
、例えば異なる結晶方位を有する2以上の結晶が混合する層を指す。あるいは、混合層と
は、例えば異なる結晶構造を有する2以上の結晶が混合する層を指す。あるいは、混合層
とは、例えば異なる組成を有する2以上の結晶が混合する層を指す。
【0143】
ここで、第1の領域は、層状岩塩型構造を有することが好ましい。また、第2の領域は
、スピネル型構造、または層状岩塩型構造のいずれか一を少なくとも有することが好まし
い。
【0144】
ここで、例えば、本発明の一態様の「リチウムマンガン複合酸化物を有する粒子」を用
いて蓄電池等を作製する場合、蓄電池を作製するまでの各工程において第1の領域乃至第
3の領域が形成される場合がある。
【0145】
例えば、第1の領域乃至第3の領域は、電極作製前、例えば粒子の合成後に形成されて
もよい。あるいは、電極形成の過程において形成されてもよい。また、例えば粒子の合成
後に形成された第1の領域乃至第3の領域の厚さや組成、および結晶構造等が、電極形成
の過程において変化してもよい。
【0146】
また、第1の領域乃至第3の領域は、蓄電池等を作製する各工程の熱処理において、形
成されてもよい。
【0147】
リチウムマンガン複合酸化物の作製工程において、S15等に示す、一次粒子が焼結し
たリチウムマンガン複合酸化物の解砕処理工程は、電池の特性を左右する重要な工程であ
る。解砕処理工程では、一次粒子が焼結したリチウムマンガン複合酸化物に、シェア(す
りつぶしの応力)をかけることにより、粉末のリチウムマンガン複合酸化物を形成する。
このとき、リチウムマンガン複合酸化物が層状岩塩型の結晶構造を有する場合には、層と
平行となる面または層と垂直となる面において、一次粒子が劈開して、割れてしまうこと
がある。一次粒子が劈開して割れてしまったものを、本明細書等では、劈開面を有する粒
子、または劈開面が露出した粒子と呼ぶ。なお、割れてしまった一次粒子には、劈開面を
有さないものも含まれる。
【0148】
また、層状岩塩型の結晶構造を有するリチウムマンガン複合酸化物のように、劈開性を
有する粒子を活物質として用いる場合には、解砕処理時だけでなく、電極作製工程におい
て、電極に圧力を加えて成形する際に、活物質層に圧力がかかることにより、活物質がさ
らに割れてしまうことがある。
【0149】
また、捲回型の電池を製造する際には、電極の捲回時に大きな応力が作用する。また、
電極の捲回体を筐体に収納した場合であっても、常に捲回軸の外側に向かう応力が作用す
るため、活物質がさらに割れてしまうおそれがある。
【0150】
このように、活物質であるリチウムマンガン複合酸化物の一次粒子が劈開して割れてし
まうと、電池の放電容量の低下や、サイクル特性の低下を招く原因となる。
【0151】
このような場合にも、リチウムマンガン複合酸化物の劈開面において、炭素を含む層を
設けることが好ましい。また、炭素を含む層は、劈開面の全てを覆っていても良いし、劈
開面を有するリチウムマンガン複合酸化物の全体を覆っていても良い。ここで劈開面とは
例えば、劈開により露出した面を含む。
【0152】
本発明の一態様は、リチウムマンガン複合酸化物を覆うように、グラフェンが形成され
る。グラフェンは、リチウムマンガン複合酸化物の表面の全体に設けられてもよく、一部
のみに設けられてもよい。また、粒子において、露出した劈開面を覆うようにグラフェン
が形成されることが好ましい。また、リチウムマンガン複合酸化物の劈開面の少なくとも
一部にグラフェンが設けられていればよい。劈開面の少なくとも一部にグラフェンが覆わ
れた活物質を電極に用いることにより、電池の電圧の低下や、放電容量の低下を抑制する
ことができる。これにより、充放電に伴う電池のサイクル特性を向上させることができる
。
【0153】
グラフェンは、柔軟性並びに機械的強度が高いという優れた物理特性を有する。そのた
め、当該活物質を含む電極を電池に用いることにより、電池が充放電を繰り返すことで、
リチウムマンガン複合酸化物が膨張収縮したとしても、体積変化でリチウムマンガン複合
酸化物がさらに劈開して割れてしまうことを防止することができる。
【0154】
また、電極作製工程において、電極に圧力を加えて成形する際に、リチウムマンガン複
合酸化物にかかる圧力をグラフェンの機械的強度により緩和することができる。これによ
り、リチウムマンガン複合酸化物がさらに劈開して割れてしまうことを防止することがで
きる。
【0155】
さらに、捲回型の電池において、電極の捲回時に大きな応力が作用した場合や、電極の
捲回体を筐体に収納した場合に、電極に常に捲回軸の外側に向かう応力がかかったとして
も、リチウムマンガン複合酸化物がさらに劈開して割れてしまうことを防止することがで
きる。
【0156】
<電極の構成>
次に、本発明の一態様である粒子を用いた電極について説明する。
【0157】
図5(A)は電極100を俯瞰した図であり、
図5(B)は
図5(A)の破線で囲んだ
部分の断面を示す図である。電極100は、集電体101上に活物質層102が設けられ
た構造である。なお、
図5(A)では集電体101の両面に活物質層102が設けられて
いる例を示すが、集電体101の片面のみに活物質層102が設けられていてもよい。
【0158】
集電体101は、蓄電装置内で顕著な化学変化を引き起こさずに高い導電性を示す限り
、特別な制限はない。例えば、ステンレス、金、白金、亜鉛、鉄、ニッケル、銅、アルミ
ニウム、チタン、タンタル、マンガン等の金属、およびこれらの合金、焼結した炭素など
を用いることができる。また、銅またはステンレス鋼を炭素、ニッケル、チタン等で被覆
してもよい。また、シリコン、ネオジム、スカンジウム、モリブデンなどの耐熱性を向上
させる元素が添加されたアルミニウム合金を用いることができる。また、シリコンと反応
してシリサイドを形成することが可能な金属元素で形成してもよい。シリコンと反応して
シリサイドを形成する金属元素としては、ジルコニウム、チタン、ハフニウム、バナジウ
ム、ニオブ、タンタル、クロム、モリブデン、タングステン、コバルト、ニッケル等があ
る。また、集電体101は、箔状、板状(シート状)、網状、円柱状、コイル状、パンチ
ングメタル状、エキスパンドメタル状、多孔質状および不織布を包括する様々な形態等の
形状を適宜用いることができる。さらに、活物質層との密着性を上げるために集電体10
1は表面に細かい凹凸を有していてもよい。また、集電体101は、厚みが5μm以上3
0μm以下のものを用いるとよい。
【0159】
活物質層102は、活物質を含む。活物質とは、キャリアであるイオンの挿入・脱離に
関わる物質のみを指すが、本明細書等では、本来「活物質」である材料に加えて、導電助
剤やバインダーなどを含めたものも、活物質層と呼ぶ。
【0160】
活物質として、負極活物質を用いる場合は、例えば、炭素系材料、合金系材料等を用い
ることができる。
【0161】
また、炭素系材料としては、黒鉛、易黒鉛化性炭素(ソフトカーボン)、難黒鉛化性炭
素(ハードカーボン)、カーボンナノチューブ、グラフェン、カーボンブラック等がある
。
【0162】
黒鉛としては、メソカーボンマイクロビーズ(MCMB)、コークス系人造黒鉛、ピッ
チ系人造黒鉛等の人造黒鉛や、球状化天然黒鉛等の天然黒鉛がある。
【0163】
黒鉛にリチウムイオンが挿入するとき(リチウム-黒鉛層間化合物の生成時)の電位は
、リチウム金属と同程度に卑な電位を示す(0.1V以上0.3V以下 vs.Li/L
i+)。これにより、リチウムイオン二次電池は高い作動電圧を示すことができる。さら
に、黒鉛は、単位体積当たりの容量が比較的高い、体積膨張が小さい、安価である、リチ
ウム金属に比べて安全性が高い等の利点を有するため、好ましい。
【0164】
負極活物質として、合金化材料を用いることができる。ここで、合金化材料として、キ
ャリアイオンとなる金属との合金を与えることにより充放電反応を行うことが可能な材料
も用いることができる。例えば、Ga、Si、Al、Ge、Sn、Pb、Sb、Bi、A
g、Zn、Cd、In等のうち少なくとも一つを含む材料を用いることができる。このよ
うな元素は炭素と比べて容量が大きく、特に、シリコンは理論容量が4200mAh/g
と高いため、蓄電装置の容量を高めることができる。このような元素を用いた合金系材料
としては、例えば、SiO、Mg2Si、Mg2Ge、SnO、SnO2、Mg2Sn、
SnS2、V2Sn3、FeSn2、CoSn2、Ni3Sn2、Cu6Sn5、Ag3
Sn、Ag3Sb、Ni2MnSb、CeSb3、LaSn3、La3Co2Sn7、C
oSb3、InSb、SbSn等がある。
【0165】
ここで、蓄電装置の容量を高めるためには、負極活物質として、シリコンを有する材料
、例えばシリコンや、SiO等を用いることが特に好ましい。ここで、SiOとは、珪素
と酸素を有する化合物であり、珪素と酸素の原子数比を珪素:酸素=α:βとすると、α
は、βの近傍の値を有することが好ましい。ここで近傍の値を有するとは、例えばαとβ
の差の絶対値は、βの値に対して好ましくは20%以下、より好ましくは10%以下であ
ればよい。
【0166】
また、負極活物質として、二酸化チタン(TiO2)、リチウムチタン酸化物(Li4
Ti5O12)、リチウム-黒鉛層間化合物(LixC6)、五酸化ニオブ(Nb2O5
)、酸化タングステン(WO2)、酸化モリブデン(MoO2)等の酸化物を用いること
ができる。
【0167】
また、負極活物質として、リチウムと遷移金属の複窒化物である、Li3N型構造をも
つLi3-xMxN(M=Co、Ni、Cu)を用いることができる。例えば、Li2.
6Co0.4N3は大きな充放電容量(900mAh/g、1890mAh/cm3)を
示し好ましい。
【0168】
リチウムと遷移金属の複窒化物を用いると、負極活物質中にリチウムイオンを含むため
、正極活物質としてリチウムイオンを含まないV2O5、Cr3O8等の材料と組み合わ
せることができ好ましい。なお、正極活物質にリチウムイオンを含む材料を用いる場合で
も、あらかじめ正極活物質に含まれるリチウムイオンを脱離させることで、負極活物質と
してリチウムと遷移金属の複窒化物を用いることができる。
【0169】
また、コンバージョン反応が生じる材料を負極活物質として用いることもできる。例え
ば、酸化コバルト(CoO)、酸化ニッケル(NiO)、酸化鉄(FeO)等の、リチウ
ムと合金化反応を行わない遷移金属酸化物を負極活物質に用いてもよい。コンバージョン
反応が生じる材料としては、さらに、Fe2O3、CuO、Cu2O、RuO2、Cr2
O3等の酸化物、CoS0.89、NiS、CuS等の硫化物、Zn3N2、Cu3N、
Ge3N4等の窒化物、NiP2、FeP2、CoP3等のリン化物、FeF3、BiF
3等のフッ化物でも起こる。
【0170】
活物質として正極活物質を用いる場合には、正極活物質として、リチウムイオンの挿入
および脱離が可能な材料を用いることができる。例えば、オリビン型構造、層状岩塩型構
造、またはスピネル型構造、NASICON型結晶構造を有する材料等を用いることがで
きる。
【0171】
本実施の形態では、正極活物質として、リチウムマンガン複合酸化物を有する粒子を用
いる場合について説明するが、他の活物質を有していても良い。他の活物質としては、例
えば、LiFeO2、LiCoO2、LiNiO2、LiMn2O4、V2O5、Cr2
O5、MnO2等の化合物を材料として用いることができる。
【0172】
または、リチウム含有複合リン酸塩(一般式LiMPO4(Mは、Fe(II)、Mn
(II)、Co(II)、Ni(II)の一以上))を用いることができる。一般式Li
MPO4の代表例としては、LiFePO4、LiNiPO4、LiCoPO4、LiM
nPO4、LiFeaNibPO4、LiFeaCobPO4、LiFeaMnbPO4
、LiNiaCobPO4、LiNiaMnbPO4(a+bは1以下、0<a<1、0
<b<1)、LiFecNidCoePO4、LiFecNidMnePO4、LiNi
cCodMnePO4(c+d+eは1以下、0<c<1、0<d<1、0<e<1)、
LiFefNigCohMniPO4(f+g+h+iは1以下、0<f<1、0<g<
1、0<h<1、0<i<1)等のリチウム金属リン酸化合物が挙げられる。
【0173】
または、一般式Li(2-j)MSiO4(Mは、Fe(II)、Mn(II)、Co
(II)、Ni(II)の一以上、0≦j≦2)等のリチウム含有複合ケイ酸塩を用いる
ことができる。一般式Li(2-j)MSiO4の代表例としては、Li(2-j)Fe
SiO4、Li(2-j)NiSiO4、Li(2-j)CoSiO4、Li(2-j)
MnSiO4、Li(2-j)FekNilSiO4、Li(2-j)FekColSi
O4、Li(2-j)FekMnlSiO4、Li(2-j)NikColSiO4、L
i(2-j)NikMnlSiO4(k+lは1以下、0<k<1、0<l<1)、Li
(2-j)FemNinCoqSiO4、Li(2-j)FemNinMnqSiO4、
Li(2-j)NimConMnqSiO4(m+n+qは1以下、0<m<1、0<n
<1、0<q<1)、Li(2-j)FerNisCotMnuSiO4(r+s+t+
uは1以下、0<r<1、0<s<1、0<t<1、0<u<1)等のリチウムシリケー
ト化合物が挙げられる。
【0174】
また、活物質として、AxM2(XO4)3(A=Li、Na、Mg、M=Fe、Mn
、Ti、V、Nb、Al、X=S、P、Mo、W、As、Si)の一般式で表されるNA
SICON型化合物を用いることができる。NASICON型化合物としては、Fe2(
MnO4)3、Fe2(SO4)3、Li3Fe2(PO4)3等が挙げられる。また、
正極活物質として、Li2MPO4F、Li2MP2O7、Li5MO4(M=Fe、M
n)の一般式で表される化合物、NaF3、FeF3等のペロブスカイト型フッ化物、T
iS2、MoS2等の金属カルコゲナイド(硫化物、セレン化物、テルル化物)、LiM
VO4等の逆スピネル型の結晶構造を有する材料、バナジウム酸化物系(V2O5、V6
O13、LiV3O8等)、マンガン酸化物、有機硫黄化合物等の材料を用いることがで
きる。
【0175】
なお、キャリアイオンが、リチウムイオン以外のアルカリ金属イオン、アルカリ土類金
属イオンの場合、正極活物質として、上記リチウム化合物およびリチウム含有複合リン酸
塩およびリチウム含有複合ケイ酸塩において、リチウムを、アルカリ金属(例えば、ナト
リウムやカリウム等)、アルカリ土類金属(例えば、カルシウム、ストロンチウム、バリ
ウム、ベリリウム、マグネシウム等)などのキャリアで置換した化合物を用いてもよい。
【0176】
正極活物質の平均粒径は、例えば、5nm以上50μm以下が好ましい。
【0177】
また、活物質層102は導電助剤を有してもよい。導電助剤としては、例えば天然黒鉛
、メソカーボンマイクロビーズ等の人造黒鉛、炭素繊維などを用いることができる。炭素
繊維としては、例えばメソフェーズピッチ系炭素繊維、等方性ピッチ系炭素繊維等の炭素
繊維を用いることができる。また、炭素繊維として、カーボンナノファイバーやカーボン
ナノチューブなどを用いることができる。カーボンナノチューブは、例えば気相成長法な
どで作製することができる。また、導電助剤として、例えばカーボンブラック(アセチレ
ンブラック(AB)など)又はグラフェンなどの炭素材料を用いることができる。また、
例えば、銅、ニッケル、アルミニウム、銀、金などの金属粉末や金属繊維、導電性セラミ
ックス材料等を用いることができる。
【0178】
薄片状のグラフェンは、高い導電性を有するという優れた電気特性、および柔軟性並び
に機械的強度という優れた物理特性を有する。そのため、グラフェンを、導電助剤として
用いることにより、活物質同士の接触点や、接触面積を増大させることができる。
【0179】
活物質層102は、バインダーを有することが好ましく、バインダーは水溶性の高分子
を有することがより好ましい。また、活物質層102は複数の種類のバインダーを有して
もよい。
【0180】
バインダーとしては、ポリフッ化ビニリデン(PVdF)、ポリスチレン、ポリアクリ
ル酸メチル、ポリメタクリル酸メチル(PMMA)、ポリアクリル酸ナトリウム、ポリビ
ニルアルコール(PVA)、ポリエチレンオキシド(PEO)、ポリプロピレンオキシド
、ポリイミド(PI)、ポリ塩化ビニル、ポリテトラフルオロエチレン、ポリエチレン、
ポリプロピレン、イソブチレン、ポリエチレンテレフタレート、ナイロン、ポリアクリロ
ニトリル(PAN)、等の材料を用いることが好ましい。
【0181】
またバインダーとして、スチレン-ブタジエンゴム(SBR)、スチレン・イソプレン
・スチレンゴム、アクリロニトリル・ブタジエンゴム、ブタジエンゴム、エチレン・プロ
ピレン・ジエン共重合体などのゴム材料を用いることができる。これらのゴム材料は、水
溶性高分子と併用して用いると、さらに好ましい。これらのゴム材料は、ゴム弾性を有し
、伸び縮みしやすいため、充放電に伴う活物質の膨張収縮や、電極の曲げなどに伴うスト
レスに強く、信頼性の高い電極を得ることができる一方で、疎水基を有し水に溶けにくい
場合がある。このような場合には、水溶液中で粒子が水に溶解しない状態で分散するので
、活物質層102の形成に使用する溶剤を含む組成物(電極合剤組成物ともいう)を、塗
布するために適した粘度にまで高めることが難しいことがある。この際に、粘度調整機能
の高い水溶性高分子、例えば多糖類を用いると、溶液の粘度を適度に高める効果が期待で
きるうえに、ゴム材料と互いに均一に分散し、均一性の高い良好な電極、例えば電極膜厚
や電極抵抗の均一性が高い電極を得ることができる。
【0182】
水溶性の高分子としては、例えば多糖類などを用いることができる。多糖類としては、
カルボキシメチルセルロース(CMC)、メチルセルロース、エチルセルロース、ヒドロ
キシプロピルセルロースおよびジアセチルセルロース、再生セルロースなどのセルロース
誘導体や、澱粉、などを用いることができる。
【0183】
バインダーはそれぞれ単独で用いてもよいし、二種類以上を組み合わせて使用してもよ
い。
【0184】
<電極の作製方法>
次に、本発明の一態様である電極100の作製方法について説明する。
【0185】
まず、電極合剤組成物を作製する。電極合剤組成物は、例えば上述した活物質を用い、
バインダーや導電助剤等を添加して、溶媒とともに混練することで作製することができる
。電極合剤組成物は、スラリー状であっても、ペースト状であってもよい。なお、溶媒と
しては、例えば、水や、NMP(N-メチル-2-ピロリドン)などを用いることができ
る。安全性とコストの観点から、水を用いることは好ましい。
【0186】
一例として電極100が蓄電池用の正極である場合を説明する。ここでは活物質として
本発明の一態様に係る活物質を用い、導電助剤としてアセチレンブラックを用い、バイン
ダーとしてPVdFを用い、溶媒としてNMPを用いる例について説明する。
【0187】
まず、本発明の一態様に係る活物質と、アセチレンブラックと、ポリフッ化ビニリデン
と、を混合する。これらの混合物に、所定の粘度になるまでNMPを添加し、混練するこ
とで、電極合剤組成物を形成することができる。この工程において、混練と極性溶媒との
添加を複数回繰り返し行ってもよい。電極合剤組成物は、スラリー状でもペースト状であ
ってもよい。
【0188】
以上の工程により、活物質、導電助剤、バインダーの分散状態が均一な電極合剤組成物
を形成することができる。
【0189】
ここで、集電体上に、アンダーコートを形成してもよい。なお、アンダーコートとは、
接触抵抗の低減や、集電体と活物質層との密着性向上のための被覆層をいう。アンダーコ
ートとして、例えば、炭素層、金属層、炭素および高分子を含む層、並びに金属および高
分子を含む層を用いることができる。集電体上にアンダーコートを形成することにより、
集電体と後に形成される活物質層との接触抵抗を低減することができる。また、集電体と
活物質層との密着性を高めることができる。なお、アンダーコートは、導電助剤としてグ
ラフェンを用いる場合には、酸化グラフェンの還元工程において、還元液に溶解しないも
のが好ましい。
【0190】
また、アンダーコートとしては、例えば、黒鉛やアセチレンブラックなどの分散水溶液
、または当該水溶液に高分子を混ぜたものを用いることができ、例えば、黒鉛と、ポリア
クリル酸ナトリウム(PAA)との混合物、また、ABとPVdFとの混合物などを用い
ることができる。また、黒鉛とPAAとの重量比は、黒鉛:PAA=95:5から50:
50の範囲、ABとPVdFとの配合比は、AB:PVdF=70:30から50:50
の範囲とすればよい。
【0191】
なお、活物質層と集電体との密着性や、電極強度、接触抵抗に問題がなければ、アンダ
ーコートは、必ずしも集電体に形成する必要はない。
【0192】
次に、スラリーを集電体の片面又は両面に、例えば、ドクターブレード法等の塗布法な
どにより設ける。
【0193】
次に、集電体上に設けたスラリーを、通風乾燥又は減圧(真空)乾燥等の方法で乾燥さ
せることにより活物質層を形成する。この乾燥は、例えば、50℃以上180℃以下の熱
風を用いて行うとよい。このステップにより、活物質層中に含まれる極性溶媒を蒸発させ
る。なお、雰囲気は特に限定されない。
【0194】
ここで、この活物質層を、ロールプレス法や平板プレス法等の圧縮方法により圧力を加
えることで、活物質層の密度を高めてもよい。また、プレスを行う際に、90℃以上18
0℃以下、好ましくは120℃以下の熱を加えることにより、アンダーコートや活物質層
に含まれるバインダ(例えば、PVdF)を、電極の特性を変化させない程度に軟化させ
ることにより、集電体と活物質層との密着性をさらに高めることができる。
【0195】
次に、活物質層に加熱処理を行い、溶媒を蒸発させる。加熱処理は、減圧(真空)下又
は還元雰囲気下にて行うとよい。この加熱処理工程は、例えば、50℃以上600℃以下
、さらにこのましくは120℃以上500℃以下、より好ましくは200℃以上400℃
以下の温度で、1時間以上48時間以下で行うとよい。この加熱処理によって、活物質層
に存在する極性溶媒や水分を蒸発あるいは除去させる。
【0196】
ここで、例えば本発明の一態様の「リチウムマンガン複合酸化物を有する粒子」を用い
て電極を作製し、該電極を用いて蓄電池を作製する場合、「リチウムマンガン複合酸化物
を有する粒子」が有する第1の領域乃至第3の領域は、「リチウムマンガン複合酸化物を
有する粒子」の作製過程、および蓄電池作製過程のいずれの過程において形成されていて
もよい。
【0197】
<熱処理>
ここで、熱処理を行うことにより、例えば、本発明の一態様の「リチウムマンガン複合
酸化物を有する粒子」において、第1の領域乃至第3の領域が形成される場合がある。
【0198】
なお、「リチウムマンガン複合酸化物を有する粒子」が有する第1の領域乃至第3の領
域は、電極作製前、例えば粒子の合成後に形成されていてもよい。あるいは、電極形成の
過程において形成されてもよい。また、例えば粒子の合成後に形成された第1の領域乃至
第3の領域の厚さ、組成、および結晶構造等が、電極形成の過程において変化してもよい
。また、第1の領域乃至第3の領域は、蓄電池等を作製する各工程の熱処理において、形
成されてもよい。
【0199】
また、熱処理を行うことにより、例えば、バインダーが有する元素と、リチウムマンガ
ン複合酸化物を有する粒子が有する元素と、が反応する場合がある。一例として、バイン
ダーにPVdFを用いる場合を説明する。PVdFはフッ素を有する高分子化合物である
。フッ素を有する高分子化合物をバインダーとして用いることにより、電極を構成するそ
の他の材料、例えば活物質、導電助剤、集電体等が有する元素と、フッ素と、の結合が形
成される場合がある。ここで結合を有するとは、例えばXPS等を用いて分析することに
より、観測できる結合状態を指す。または、結合を有するとは、例えば該結合を有する材
料を有することを指す。また、例えばこのような結合を有する材料として、金属フッ化物
等が挙げられる。金属フッ化物として、例えば本発明の一態様のリチウムマンガン複合酸
化物が有する金属であるリチウム、マンガン、および元素Mとの金属フッ化物を形成する
場合がある。または、集電体に用いる金属との結合を形成する可能性がある。
【0200】
または、リチウムマンガン複合酸化物の被覆層、例えばここでは炭素を含む層の例を示
したが、被覆層に含まれる元素と、フッ素と、が結合を形成してもよい。例えば被覆層と
して炭素を含む層を用いる場合には、フッ化炭素が形成されてもよい。ここで、該被覆層
は、「リチウムマンガン複合酸化物を有する粒子」の有する第3の領域を含んでいてもよ
いし、第3の領域と、第1の領域または第2の領域の一部と、を有しても構わない。また
、「リチウムマンガン複合酸化物を有する粒子」の有する第2の領域は、例えば該被覆層
の一部を有してもよい。
【0201】
このような結合を形成することにより、例えば、電極の強度をより高めることができる
場合がある。または、あらかじめ結合を形成しておくことにより、例えば蓄電池を作製し
た後、蓄電池の充放電の際に、不可逆な反応を抑制できる場合がある。また、充放電によ
り、活物質の体積が変化する場合があり、電極の強度低下を招く場合がある。電極の強度
が低下すると、例えば活物質同士や、活物質と導電助剤との密着性が低下する。よって電
極の導電パスが減少し、容量低減を招く場合がある。そのような場合に、このような結合
を形成することにより、電極の強度を向上させ、体積変化に対する電極の耐性が向上する
場合がある。
【0202】
結合を形成するために好ましい熱処理の温度は、例えば120℃以上、さらに好ましく
は160℃以上、さらに好ましくは200℃以上、より好ましくは250℃以上である。
【0203】
また、熱処理の雰囲気は、酸素、空気、窒素、希ガス、などのガスを用いることができ
る。また、大気圧下で熱処理を行ってもよいし、減圧下でもよい。ここで、例えば酸素を
有するガスを用いることにより、電極を構成する各材料、例えばリチウムマンガン複合酸
化物を有する粒子と、バインダーと、の反応が促進される可能性がある。ここでバインダ
ーとの反応が促進される、とは、例えばバインダーが有する元素と、リチウムマンガン複
合酸化物を有する粒子が有する元素と、の結合がXPSなどの分析によって観測されるこ
とを指す。また、窒素や希ガスなどの不活性ガスを用いることにより、電極を構成する各
材料、例えば集電体などの変質を抑制することができる場合がある。また、減圧下で熱処
理を行うことにより、電極を構成する各材料、例えば集電体などの変質を抑制することが
できる場合がある。
【0204】
ここで熱処理温度が高すぎる場合には、電極を構成する各材料の分解等が生じる場合が
ある。例えば、リチウムマンガン複合酸化物を有する粒子が、分解反応を生じ、蓄電池に
用いた場合にその容量が減少してしまう可能性がある。よって、熱処理温度は、600℃
以下が好ましく、500℃以下がさらに好ましく、400℃以下がより好ましい。
【0205】
<プレス>
さらに、活物質層が形成された集電体にプレスを行ってもよい。これにより、活物質層
と集電体との密着性を高めることができる。また、活物質層の密度を高めることができる
。また、プレスを行う際に、90℃以上180℃以下、好ましくは120℃以下の熱を加
えることにより、アンダーコートや活物質層に含まれるバインダ(例えば、PVdF)を
、電極の特性を変化させない程度に軟化させることにより、集電体と活物質層との密着性
をさらに高めることができる。
【0206】
最後に、所定のサイズに集電体および活物質層を打ち抜くことにより、電極が作製され
る。
【0207】
なお、本実施の形態において、本発明の一態様について述べた。または、他の実施の形
態において、本発明の一態様について述べる。ただし、本発明の一態様は、これらに限定
されない。つまり、本実施の形態および他の実施の形態では、様々な発明の態様が記載さ
れているため、本発明の一態様は、特定の態様に限定されない。例えば、本発明の一態様
として、リチウムイオン二次電池に適用した場合の例を示したが、本発明の一態様は、こ
れに限定されない。場合によっては、または、状況に応じて、本発明の一態様は、様々な
二次電池、鉛蓄電池、リチウムイオンポリマー二次電池、ニッケル・水素蓄電池、ニッケ
ル・カドミウム蓄電池、ニッケル・鉄蓄電池、ニッケル・亜鉛蓄電池、酸化銀・亜鉛蓄電
池、固体電池、空気電池、一次電池、キャパシタ、または、リチウムイオンキャパシタ、
などに適用してもよい。または例えば、場合によっては、または、状況に応じて、本発明
の一態様は、リチウムイオン二次電池に適用しなくてもよい。また、本発明の一態様とし
て、活物質が、グラフェン、または、酸化グラフェンを有する場合の例を示したが、本発
明の一態様は、これに限定されない。場合によっては、または、状況に応じて、本発明の
一態様では、グラフェンまたは酸化グラフェンは、容量が非常に大きいキャパシタである
スーパーキャパシタ(電気二重層キャパシタ)のための電極として用いたり、酸素還元電
極触媒として用いたり、潤滑油より低摩擦な分散水の材料として用いたり、表示装置や太
陽電池などのための透明電極として用いたり、ガスバリア材として用いたり、機械的強度
が高くて軽量なポリマー材料として用いたり、放射能汚染水に含まれるウランやプルトニ
ウムを検出するための高感度ナノセンサの材料として用いたり、放射性物質を取りのぞく
ための材料として用いたりしてもよい。
【0208】
本実施の形態は、他の実施の形態と適宜組み合わせて実施することが可能である。
【0209】
(実施の形態2)
本実施の形態では、本発明の一態様である電極を用いた蓄電装置の一例を示す。
【0210】
なお、本明細書等において、蓄電装置とは、蓄電機能を有する素子および装置全般を指
す。例えば、リチウムイオン二次電池などの蓄電池、リチウムイオンキャパシタ、および
電気二重層キャパシタなどを含む。
【0211】
〈薄型蓄電池〉
図6に、蓄電装置の一例として、薄型の蓄電池について示す。薄型の蓄電池は、可撓性
を有する構成とすれば、可撓性を有する部位を少なくとも一部有する電子機器に実装すれ
ば、電子機器の変形に合わせて蓄電池も曲げることもできる。
【0212】
図6は薄型の蓄電池500の外観図を示す。また、
図7(A)および
図7(B)は、図
6に一点鎖線で示すA1-A2断面およびB1-B2断面を示す。薄型の蓄電池500は
、正極集電体501および正極活物質層502を有する正極503と、負極集電体504
および負極活物質層505を有する負極506と、セパレータ507と、電解液508と
、外装体509と、を有する。外装体509内に設けられた正極503と負極506との
間にセパレータ507が設置されている。また、外装体509内は、電解液508で満た
されている。
【0213】
正極503および負極506の少なくとも一方には、本発明の一態様である電極を用い
る。また、正極503および負極506の両方に、本発明の一態様である電極を用いても
よい。
【0214】
まず、正極503の構成について説明する。正極503には、本発明の一態様に係る電
極を用いることが好ましい。ここでは、正極503に、実施の形態2に示す電極100を
用いる例を示す。
【0215】
電解液508の溶媒としては、非プロトン性有機溶媒が好ましく、例えば、エチレンカ
ーボネート(EC)、プロピレンカーボネート(PC)、ブチレンカーボネート、クロロ
エチレンカーボネート、ビニレンカーボネート(VC)、γ-ブチロラクトン、γ-バレ
ロラクトン、ジメチルカーボネート(DMC)、ジエチルカーボネート(DEC)、エチ
ルメチルカーボネート(EMC)、ギ酸メチル、酢酸メチル、酪酸メチル、1,3-ジオ
キサン、1,4-ジオキサン、ジメトキシエタン(DME)、ジメチルスルホキシド、ジ
エチルエーテル、メチルジグライム、アセトニトリル、ベンゾニトリル、テトラヒドロフ
ラン、スルホラン、スルトン等の1種、又はこれらのうちの2種以上を任意の組み合わせ
および比率で用いることができる。
【0216】
また、電解液の溶媒としてゲル化される高分子材料を用いることで、漏液性等に対する
安全性が高まる。また、二次電池の薄型化および軽量化が可能である。ゲル化される高分
子材料の代表例としては、シリコーンゲル、アクリルゲル、アクリロニトリルゲル、ポリ
エチレンオキサイド系ゲル、ポリプロピレンオキサイド系ゲル、フッ素系ポリマーのゲル
等がある。
【0217】
また、電解液の溶媒として、難燃性および難揮発性であるイオン液体(常温溶融塩)を
一つ又は複数用いることで、蓄電装置の内部短絡や、過充電等によって内部温度が上昇し
ても、蓄電装置の破裂や発火などを防ぐことができる。イオン液体は、カチオンとアニオ
ンからなり、有機カチオンとアニオンとを含む。電解液に用いる有機カチオンとして、四
級アンモニウムカチオン、三級スルホニウムカチオン、および四級ホスホニウムカチオン
等の脂肪族オニウムカチオンや、イミダゾリウムカチオンおよびピリジニウムカチオン等
の芳香族カチオンが挙げられる。また、電解液に用いるアニオンとして、1価のアミド系
アニオン、1価のメチド系アニオン、フルオロスルホン酸アニオン、パーフルオロアルキ
ルスルホン酸アニオン、テトラフルオロボレート、パーフルオロアルキルボレート、ヘキ
サフルオロホスフェート、またはパーフルオロアルキルホスフェート等が挙げられる。
【0218】
また、上記の溶媒に溶解させる電解質としては、キャリアにリチウムイオンを用いる場
合、例えばLiPF6、LiClO4、LiAsF6、LiBF4、LiAlCl4、L
iSCN、LiBr、LiI、Li2SO4、Li2B10Cl10、Li2B12Cl
12、LiCF3SO3、LiC4F9SO3、LiC(CF3SO2)3、LiC(C
2F5SO2)3、LiN(CF3SO2)2、LiN(C4F9SO2)(CF3SO
2)、LiN(C2F5SO2)2等のリチウム塩を一種、又はこれらのうちの二種以上
を任意の組み合わせおよび比率で用いることができる。
【0219】
また、蓄電装置に用いる電解液は、粒状のごみや電解液の構成元素以外の元素(以下、
単に「不純物」ともいう。)の含有量が少ない高純度化された電解液を用いることが好ま
しい。具体的には、電解液に対する不純物の重量比を1%以下、好ましくは0.1%以下
、より好ましくは0.01%以下とすることが好ましい。
【0220】
また、電解液にビニレンカーボネート(VC)、プロパンスルトン(PS)、tert
-ブチルベンゼン(TBB)、フルオロエチレンカーボネート(FEC)、LiBOBな
どの添加剤を添加してもよい。添加剤の濃度は、例えば溶媒全体に対して0.1weig
ht%以上5weight%以下とすればよい。
【0221】
また、ポリマーを電解液で膨潤させたゲル電解質を用いてもよい。ゲル電解質(ポリマ
ーゲル電解質)の例としては、担体としてホストポリマーを用い、上述の電解液を含有さ
せたものが挙げられる。
【0222】
ホストポリマーの例を以下に説明する。ホストポリマーとしては、例えばポリエチレン
オキシド(PEO)などのポリアルキレンオキシド構造を有するポリマーや、PVdF、
およびポリアクリロニトリル等、およびそれらを含む共重合体等を用いることができる。
例えばPVdFとヘキサフルオロプロピレン(HFP)の共重合体であるPVdF-HF
Pを用いることができる。また、形成されるポリマーは、多孔質形状を有してもよい。
【0223】
また、電解液の代わりに、硫化物系や酸化物系等の無機物材料を有する固体電解質や、
PEO(ポリエチレンオキシド)系等の高分子材料を有する固体電解質を用いることがで
きる。固体電解質を用いる場合には、セパレータやスペーサの設置が不要となる。また、
電池全体を固体化できるため、漏液のおそれがなくなり安全性が飛躍的に向上する。
【0224】
セパレータ507としては、例えば、紙、不織布、ガラス繊維、セラミックス、或いは
ナイロン(ポリアミド)、ビニロン(ポリビニルアルコール系繊維)、ポリエステル、ア
クリル、ポリオレフィン、ポリウレタンを用いた合成繊維等で形成されたものを用いるこ
とができる。
【0225】
セパレータ507は袋状に加工し、正極503または負極506のいずれか一方を包む
ように配置することが好ましい。例えば、
図8(A)に示すように、正極503を挟むよ
うにセパレータ507を2つ折りにし、正極503と重なる領域よりも外側で封止部51
4により封止することで、正極503をセパレータ507内に確実に担持することができ
る。そして、
図8(B)に示すように、セパレータ507に包まれた正極503と負極5
06とを交互に積層し、これらを外装体509内に配置することで薄型の蓄電池500を
形成するとよい。
【0226】
ここで、正極活物質として、実施の形態1に示すリチウムマンガン複合酸化物を有する
粒子を用い、正極503として実施の形態1に示す電極を用い、負極活物質として、シリ
コンを有する活物質を用いる例について説明する。
【0227】
シリコンを有する活物質、例えばシリコンや、SiOは、活物質重量および活物質体積
あたりの容量が大きく、蓄電池の重量あたりおよび体積あたりの容量を高めることができ
る。
【0228】
ここで、蓄電池の充電および放電において、キャリアイオンの挿入・脱離反応以外に、
電解液の分解反応が生じる場合がある。この分解反応は、正極においても負極においても
生じる可能性がある。特に負極においては、その電池反応の電位の低さに電解液が耐性を
有さず分解する場合が多い。このような分解反応は、不可逆な反応である場合が多い。不
可逆な反応が生じることにより蓄電装置の充放電効率は低下し、容量減少の要因となる場
合がある。
【0229】
このような場合に、蓄電池に用いる負極506または正極503と、対極と、電解液と
、をあらかじめ設けた電池を作製し、不可逆な反応をあらかじめ生じさせた後、該電池か
ら負極506または正極503を取り出し、蓄電池を作製することにより、不可逆な反応
による蓄電池の容量減少を抑制することができるため好ましい。ここで対極として、キャ
リアイオンを有する材料を用いればよい。例えば、キャリアイオンを有する金属や、キャ
リアイオンを有する化合物を用いることができる。キャリアイオンを有する金属として、
例えばリチウム等が挙げられる。また、キャリアイオンを有する化合物として、例えば、
実施の形態1において正極活物質や負極活物質として挙げた材料を用いることができる。
【0230】
次に、蓄電池を作製した後のエージングについて説明する。蓄電池を作製した後に、エ
ージングを行うことが好ましい。エージング条件の一例について以下に説明する。まず初
めに0.001C以上0.2C以下のレートで充電を行う。温度は例えば室温以上、50
℃以下とすればよい。このときに、電解液の分解が生じ、ガスが発生した場合には、その
ガスがセル内にたまると、電解液が電極表面と接することができない領域が発生してしま
う。つまり電極の実効的な反応面積が減少し、実効的な電流密度が高くなることに相当す
る。また、本発明の一態様のリチウムマンガン複合酸化物を有する粒子は、正極活物質と
して用いた場合に、高い反応電位を有する。正極活物質が高い反応電位を有する場合には
、蓄電池の電圧を高めることができ、蓄電池のエネルギー密度を高めることができるため
好ましい。
【0231】
ここで、このような高い反応電位に対して、電解液が耐性を有さない場合がある。例え
ば、正極の表面において、電解液が分解し、ガスを発生する場合がある。このような場合
には、ガスを抜くことが好ましい。
【0232】
また、過度に電流密度が高くなると、電極の抵抗に応じて電圧降下が生じ、黒鉛へのリ
チウム挿入が起こると同時に、黒鉛表面へのリチウム析出も生じてしまう。このリチウム
析出は容量の低下を招く場合がある。例えば、リチウムが析出した後、表面に被膜等が成
長してしまうと、表面に析出したリチウムが再溶出できなくなり、容量に寄与しないリチ
ウムが増える。また、析出したリチウムが物理的に崩落し、電極との導通を失った場合に
も、やはり容量に寄与しないリチウムが生じてしまう。よって、電極が電圧降下によりリ
チウム電位まで到達する前に、ガスを抜くことが好ましい。
【0233】
また、プレスを行いながらエージングを行ってもよい。例えば、薄型の蓄電池を作製し
た後、プレス機を用いてプレスを行いながら充放電を行ってもよい。
【0234】
本発明の一態様のリチウムマンガン複合酸化物は、大きな放電容量を有するため好まし
い。また、本発明の一態様のリチウムマンガン複合酸化物は、その電池反応の電位が高く
、高いエネルギー密度を有し、好ましい。
【0235】
一方、蓄電池の正極として高い電池反応電位を有する活物質を用いた場合、電解液が分
解しやすい場合がある。ここで電解液が分解することにより、正極表面近傍にガスが発生
する場合がある。
【0236】
プレスを行いながらエージングを行うことにより、発生したガスをプレスを行っている
領域以外の領域、例えば蓄電池の周辺部分に追い出せる場合があり、好ましい。
【0237】
ここで、例えば加熱を行いながらプレスを行ってもよい。また、エージングの前後でプ
レスを行ってもよいが、プレスを行いながらエージングを行うことがより好ましい。
【0238】
また、ガス抜きを行った後に、室温よりも高い温度、好ましくは30℃以上60℃以下
、より好ましくは35℃以上50℃以下において、例えば1時間以上100時間以下、充
電状態で保持してもよい。初めに行う充電の際に、表面で分解した電解液は黒鉛の表面に
被膜を形成する。よって、例えばガス抜き後に室温よりも高い温度で保持することにより
、形成された被膜が緻密化する場合も考えられる。
【0239】
図9(A)に示すように、正極503が有する正極集電体は、超音波溶接などを用いて
溶接領域512で正極リード電極510に溶接される。負極506が有する負極集電体は
負極リード電極511に溶接される。
図9(B)は、リード電極に集電体を溶接する例を
示す。例として、正極集電体を正極リード電極510に溶接する例を示す。また、正極集
電体は、
図9(B)に示す湾曲部513を有することにより、蓄電池500の作製後に外
から力が加えられて生じる応力を緩和することができ、蓄電池500の信頼性を高めるこ
とができる。
【0240】
図6および
図7に示す薄型の蓄電池500において、正極リード電極510は正極50
3が有する正極集電体501と、負極リード電極511は負極506が有する負極集電体
504とそれぞれ超音波接合させて正極リード電極510および負極リード電極511を
外側に露出している。また、外部との電気的接触を得る端子の役割を正極集電体501お
よび負極集電体504で兼ねることもできる。その場合は、リード電極を用いずに、正極
集電体501および負極集電体504の一部を外装体509から外側に露出するように配
置してもよい。
【0241】
また、
図6では正極リード電極510と負極リード電極511は同じ辺に配置されてい
るが、
図10に示すように、正極リード電極510と負極リード電極511を異なる辺に
配置してもよい。このように、本発明の一態様の蓄電池は、リード電極を自由に配置する
ことができるため、設計自由度が高い。よって、本発明の一態様の蓄電池を用いた製品の
設計自由度を高めることができる。また、本発明の一態様の蓄電池を用いた製品の生産性
を高めることができる。
【0242】
薄型の蓄電池500において、外装体509には、例えばポリエチレン、ポリプロピレ
ン、ポリカーボネート、アイオノマー、ポリアミド等の材料からなる膜上に、アルミニウ
ム、ステンレス、銅、ニッケル等の可撓性に優れた金属薄膜を設け、さらに該金属薄膜上
に外装体の外面としてポリアミド系樹脂、ポリエステル系樹脂等の絶縁性合成樹脂膜を設
けた三層構造のフィルムを用いることができる。
【0243】
また
図6では、一例として、向かい合う正極と負極の組の数を5組としているが、勿論
、電極の組は5組に限定されず、多くてもよいし、少なくてもよい。電極層数が多い場合
には、より多くの容量を有する蓄電池とすることができる。また、電極層数が少ない場合
には、薄型化でき、可撓性に優れた蓄電池とすることができる。
【0244】
上記構成において、二次電池の外装体509は、曲率半径30mm以上好ましくは曲率
半径10mm以上の範囲で変形することができる。二次電池の外装体であるフィルムは、
1枚または2枚で構成されており、積層構造の二次電池である場合、湾曲させた電池の断
面構造は、外装体であるフィルムの2つの曲線で挟まれた構造となる。
【0245】
面の曲率半径について、
図11を用いて説明する。
図11(A)において、曲面170
0を切断した平面1701において、曲面1700に含まれる曲線1702の一部を円の
弧に近似して、その円の半径を曲率半径1703とし、円の中心を曲率中心1704とす
る。
図11(B)に曲面1700の上面図を示す。
図11(C)に、平面1701で曲面
1700を切断した断面図を示す。曲面を平面で切断するとき、曲面に対する平面の角度
や切断位置に応じて、断面に現れる曲線の曲率半径は異なるものとなるが、本明細書等で
は、最も小さい曲率半径を面の曲率半径とする。
【0246】
2枚のフィルムを外装体として電極・電解液など1805を挟む二次電池を湾曲させた
場合には、二次電池の曲率中心1800に近い側のフィルム1801の曲率半径1802
は、曲率中心1800から遠い側のフィルム1803の曲率半径1804よりも小さい(
図12(A))。二次電池を湾曲させて断面を円弧状とすると曲率中心1800に近いフ
ィルムの表面には圧縮応力がかかり、曲率中心1800から遠いフィルムの表面には引っ
張り応力がかかる(
図12(B))。外装体の表面に凹部または凸部で形成される模様を
形成すると、このように圧縮応力や引っ張り応力がかかったとしても、ひずみによる影響
を許容範囲内に抑えることができる。そのため、二次電池は、曲率中心に近い側の外装体
の曲率半径が30mm以上好ましくは10mm以上となる範囲で変形することができる。
【0247】
なお、二次電池の断面形状は、単純な円弧状に限定されず、一部が円弧を有する形状に
することができ、例えば
図12(C)に示す形状や、波状(
図12(D))、S字形状な
どとすることもできる。二次電池の曲面が複数の曲率中心を有する形状となる場合は、複
数の曲率中心それぞれにおける曲率半径の中で、最も曲率半径が小さい曲面において、2
枚の外装体の曲率中心に近い方の外装体の曲率半径が、10mm以上好ましくは30mm
以上となる範囲で二次電池が変形することができる。
【0248】
〈コイン型蓄電池〉
次に蓄電装置の一例として、コイン型の蓄電池の一例について、
図13を参照して説明
する。
図13(A)はコイン型(単層偏平型)の蓄電池の外観図であり、
図13(B)は
、その断面図である。
【0249】
コイン型の蓄電池300は、正極端子を兼ねた正極缶301と負極端子を兼ねた負極缶
302とが、ポリプロピレン等で形成されたガスケット303で絶縁シールされている。
正極304は、正極集電体305と、これと接するように設けられた正極活物質層306
により形成される。正極活物質層306は、正極活物質層502の記載を参照すればよい
。
【0250】
また、負極307は、負極集電体308と、これに接するように設けられた負極活物質
層309により形成される。負極活物質層309は、負極活物質層505の記載を参照す
ればよい。またセパレータ310は、セパレータ507の記載を参照すればよい。また電
解液は、電解液508の記載を参照すればよい。
【0251】
なお、コイン型の蓄電池300に用いる正極304および負極307は、それぞれ活物
質層は片面のみに形成すればよい。
【0252】
正極缶301、負極缶302には、電解液に対して耐腐食性のあるニッケル、アルミニ
ウム、チタン等の金属、又はこれらの合金やこれらと他の金属との合金(例えばステンレ
ス鋼等)を用いることができる。また、電解液による腐食を防ぐため、ニッケルやアルミ
ニウム等を被覆することが好ましい。正極缶301は正極304と、負極缶302は負極
307とそれぞれ電気的に接続する。
【0253】
これら負極307、正極304およびセパレータ310を電解質に含浸させ、
図13(
B)に示すように、正極缶301を下にして正極304、セパレータ310、負極307
、負極缶302をこの順で積層し、正極缶301と負極缶302とをガスケット303を
介して圧着してコイン形の蓄電池300を製造する。
【0254】
〈円筒型蓄電池〉
次に蓄電装置の一例として、円筒型の蓄電池を示す。円筒型の蓄電池について、
図14
を参照して説明する。円筒型の蓄電池600は、
図14(A)に示すように、上面に正極
キャップ(電池蓋)601を有し、側面および底面に電池缶(外装缶)602を有してい
る。これら正極キャップと電池缶(外装缶)602とは、ガスケット(絶縁パッキン)6
10によって絶縁されている。
【0255】
図14(B)は、円筒型の蓄電池の断面を模式的に示した図である。中空円柱状の電池
缶602の内側には、帯状の正極604と負極606とがセパレータ605を間に挟んで
捲回された電池素子が設けられている。図示しないが、電池素子はセンターピンを中心に
捲回されている。電池缶602は、一端が閉じられ、他端が開いている。電池缶602に
は、電解液に対して耐腐食性のあるニッケル、アルミニウム、チタン等の金属、又はこれ
らの合金やこれらと他の金属との合金(例えば、ステンレス鋼等)を用いることができる
。また、電解液による腐食を防ぐため、ニッケルやアルミニウム等を被覆することが好ま
しい。電池缶602の内側において、正極、負極およびセパレータが捲回された電池素子
は、対向する一対の絶縁板608、609により挟まれている。また、電池素子が設けら
れた電池缶602の内部は、非水電解液(図示せず)が注入されている。非水電解液は、
コイン型の蓄電池と同様のものを用いることができる。
【0256】
正極604および負極606は、上述した薄型の蓄電池の正極および負極と同様に製造
すればよい。また、円筒型の蓄電池に用いる正極および負極は捲回するため、集電体の両
面に活物質を形成することが好ましい。正極604には正極端子(正極集電リード)60
3が接続され、負極606には負極端子(負極集電リード)607が接続される。正極端
子603および負極端子607は、ともにアルミニウムなどの金属材料を用いることがで
きる。正極端子603は安全弁機構612に、負極端子607は電池缶602の底にそれ
ぞれ抵抗溶接される。安全弁機構612は、PTC素子(Positive Tempe
rature Coefficient)611を介して正極キャップ601と電気的に
接続されている。安全弁機構612は電池の内圧の上昇が所定の閾値を超えた場合に、正
極キャップ601と正極604との電気的な接続を切断するものである。また、PTC素
子611は温度が上昇した場合に抵抗が増大する熱感抵抗素子であり、抵抗の増大により
電流量を制限して異常発熱を防止するものである。PTC素子には、チタン酸バリウム(
BaTiO3)系半導体セラミックス等を用いることができる。
【0257】
図14に示すような円筒型の蓄電池のように電極を捲回する際には、捲回時に電極に大
きな応力が作用する。また、電極の捲回体を筐体に収納した場合に、電極には常に捲回軸
の外側に向かう応力が作用する。このように電極に大きな応力が作用したとしても、活物
質が劈開してしまうことを防止することができる。
【0258】
なお、本実施の形態では、蓄電池として、コイン型、円筒型および薄型の蓄電池を示し
たが、その他の封止型蓄電池、角型蓄電池等様々な形状の蓄電池を用いることができる。
また、正極、負極、およびセパレータが複数積層された構造、正極、負極、およびセパレ
ータが捲回された構造であってもよい。例えば、他の蓄電池の例を
図15乃至
図19に示
す。
【0259】
〈蓄電池の構成例〉
図15および
図16に、薄型の蓄電池の構成例を示す。
図15(A)に示す捲回体99
3は、負極994と、正極995と、セパレータ996と、を有する。
【0260】
捲回体993は、セパレータ996を挟んで負極994と、正極995とが重なり合っ
て積層され、該積層シートを捲回したものである。この捲回体993を角型の封止容器な
どで覆うことにより角型の二次電池が作製される。
【0261】
なお、負極994、正極995およびセパレータ996からなる積層の積層数は、必要
な容量と素子体積に応じて適宜設計すればよい。負極994はリード電極997およびリ
ード電極998の一方を介して負極集電体(図示せず)に接続され、正極995はリード
電極997およびリード電極998の他方を介して正極集電体(図示せず)に接続される
。
【0262】
図15(B)および
図15(C)に示す蓄電池990は、外装体となるフィルム981
と、凹部を有するフィルム982とを熱圧着などにより貼り合わせて形成される空間に上
述した捲回体993を収納したものである。捲回体993は、リード電極997およびリ
ード電極998を有し、フィルム981と、凹部を有するフィルム982との内部で電解
液に含浸される。
【0263】
フィルム981と、凹部を有するフィルム982は、例えばアルミニウムなどの金属材
料や樹脂材料を用いることができる。フィルム981および凹部を有するフィルム982
の材料として樹脂材料を用いれば、外部から力が加わったときにフィルム981と、凹部
を有するフィルム982を変形させることができ、可撓性を有する蓄電池を作製すること
ができる。
【0264】
また、
図15(B)および
図15(C)では2枚のフィルムを用いる例を示しているが
、1枚のフィルムを折り曲げることによって空間を形成し、その空間に上述した捲回体9
93を収納してもよい。
【0265】
また、薄型の蓄電池の外装体や、封止容器を樹脂材料などにすることによって可撓性を
有する蓄電装置を作製することができる。ただし、外装体や、封止容器を樹脂材料にする
場合、外部に接続を行う部分は導電材料とする。
【0266】
例えば、可撓性を有する別の薄型蓄電池の例を
図16に示す。
図16(A)の捲回体9
93は、
図15(A)に示したものと同一であるため、詳細な説明は省略することとする
。
【0267】
図16(B)および
図16(C)に示す蓄電池990は、外装体991の内部に上述し
た捲回体993を収納したものである。捲回体993は、リード電極997およびリード
電極998を有し、外装体991、992の内部で電解液に含浸される。外装体991、
992は、例えばアルミニウムなどの金属材料や樹脂材料を用いることができる。外装体
991、992の材料として樹脂材料を用いれば、外部から力が加わったときに外装体9
91、992を変形させることができ、可撓性を有する薄型蓄電池を作製することができ
る。
【0268】
本発明の一態様に係る活物質を含む電極を、可撓性を有する薄型蓄電池に用いることに
より、薄型蓄電池を繰り返し折り曲げることによって電極に応力が作用したとしても、活
物質が劈開してしまうことを防止することができる。
【0269】
以上により、劈開面の少なくとも一部にグラフェンで覆われた活物質を電極に用いるこ
とにより、電池の電圧の低下や、放電容量の低下を抑制することができる。これにより、
充放電に伴う電池のサイクル特性を向上させることができる。
【0270】
〈蓄電システムの構造例〉
また、蓄電システムの構造例について、
図17乃至
図19を用いて説明する。ここで蓄
電システムとは、例えば、蓄電装置を搭載した機器を指す。
【0271】
図17(A)および
図17(B)は、蓄電システムの外観図を示す図である。蓄電シス
テムは、回路基板900と、蓄電池913と、を有する。蓄電池913には、ラベル91
0が貼られている。さらに、
図17(B)に示すように、蓄電システムは、端子951と
、端子952と、アンテナ914と、アンテナ915と、を有する。
【0272】
回路基板900は、端子911と、回路912と、を有する。端子911は、端子95
1、端子952、アンテナ914、アンテナ915、および回路912に接続される。な
お、端子911を複数設けて、複数の端子911のそれぞれを、制御信号入力端子、電源
端子などとしてもよい。
【0273】
回路912は、回路基板900の裏面に設けられていてもよい。なお、アンテナ914
およびアンテナ915は、コイル状に限定されず、例えば線状、板状であってもよい。ま
た、平面アンテナ、開口面アンテナ、進行波アンテナ、EHアンテナ、磁界アンテナ、誘
電体アンテナ等のアンテナを用いてもよい。又は、アンテナ914若しくはアンテナ91
5は、平板状の導体でもよい。この平板状の導体は、電界結合用の導体の一つとして機能
することができる。つまり、コンデンサの有する2つの導体のうちの一つの導体として、
アンテナ914若しくはアンテナ915を機能させてもよい。これにより、電磁界、磁界
だけでなく、電界で電力のやり取りを行うこともできる。
【0274】
アンテナ914の線幅は、アンテナ915の線幅よりも大きいことが好ましい。これに
より、アンテナ914により受電する電力量を大きくできる。
【0275】
蓄電システムは、アンテナ914およびアンテナ915と、蓄電池913との間に層9
16を有する。層916は、例えば蓄電池913による電磁界を遮蔽することができる機
能を有する。層916としては、例えば磁性体を用いることができる。
【0276】
なお、蓄電システムの構造は、
図17に示す構造に限定されない。
【0277】
例えば、
図18(A-1)および
図18(A-2)に示すように、
図17(A)および
図17(B)に示す蓄電池913のうち、対向する一対の面のそれぞれにアンテナを設け
てもよい。
図18(A-1)は、上記一対の面の一方側方向から見た外観図であり、
図1
8(A-2)は、上記一対の面の他方側方向から見た外観図である。なお、
図17(A)
および
図17(B)に示す蓄電システムと同じ部分については、
図17(A)および
図1
7(B)に示す蓄電システムの説明を適宜援用できる。
【0278】
図18(A-1)に示すように、蓄電池913の一対の面の一方に層916を挟んでア
ンテナ914が設けられ、
図18(A-2)に示すように、蓄電池913の一対の面の他
方に層917を挟んでアンテナ915が設けられる。層917は、例えば蓄電池913に
よる電磁界を遮蔽することができる機能を有する。層917としては、例えば磁性体を用
いることができる。
【0279】
上記構造にすることにより、アンテナ914およびアンテナ915の両方のサイズを大
きくすることができる。
【0280】
または、
図18(B-1)および
図18(B-2)に示すように、
図17(A)および
図17(B)に示す蓄電池913のうち、対向する一対の面のそれぞれに別のアンテナを
設けてもよい。
図18(B-1)は、上記一対の面の一方側方向から見た外観図であり、
図18(B-2)は、上記一対の面の他方側方向から見た外観図である。なお、
図17(
A)および
図17(B)に示す蓄電システムと同じ部分については、
図17(A)および
図17(B)に示す蓄電システムの説明を適宜援用できる。
【0281】
図18(B-1)に示すように、蓄電池913の一対の面の一方に層916を挟んでア
ンテナ914およびアンテナ915が設けられ、
図18(A-2)に示すように、蓄電池
913の一対の面の他方に層917を挟んでアンテナ918が設けられる。アンテナ91
8は、例えば、外部機器とのデータ通信を行うことができる機能を有する。アンテナ91
8には、例えばアンテナ914およびアンテナ915に適用可能な形状のアンテナを適用
することができる。アンテナ918を介した蓄電システムと他の機器との通信方式として
は、NFCなど、蓄電システムと他の機器の間で用いることができる応答方式などを適用
することができる。
【0282】
又は、
図19(A)に示すように、
図17(A)および
図17(B)に示す蓄電池91
3に表示装置920を設けてもよい。表示装置920は、端子919を介して端子911
に電気的に接続される。なお、表示装置920が設けられる部分にラベル910を設けな
くてもよい。なお、
図17(A)および
図17(B)に示す蓄電システムと同じ部分につ
いては、
図17(A)および
図17(B)に示す蓄電システムの説明を適宜援用できる。
【0283】
表示装置920には、例えば充電中であるか否かを示す画像、蓄電量を示す画像などを
表示してもよい。表示装置920としては、例えば電子ペーパー、液晶表示装置、エレク
トロルミネセンス(ELともいう)表示装置などを用いることができる。例えば、電子ペ
ーパーを用いることにより表示装置920の消費電力を低減することができる。
【0284】
又は、
図19(B)に示すように、
図17(A)および
図17(B)に示す蓄電池91
3にセンサ921を設けてもよい。センサ921は、端子922を介して端子911に電
気的に接続される。なお、
図17(A)および
図17(B)に示す蓄電システムと同じ部
分については、
図17(A)および
図17(B)に示す蓄電システムの説明を適宜援用で
きる。
【0285】
センサ921としては、例えば、力、変位、位置、速度、加速度、角速度、回転数、距
離、光、液、磁気、温度、化学物質、音声、時間、硬度、電場、電流、電圧、電力、放射
線、流量、湿度、傾度、振動、におい又は赤外線を測定する機能を含むものを用いること
ができる。センサ921を設けることにより、例えば、蓄電システムが置かれている環境
を示すデータ(温度など)を検出し、回路912内のメモリに記憶しておくこともできる
。
【0286】
本実施の形態で示す蓄電池や蓄電システムには、本発明の一態様に係る電極が用いられ
ている。そのため、蓄電池や蓄電システムの容量の大きくすることができる。また、エネ
ルギー密度を高めることができる。また、信頼性を高めることができる。また、寿命を長
くすることができる。
【0287】
本実施の形態は、他の実施の形態と適宜組み合わせて実施することが可能である。
【0288】
(実施の形態3)
本実施の形態では、可撓性を有する蓄電池を電子機器に実装する例について説明する。
【0289】
実施の形態2に示す可撓性を有する蓄電池を電子機器に実装する例を
図20に示す。フ
レキシブルな形状を備える蓄電装置を適用した電子機器として、例えば、テレビジョン装
置(テレビ、又はテレビジョン受信機ともいう)、コンピュータ用などのモニタ、デジタ
ルカメラ、デジタルビデオカメラ、デジタルフォトフレーム、携帯電話機(携帯電話、携
帯電話装置ともいう)、携帯型ゲーム機、携帯情報端末、音響再生装置、パチンコ機など
の大型ゲーム機などが挙げられる。
【0290】
また、フレキシブルな形状を備える蓄電装置を、家屋やビルの内壁または外壁や、自動
車の内装または外装の曲面に沿って組み込むことも可能である。
【0291】
図20(A)は、携帯電話機の一例を示している。携帯電話機7400は、筐体740
1に組み込まれた表示部7402の他、操作ボタン7403、外部接続ポート7404、
スピーカ7405、マイク7406などを備えている。なお、携帯電話機7400は、蓄
電装置7407を有している。
【0292】
図20(B)は、携帯電話機7400を湾曲させた状態を示している。携帯電話機74
00を外部の力により変形させて全体を湾曲させると、その内部に設けられている蓄電装
置7407も湾曲される。また、その時、曲げられた蓄電装置7407の状態を
図20(
C)に示す。蓄電装置7407は薄型の蓄電池である。蓄電装置7407は曲げられた状
態で固定されている。なお、蓄電装置7407は集電体7409と電気的に接続されたリ
ード電極7408を有している。
【0293】
図20(D)は、バングル型の表示装置の一例を示している。携帯表示装置7100は
、筐体7101、表示部7102、操作ボタン7103、及び蓄電装置7104を備える
。また、
図20(E)に曲げられた蓄電装置7104の状態を示す。蓄電装置7104は
曲げられた状態で使用者の腕への装着時に、筐体が変形して蓄電装置7104の一部また
は全部の曲率が変化する。なお、曲線の任意の点における曲がり具合を相当する円の半径
の値で表したものを曲率半径であり、曲率半径の逆数を曲率と呼ぶ。具体的には、曲率半
径が40mm以上150mm以下の範囲内で筐体または蓄電装置7104の主表面の一部
または全部が変化する。蓄電装置7104の主表面における曲率半径が40mm以上15
0mm以下の範囲であれば、高い信頼性を維持できる。
【0294】
図20(F)は、腕時計型の携帯情報端末の一例を示している。携帯情報端末7200
は、筐体7201、表示部7202、バンド7203、バックル7204、操作ボタン7
205、入出力端子7206などを備える。
【0295】
携帯情報端末7200は、移動電話、電子メール、文章閲覧及び作成、音楽再生、イン
ターネット通信、コンピュータゲームなどの種々のアプリケーションを実行することがで
きる。
【0296】
表示部7202はその表示面が湾曲して設けられ、湾曲した表示面に沿って表示を行う
ことができる。また、表示部7202はタッチセンサを備え、指やスタイラスなどで画面
に触れることで操作することができる。例えば、表示部7202に表示されたアイコン7
207に触れることで、アプリケーションを起動することができる。
【0297】
操作ボタン7205は、時刻設定のほか、電源のオン、オフ動作、無線通信のオン、オ
フ動作、マナーモードの実行及び解除、省電力モードの実行及び解除など、様々な機能を
持たせることができる。例えば、携帯情報端末7200に組み込まれたオペレーティング
システムにより、操作ボタン7205の機能を自由に設定することもできる。
【0298】
また、携帯情報端末7200は、通信規格された近距離無線通信を実行することが可能
である。例えば無線通信可能なヘッドセットと相互通信することによって、ハンズフリー
で通話することもできる。
【0299】
また、携帯情報端末7200は入出力端子7206を備え、他の情報端末とコネクター
を介して直接データのやりとりを行うことができる。また入出力端子7206を介して充
電を行うこともできる。なお、充電動作は入出力端子7206を介さずに無線給電により
行ってもよい。
【0300】
携帯情報端末7200の表示部7202には、本発明の一態様の電極部材を備える蓄電
装置を有している。例えば、
図20(E)に示した蓄電装置7104を、筐体7201の
内部に湾曲した状態で、またはバンド7203の内部に湾曲可能な状態で組み込むことが
できる。
【0301】
図20(G)は、腕章型の表示装置の一例を示している。表示装置7300は、表示部
7304を有し、本発明の一態様の蓄電装置を有している。また、表示装置7300は、
表示部7304にタッチセンサを備えることもでき、また、携帯情報端末として機能させ
ることもできる。
【0302】
表示部7304はその表示面が湾曲しており、湾曲した表示面に沿って表示を行うこと
ができる。また、表示装置7300は、通信規格された近距離無線通信などにより、表示
状況を変更することができる。
【0303】
また、表示装置7300は入出力端子を備え、他の情報端末とコネクターを介して直接
データのやりとりを行うことができる。また入出力端子を介して充電を行うこともできる
。なお、充電動作は入出力端子を介さずに無線給電により行ってもよい。
【0304】
本実施の形態は、他の実施の形態と適宜組み合わせて実施することが可能である。
【0305】
(実施の形態4)
本実施の形態では、蓄電装置を搭載することのできる電子機器の一例を示す。
【0306】
図21(A)および
図21(B)に、2つ折り可能なタブレット型端末の一例を示す。
図21(A)および
図21(B)に示すタブレット型端末9600は、筐体9630a、
筐体9630b、筐体9630aと筐体9630bを接続する可動部9640、表示部9
631aと表示部9631bを有する表示部9631、表示モード切り替えスイッチ96
26、電源スイッチ9627、省電力モード切り替えスイッチ9625、留め具9629
、操作スイッチ9628、を有する。
図21(A)は、タブレット型端末9600を開い
た状態を示し、
図21(B)は、タブレット型端末9600を閉じた状態を示している。
【0307】
また、タブレット型端末9600は、筐体9630aおよび筐体9630bの内部に蓄
電体9635を有する。蓄電体9635は、可動部9640を通り、筐体9630aと筐
体9630bに渡って設けられている。
【0308】
表示部9631aは、一部をタッチパネルの領域9632aとすることができ、表示さ
れた操作キー9638にふれることでデータ入力をすることができる。なお、表示部96
31aにおいては、一例として半分の領域が表示のみの機能を有する構成、もう半分の領
域がタッチパネルの機能を有する構成を示しているが該構成に限定されない。表示部96
31aの全ての領域がタッチパネルの機能を有する構成としても良い。例えば、表示部9
631aの全面をキーボードボタン表示させてタッチパネルとし、表示部9631bを表
示画面として用いることができる。
【0309】
また、表示部9631bにおいても表示部9631aと同様に、表示部9631bの一
部をタッチパネルの領域9632bとすることができる。また、タッチパネルのキーボー
ド表示切り替えボタン9639が表示されている位置に指やスタイラスなどでふれること
で表示部9631bにキーボードボタン表示することができる。
【0310】
また、タッチパネルの領域9632aとタッチパネルの領域9632bに対して同時に
タッチ入力することもできる。
【0311】
また、表示モード切り替えスイッチ9626は、縦表示又は横表示などの表示の向きを
切り替え、白黒表示やカラー表示の切り替えなどを選択できる。省電力モード切り替えス
イッチ9625は、タブレット型端末9600に内蔵している光センサで検出される使用
時の外光の光量に応じて表示の輝度を最適なものとすることができる。タブレット型端末
は光センサだけでなく、ジャイロ、加速度センサ等の傾きを検出するセンサなどの他の検
出装置を内蔵させてもよい。
【0312】
また、
図21(A)では表示部9631bと表示部9631aの表示面積が同じ例を示
しているが特に限定されず、一方のサイズともう一方のサイズが異なっていてもよく、表
示の品質も異なっていてもよい。例えば一方が他方よりも高精細な表示を行える表示パネ
ルとしてもよい。
【0313】
図21(B)は、閉じた状態であり、タブレット型端末は、筐体9630、太陽電池9
633、DCDCコンバータ9636を含む充放電制御回路9634を有する。また、蓄
電体9635として、本発明の一態様に係る蓄電体を用いる。
【0314】
なお、タブレット型端末9600は2つ折り可能なため、未使用時に筐体9630aお
よび筐体9630bを重ね合せるように折りたたむことができる。折りたたむことにより
、表示部9631a、表示部9631bを保護できるため、タブレット型端末9600の
耐久性を高めることができる。また、本発明の一態様の蓄電体を用いた蓄電体9635は
可撓性を有し、曲げ伸ばしを繰り返しても充放電容量が低下しにくい。よって、信頼性の
優れたタブレット型端末を提供できる。
【0315】
また、この他にも
図21(A)および
図21(B)に示したタブレット型端末は、様々
な情報(静止画、動画、テキスト画像など)を表示する機能、カレンダー、日付又は時刻
などを表示部に表示する機能、表示部に表示した情報をタッチ入力操作又は編集するタッ
チ入力機能、様々なソフトウェア(プログラム)によって処理を制御する機能、等を有す
ることができる。
【0316】
タブレット型端末の表面に装着された太陽電池9633によって、電力をタッチパネル
、表示部、又は映像信号処理部等に供給することができる。なお、太陽電池9633は、
筐体9630の片面又は両面に設けることができ、蓄電体9635の充電を効率的に行う
構成とすることができる。なお蓄電体9635としては、リチウムイオン電池を用いると
、小型化を図れる等の利点がある。
【0317】
また、
図21(B)に示す充放電制御回路9634の構成、および動作について
図21
(C)にブロック図を示し説明する。
図21(C)には、太陽電池9633、蓄電体96
35、DCDCコンバータ9636、コンバータ9637、スイッチSW1乃至SW3、
表示部9631について示しており、蓄電体9635、DCDCコンバータ9636、コ
ンバータ9637、スイッチSW1乃至SW3が、
図21(B)に示す充放電制御回路9
634に対応する箇所となる。
【0318】
まず外光により太陽電池9633により発電がされる場合の動作の例について説明する
。太陽電池で発電した電力は、蓄電体9635を充電するための電圧となるようDCDC
コンバータ9636で昇圧又は降圧がなされる。そして、表示部9631の動作に太陽電
池9633からの電力が用いられる際にはスイッチSW1をオンにし、コンバータ963
7で表示部9631に必要な電圧に昇圧又は降圧をすることとなる。また、表示部963
1での表示を行わない際には、SW1をオフにし、SW2をオンにして蓄電体9635の
充電を行う構成とすればよい。
【0319】
なお太陽電池9633については、発電手段の一例として示したが、特に限定されず、
圧電素子(ピエゾ素子)や熱電変換素子(ペルティエ素子)などの他の発電手段による蓄
電体9635の充電を行う構成であってもよい。例えば、無線(非接触)で電力を送受信
して充電する無接点電力伝送モジュールや、また他の充電手段を組み合わせて行う構成と
してもよい。
【0320】
図22に、他の電子機器の例を示す。
図22において、表示装置8000は、本発明の
一態様に係る蓄電装置8004を用いた電子機器の一例である。具体的に、表示装置80
00は、TV放送受信用の表示装置に相当し、筐体8001、表示部8002、スピーカ
部8003、蓄電装置8004等を有する。本発明の一態様に係る蓄電装置8004は、
筐体8001の内部に設けられている。表示装置8000は、商用電源から電力の供給を
受けることもできるし、蓄電装置8004に蓄積された電力を用いることもできる。よっ
て、停電などにより商用電源から電力の供給が受けられない時でも、本発明の一態様に係
る蓄電装置8004を無停電電源として用いることで、表示装置8000の利用が可能と
なる。
【0321】
表示部8002には、液晶表示装置、有機EL素子などの発光素子を各画素に備えた発
光装置、電気泳動表示装置、DMD(Digital Micromirror Dev
ice)、PDP(Plasma Display Panel)、FED(Field
Emission Display)などの、半導体表示装置を用いることができる。
【0322】
なお、表示装置には、TV放送受信用の他、パーソナルコンピュータ用、広告表示用な
ど、全ての情報表示用表示装置が含まれる。
【0323】
図22において、据え付け型の照明装置8100は、本発明の一態様に係る蓄電装置8
103を用いた電子機器の一例である。具体的に、照明装置8100は、筐体8101、
光源8102、蓄電装置8103等を有する。
図22では、蓄電装置8103が、筐体8
101及び光源8102が据え付けられた天井8104の内部に設けられている場合を例
示しているが、蓄電装置8103は、筐体8101の内部に設けられていても良い。照明
装置8100は、商用電源から電力の供給を受けることもできるし、蓄電装置8103に
蓄積された電力を用いることもできる。よって、停電などにより商用電源から電力の供給
が受けられない時でも、本発明の一態様に係る蓄電装置8103を無停電電源として用い
ることで、照明装置8100の利用が可能となる。
【0324】
なお、
図22では天井8104に設けられた据え付け型の照明装置8100を例示して
いるが、本発明の一態様に係る蓄電装置は、天井8104以外、例えば側壁8105、床
8106、窓8107等に設けられた据え付け型の照明装置に用いることもできるし、卓
上型の照明装置などに用いることもできる。
【0325】
また、光源8102には、電力を利用して人工的に光を得る人工光源を用いることがで
きる。具体的には、白熱電球、蛍光灯などの放電ランプ、LEDや有機EL素子などの発
光素子が、上記人工光源の一例として挙げられる。
【0326】
図22において、室内機8200及び室外機8204を有するエアコンディショナーは
、本発明の一態様に係る蓄電装置8203を用いた電子機器の一例である。具体的に、室
内機8200は、筐体8201、送風口8202、蓄電装置8203等を有する。
図22
では、蓄電装置8203が、室内機8200に設けられている場合を例示しているが、蓄
電装置8203は室外機8204に設けられていても良い。或いは、室内機8200と室
外機8204の両方に、蓄電装置8203が設けられていても良い。エアコンディショナ
ーは、商用電源から電力の供給を受けることもできるし、蓄電装置8203に蓄積された
電力を用いることもできる。特に、室内機8200と室外機8204の両方に蓄電装置8
203が設けられている場合、停電などにより商用電源から電力の供給が受けられない時
でも、本発明の一態様に係る蓄電装置8203を無停電電源として用いることで、エアコ
ンディショナーの利用が可能となる。
【0327】
なお、
図22では、室内機と室外機で構成されるセパレート型のエアコンディショナー
を例示しているが、室内機の機能と室外機の機能とを1つの筐体に有する一体型のエアコ
ンディショナーに、本発明の一態様に係る蓄電装置を用いることもできる。
【0328】
図22において、電気冷凍冷蔵庫8300は、本発明の一態様に係る蓄電装置8304
を用いた電子機器の一例である。具体的に、電気冷凍冷蔵庫8300は、筐体8301、
冷蔵室用扉8302、冷凍室用扉8303、蓄電装置8304等を有する。
図22では、
蓄電装置8304が、筐体8301の内部に設けられている。電気冷凍冷蔵庫8300は
、商用電源から電力の供給を受けることもできるし、蓄電装置8304に蓄積された電力
を用いることもできる。よって、停電などにより商用電源から電力の供給が受けられない
時でも、本発明の一態様に係る蓄電装置8304を無停電電源として用いることで、電気
冷凍冷蔵庫8300の利用が可能となる。
【0329】
なお、上述した電子機器のうち、電子レンジ等の高周波加熱装置、電気炊飯器などの電
子機器は、短時間で高い電力を必要とする。よって、商用電源では賄いきれない電力を補
助するための補助電源として、本発明の一態様に係る蓄電装置を用いることで、電子機器
の使用時に商用電源のブレーカーが落ちるのを防ぐことができる。
【0330】
また、電子機器が使用されない時間帯、特に、商用電源の供給元が供給可能な総電力量
のうち、実際に使用される電力量の割合(電力使用率と呼ぶ)が低い時間帯において、蓄
電装置に電力を蓄えておくことで、上記時間帯以外において電力使用率が高まるのを抑え
ることができる。例えば、電気冷凍冷蔵庫8300の場合、気温が低く、冷蔵室用扉83
02、冷凍室用扉8303の開閉が行われない夜間において、蓄電装置8304に電力を
蓄える。そして、気温が高くなり、冷蔵室用扉8302、冷凍室用扉8303の開閉が行
われる昼間において、蓄電装置8304を補助電源として用いることで、昼間の電力使用
率を低く抑えることができる。
【0331】
本実施の形態は、他の実施の形態と適宜組み合わせて実施することが可能である。
【0332】
(実施の形態5)
本実施の形態では、車両に蓄電装置を搭載する例を示す。
【0333】
また、蓄電装置を車両に搭載すると、ハイブリッド車(HEV)、電気自動車(EV)
、又はプラグインハイブリッド車(PHEV)等の次世代クリーンエネルギー自動車を実
現できる。
【0334】
図23において、本発明の一態様を用いた車両を例示する。
図23(A)に示す自動車
8400は、走行のための動力源として電気モーターを用いる電気自動車である。または
、走行のための動力源として電気モーターとエンジンを適宜選択して用いることが可能な
ハイブリッド自動車である。本発明の一態様を用いることで、航続距離の長い車両を実現
することができる。また、自動車8400は蓄電装置を有する。蓄電装置は電気モーター
8406を駆動するだけでなく、ヘッドライト8401やルームライト(図示せず)など
の発光装置に電力を供給することができる。
【0335】
また、蓄電装置は、自動車8400が有するスピードメーター、タコメーターなどの表
示装置に電力を供給することができる。また、蓄電装置は、自動車8400が有するナビ
ゲーションシステムなどの半導体装置に電力を供給することができる。
【0336】
図23(B)に示す自動車8500は、自動車8500が有する蓄電装置にプラグイン
方式や非接触給電方式等により外部の充電設備から電力供給を受けて、充電することがで
きる。
図23(B)に、地上設置型の充電装置8021から自動車8500に搭載された
蓄電装置8024に、ケーブル8022を介して充電を行っている状態を示す。充電に際
しては、充電方法やコネクターの規格等はCHAdeMO(登録商標)やコンボ等の所定
の方式で適宜行えばよい。充電装置8021は、商用施設に設けられた充電ステーション
でもよく、また家庭の電源であってもよい。例えば、プラグイン技術によって、外部から
の電力供給により自動車8500に搭載された蓄電装置8024を充電することができる
。充電は、ACDCコンバータ等の変換装置を介して、交流電力を直流電力に変換して行
うことができる。
【0337】
また、図示しないが、受電装置を車両に搭載し、地上の送電装置から電力を非接触で供
給して充電することもできる。この非接触給電方式の場合には、道路や外壁に送電装置を
組み込むことで、停車中に限らず走行中に充電を行うこともできる。また、この非接触給
電の方式を利用して、車両どうしで電力の送受信を行ってもよい。さらに、車両の外装部
に太陽電池を設け、停車時や走行時に蓄電装置の充電を行ってもよい。このような非接触
での電力の供給には、電磁誘導方式や磁界共鳴方式を用いることができる。
【0338】
本発明の一態様によれば、蓄電装置のサイクル特性が良好となり、信頼性を向上させる
ことができる。また、本発明の一態様によれば、蓄電装置の特性を向上することができ、
よって、蓄電装置自体を小型軽量化することができる。蓄電装置自体を小型軽量化できれ
ば、車両の軽量化に寄与するため、航続距離を向上させることができる。また、車両に搭
載した蓄電装置を車両以外の電力供給源として用いることもできる。この場合、電力需要
のピーク時に商用電源を用いることを回避することができる。
【0339】
本実施の形態は、他の実施の形態と適宜組み合わせて実施することが可能である。
【0340】
(実施の形態6)
上記実施の形態で説明した材料を含む電池セルと組み合わせて用いることができる電池
制御ユニット(Battery Management Unit:BMU)、及び該電
池制御ユニットを構成する回路に適したトランジスタについて、
図24乃至
図30を参照
して説明する。本実施の形態では、特に直列に接続された電池セルを有する蓄電装置の電
池制御ユニットについて説明する。
【0341】
直列に接続された複数の電池セルに対して充放電を繰り返していくと、各電池セル間に
おいて、充放電特性にばらつきが生じて、各電池セルの容量(出力電圧)が異なってくる
。直列に接続された複数の電池セルでは、全体の放電時の容量が、容量の小さい電池セル
に依存する。各電池セルの容量にばらつきがあると放電時の全体の容量が小さくなる。ま
た、容量が小さい電池セルを基準にして充電を行うと、充電不足となる虞がある。また、
容量の大きい電池セルを基準にして充電を行うと、過充電となる虞がある。
【0342】
そのため、直列に接続された電池セルを有する蓄電装置の電池制御ユニットは、充電不
足や、過充電の原因となる、電池セル間の容量のばらつきを揃える機能を有する。電池セ
ル間の容量のばらつきを揃える回路構成には、抵抗方式、キャパシタ方式、あるいはイン
ダクタ方式等あるが、ここではオフ電流の小さいトランジスタを利用して容量のばらつき
を揃えることのできる回路構成を一例として挙げて説明する。
【0343】
オフ電流の小さいトランジスタとしては、チャネル形成領域に酸化物半導体を有するト
ランジスタ(OSトランジスタ)が好ましい。オフ電流の小さいOSトランジスタを蓄電
装置の電池制御ユニットの回路構成に用いることで、電池から漏洩する電荷量を減らし、
時間の経過による容量の低下を抑制することができる。
【0344】
チャネル形成領域に用いる酸化物半導体は、In-M-Zn酸化物(Mは、Ga、Sn
、Y、Zr、La、Ce、またはNd)を用いる。酸化物半導体膜を成膜するために用い
るターゲットにおいて、金属元素の原子数比をIn:M:Zn=x1:y1:z1とする
と、x1/y1は、1/3以上6以下、さらには1以上6以下であって、z1/y1は、
1/3以上6以下、さらには1以上6以下であることが好ましい。なお、z1/y1を1
以上6以下とすることで、酸化物半導体膜としてCAAC-OS膜が形成されやすくなる
。
【0345】
ここで、CAAC-OS膜について説明する。
【0346】
CAAC-OS膜は、c軸配向した複数の結晶部を有する酸化物半導体膜の一つである
。
【0347】
透過型電子顕微鏡(TEM:Transmission Electron Micr
oscope)によって、CAAC-OS膜の明視野像および回折パターンの複合解析像
(高分解能TEM像ともいう。)を観察することで複数の結晶部を確認することができる
。一方、高分解能TEM像によっても明確な結晶部同士の境界、即ち結晶粒界(グレイン
バウンダリーともいう。)を確認することができない。そのため、CAAC-OS膜は、
結晶粒界に起因する電子移動度の低下が起こりにくいといえる。
【0348】
試料面と略平行な方向から、CAAC-OS膜の断面の高分解能TEM像を観察すると
、結晶部において、金属原子が層状に配列していることを確認できる。金属原子の各層は
、CAAC-OS膜の膜を形成する面(被形成面ともいう。)または上面の凹凸を反映し
た形状であり、CAAC-OS膜の被形成面または上面と平行に配列する。
【0349】
一方、試料面と略垂直な方向から、CAAC-OS膜の平面の高分解能TEM像を観察
すると、結晶部において、金属原子が三角形状または六角形状に配列していることを確認
できる。しかしながら、異なる結晶部間で、金属原子の配列に規則性は見られない。
【0350】
CAAC-OS膜に対し、X線回折(XRD:X-Ray Diffraction)
装置を用いて構造解析を行うと、例えばInGaZnO4の結晶を有するCAAC-OS
膜のout-of-plane法による解析では、回折角(2θ)が31°近傍にピーク
が現れる場合がある。このピークは、InGaZnO4の結晶の(009)面に帰属され
ることから、CAAC-OS膜の結晶がc軸配向性を有し、c軸が被形成面または上面に
略垂直な方向を向いていることが確認できる。
【0351】
なお、InGaZnO4の結晶を有するCAAC-OS膜のout-of-plane
法による解析では、2θが31°近傍のピークの他に、2θが36°近傍にもピークが現
れる場合がある。2θが36°近傍のピークは、CAAC-OS膜中の一部に、c軸配向
性を有さない結晶が含まれることを示している。CAAC-OS膜は、2θが31°近傍
にピークを示し、2θが36°近傍にピークを示さないことが好ましい。
【0352】
CAAC-OS膜は、不純物濃度の低い酸化物半導体膜である。不純物は、水素、炭素
、シリコン、遷移金属元素などの酸化物半導体膜の主成分以外の元素である。特に、シリ
コンなどの、酸化物半導体膜を構成する金属元素よりも酸素との結合力の強い元素は、酸
化物半導体膜から酸素を奪うことで酸化物半導体膜の原子配列を乱し、結晶性を低下させ
る要因となる。また、鉄やニッケルなどの重金属、アルゴン、二酸化炭素などは、原子半
径(または分子半径)が大きいため、酸化物半導体膜内部に含まれると、酸化物半導体膜
の原子配列を乱し、結晶性を低下させる要因となる。なお、酸化物半導体膜に含まれる不
純物は、キャリアトラップやキャリア発生源となる場合がある。
【0353】
また、CAAC-OS膜は、欠陥準位密度の低い酸化物半導体膜である。例えば、酸化
物半導体膜中の酸素欠損は、キャリアトラップとなることや、水素を捕獲することによっ
てキャリア発生源となることがある。
【0354】
不純物濃度が低く、欠陥準位密度が低い(酸素欠損の少ない)ことを、高純度真性また
は実質的に高純度真性と呼ぶ。高純度真性または実質的に高純度真性である酸化物半導体
膜は、キャリア発生源が少ないため、キャリア密度を低くすることができる。したがって
、当該酸化物半導体膜を用いたトランジスタは、しきい値電圧がマイナスとなる電気特性
(ノーマリーオンともいう。)になることが少ない。また、高純度真性または実質的に高
純度真性である酸化物半導体膜は、キャリアトラップが少ない。そのため、当該酸化物半
導体膜を用いたトランジスタは、電気特性の変動が小さく、信頼性の高いトランジスタと
なる。なお、酸化物半導体膜のキャリアトラップに捕獲された電荷は、放出するまでに要
する時間が長く、あたかも固定電荷のように振る舞うことがある。そのため、不純物濃度
が高く、欠陥準位密度が高い酸化物半導体膜を用いたトランジスタは、電気特性が不安定
となる場合がある。
【0355】
また、CAAC-OS膜を用いたトランジスタは、可視光や紫外光の照射による電気特
性の変動が小さい。
【0356】
なお、OSトランジスタは、チャネル形成領域にシリコンを有するトランジスタ(Si
トランジスタ)に比べてバンドギャップが大きいため、高電圧を印加した際の絶縁破壊が
生じにくい。直列に電池セルを接続する場合、数100Vの電圧が生じることになるが、
蓄電装置においてこのような電池セルに適用される電池制御ユニットの回路構成には、前
述のOSトランジスタで構成することが適している。
【0357】
図24には、蓄電装置のブロック図の一例を示す。
図24に示す蓄電装置BT00は、
端子対BT01と、端子対BT02と、切り替え制御回路BT03と、切り替え回路BT
04と、切り替え回路BT05と、変圧制御回路BT06と、変圧回路BT07と、直列
に接続された複数の電池セルBT09を含む電池部BT08と、を有する。
【0358】
また、
図24の蓄電装置BT00において、端子対BT01と、端子対BT02と、切
り替え制御回路BT03と、切り替え回路BT04と、切り替え回路BT05と、変圧制
御回路BT06と、変圧回路BT07とにより構成される部分を、電池制御ユニットと呼
ぶことができる。
【0359】
切り替え制御回路BT03は、切り替え回路BT04及び切り替え回路BT05の動作
を制御する。具体的には、切り替え制御回路BT03は、電池セルBT09毎に測定され
た電圧に基づいて、放電する電池セル(放電電池セル群)、及び充電する電池セル(充電
電池セル群)を決定する。
【0360】
さらに、切り替え制御回路BT03は、当該決定された放電電池セル群及び充電電池セ
ル群に基づいて、制御信号S1及び制御信号S2を出力する。制御信号S1は、切り替え
回路BT04へ出力される。この制御信号S1は、端子対BT01と放電電池セル群とを
接続させるように切り替え回路BT04を制御する信号である。また、制御信号S2は、
切り替え回路BT05へ出力される。この制御信号S2は、端子対BT02と充電電池セ
ル群とを接続させるように切り替え回路BT05を制御する信号である。
【0361】
また、切り替え制御回路BT03は、切り替え回路BT04、切り替え回路BT05、
及び変圧回路BT07の構成を踏まえ、端子対BT01と放電電池セル群との間、または
端子対BT02と充電電池セル群との間で、同じ極性の端子同士が接続されるように、制
御信号S1及び制御信号S2を生成する。
【0362】
切り替え制御回路BT03の動作の詳細について述べる。
【0363】
まず、切り替え制御回路BT03は、複数の電池セルBT09毎の電圧を測定する。そ
して、切り替え制御回路BT03は、例えば、所定の閾値以上の電圧の電池セルBT09
を高電圧の電池セル(高電圧セル)、所定の閾値未満の電圧の電池セルBT09を低電圧
の電池セル(低電圧セル)と判断する。
【0364】
なお、高電圧セル及び低電圧セルを判断する方法については、様々な方法を用いること
ができる。例えば、切り替え制御回路BT03は、複数の電池セルBT09の中で、最も
電圧の高い、又は最も電圧の低い電池セルBT09の電圧を基準として、各電池セルBT
09が高電圧セルか低電圧セルかを判断してもよい。この場合、切り替え制御回路BT0
3は、各電池セルBT09の電圧が基準となる電圧に対して所定の割合以上か否かを判定
する等して、各電池セルBT09が高電圧セルか低電圧セルかを判断することができる。
そして、切り替え制御回路BT03は、この判断結果に基づいて、放電電池セル群と充電
電池セル群とを決定する。
【0365】
なお、複数の電池セルBT09の中には、高電圧セルと低電圧セルが様々な状態で混在
し得る。例えば、切り替え制御回路BT03は、高電圧セルと低電圧セルが混在する中で
、高電圧セルが最も多く連続して直列に接続された部分を放電電池セル群とする。また、
切り替え制御回路BT03は、低電圧セルが最も多く連続して直列に接続された部分を充
電電池セル群とする。また、切り替え制御回路BT03は、過充電又は過放電に近い電池
セルBT09を、放電電池セル群又は充電電池セル群として優先的に選択するようにして
もよい。
【0366】
ここで、本実施形態における切り替え制御回路BT03の動作例を、
図25を用いて説
明する。
図25は、切り替え制御回路BT03の動作例を説明するための図である。なお
、説明の便宜上、
図25では4個の電池セルBT09が直列に接続されている場合を例に
説明する。
【0367】
まず、
図25(A)の例では、電池セルa乃至dの電圧を電圧Va乃至電圧Vdとする
と、Va=Vb=Vc>Vdの関係にある場合を示している。つまり、連続する3つの高
電圧セルa乃至cと、1つの低電圧セルdとが直列に接続されている。この場合、切り替
え制御回路BT03は、連続する3つの高電圧セルa乃至cを放電電池セル群として決定
する。また、切り替え制御回路BT03は、低電圧セルdを充電電池セル群として決定す
る。
【0368】
次に、
図25(B)の例では、Vc>Va=Vb>>Vdの関係にある場合を示してい
る。つまり、連続する2つの低電圧セルa、bと、1つの高電圧セルcと、1つの過放電
間近の低電圧セルdとが直列に接続されている。この場合、切り替え制御回路BT03は
、高電圧セルcを放電電池セル群として決定する。また、切り替え制御回路BT03は、
低電圧セルdが過放電間近であるため、連続する2つの低電圧セルa及びbではなく、低
電圧セルdを充電電池セル群として優先的に決定する。
【0369】
最後に、
図25(C)の例では、Va>Vb=Vc=Vdの関係にある場合を示してい
る。つまり、1つの高電圧セルaと、連続する3つの低電圧セルb乃至dとが直列に接続
されている。この場合、切り替え制御回路BT03は、高電圧セルaを放電電池セル群と
決定する。また、切り替え制御回路BT03は、連続する3つの低電圧セルb乃至dを充
電電池セル群として決定する。
【0370】
切り替え制御回路BT03は、上記
図25(A)乃至(C)の例のように決定された結
果に基づいて、切り替え回路BT04の接続先である放電電池セル群を示す情報が設定さ
れた制御信号S1と、切り替え回路BT05の接続先である充電電池セル群を示す情報が
設定された制御信号S2を、切り替え回路BT04及び切り替え回路BT05に対してそ
れぞれ出力する。
【0371】
以上が、切り替え制御回路BT03の動作の詳細に関する説明である。
【0372】
切り替え回路BT04は、切り替え制御回路BT03から出力される制御信号S1に応
じて、端子対BT01の接続先を、切り替え制御回路BT03により決定された放電電池
セル群に設定する。
【0373】
端子対BT01は、対を成す端子A1及びA2により構成される。切り替え回路BT0
4は、この端子A1及びA2のうち、いずれか一方を放電電池セル群の中で最も上流(高
電位側)に位置する電池セルBT09の正極端子と接続し、他方を放電電池セル群の中で
最も下流(低電位側)に位置する電池セルBT09の負極端子と接続することにより、端
子対BT01の接続先を設定する。なお、切り替え回路BT04は、制御信号S1に設定
された情報を用いて放電電池セル群の位置を認識することができる。
【0374】
切り替え回路BT05は、切り替え制御回路BT03から出力される制御信号S2に応
じて、端子対BT02の接続先を、切り替え制御回路BT03により決定された充電電池
セル群に設定する。
【0375】
端子対BT02は、対を成す端子B1及びB2により構成される。切り替え回路BT0
5は、この端子B1及びB2のうち、いずれか一方を充電電池セル群の中で最も上流(高
電位側)に位置する電池セルBT09の正極端子と接続し、他方を充電電池セル群の中で
最も下流(低電位側)に位置する電池セルBT09の負極端子と接続することにより、端
子対BT02の接続先を設定する。なお、切り替え回路BT05は、制御信号S2に設定
された情報を用いて充電電池セル群の位置を認識することができる。
【0376】
切り替え回路BT04及び切り替え回路BT05の構成例を示す回路図を
図26及び図
27に示す。
【0377】
図26では、切り替え回路BT04は、複数のトランジスタBT10と、バスBT11
及びBT12とを有する。バスBT11は、端子A1と接続されている。また、バスBT
12は、端子A2と接続されている。複数のトランジスタBT10のソース又はドレイン
の一方は、それぞれ1つおきに交互に、バスBT11及びBT12と接続されている。ま
た、複数のトランジスタBT10のソース又はドレインの他方は、それぞれ隣接する2つ
の電池セルBT09の間に接続されている。
【0378】
なお、複数のトランジスタBT10のうち、最上流に位置するトランジスタBT10の
ソース又はドレインの他方は、電池部BT08の最上流に位置する電池セルBT09の正
極端子と接続されている。また、複数のトランジスタBT10のうち、最下流に位置する
トランジスタBT10のソース又はドレインの他方は、電池部BT08の最下流に位置す
る電池セルBT09の負極端子と接続されている。
【0379】
切り替え回路BT04は、複数のトランジスタBT10のゲートに与える制御信号S1
に応じて、バスBT11に接続される複数のトランジスタBT10のうちの1つと、バス
BT12に接続される複数のトランジスタBT10のうちの1つとをそれぞれ導通状態に
することにより、放電電池セル群と端子対BT01とを接続する。これにより、放電電池
セル群の中で最も上流に位置する電池セルBT09の正極端子は、端子対の端子A1又は
A2のいずれか一方と接続される。また、放電電池セル群の中で最も下流に位置する電池
セルBT09の負極端子は、端子対の端子A1又はA2のいずれか他方、すなわち正極端
子と接続されていない方の端子に接続される。
【0380】
トランジスタBT10には、OSトランジスタを用いることが好ましい。OSトランジ
スタはオフ電流が小さいため、放電電池セル群に属しない電池セルから漏洩する電荷量を
減らし、時間の経過による容量の低下を抑制することができる。またOSトランジスタは
高電圧を印加した際の絶縁破壊が生じにくい。そのため、放電電池セル群の出力電圧が大
きくても、非導通状態とするトランジスタBT10が接続された電池セルBT09と端子
対BT01とを絶縁状態とすることができる。
【0381】
また、
図26では、切り替え回路BT05は、複数のトランジスタBT13と、電流制
御スイッチBT14と、バスBT15と、バスBT16とを有する。バスBT15及びB
T16は、複数のトランジスタBT13と、電流制御スイッチBT14との間に配置され
る。複数のトランジスタBT13のソース又はドレインの一方は、それぞれ1つおきに交
互に、バスBT15及びBT16と接続されている。また、複数のトランジスタBT13
のソース又はドレインの他方は、それぞれ隣接する2つの電池セルBT09の間に接続さ
れている。
【0382】
なお、複数のトランジスタBT13のうち、最上流に位置するトランジスタBT13の
ソース又はドレインの他方は、電池部BT08の最上流に位置する電池セルBT09の正
極端子と接続されている。また、複数のトランジスタBT13のうち、最下流に位置する
トランジスタBT13のソース又はドレインの他方は、電池部BT08の最下流に位置す
る電池セルBT09の負極端子と接続されている。
【0383】
トランジスタBT13には、トランジスタBT10と同様に、OSトランジスタを用い
ることが好ましい。OSトランジスタはオフ電流が小さいため、充電電池セル群に属しな
い電池セルから漏洩する電荷量を減らし、時間の経過による容量の低下を抑制することが
できる。またOSトランジスタは高電圧を印加した際の絶縁破壊が生じにくい。そのため
、充電電池セル群を充電するための電圧が大きくても、非導通状態とするトランジスタB
T13が接続された電池セルBT09と端子対BT02とを絶縁状態とすることができる
。
【0384】
電流制御スイッチBT14は、スイッチ対BT17とスイッチ対BT18とを有する。
スイッチ対BT17の一端は、端子B1に接続されている。また、スイッチ対BT17の
他端は2つのスイッチで分岐しており、一方のスイッチはバスBT15に接続され、他方
のスイッチはバスBT16に接続されている。スイッチ対BT18の一端は、端子B2に
接続されている。また、スイッチ対BT18の他端は2つのスイッチで分岐しており、一
方のスイッチはバスBT15に接続され、他方のスイッチはバスBT16に接続されてい
る。
【0385】
スイッチ対BT17及びスイッチ対BT18が有するスイッチは、トランジスタBT1
0及びトランジスタBT13と同様に、OSトランジスタを用いることが好ましい。
【0386】
切り替え回路BT05は、制御信号S2に応じて、トランジスタBT13、及び電流制
御スイッチBT14のオン/オフ状態の組み合わせを制御することにより、充電電池セル
群と端子対BT02とを接続する。
【0387】
切り替え回路BT05は、一例として、以下のようにして充電電池セル群と端子対BT
02とを接続する。
【0388】
切り替え回路BT05は、複数のトランジスタBT13のゲートに与える制御信号S2
に応じて、充電電池セル群の中で最も上流に位置する電池セルBT09の正極端子と接続
されているトランジスタBT13を導通状態にする。また、切り替え回路BT05は、複
数のトランジスタBT13のゲートに与える制御信号S2に応じて、充電電池セル群の中
で最も下流に位置する電池セルBT09の負極端子に接続されているトランジスタBT1
3を導通状態にする。
【0389】
端子対BT02に印加される電圧の極性は、端子対BT01と接続される放電電池セル
群、及び変圧回路BT07の構成によって変わり得る。また、充電電池セル群を充電する
方向に電流を流すためには、端子対BT02と充電電池セル群との間で、同じ極性の端子
同士を接続する必要がある。そこで、電流制御スイッチBT14は、制御信号S2により
、端子対BT02に印加される電圧の極性に応じてスイッチ対BT17及びスイッチ対B
T18の接続先をそれぞれ切り替えるように制御される。
【0390】
一例として、端子B1が正極、端子B2が負極となるような電圧が端子対BT02に印
加されている状態を挙げて説明する。この時、電池部BT08の最下流の電池セルBT0
9が充電電池セル群である場合、スイッチ対BT17は、制御信号S2により、当該電池
セルBT09の正極端子と接続されるように制御される。すなわち、スイッチ対BT17
のバスBT16に接続されるスイッチがオン状態となり、スイッチ対BT17のバスBT
15に接続されるスイッチがオフ状態となる。一方、スイッチ対BT18は、制御信号S
2により、当該電池セルBT09の負極端子と接続されるように制御される。すなわち、
スイッチ対BT18のバスBT15に接続されるスイッチがオン状態となり、スイッチ対
BT18のバスBT16に接続されるスイッチがオフ状態となる。このようにして、端子
対BT02と充電電池セル群との間で、同じ極性をもつ端子同士が接続される。そして、
端子対BT02から流れる電流の方向が、充電電池セル群を充電する方向となるように制
御される。
【0391】
また、電流制御スイッチBT14は、切り替え回路BT05ではなく、切り替え回路B
T04に含まれていてもよい。この場合、電流制御スイッチBT14、制御信号S1に応
じて、端子対BT01に印加される電圧の極性を制御することにより、端子対BT02に
印加される電圧の極性を制御する。そして、電流制御スイッチBT14は、端子対BT0
2から充電電池セル群に流れる電流の向きを制御する。
【0392】
図27は、
図26とは異なる、切り替え回路BT04及び切り替え回路BT05の構成
例を示す回路図である。
【0393】
図27では、切り替え回路BT04は、複数のトランジスタ対BT21と、バスBT2
4及びバスBT25とを有する。バスBT24は、端子A1と接続されている。また、バ
スBT25は、端子A2と接続されている。複数のトランジスタ対BT21の一端は、そ
れぞれトランジスタBT22とトランジスタBT23とにより分岐している。トランジス
タBT22のソース又はドレインの一方は、バスBT24と接続されている。また、トラ
ンジスタBT23のソース又はドレインの一方は、バスBT25と接続されている。また
、複数のトランジスタ対BT21の他端は、それぞれ隣接する2つの電池セルBT09の
間に接続されている。なお、複数のトランジスタ対BT21のうち、最上流に位置するト
ランジスタ対BT21の他端は、電池部BT08の最上流に位置する電池セルBT09の
正極端子と接続されている。また、複数のトランジスタ対BT21のうち、最下流に位置
するトランジスタ対BT21の他端は、電池部BT08の最下流に位置する電池セルBT
09の負極端子と接続されている。
【0394】
切り替え回路BT04は、制御信号S1に応じてトランジスタBT22及びトランジス
タBT23の導通/非導通状態を切り換えることにより、当該トランジスタ対BT21の
接続先を、端子A1又は端子A2のいずれか一方に切り替える。詳細には、トランジスタ
BT22が導通状態であれば、トランジスタBT23は非導通状態となり、その接続先は
端子A1になる。一方、トランジスタBT23が導通状態であれば、トランジスタBT2
2は非導通状態となり、その接続先は端子A2になる。トランジスタBT22及びトラン
ジスタBT23のどちらが導通状態になるかは、制御信号S1によって決定される。
【0395】
端子対BT01と放電電池セル群とを接続するには、2つのトランジスタ対BT21が
用いられる。詳細には、制御信号S1に基づいて、2つのトランジスタ対BT21の接続
先がそれぞれ決定されることにより、放電電池セル群と端子対BT01とが接続される。
2つのトランジスタ対BT21のそれぞれの接続先は、一方が端子A1となり、他方が端
子A2となるように、制御信号S1によって制御される。
【0396】
切り替え回路BT05は、複数のトランジスタ対BT31と、バスBT34及びバスB
T35とを有する。バスBT34は、端子B1と接続されている。また、バスBT35は
、端子B2と接続されている。複数のトランジスタ対BT31の一端は、それぞれトラン
ジスタBT32とトランジスタBT33とにより分岐している。トランジスタBT32に
より分岐する一端は、バスBT34と接続されている。また、トランジスタBT33によ
り分岐する一端は、バスBT35と接続されている。また、複数のトランジスタ対BT3
1の他端は、それぞれ隣接する2つの電池セルBT09の間に接続されている。なお、複
数のトランジスタ対BT31のうち、最上流に位置するトランジスタ対BT31の他端は
、電池部BT08の最上流に位置する電池セルBT09の正極端子と接続されている。ま
た、複数のトランジスタ対BT31のうち、最下流に位置するトランジスタ対BT31の
他端は、電池部BT08の最下流に位置する電池セルBT09の負極端子と接続されてい
る。
【0397】
切り替え回路BT05は、制御信号S2に応じてトランジスタBT32及びトランジス
タBT33の導通/非導通状態を切り換えることにより、当該トランジスタ対BT31の
接続先を、端子B1又は端子B2のいずれか一方に切り替える。詳細には、トランジスタ
BT32が導通状態であれば、トランジスタBT33は非導通状態となり、その接続先は
端子B1になる。逆に、トランジスタBT33が導通状態であれば、トランジスタBT3
2は非導通状態となり、その接続先は端子B2になる。トランジスタBT32及びトラン
ジスタBT33のどちらが導通状態となるかは、制御信号S2によって決定される。
【0398】
端子対BT02と充電電池セル群とを接続するには、2つのトランジスタ対BT31が
用いられる。詳細には、制御信号S2に基づいて、2つのトランジスタ対BT31の接続
先がそれぞれ決定されることにより、充電電池セル群と端子対BT02とが接続される。
2つのトランジスタ対BT31のそれぞれの接続先は、一方が端子B1となり、他方が端
子B2となるように、制御信号S2によって制御される。
【0399】
また、2つのトランジスタ対BT31のそれぞれの接続先は、端子対BT02に印加さ
れる電圧の極性によって決定される。具体的には、端子B1が正極、端子B2が負極とな
るような電圧が端子対BT02に印加されている場合、上流側のトランジスタ対BT31
は、トランジスタBT32が導通状態となり、トランジスタBT33が非導通状態となる
ように、制御信号S2によって制御される。一方、下流側のトランジスタ対BT31は、
トランジスタBT33が導通状態、トランジスタBT32が非導通状態となるように、制
御信号S2によって制御される。また、端子B1が負極、端子B2が正極となるような電
圧が端子対BT02に印加されている場合は、上流側のトランジスタ対BT31は、トラ
ンジスタBT33が導通状態となり、トランジスタBT32が非導通状態となるように、
制御信号S2によって制御される。一方、下流側のトランジスタ対BT31は、トランジ
スタBT32が導通状態、トランジスタBT33が非導通状態となるように、制御信号S
2によって制御される。このようにして、端子対BT02と充電電池セル群との間で、同
じ極性をもつ端子同士が接続される。そして、端子対BT02から流れる電流の方向が、
充電電池セル群を充電する方向となるように制御される。
【0400】
変圧制御回路BT06は、変圧回路BT07の動作を制御する。変圧制御回路BT06
は、放電電池セル群に含まれる電池セルBT09の個数と、充電電池セル群に含まれる電
池セルBT09の個数とに基づいて、変圧回路BT07の動作を制御する変圧信号S3を
生成し、変圧回路BT07へ出力する。
【0401】
なお、放電電池セル群に含まれる電池セルBT09の個数が充電電池セル群に含まれる
電池セルBT09の個数よりも多い場合は、充電電池セル群に対して過剰に大きな充電電
圧が印加されることを防止する必要がある。そのため、変圧制御回路BT06は、充電電
池セル群を充電できる範囲で放電電圧(Vdis)を降圧させるように変圧回路BT07
を制御する変圧信号S3を出力する。
【0402】
また、放電電池セル群に含まれる電池セルBT09の個数が、充電電池セル群に含まれ
る電池セルBT09の個数以下である場合は、充電電池セル群を充電するために必要な充
電電圧を確保する必要がある。そのため、変圧制御回路BT06は、充電電池セル群に過
剰な充電電圧が印加されない範囲で放電電圧(Vdis)を昇圧させるように変圧回路B
T07を制御する変圧信号S3を出力する。
【0403】
なお、過剰な充電電圧とする電圧値は、電池部BT08で使用される電池セルBT09
の製品仕様等に鑑みて決定することができる。また、変圧回路BT07により昇圧及び降
圧された電圧は、充電電圧(Vcha)として端子対BT02に印加される。
【0404】
ここで、本実施形態における変圧制御回路BT06の動作例を、
図28(A)乃至(C
)を用いて説明する。
図28(A)乃至(C)は、
図25(A)乃至(C)で説明した放
電電池セル群及び充電電池セル群に対応させた、変圧制御回路BT06の動作例を説明す
るための概念図である。なお
図28(A)乃至(C)は、電池制御ユニットBT41を図
示している。電池制御ユニットBT41は、上述したように、端子対BT01と、端子対
BT02と、切り替え制御回路BT03と、切り替え回路BT04と、切り替え回路BT
05と、変圧制御回路BT06と、変圧回路BT07とにより構成される。
【0405】
図28(A)に示される例では、
図25(A)で説明したように、連続する3つの高電
圧セルa乃至cと、1つの低電圧セルdとが直列に接続されている。この場合、
図25(
A)を用いて説明したように、切り替え制御回路BT03は、高電圧セルa乃至cを放電
電池セル群として決定し、低電圧セルdを充電電池セル群として決定する。そして、変圧
制御回路BT06は、放電電池セル群に含まれる電池セルBT09の個数を基準とした時
の、充電電池セル群に含まれる電池セルBT09の個数の比に基づいて、放電電圧(Vd
is)から充電電圧(Vcha)への変換比Nを算出する。
【0406】
なお放電電池セル群に含まれる電池セルBT09の個数が、充電電池セル群に含まれる
電池セルBT09の個数よりも多い場合に、放電電圧を変圧せずに端子対BT02にその
まま印加すると、充電電池セル群に含まれる電池セルBT09に、端子対BT02を介し
て過剰な電圧が印加される可能性がある。そのため、
図28(A)に示されるような場合
では、端子対BT02に印加される充電電圧(Vcha)を、放電電圧よりも降圧させる
必要がある。さらに、充電電池セル群を充電するためには、充電電圧は、充電電池セル群
に含まれる電池セルBT09の合計電圧より大きい必要がある。そのため、変圧制御回路
BT06は、放電電池セル群に含まれる電池セルBT09の個数を基準とした時の、充電
電池セル群に含まれる電池セルBT09の個数の比よりも、変換比Nを大きく設定する。
【0407】
変圧制御回路BT06は、放電電池セル群に含まれる電池セルBT09の個数を基準と
した時の、充電電池セル群に含まれる電池セルBT09の個数の比に対して、変換比Nを
1乃至10%程度大きくするのが好ましい。この時、充電電圧は充電電池セル群の電圧よ
りも大きくなるが、実際には充電電圧は充電電池セル群の電圧と等しくなる。ただし、変
圧制御回路BT06は変換比Nに従い充電電池セル群の電圧を充電電圧と等しくするため
に、充電電池セル群を充電する電流を流すこととなる。この電流は変圧制御回路BT06
に設定された値となる。
【0408】
図28(A)に示される例では、放電電池セル群に含まれる電池セルBT09の個数が
3個で、充電電池セル群に含まれる電池セルBT09の数が1個であるため、変圧制御回
路BT06は、1/3より少し大きい値を変換比Nとして算出する。そして、変圧制御回
路BT06は、放電電圧を当該変換比Nに応じて降圧し、充電電圧に変換する変圧信号S
3を変圧回路BT07に出力する。そして、変圧回路BT07は、変圧信号S3に応じて
変圧された充電電圧を、端子対BT02に印加する。そして、端子対BT02に印加され
る充電電圧によって、充電電池セル群に含まれる電池セルBT09が充電される。
【0409】
また、
図28(B)や
図28(C)に示される例でも、
図28(A)と同様に、変換比
Nが算出される。
図28(B)や
図28(C)に示される例では、放電電池セル群に含ま
れる電池セルBT09の個数が、充電電池セル群に含まれる電池セルBT09の個数以下
であるため、変換比Nは1以上となる。よって、この場合は、変圧制御回路BT06は、
放電電圧を昇圧して充電電圧に変換する変圧信号S3を出力する。
【0410】
変圧回路BT07は、変圧信号S3に基づいて、端子対BT01に印加される放電電圧
を充電電圧に変換する。そして、変圧回路BT07は、変換された充電電圧を端子対BT
02に印加する。ここで、変圧回路BT07は、端子対BT01と端子対BT02との間
を電気的に絶縁している。これにより、変圧回路BT07は、放電電池セル群の中で最も
下流に位置する電池セルBT09の負極端子の絶対電圧と、充電電池セル群の中で最も下
流に位置する電池セルBT09の負極端子の絶対電圧との差異による短絡を防止する。さ
らに、変圧回路BT07は、上述したように、変圧信号S3に基づいて放電電池セル群の
合計電圧である放電電圧を充電電圧に変換する。
【0411】
また、変圧回路BT07は、例えば絶縁型DC(Direct Current)-D
Cコンバータ等を用いることができる。この場合、変圧制御回路BT06は、絶縁型DC
-DCコンバータのオン/オフ比(デューティー比)を制御する信号を変圧信号S3とし
て出力することにより、変圧回路BT07で変換される充電電圧を制御する。
【0412】
なお、絶縁型DC-DCコンバータには、フライバック方式、フォワード方式、RCC
(Ringing Choke Converter)方式、プッシュプル方式、ハーフ
ブリッジ方式、及びフルブリッジ方式等が存在するが、目的とする出力電圧の大きさに応
じて適切な方式が選択される。
【0413】
絶縁型DC-DCコンバータを用いた変圧回路BT07の構成を
図29に示す。絶縁型
DC-DCコンバータBT51は、スイッチ部BT52とトランス部BT53とを有する
。スイッチ部BT52は、絶縁型DC-DCコンバータの動作のオン/オフを切り替える
スイッチであり、例えば、MOSFET(Metal-Oxide-Semicondu
ctor Field-Effect Transistor)やバイポーラ型トランジ
スタ等を用いて実現される。また、スイッチ部BT52は、変圧制御回路BT06から出
力される、オン/オフ比を制御する変圧信号S3に基づいて、絶縁型DC-DCコンバー
タBT51のオン状態とオフ状態を周期的に切り替える。なお、スイッチ部BT52は、
使用される絶縁型DC-DCコンバータの方式によって様々な構成を取り得る。トランス
部BT53は、端子対BT01から印加される放電電圧を充電電圧に変換する。詳細には
、トランス部BT53は、スイッチ部BT52のオン/オフ状態と連動して動作し、その
オン/オフ比に応じて放電電圧を充電電圧に変換する。この充電電圧は、スイッチ部BT
52のスイッチング周期において、オン状態となる時間が長いほど大きくなる。一方、充
電電圧は、スイッチ部BT52のスイッチング周期において、オン状態となる時間が短い
ほど小さくなる。なお、絶縁型DC-DCコンバータを用いる場合、トランス部BT53
の内部で、端子対BT01と端子対BT02は互いに絶縁することができる。
【0414】
本実施形態における蓄電装置BT00の処理の流れを、
図30を用いて説明する。
図3
0は、蓄電装置BT00の処理の流れを示すフローチャートである。
【0415】
まず、蓄電装置BT00は、複数の電池セルBT09毎に測定された電圧を取得する(
ステップS101)。そして、蓄電装置BT00は、複数の電池セルBT09の電圧を揃
える動作の開始条件を満たすか否かを判定する(ステップS102)。この開始条件は、
例えば、複数の電池セルBT09毎に測定された電圧の最大値と最小値との差分が、所定
の閾値以上か否か等とすることができる。この開始条件を満たさない場合は(ステップS
102:NO)、各電池セルBT09の電圧のバランスが取れている状態であるため、蓄
電装置BT00は、以降の処理を実行しない。一方、開始条件を満たす場合は(ステップ
S102:YES)、蓄電装置BT00は、各電池セルBT09の電圧を揃える処理を実
行する。この処理において、蓄電装置BT00は、測定されたセル毎の電圧に基づいて、
各電池セルBT09が高電圧セルか低電圧セルかを判定する(ステップS103)。そし
て、蓄電装置BT00は、判定結果に基づいて、放電電池セル群及び充電電池セル群を決
定する(ステップS104)。さらに、蓄電装置BT00は、決定された放電電池セル群
を端子対BT01の接続先に設定する制御信号S1、及び決定された充電電池セル群を端
子対BT02の接続先に設定する制御信号S2を生成する(ステップS105)。蓄電装
置BT00は、生成された制御信号S1及び制御信号S2を、切り替え回路BT04及び
切り替え回路BT05へそれぞれ出力する。そして、切り替え回路BT04により、端子
対BT01と放電電池セル群とが接続され、切り替え回路BT05により、端子対BT0
2と放電電池セル群とが接続される(ステップS106)。また、蓄電装置BT00は、
放電電池セル群に含まれる電池セルBT09の個数と、充電電池セル群に含まれる電池セ
ルBT09の個数とに基づいて、変圧信号S3を生成する(ステップS107)。そして
、蓄電装置BT00は、変圧信号S3に基づいて、端子対BT01に印加される放電電圧
を充電電圧に変換し、端子対BT02に印加する(ステップS108)。これにより、放
電電池セル群の電荷が充電電池セル群へ移動される。
【0416】
また、
図30のフローチャートでは、複数のステップが順番に記載されているが、各ス
テップの実行順序は、その記載の順番に制限されない。
【0417】
以上、本実施形態によれば、放電電池セル群から充電電池セル群へ電荷を移動させる際
、キャパシタ方式のように、放電電池セル群からの電荷を一旦蓄積し、その後充電電池セ
ル群へ放出させるような構成を必要としない。これにより、単位時間あたりの電荷移動効
率を向上させることができる。また、切り替え回路BT04及び切り替え回路BT05に
より、放電電池セル群及び充電電池セル群のうち、変圧回路と接続する電池セルを、各々
個別に切り替えられる。
【0418】
さらに、変圧回路BT07により、放電電池セル群に含まれる電池セルBT09の個数
と充電電池セル群に含まれる電池セルBT09の個数とに基づいて、端子対BT01に印
加される放電電圧が充電電圧に変換され、端子対BT02に印加される。これにより、放
電側及び充電側の電池セルBT09がどのように選択されても、問題なく電荷の移動を実
現できる。
【0419】
さらに、トランジスタBT10及びトランジスタBT13にOSトランジスタを用いる
ことにより、充電電池セル群及び放電電池セル群に属しない電池セルBT09から漏洩す
る電荷量を減らすことができる。これにより、充電及び放電に寄与しない電池セルBT0
9の容量の低下を抑制することができる。また、OSトランジスタは、Siトランジスタ
に比べて熱に対する特性の変動が小さい。これにより、電池セルBT09の温度が上昇し
ても、制御信号S1、S2に応じた導通状態と非導通状態の切り替えといった、正常な動
作をさせることができる。
【実施例1】
【0420】
本実施例では、本発明の一態様の「リチウムマンガン複合酸化物を有する粒子」を作製
し、特性の評価を行った。作製の手順を、
図1のフローチャートに基づき説明する。
【0421】
<合成>
まず、リチウムマンガン複合酸化物を有する粒子を作製した。
【0422】
(ステップS11)
はじめに、出発原料として、Li2CO3と、MnCO3、NiOとを用い、出発原料
の割合(モル比)を、Li2CO3:MnCO3:NiO=0.84:0.8062:0
.318となるように秤量した。
【0423】
(ステップS12)
次に、出発原料にエタノールを加えた後、ビーズミルを用いて混合した。混合処理は、
ビーズミルの処理室を周速10m/sで回転させ、混合時間30分にて行うことにより、
混合原料を得た。
【0424】
(ステップS13)
次に、混合原料に加熱処理を行った。加熱処理を、大気雰囲気下において、加熱温度7
5℃にて行うことにより、混合した混合原料に含まれるエタノールを蒸発させて、混合原
料を得た。
【0425】
(ステップS14)
次に、坩堝に混合原料を入れ、焼成を行った。焼成処理は、流量10L/minの乾燥
空気雰囲気下において、焼成温度は1000℃、焼成時間10時間にて行うことにより、
リチウムマンガン複合酸化物を合成した。
【0426】
(ステップS15)
次に、一次粒子が焼結したリチウムマンガン複合酸化物の焼結を解くために解砕処理を
行った。解砕処理は、焼結したリチウムマンガン複合酸化物にエタノールを加えた後、ビ
ーズミルの処理室を周速12m/sで回転させ、4時間処理を行い粉末状のリチウムマン
ガン複合酸化物を得た。
【0427】
(ステップS16)
次に、解砕処理後のリチウムマンガン複合酸化物に加熱処理を行った。加熱処理を、大
気雰囲気下において、加熱温度75℃にて行うことにより、混合した混合原料に含まれる
エタノールを蒸発させた。次に、得られたリチウムマンガン複合酸化物を坩堝に入れ、焼
成を行った。焼成条件は、10L/min.の乾燥空気雰囲気下において、800℃、3
時間とした。焼成後、得られた粉末を試料Aとする。試料Aは組成式Li1.68Mn0
.8062Ni0.318O3で表されるが、この組成からずれることもある。
【0428】
<被覆層>
次に、得られた試料Aに、炭素を含む層を形成した。まず、酸化グラフェン0.1gに
対して、水1gを加えて混練機を用いて混練し、酸化グラフェンの分散溶液を作製した。
混練の回転数は、2000rpm、混練の時間は1回を5分とし、4回繰り返した。1回
目の混練では、水の量を全量の10分の3とし、2回目の混練では、さらに10分の3を
追加し、3回目の混練では、さらに10分の3を追加し、4回目の混練では、さらに10
分の1を追加して混練を行った。
【0429】
(ステップS17)
次に、作製した分散溶液に、試料Aを5g添加して、水1.1gをさらに添加して、固
練りを4回行った。固練りは、混練機を使用し、回転数は、2000rpm、混練の時間
は1回を5分とした。得られた混合物を、ベルジャーを用いて、50℃で減圧乾燥した後
、アルミナ乳鉢で解砕し、酸化グラフェンが被覆されたリチウムマンガン複合酸化物であ
る、試料Bを得た。
【0430】
(ステップS18)
次に、リチウムマンガン複合酸化物の表面に被覆した酸化グラフェンを還元した。還元
剤として、アスコルビン酸を用い、溶媒としてエタノールと水の混合溶液を用いた。混合
溶液において、エタノールの濃度は80体積%であった。酸化グラフェンを被覆したリチ
ウムマンガン複合酸化物の重量に対して、アスコルビン酸16.87wt%と、水酸化リ
チウム3.9wt%を入れて、還元液を作製した。得られた粉末を還元液に入れ、60℃
で3時間処理して還元した。
【0431】
(ステップS19)
次に、得られた溶液を吸引濾過によって濾過を行った。ろ過には、粒子保持能1μmの
ろ紙を用いた。その後、洗浄し、再度、ろ過を行った。
【0432】
次に、ろ過により得られた粉末を、乳鉢で粉砕した。その後、170℃、減圧下で10
時間、乾燥を行った。
【0433】
以上の工程により、表面にグラフェンが形成された粉末のリチウムマンガン複合酸化物
(試料C)を作製した。
【0434】
<電極の作製>
次に、得られた試料Cを用いて電極を作製した。活物質として試料Cを用い、導電助剤
として、アセチレンブラック(AB)を用い、バインダーとしてPVdFを用いた。
【0435】
まず、PVdFと、ABとを極性溶媒であるNMP(N-メチル-2-ピロリドン)と
を混練した。混練の回転数は、2000rpm、混練の時間は5分とした。さらに、活物
質として試料Cを添加して混練した。混練の回転数は、2000rpm、混練の時間は1
回を5分として、5回繰り返した。さらに、NMPを添加して混練した。混練の回転数は
、2000rpm、混練の時間は1回を10分として、2回繰り返した。以上の工程によ
り、スラリー状の電極合剤組成物を得た。電極合剤組成物の配合は、重量比で試料C:A
B:PVdF=90:5:5とした。
【0436】
次に、該電極合剤組成物を集電体であるアルミニウム箔上に塗布した。なお、アルミニ
ウム箔表面には、あらかじめアンダーコートを施した。その後、通風乾燥炉にて、80℃
、30分乾燥させた。
【0437】
次に、ロールプレス機を用いて電極のプレスを行った。電極塗工後の膜厚に対して、膜
厚を20%減少させるようにプレス圧を調整して行った。また、プレス温度を120℃と
した。
【0438】
その後さらに熱処理を行った。熱処理条件として、減圧雰囲気(1kPa)、270℃
において10時間の処理を行った。以上の工程により、本発明の一態様である「リチウム
マンガン複合酸化物を有する粒子」を有する電極Xを得た。
【0439】
<ハーフセル特性>
次に、得られた電極Xを用いてハーフセルを作製した。セルには、コインセルを用いた
。また、ハーフセルの対極にはリチウムを用いた。また、電解液は、電解質としてLiP
F6を用い、非プロトン性有機溶媒であるECとDECを1:1の体積比で混合させた混
合溶液を用いた。また、セパレータとしてはポリプロピレン(PP)を用いた。
【0440】
次に、作製したハーフセルに対して、25℃においてエージングを行った。具体的には
、1回目の充放電として、0.1C(電流密度30mA/g)で150mAh/gの定電
流充電を行った後、0.1C、下限2Vで定電流放電を行い、2回目として0.1Cで1
80mAh/gの定電流充電を行った後、0.1C、下限2Vで定電流放電を行い、3回
目として0.1Cで210mAh/gの定電流充電を行った後、0.1C、下限2Vで定
電流放電を行い、4回目として0.1Cで240mAh/gの定電流充電を行った後、0
.1C、下限2Vで定電流放電を行い、5回目として0.1Cで270mAh/gの定電
流充電を行った後、0.1C、下限2Vで定電流放電を行った。
【0441】
以上のエージングを行った後、25℃において充放電特性の測定を行った。充電は、0
.1C定電流、上限電圧4.8Vで行い、放電は、0.1C定電流、下限電圧2Vで行っ
た。得られた充放電カーブを
図31に示す。本発明の一態様の、リチウムマンガン複合酸
化物を有する粒子を用いることにより、300mAh/gを超える高い放電容量を得るこ
とができた。
【実施例2】
【0442】
本実施例では、本発明の一態様である「リチウムマンガン複合酸化物を有する粒子」を
、走査透過電子顕微鏡法(STEM:Scanning Transmission E
lectron Microscopy)、エネルギー分散型X線分光法(EDX:En
ergy Dispersive X-ray spectroscopy)および極微
電子線回折法により評価した。
【0443】
まず、観察用の試料H-1および電極H-3を作製した。
【0444】
試料H-1については
図1に示すステップS11乃至ステップS17を行った。各ステ
ップの条件については実施例1を参照する。
【0445】
また、電極H-3については
図1に示すステップS11乃至ステップS19を行った後
、得られた試料(ここで得られた試料を試料H-2とする)を用いて電極H-3を作製し
た。電極の作製条件については、実施例1に示す電極Xを参照する。
【0446】
試料H-1および電極H-3について、FIB(Focused Ion Beam
System:集束イオンビーム加工観察装置)を用いて薄片化加工を行った後、走査透
過電子顕微鏡法(STEM:Scanning Transmission Elect
ron Microscopy)を用いて観察を行った。
図32にTEM観察像を示す。
図32(A)は試料H-1の、(B)は電極H-3の観察結果をそれぞれ示す。いずれに
おいても本発明の一態様である、リチウムマンガン複合酸化物を有する粒子141の断面
が観察された。
【0447】
次に、
図32(A)および(B)に示す数字1乃至5の箇所について、EDX評価を行
った。試料H-1に関する評価結果を表1に、電極H-3に関する評価結果を表2に、そ
れぞれ示す。また、表1および表2には各測定箇所の、粒子表面からの距離を示す。また
、
図47乃至
図51には各測定点のスペクトルを示す。試料H-1について、
図47(A
)に測定点1、(B)に測定点2、
図48(A)に測定点3、(B)に測定点4、
図49
(A)に測定点5のスペクトルを示す。電極H-3について、
図49(B)に測定点1、
図50(A)に測定点2、(B)に測定点3、
図51(A)に測定点4、(B)に測定点
5のスペクトルを示す。
【0448】
【0449】
【0450】
ここで、表1および表2においては、マンガン、ニッケルおよび酸素の原子数比の和が
大よそ100%となるように数値を規格化した。
【0451】
次に、EDXより得られたマンガン、ニッケルおよび酸素の原子数比をそれぞれb、c
、およびdとし、各評価点についてd÷(b+c)(=Aとする)の値を算出した。横軸
に粒子表面からの距離、縦軸にAの値をとり、試料H-1および電極H-3についてプロ
ットしたグラフを
図33に示す。
【0452】
まず、表面から10nm未満の領域について説明する。試料H-1では表面から1.2
nmの測定点でAの値は1.6、電極H-3では表面から2.2nmの測定点でAの値は
1.9であった。
【0453】
次に、表面から20nm以上の領域について説明する。試料H-1では表面から26n
mの測定点でAの値は2.4であり、表面からの距離がそれよりも大きい測定点において
もAの値は2.4より大きかった。また、電極H-3では表面から22nmの測定点でA
の値は2.9であり、表面からの距離がそれよりも大きい測定点においてもAの値は2.
9より大きかった。
【0454】
以上より、マンガンおよびニッケルの原子数の和に対する酸素の原子数の比Aは、表面
近傍の領域と、該領域よりも粒子の内部に近い領域で、その値が異なることがわかる。本
発明の一態様の、リチウムマンガン複合酸化物を有する粒子は、Aの値が異なる、少なく
とも2つの領域を有し、2つの領域のうち、表面により近い領域では、Aの値がより小さ
い場合がある。
【0455】
また、表面近傍の領域、例えば表面から10nm未満の領域の有するAの値は、該領域
よりも粒子の内部に近い領域、例えば表面から20nm以上の領域の有するAの値よりも
小さい。
【0456】
次に、電極H-3の高角散乱環状暗視野走査透過電子顕微鏡法(HAADF-STEM
:High-Angle Annular Dark Field Scanning
Transmission Electron Microscopy)像を観察した結
果を
図34に示す。
図34(A)は、
図32(B)に実線で囲んだ領域142の、
図34
(B)は、
図32(B)に実線で囲んだ領域143の、それぞれ観察結果を示す。ここで
、HAADF-STEM像の観察には、球面収差補正(Spherical Aberr
ation Corrector)機能を用いたTEM像を観察した。なお、TEM観察
による明視野像および回折パターンの複合解析像を高分解能TEM像と呼ぶ。そして、球
面収差補正機能を用いた高分解能TEM像を、特にCs補正高分解能TEM像と呼ぶ。C
s補正高分解能TEM像の取得には、日本電子株式会社製原子分解能分析電子顕微鏡JE
M-ARM200Fを用いた。加速電圧は200kVとした。ここで
図34(A)に、粒
子の表面からより遠い側について、明るい輝点が形成する層V1およびV2と、層V1と
V2との間に位置し、層V1およびV2と比較してより暗い輝点が形成する層T1とを示
す。層V1とT1の距離と、層T1とV2の距離は大よそ等しい。ここで、例えばマンガ
ンやニッケルと比較して、リチウムは原子番号がより小さく、HAADF-STEM観察
において、その明るさがより暗くなる。よって、例えば、層T1は、層状岩塩型構造にお
いて、(0 0 1)面の中でも主にリチウムにより形成される層である可能性がある。
【0457】
次に、層V1,V2およびT1よりも、粒子の表面に近い領域に位置する、層U1乃至
層U3を示す。ここで、層U1乃至U3は、いずれも大よそ同じ明るさの輝点が形成する
層である。ここで、層U1とU3の距離は、層V1とV2の距離と大よそ等しい。また、
層U1とU3に挟まれる層U2においては、層T1と比較して輝点の明るさがより明るい
。よって、例えば層T1と比較して、層U2ではマンガンやニッケルの存在比がより大き
い可能性がある。
【0458】
次に、
図39に示すTEM写真の測定点1(*1)と、測定点2(*2)において、極
微電子線回折を評価した。
図39に示す測定点2は、粒子の表面により近く、粒子の表面
から10nm以内の領域である。測定点1は、測定点2と比較して、より粒子の内部に近
い領域である。各測定点の極微電子線回折結果を
図35に示す。
図35(A)は
図39に
示す測定点1の、
図35(B)は測定点2の、それぞれ極微電子線回折結果である。
【0459】
また、得られた回折パターンのスポットの位置関係(距離、角度)の実測値は、JCP
DSカードのNo.84-1634に記載されているLi
2MnO
3の結晶構造とよい対
応がみられた。また、より詳細には、測定点1(
図35(A))の回折パターンは、上記
結晶構造において入射方向が[-1 -1 0]の回折パターンと、測定点2(
図35(
B))の回折パターンは、入射方向が[3 2 -3]の回折パターンと、それぞれよい
対応がみられた。それぞれの図の右側にはJCPDSカードのNo.84-1634に対
応する距離、角度を示す。また、それぞれの図の左側には、その実測値を示す。
【0460】
また、
図39とは異なる粒子について電子線回折の観察を行った。具体的には、
図40
に示すTEM写真の測定点1(*1)と、測定点2(*2)において、極微電子線回折を
評価した。
図40に示す測定点2は、粒子の表面により近く、粒子の表面から10nm以
内の領域である。測定点1は、測定点2と比較して、より粒子の内部に近い領域である。
各測定点の極微電子線回折結果を
図41に示す。
図41(A)は
図40に示す測定点1の
、
図41(B)は測定点2の、それぞれ極微電子線回折結果である。
【0461】
また、得られた回折パターンのスポットの位置関係(距離、角度)の実測値は、JCP
DSカードのNo.84-1634に記載されているLi
2MnO
3の結晶構造とよい対
応がみられた。また、より詳細には、測定点1(
図41(A))の回折パターンは、上記
結晶構造において入射方向が[1 0 0]の回折パターンと、測定点2(
図41(B)
)の回折パターンは、入射方向が[3 2 -3]の回折パターンと、それぞれよい対応
がみられた。それぞれの図の右側にはJCPDSカードのNo.84-1634に対応す
る距離、角度を示す。また、それぞれの図の左側には、その実測値を示す。
【0462】
ここで、実施の形態1において説明した通り、第1の領域および第2の領域は層状岩塩
型構造を有し、かつ、第1の領域の有する<1 1 0>方位と、第2の領域の有する<
3 2 -3>方位が平行であることが好ましい。これらの方位が平行であることにより
、例えば、リチウムおよびマンガンを含む層、または酸素の層の平面内の配置を大よそ保
ちながら接合することができるため、2つの領域の整合性がよいといえる。
【実施例3】
【0463】
本実施例では、本発明の一態様の粒子の表面積と特性との関係について述べる。
【0464】
実施例1に示すステップS15の工程について、解砕条件を振り、得られる粒子の表面
積との関係を評価した。
【0465】
図1のステップS11乃至ステップS19に沿って、本発明の一態様の粒子を作製した
。ここで、ステップS15に示す解砕工程については、表2に示す解砕条件を用い、試料
Z-1乃至試料Z-6を作製した。また、試料Z-4乃至試料Z-6については、被覆層
の形成を行わなかった。
【0466】
【0467】
得られた試料Z-1乃至試料Z-6の比表面積の評価を行った。結果を表3に示す。
【0468】
次に、得られた試料Z-1乃至試料Z-6を用いて電極を作製した。電極の作製条件は
、実施例1を参照する。
【0469】
次に、作製した電極を用いて実施例1に示す条件と同じ電解液、セパレータおよび対極
を用い、コインセルを用いてハーフセルを作製した。
【0470】
次に、作製したハーフセルの充放電を行った。充電条件は、30mA/gの定電流で4
.8Vを上限とし、放電条件は、およそ30mA/gの定電流で2.0Vを下限とした。
得られた放電容量を表3に示す。
【0471】
周速が大きくなるのに伴い、比表面積が大きくなる傾向が見られた。また、被覆層を形
成した条件においては、比表面積が大きいほど容量が高く、試料Z-2では比表面積が1
4.0m2/g、得られた放電容量は274mAh/g、試料Z-3では比表面積が14
.8m2/g、得られた放電容量は291mAh/gといずれも非常に高い値が得られた
。
【0472】
一方、被覆層を形成していない試料においては、周速が大きくなると比表面積が大きく
なるものの、試料Z-5では比表面積14.6m2/gに対し放電容量が91mAh/g
、試料Z-6では30.3m2/gに対し101mAh/gと放電容量が低く、ビーズミ
ルによる解砕処理により例えば粒子表面にダメージ層が形成された、または例えば粒子表
面の層の一部が削れてしまった、等が考えられる。被覆層を形成することにより、表面積
を高め、かつ高い容量を得ることができた。
【実施例4】
【0473】
本実施例では、本発明の一態様の「リチウムマンガン複合酸化物を有する粒子」を用い
、実施の形態2に示す薄型の蓄電池を作製した。
【0474】
<正極の作製>
まず、本発明の一態様の「リチウムマンガン複合酸化物を有する粒子」を作製した。
【0475】
まず、実施例1に示したステップS11乃至S14の工程を行った。
【0476】
(ステップS15)
次に、解砕処理を行った。ビーズミルの処理条件は、リチウムマンガン複合酸化物24
0gあたり周速8m/s、12時間とした。溶媒にはエタノールを用いた。
【0477】
(ステップS16)
次に、解砕処理後のリチウムマンガン複合酸化物に加熱処理を行い、乾燥した。乾燥後
、得られた粉末を試料A2とする。その後、得られたリチウムマンガン複合酸化物を坩堝
に入れ、焼成を行った。焼成条件は、10L/min.の乾燥空気雰囲気下において、8
00℃、3時間とした。
【0478】
(ステップS17)
次に、得られた試料A2に、炭素を含む層を形成した。まず、酸化グラフェン4gに対
して、水50mlを加えて混練機を用いて混練し、酸化グラフェンの分散溶液を作製した
。次に、作製した分散溶液に、試料A2を200g添加して、水90mlをさらに添加し
て、固練りを2回行った。固練りは、混練機を使用し、回転数は80rpm、混練の時間
は1回を30分とし、2回繰り返した。得られた混合物を、通風乾燥炉を用いて、50℃
で乾燥した後、アルミナ乳鉢で解砕し、酸化グラフェンが被覆されたリチウムマンガン複
合酸化物である、試料B2を得た。
【0479】
(ステップS18)
次に、リチウムマンガン複合酸化物の表面に被覆した酸化グラフェンを還元した。還元
剤として、アスコルビン酸を用い、溶媒として濃度80体積%のエタノール水溶液を用い
た。酸化グラフェンを被覆したリチウムマンガン複合酸化物の重量に対して、アスコルビ
ン酸16.87wt%と、水酸化リチウム3.9wt%を入れて、還元液を作製した。得
られた試料B2を還元液に入れ、60℃で3時間処理して還元した。
【0480】
(ステップS19)
次に、得られた溶液から遠心分離機によって溶媒を分離し、分離液を捨てた。その後、
純水を加えて洗浄し、遠心分離を行ったあと分離液を捨てる工程を4回繰り返した。遠心
分離の回転数は9000rpm、時間は1回を3分とした。次に、溶媒を分離した試料に
純水を加えて121g/lの濃度になるように調整し、溶液を得た。その後、得られた溶
液を150℃に加熱し、スプレードライ処理を行った。
【0481】
次に、スプレードライ処理により得られた粉末を、減圧下で10時間、乾燥した。
【0482】
以上の工程により、表面にグラフェンが形成された粉末のリチウムマンガン複合酸化物
(試料C2)を作製した。
【0483】
次に、試料C2を用いて蓄電池の正極を作製した。活物質として試料C2を用い、導電
助剤として、アセチレンブラック(AB)を用い、バインダーとしてPVdFを用いた。
活物質、AB、およびPVdFの配合は活物質:AB:PVdF=90:5:5(wei
ght%)とした。
【0484】
混練機を用いて、活物質、AB、PVdFおよびNMPを混練し、スラリーを作製した
。その後、アンダーコート処理を施した厚さ20μmのアルミニウム箔上に、連続塗工機
を用いてスラリーをアルミニウム箔の片面に塗布した。その後、乾燥炉を用いて70℃1
0分で乾燥を行った後、90℃10分で乾燥を行った。
【0485】
その後、さらに熱処理を行った。熱処理条件として、減圧雰囲気(1KPa)、250
℃において10時間の処理を行った。その後、プレス圧力を1.5MPaとし、プレス温
度を120℃とした。以上の工程により、本発明の一態様である「リチウムマンガン複合
酸化物を有する粒子」を有する正極X2を得た。得られた正極の活物質の担持量は7.2
mg/cm2であった。
【0486】
次に、作製した正極X2と、黒鉛を活物質に用いた負極とを用い、実施の形態2に示す
薄型の蓄電池である蓄電池Aを作製し、正極X2のエージングを行った。
【0487】
蓄電池Aの外装体として熱溶着樹脂で覆われたアルミのフィルムを用いた。電解液は、
塩としてLiPF6を用い、溶媒としてEC、DECおよびEMCを混合させた溶媒を用
いた。また、セパレータにはPPを用いた。
【0488】
次に、作製した蓄電池Aに、プレス機を用いて20MPaのプレスを行いながら、充放
電を3回行った。放電の下限電圧は2Vとした。
【0489】
<負極の作製>
次に、蓄電池に用いる負極を作製した。活物質としてSiOを用い、導電助剤としてA
Bを、バインダーとしてポリイミドを用いた。
【0490】
まず、SiO:AB:ポリイミド前駆体=80:5:15(weight%)となるよ
うにSiO、AB、およびポリイミドの前駆体を秤量した。ポリイミドの前駆体として、
溶媒にNMPを用いた濃度13.7weight%の溶液を用いた。
【0491】
まず、SiOとABを混練機により混合した。その後、NMPを少しずつ加え、遊星方
式の混練機により固練りを行いペーストを作製した。ペーストを作製するために加えるN
MPの総量は、ペーストの固形分比が60%程度となるようにした。ここで、固練りとは
高粘度での混練を指す。固練りを行うことにより、活物質と導電助剤との分散性を高める
ことができる。
【0492】
次に、作製したペーストに、溶媒にNMPを用いたポリイミド前駆体溶液を添加し、混
練機により混練を行った。以上の工程により、スラリーを作製した。得られたスラリーの
固形分比は40weight%であった。
【0493】
次に、連続塗工機を用いて、厚さ18μmの圧延銅箔の片面にスラリーを塗布した。そ
の後、乾燥炉を用いて熱処理により溶媒を蒸発させた。熱処理条件として、50℃180
秒で熱処理を行い、次いで75℃180秒で熱処理を行った。以上の工程により得られた
負極を負極Yとする。得られた負極Yの活物質の担持量は1.9mg/cm2であった。
【0494】
次に、作製した負極Yと、コバルト酸リチウムを活物質に用いた正極とを用い、薄型の
蓄電池である蓄電池Bを作製し、負極Yのエージングを行った。
【0495】
蓄電池Bの外装体として熱溶着樹脂で覆われたアルミのフィルムを用いた。また電解液
は、塩としてLiPF6を用い、溶媒としてECとDECを混合させた溶媒を用いた。ま
た、セパレータにはPPを用いた。
【0496】
次に、作製した蓄電池Bの充放電を行った。
【0497】
<蓄電池Cの作製>
蓄電池Aの外装体を開封し、正極X2を取り出した。また、蓄電池Bの外装体を開封し
、負極Yを取り出した。
【0498】
次に、取り出した正極X2と、負極Yと、を用いて蓄電池Cを作製した。
【0499】
蓄電池Cの外装体として熱溶着樹脂で覆われたアルミのフィルムを用いた。また電解液
は、電解質としてLiPF6を用い、非プロトン性有機溶媒であるECとDECを3:7
の体積比で混合させた混合溶液を用いた。また、セパレータにはPPを用いた。
【0500】
次に、作製した蓄電池Cの充放電を行った。25℃において、0.1C(電流密度25
mA/g)の定電流にて、上限4.6Vで充電を行い、下限1.5Vで放電を行った。充
放電カーブを
図36に示す。ここで、横軸は正極活物質重量あたりの容量を示す。
【0501】
正極活物質、および負極活物質に単位重量あたりの容量の高い優れた材料を用いること
により、高い容量を有する蓄電池を得ることができた。
【実施例5】
【0502】
本実施例では、本発明の一態様の「リチウムマンガン複合酸化物を有する粒子」を用い
、実施の形態2に示す薄型の蓄電池を作製した。また、本実施例では、複数の正極活物質
層と複数の負極活物質層を設け、積層することにより、容量のより大きい蓄電池を作製し
た。
【0503】
<正極の作製>
蓄電池に用いる正極活物質を合成した。まず、実施例1に示したステップS11乃至S
14の工程を行った。
【0504】
(ステップS15)
次に、解砕処理を行った。ビーズミルの処理条件は、リチウムマンガン複合酸化物60
0gに対し周速12m/s、10時間とした。
【0505】
(ステップS16)
次に、解砕処理後のリチウムマンガン複合酸化物に加熱処理を行い、乾燥した。乾燥条
件は75℃でホットプレートで加熱後、100℃で減圧雰囲気下の乾燥を行った。その後
、得られたリチウムマンガン複合酸化物を坩堝に入れ、焼成を行った。焼成条件は、10
L/min.の乾燥空気雰囲気下において、800℃、3時間とした。焼成後、得られた
粉末を試料A3とする。
【0506】
(ステップS17)
次に、得られた試料A3に、炭素を含む層を形成した。まず、酸化グラフェンの水分散
溶液を作製した。水を総量の1/3ずつに分け、酸化グラフェンに加える毎に混練機を用
いて混練し、酸化グラフェンの分散溶液を作製した。酸化グラフェン10gに対して水を
150mlとなる割合で加えた。次に、作製した分散溶液150mlに対して、試料A2
を500gと、水を200mLとなる割合で添加し、固練りを行った。次に、得られた混
合物を、通風乾燥炉を用いて70℃で乾燥した後、アルミナ乳鉢で解砕し、酸化グラフェ
ンが被覆されたリチウムマンガン複合酸化物である、試料B3を得た。
【0507】
(ステップS18)
次に、リチウムマンガン複合酸化物の表面に被覆した酸化グラフェンを還元した。還元
剤として、アスコルビン酸を用い、溶媒として濃度80体積%のエタノール水溶液を用い
た。酸化グラフェンを被覆したリチウムマンガン複合酸化物の重量に対して、アスコルビ
ン酸16.87wt%と、水酸化リチウム3.9wt%を入れて、還元液を作製した。得
られた試料B3を還元液に入れ、60℃で3時間処理して還元した。
【0508】
(ステップS19)
次に、得られた溶液から遠心分離機によって溶媒を分離し、分離液を捨てた。その後、
純水を加えて洗浄し、遠心分離を行ったあと分離液を捨てる工程を5回繰り返した。遠心
分離の回転数は2000rpm乃至6000rpm、時間は1回を3分とした。次に、溶
媒を分離した試料に純水を加えた。還元する前の試料B3の重量80gあたりに対し、水
を1Lの割合で添加し、溶液を得た。その後、得られた溶液を150℃に加熱し、スプレ
ードライ処理を行った。
【0509】
次に、スプレードライ処理により得られた粉末を、170℃、減圧下で10時間、乾燥
した。
【0510】
以上の工程により、表面にグラフェンが形成された粉末のリチウムマンガン複合酸化物
(試料C3)を作製した。
【0511】
次に、試料C3を用いて蓄電池の正極を作製した。活物質として試料C3を用い、導電
助剤として、アセチレンブラック(AB)を用い、バインダーとしてPVdFを用いた。
活物質、AB、およびPVdFの配合は活物質:AB:PVdF=90:5:5(wei
ght%)とした。
【0512】
混練機を用いて、活物質、AB、PVdFおよびNMPを混練し、スラリーを作製した
。次に、アンダーコート処理を施した厚さ20μmのアルミニウム箔上に、連続塗工機を
用いてスラリーを塗布した。アルミニウム箔の両面に活物質層を設けた正極と、片面に活
物質層を設けた正極とを準備した。次に、乾燥炉を用いて70℃10分で溶媒を蒸発させ
た後、90℃10分で溶媒を蒸発させた。
【0513】
次に、減圧雰囲気(1kPa)、250℃において10時間の熱処理を行った。その後
、プレス機を用いてプレスを行った。以上の工程により、本発明の一態様である「リチウ
ムマンガン複合酸化物を有する粒子」を有する正極X3を得た。得られた正極の活物質の
担持量は、片面あたり15.5mg/cm2であった。
【0514】
次に、作製した正極X3に対して、リチウム金属を対極とし、充放電を行った。電解液
は、塩としてLiPF6を用い、溶媒としてポリエチレンカーボネート(PC)を用いた
。放電条件は2Vを下限とした。
【0515】
その後、電解液から正極X3を取り出した。
【0516】
<負極の作製>
次に、蓄電池に用いる負極を作製した。活物質としてSiOを用い、導電助剤としてA
Bを、バインダーとしてポリイミドを用いた。
【0517】
まず、SiO:AB:ポリイミド前駆体=80:5:15(weight%)となるよ
うにSiO、AB、およびポリイミドの前駆体を秤量した。ポリイミドの前駆体として、
溶媒にNMPを用いた濃度13.7%の溶液を用いた。
【0518】
SiO、AB、ポリイミドの前駆体、およびNMPを混合し、スラリーを作製した。ス
ラリーの作製については、実施例4に示す負極Yの作製工程を参照する。
【0519】
次に、連続塗工機を用いて、厚さ18μmの圧延銅箔にスラリーを塗布した。負極活物
質層は銅箔の両面に設けた。その後、乾燥炉を用いて乾燥を行った。乾燥条件として、5
0℃180秒で熱処理を行い、次いで75℃180秒で熱処理を行った。以上の工程によ
り得られた負極を負極Y2とする。得られた負極Yの活物質の担持量は片面あたり1.8
mg/cm2であった。
【0520】
次に、作製した負極Y2に対して、リチウム金属を対極とし、充電を行った。電解液は
、塩としてLiPF6を用い、溶媒としてポリエチレンカーボネート(PC)を用いた。
その後、電解液から負極Y2を取り出した。
【0521】
<蓄電池の作製>
次に、実施の形態2に示す薄型の蓄電池である蓄電池C2を作製した。正極として、両
面に活物質層を設けた正極X3を1枚、片面に活物質層を設けた正極X3を2枚準備した
。また、負極として、両面に活物質層を設けた負極Y2を2枚準備した。
【0522】
正極X3,負極Y2及びセパレータ507は、
図37に示すように、正極活物質層50
2と、正極集電体501としてのアルミニウム箔とを有する正極X3と、負極活物質層5
05と、負極集電体504としての銅箔とを有する負極Y2との間にセパレータ507を
設け、積層した。
【0523】
蓄電池C2の外装体として熱溶着樹脂で覆われたアルミのフィルムを用いた。また電解
液は、電解質としてLiPF6を用い、EC,DEC,およびエチルメチルカーボネート
(EMC)を3:6:1の重量比で混合させた混合溶液を用いた。また、セパレータには
ポリプロピレン(PP)を用いた。また、添加剤として1%以下のVC(ビニレンカーボ
ネート)と、1%以下のプロパンスルトン(PS)を添加した。
【0524】
次に、作製した蓄電池C2の充放電を行った。25℃において、0.1C(電流密度1
2mA/g)の定電流にて、上限4.6Vで充電を行い、下限1.5Vで放電を行った。
充放電カーブを
図38(A)に示す。ここで、横軸は正極活物質重量あたりの容量を示す
。また、
図38(B)には、正極と負極の重量の和から正極集電体および負極集電体の重
量の和を引いた値を用いて、規格化した容量を横軸とした充放電カーブを示す。
【0525】
正極活物質、および負極活物質に単位重量あたりの容量の高い優れた材料を用いること
により、高い容量を有する蓄電池を得ることができた。
【実施例6】
【0526】
本実施例では、本発明の一態様の粒子が二次粒子を形成する場合について説明する。
【0527】
まず、
図1に示すステップS11乃至S16を行い、リチウムマンガン複合酸化物であ
る試料A4を得た。ステップS11乃至S16の工程については、実施例1を参照するこ
とができる。また、詳細な条件については以下に述べる。
【0528】
ステップS11において、出発原料を、重量比がLi2CO3:MnCO3:NiO=
0.84:0.8062:0.318となるように秤量した。
【0529】
ステップS12において、ビーズミルの処理条件は、周速10m/s、時間30分とし
た。
【0530】
ステップS13において、大気雰囲気下、75℃で乾燥を行った後、減圧下、100℃
1時間で乾燥を行った。
【0531】
ステップS14において、焼成条件は10L/min、乾燥空気雰囲気、1000℃、
10時間とした。
【0532】
ステップS15において、ビーズミルの処理条件はリチウムマンガン複合酸化物600
gに対して、4m/s、25時間とした。その後、75℃で乾燥を行った後、100℃で
乾燥を行った。
【0533】
ステップS16において、焼成条件は、10L/min.、乾燥空気雰囲気、800℃
、3時間とした。ステップS16で得られた粉末を試料A4とする。
【0534】
(ステップS17)
次に、得られた試料A4に、炭素を含む層を形成した。まず、酸化グラフェンの水分散
溶液を作製した。水を総量の1/3ずつに分け、酸化グラフェンに加える毎に混練機を用
いて混練し、酸化グラフェンの分散溶液を作製した。酸化グラフェン10gに対して加え
た水の総量は150mlであった。次に、作製した水分散溶液に、試料A4と、水とを添
加し、固練りを行った。添加した試料A4の量は500g、水の量は200mlであった
。次に得られた混合物を、通風乾燥炉を用いて70℃で乾燥した後、アルミナ乳鉢で解砕
し、酸化グラフェンが被覆されたリチウムマンガン複合酸化物である、試料B4を得た。
【0535】
(ステップS18)
次に、試料B4の有する酸化グラフェンの還元を行った。還元剤として、アスコルビン
酸を用い、溶媒として濃度80体積%のエタノール水溶液を用いた。酸化グラフェンを被
覆したリチウムマンガン複合酸化物の重量に対して、アスコルビン酸16.87wt%と
、水酸化リチウム3.9wt%を入れて、還元液を作製した。得られた試料B4を還元液
に入れ、60℃で3時間処理して還元した。
【0536】
(ステップS19)
次に、得られた溶液から遠心分離機によって溶媒を分離し、分離された液を捨てた。そ
の後、純水を加えて洗浄し、遠心分離を行ったあと分離液を捨てる工程を5回繰り返した
。遠心分離の回転数は6000rpm、時間は1回を3分とした。次に、溶媒を分離した
試料に純水を加え、4種類の濃度の溶液を得た。濃度の異なる溶液をそれぞれ溶液A、B
、CおよびDとする。
【0537】
溶液Aとして、試料B4に対する純水の量が10g/Lとなるように調整した。溶液B
は100g/L、溶液Cは300g/L、溶液Dは500g/Lとなるようにそれぞれ調
整した。その後、溶液A乃至Dを60℃に加熱した。スプレードライ装置の入り口の温度
を150℃とし、各溶液について、スプレードライ処理を行った。
【0538】
次にそれぞれの溶液をスプレードライで処理を行い得た粉末を、それぞれ170℃10
時間、減圧下で乾燥した。乾燥した各試料をNMPに分散させた溶液を用いて、粒径分布
の測定を行った。なお、ここで測定される粒径は、主に二次粒子の粒径である。粒度分布
測定には、レーザー回折粒度分布測定装置(SALD-2200形,島津製作所製)を用
いた。粒径の算出方式は、レーザ回折・散乱法を用いた。得られた結果から、その平均粒
径、およびD90(粒度分布測定結果の積算粒子量曲線において、その積算量が90%を
占めるときの粒子径)の値を評価した。横軸に粒径、縦軸に頻度をプロットした図を
図4
2に示す。溶液Aより回収した試料の結果を実線で、溶液Bを破線で、溶液Cを一点鎖線
で、溶液Dを二点鎖線でそれぞれ示す。
【0539】
平均粒径は、溶液Aより回収した試料が3.26μm、溶液Bが2.45μm,溶液C
が3.84μm、溶液Dが3.40μmであった。
【0540】
また、D90の値は、溶液Aより回収した試料が7.94μm、溶液Bが9.73μm
、溶液Cが13.92μm、溶液Dが13.18μmであった。
【0541】
溶液CおよびDより回収した試料は、D90の値が、13μm以上と大きく、また
図4
2に示す通り20μm以上の領域で裾がみられる。
【0542】
図43(A)に溶液A、(B)に溶液B、
図44(A)に溶液C、(B)に溶液Dより
得られた試料をSEMにより観察した結果を示す。溶液B乃至Dにおいては、粒径15μ
mを超える二次粒子がみられた。
【0543】
図42乃至
図44の結果より、スプレードライ処理を行う際の溶液の濃度は例えば10
0g/L以下が好ましく、10g/L以下がより好ましいと考えられる。
【実施例7】
【0544】
本実施例では、充放電における蓄電池のガスの放出を測定した。
【0545】
<正極の作製>
蓄電池に用いる正極活物質を合成した。実施例6に示すステップS11乃至ステップS
14を行った。
【0546】
(ステップS15)
次に、解砕処理を行った。ビーズミルの処理条件は、リチウムマンガン複合酸化物48
0gに対し周速8m/sで20分処理した後、12m/sで10時間処理した。その後、
乾燥を行った。
【0547】
(ステップS16)
次に、焼成を行った。焼成条件は、10L/min.、乾燥空気雰囲気、800℃、3
時間とした。ステップS16で得られた粉末を試料A5とする。
【0548】
(ステップS17)
次に、得られた試料A5に、炭素を含む層を形成した。まず、水と酸化グラフェンとを
混合し、酸化グラフェンの水分散溶液を作製した。酸化グラフェン2g、加えた水の総量
は10mLであった。次に、作製した水分散溶液に、試料A5を100gと、水を20m
Lを添加し、固練りを行った。次に、得られた混合物を乾燥した後、アルミナ乳鉢で解砕
し、酸化グラフェンが被覆されたリチウムマンガン複合酸化物である、試料B5を得た。
【0549】
(ステップS18)
次に、試料B5を有する酸化グラフェンの還元を行った。還元剤として、アスコルビン
酸を用い、溶媒としてエタノールと水の混合溶媒を用いた。混合溶媒において、エタノー
ルの濃度は80体積%であった。酸化グラフェンを被覆したリチウムマンガン複合酸化物
の重量に対して、アスコルビン酸16.87wt%と、水酸化リチウム3.9wt%を入
れて、還元液を作製した。得られた試料B5を還元液に入れ、60℃で3時間処理して還
元した。
【0550】
(ステップS19)
次に、得られた溶液をろ過し、溶媒を分離した試料を得た。その後、乾燥を行い試料C
5を得た。
【0551】
得られた試料C5を用いて正極を作製した。活物質として試料C5を用い、導電助剤と
して、アセチレンブラック(AB)を用い、バインダーとしてPVdFを用いた。活物質
、AB、およびPVdFの配合は活物質:AB:PVdF=90:5:5(weight
%)とし、溶媒にNMPを用いてスラリーを作製した。
【0552】
次に、作製したスラリーを、アンダーコート処理を施した厚さ20μmのアルミニウム
箔の片面に塗布した。次に、加熱処理を行い、溶媒を蒸発させた。次にプレスを行った。
その後、熱処理を行った。熱処理の条件は圧力1kPaで250℃、10時間とした。
【0553】
以上の工程により得られた正極を正極X4とする。正極X4における、活物質担持量は
6.5mg/cm2であった。
【0554】
<負極の作製>
次に、黒鉛を活物質として、負極を作製した。黒鉛、炭素繊維、CMCおよびSBRと
、水と、を混練機を用いて混練し、スラリーを作製した。黒鉛、炭素繊維、CMCおよび
SBRの割合は黒鉛:炭素繊維:CMC:SBR=96:1:1:2(weight%)
とした。
【0555】
次に、作製したスラリーを、厚さ18μmの圧延銅箔の片面に塗布した。その後、乾燥
を行い、負極活物質層を形成した。得られた負極を負極Y3とする。負極Y3における活
物質担持量は8.8mg/cm2であった。
【0556】
<比較電極の作製>
次に、比較電極として、LiFePO4を活物質とした正極を作製した。集電体として
アルミニウム箔を用いた。作製した正極を正極X5とする。正極X5の活物質担持量は1
0.8mg/cm2であった。
【0557】
<負極の作製>
次に、黒鉛を活物質として、負極を作製した。黒鉛、炭素繊維、CMCおよびSBRと
、水と、を混練機を用いて混練し、スラリーを作製した。黒鉛、炭素繊維、CMCおよび
SBRの割合は黒鉛:炭素繊維:CMC:SBR=96:1:1:2(weight%)
とした。次に、作製したスラリーを、厚さ18μmの圧延銅箔の片面に塗布した。その後
、乾燥を行い、負極活物質層を形成した。得られた負極を負極Y4とする。負極Y4にお
ける活物質担持量は7.5mg/cm2であった。
【0558】
<蓄電池の作製>
次に、作製した正極X4を6枚、負極Y3を6枚用いて蓄電池C3を作製した。また、
比較電極である正極X5を6枚、負極Y4を6枚用いて蓄電池C4を作製した。
【0559】
蓄電池C3および蓄電池C4の外装体として熱溶着樹脂で覆われたアルミのフィルムを
用いた。また電解液は、電解質としてLiPF6を用い、溶媒としてEC:DEC:EM
Cを3:6:1の体積比で混合させた混合溶媒を用い、添加剤としてPSおよびVCを用
いた。また、セパレータにはPPを用いた。
【0560】
正極、負極およびセパレータは、正極活物質層と負極活物質層とが6組、セパレータを
介して向かい合うように積層した。
【0561】
次に、作製した蓄電池C3の充放電を行った。25℃において、0.1C(電流密度1
7mA/g)、上限4.6Vで定電流充電を行った後、4.6Vの定電圧で0.01Cを
終止条件として充電を行った。その後、下限2.0Vで定電流放電を行った。放電容量は
207mAh/gであった。本発明の一態様の粒子を正極活物質として用いることにより
、高い容量が得られた。
【0562】
また、蓄電池C4についても充放電を行った。25℃において、0.01C(電流密度
24mA/g)、上限3.2Vで定電流充電を行った後、0.1C、上限4Vで定電流充
電を行った。その後、0.2C、下限2.0Vで定電流放電を行った。次に、0.2C、
上限4Vで定電流充電を行った後、0.2C、下限2Vで定電流放電を行った。ここで蓄
電池C3,C4ともに、電流密度および容量は正極活物質重量あたりで規格化した。1回
目の放電容量は109mAh/g、2回目の放電容量は123mAh/gであった。
【0563】
次に、充放電を行った蓄電池C3内および蓄電池C4内のガスを採取した。
【0564】
次に、採取したそれぞれのガスをGC-TCD(Gas Chromatograph
y-Thermal Conductivity Detector)を用いて測定した
。得られたガスの種類と存在比率を表4に示す。ここで表4では、H2、O2、N2、C
O,CH4、CO2、C2H4,およびC2H6の8種類のガスの存在比の合計を100
%とした比率を示す。ここで、数値の記載のないガスについては、検出下限以下、または
検出されたが微量であり定量化が難しい場合を示す。ここで、蓄電池C4のCO2は検出
されたものの、微量であった。
【0565】
【0566】
表4より、正極にLiFePO4を用いた蓄電池C4ではCO2の値は微量であったの
に対し、正極に試料C5を用いた蓄電池C3ではCO2は8種類のガスのうち30%と高
い値を示した。また、蓄電池C3では45%、C4では64%の水素が検出された。また
ガスの総発生量は、蓄電池C3の方が多かった。
【0567】
蓄電池C3は、充電および放電の電位が高く、蓄電池としてのエネルギー密度を高める
ことができるため好ましい。一方、充電および放電の電位が高い場合には、電解液の酸化
分解が生じやすい場合がある。蓄電池C3においては、充電電圧の上限は4.6Vと高く
、充電過程等において電解液が分解し、CO2などのガスが発生しやすかったと考えられ
る。よって、本発明の一態様の粒子を正極活物質に用いる場合には、実施例4や実施例5
に示すように、蓄電池の正極の充放電を行った後に、蓄電池の開封を行うことにより発生
したガスを逃がし、その後、再度蓄電池を組み立てることにより、ガス発生による蓄電池
の特性への影響を小さくすることができるため好ましい。
【実施例8】
【0568】
本実施例では、酸化グラフェンの被覆や、還元溶液を用いた処理が、蓄電池の特性に与
える影響について調査した。
【0569】
まず、リチウムマンガン複合酸化物を有する粒子を作製した。実施例6に示すステップ
S11乃至ステップS14を行った。
【0570】
(ステップS15)
次に、解砕処理を行った。ビーズミルの処理条件は、リチウムマンガン複合酸化物24
0gに対し周速8m/sで10分処理した後、4m/sで10時間処理した。その後、乾
燥を行った。ここで得られた粉末を試料A6とする。
【0571】
次に、試料A6に対して、還元溶液を用いた処理を行う条件(試料B6)、酸化グラフ
ェンを被覆する条件(試料C6)、酸化グラフェンを被覆し、還元処理を行う条件(試料
D6)、の各試料を準備した。
【0572】
(ステップS17)
試料A6に炭素を含む層を形成した。まず、水と酸化グラフェンとを混合し、酸化グラ
フェンの分散溶液を作製した。酸化グラフェン0.3g、加えた水の総量は3mLであっ
た。次に、作製した水分散溶液に、試料A6を15gと、水を3mLを添加し、固練りを
行った。次に、得られた混合物を乾燥した後、アルミナ乳鉢で解砕し、試料C6を得た。
【0573】
(ステップS18・S19)
次に、試料C6および試料A6に対して、アスコルビン酸の溶液を用いて処理を行った
。溶媒としてエタノールと水の混合溶媒を用いた。混合溶媒において、エタノールの濃度
は80体積%であった。試料C6および試料A6の重量に対して、アスコルビン酸が約1
7wt%と、水酸化リチウムが約4wt%とを入れ、還元液を作製した。
【0574】
試料C6を還元溶液に入れ、60℃で3時間で処理した。その後、溶液をろ過し、乾燥
を行い試料D6を得た。また、試料A6を還元溶液に入れ、60℃で3時間で処理した。
その後、溶液をろ過し、乾燥を行い試料B6を得た。
【0575】
<電極の作製>
得られた試料A6、試料B6、試料C6、試料D6をそれぞれ活物質に用いて電極を作
製した。導電助剤として、アセチレンブラック(AB)を用い、バインダーとしてPVd
Fを用いた。活物質、AB、およびPVdFの配合は活物質:AB:PVdF=90:5
:5(weight%)とし、溶媒にNMPを用いてスラリーを作製した。
【0576】
次に、作製したスラリーを、アンダーコート処理を施した厚さ20μmのアルミニウム
箔の片面に塗布した。次に、乾燥を行った。次にプレスを行った。その後、熱処理を行っ
た。熱処理の条件は圧力1kPa、250℃、10時間とした。
【0577】
試料A6、試料B6、試料C6および試料D6を用いて得られた電極をそれぞれ電極A
6、電極B6、電極C6および電極D6、とする。電極A6、電極B6、電極C6および
電極D6の活物質担持量はそれぞれ、3.2mg/cm2、4.1mg/cm2、3.0
mg/cm2および3.7mg/cm2であった。
【0578】
<ハーフセル特性>
次に、得られた電極A6、B6、C6およびD6を用いてハーフセルを作製した。セル
には、コインセルを用いた。また、ハーフセルの対極にはリチウムを用いた。また、電解
液は、電解質としてLiPF6を用い、非プロトン性有機溶媒であるECとDECを1:
1の体積比で混合させた混合溶液を用いた。また、セパレータとしてはポリプロピレン(
PP)を用いた。
【0579】
次に、作製したハーフセルの充放電サイクル評価を行った。充電は、0.1C定電流、
上限電圧4.8Vで行い、放電は、0.1C定電流、下限電圧2Vで行った。
図45に、
横軸に充放電サイクル回数、縦軸に放電容量をプロットした図を示す。
【0580】
酸化グラフェンの被覆およびアスコルビン酸溶液を用いた処理を行わなかった電極A6
では3サイクル目から容量の顕著な低下が見られたのに対し、アスコルビン酸溶液を用い
た処理を行った電極B6では容量低下を抑えることができ、10サイクル目の容量は初期
容量に対し88%であった。また、酸化グラフェンの被覆を行った電極C6では10サイ
クル目の容量は初期容量に対し90%以上とさらに容量低下が抑えられ、酸化グラフェン
の被覆を行った後に還元溶液で還元処理を行った電極D6では、10サイクル目の容量は
初期容量に対し98%と、最も高い値が得られた。
【0581】
以上より、本発明の一態様の粒子にアスコルビン酸溶液を用いた処理を行った場合には
、例えば粒子の表面の少なくとも一部に、内部と比較してより安定な領域が形成される可
能性がある。また、酸化グラフェン、または還元されたグラフェンを有する被覆層は、被
覆された、粒子の内部の領域と比較してより安定であり、蓄電池の充放電の安定性が向上
したことが示唆される。
【実施例9】
【0582】
本実施例では、本発明の一態様の「リチウムマンガン複合酸化物を有する粒子」を作製
し、特性の評価を行った。作製の手順を、
図1のフローチャートに基づき説明する。
【0583】
<合成>
まず、リチウムマンガン複合酸化物を有する粒子を作製した。
【0584】
(ステップS11)
はじめに、出発原料として、Li2CO3と、MnCO3、NiOとを用い、出発原料
の割合(モル比)を、Li2CO3:MnCO3:NiO=0.84:0.8062:0
.318となるように秤量した。
【0585】
(ステップS12)
次に、出発原料にエタノールを加えた後、ビーズミルを用いて混合した。ビーズミルの
処理室の周速10m/sとした。
【0586】
(ステップS13)
次に、混合した原料に加熱処理を行った。加熱処理を、大気雰囲気下において、加熱温
度75℃にて行うことにより、混合した混合原料に含まれるエタノールを蒸発させて、混
合原料を得た。
【0587】
(ステップS14)
次に、坩堝に混合原料を入れ、焼成を行った。焼成処理は、流量10L/minの乾燥
空気雰囲気下において、焼成温度は1000℃、焼成時間10時間にて行うことにより、
リチウムマンガン複合酸化物を合成した。
【0588】
(ステップS15)
次に、一次粒子が焼結したリチウムマンガン複合酸化物の焼結を解くために解砕処理を
行った。解砕処理は、焼結したリチウムマンガン複合酸化物にエタノールを加えた後、ビ
ーズミルの処理室を周速8m/sで10分回転させた後、4m/sで10時間回転させて
処理を行い粉末状のリチウムマンガン複合酸化物を得た。
【0589】
(ステップS16)
次に、解砕処理後のリチウムマンガン複合酸化物に加熱処理を行った。加熱処理を、大
気雰囲気下において、75℃にて行うことにより、混合した混合原料に含まれるエタノー
ルを蒸発させた。次に、得られたリチウムマンガン複合酸化物を坩堝に入れ、焼成を行っ
た。焼成条件は、10L/min.の乾燥空気雰囲気下において、700℃、3時間とし
た。焼成後、得られた粉末を試料Aとする。試料Aは組成式Li1.68Mn0.806
2Ni0.318O3で表されるが、この組成からずれることもある。
【0590】
<被覆層>
次に、得られた試料Aに、炭素を含む層を形成した。まず、酸化グラフェン0.1gに
対して、水1gになるような割合で混練機を用いて混練し、酸化グラフェンの分散溶液を
作製した。
【0591】
(ステップS17)
次に、作製した水分散溶液に、試料Aを添加して混合を行った。ここで酸化グラフェン
1gに対して試料Aが50gとなるようにした。得られた混合物を、ベルジャーを用いて
、50℃で減圧乾燥した後、アルミナ乳鉢で解砕し、酸化グラフェンが被覆されたリチウ
ムマンガン複合酸化物である、試料Bを得た。
【0592】
(ステップS18)
次に、リチウムマンガン複合酸化物の表面に被覆した酸化グラフェンを還元した。還元
剤として、アスコルビン酸を用い、溶媒としてエタノールと水の混合溶媒を用いた。混合
溶媒において、エタノールの濃度は80体積%であった。酸化グラフェンを被覆したリチ
ウムマンガン複合酸化物の重量に対して、アスコルビン酸16.87wt%と、水酸化リ
チウム3.9wt%を入れて、還元液を作製した。得られた粉末を還元液に入れ、60℃
で3時間処理して還元した。
【0593】
(ステップS19)
次に、得られた溶液を吸引濾過によって濾過を行った。ろ過には、粒子保持能1μmの
ろ紙を用いた。その後、洗浄し、再度、ろ過を行った。
【0594】
次に、溶媒を分離した試料に純水を加えて15g/lの濃度になるように調整し、溶液
を得た。その後、得られた溶液を60℃で加熱して、スプレードライ装置へ給液し、15
0℃に加熱し、スプレードライ処理を行った。
【0595】
次に、スプレードライ処理により得られた粉末を、減圧下で170℃、10時間、乾燥
した。
【0596】
次に、得られた粉末を乳鉢で粉砕した。その後、170℃、減圧下で10時間、乾燥を
行った。
【0597】
以上の工程により、表面にグラフェンが形成された粉末のリチウムマンガン複合酸化物
(試料C)を作製した。
【0598】
<電極の作製>
次に、得られた試料Cを用いて電極を作製した。活物質として試料Cを用い、導電助剤
として、アセチレンブラック(AB)を用い、バインダーとしてPVdFを用いた。
【0599】
まず、PVdFと、ABと極性溶媒であるNMP(N-メチル-2-ピロリドン)とを
混練機を用いて混練し、スラリーを得た。電極合剤組成物の配合は、重量比で試料C:A
B:PVdF=90:5:5とした。
【0600】
次に、該電極合剤組成物を集電体であるアルミニウム箔上に塗布した。なお、アルミニ
ウム箔表面には、あらかじめアンダーコートを施した。その後、通風乾燥炉にて、80℃
、30分乾燥させた。ここで得られた電極を電極X1とする。ロールプレス機を用いて電
極のプレスを実施した。電極塗工後の膜厚に対して、膜厚を20%減少させるようにプレ
ス圧を調整して行った。また、プレス温度を120℃とした。
【0601】
その後、電極X1に熱処理を行った。熱処理条件として、減圧雰囲気(1kPa)、2
50℃において10時間の処理を行った。以上の工程により、電極X2を得た。
【0602】
<ハーフセル特性>
次に、得られた電極X1、およびX2を用いてハーフセルを作製した。セルには、コイ
ンセルを用いた。また、ハーフセルの対極にはリチウムを用いた。また、電解液は、電解
質としてLiPF6を用い、非プロトン性有機溶媒であるECとDECを1:1の体積比
で混合させた混合溶液を用いた。また、セパレータとしてはポリプロピレン(PP)を用
いた。
【0603】
次に、25℃において充放電特性の測定を行った。充電は、30mA/gの定電流、上
限電圧4.8Vで行い、放電は、30mA/gの定電流、下限電圧2Vで行った。得られ
た充放電カーブを
図52に示す。破線は電極X1の、実線は電極X2の、充放電カーブを
それぞれ示す。電極に熱処理を行った電極X2では、より高い容量が得られることがわか
った。
【実施例10】
【0604】
本実施例では、本発明の一態様の電極のXPS分析結果について説明する。
【0605】
<合成>
まず、
図1に示すステップに沿って、リチウムマンガン複合酸化物を有する粒子を作製
した。
【0606】
(ステップS11)
はじめに、出発原料として、Li2CO3と、MnCO3、NiOとを用い、出発原料
の割合(モル比)を、Li2CO3:MnCO3:NiO=0.84:0.8062:0
.318となるように秤量した。
【0607】
(ステップS12)
次に、出発原料にエタノールを加えた後、ビーズミルを用いて混合した。ビーズミルの
処理室の周速10m/sとした。
【0608】
(ステップS13)
次に、100℃以下の加熱処理を行い、エタノールを蒸発させ、混合原料を得た。
【0609】
(ステップS14)
次に、坩堝に混合原料を入れ、焼成を行った。焼成処理は、流量10L/minの乾燥
空気雰囲気下において、焼成温度は1000℃、焼成時間10時間とした。
【0610】
(ステップS15)
次に、一次粒子が焼結したリチウムマンガン複合酸化物に解砕処理を行った。解砕処理
は、焼結したリチウムマンガン複合酸化物を600gに対し、エタノールを加えた後、ビ
ーズミルの処理室を周速12m/sで10時間処理とした。
【0611】
(ステップS16)
次に、100℃以下の加熱処理を行い、エタノールを蒸発させた。次に、得られたリチ
ウムマンガン複合酸化物を坩堝に入れ、焼成を行った。焼成条件は、10L/minの乾
燥空気雰囲気下において、800℃、3時間とした。焼成後、得られた粉末を試料A2と
する。試料A2は組成式Li1.68Mn0.8062Ni0.318O3で表されるが
、この組成からずれることもある。
【0612】
<被覆層>
次に、得られた試料A2の表面に、炭素を含む層を形成した。まず、酸化グラフェン1
gに対して、水15mLになるような割合で混練機を用いて混練し、酸化グラフェンの分
散溶液を作製した。
【0613】
(ステップS17)
次に、作製した水分散溶液に、試料A2を添加して混合を行った。ここで酸化グラフェ
ン1gに対して試料A2が50gとなるようにした。得られた混合物を、ベルジャーを用
いて、70℃で減圧乾燥した後、アルミナ乳鉢で解砕し、酸化グラフェンが被覆されたリ
チウムマンガン複合酸化物である、試料B2を得た。
【0614】
(ステップS18)
次に、リチウムマンガン複合酸化物の表面に被覆した酸化グラフェンを還元した。還元
剤として、アスコルビン酸を用い、溶媒としてエタノールと水の混合溶媒を用いた。混合
溶媒において、エタノールの濃度は80体積%であった。酸化グラフェンを被覆したリチ
ウムマンガン複合酸化物の重量に対して、アスコルビン酸16.87weight%と、
水酸化リチウム3.9weight%を入れて、還元液を作製した。得られた粉末を還元
液に入れ、60℃で3時間処理して還元した。
【0615】
(ステップS19)
次に、得られた溶液に対して、遠心分離機を用いて処理を行い、溶媒と試料を分離した
。次に、溶媒を分離した試料に純水を加えて24g/lの濃度になるように調整し、溶液
を得た。その後、得られた溶液を60℃で加熱した後、スプレードライ装置の供給口で2
00℃に加熱し、スプレードライ処理を行った。
【0616】
次に、スプレードライ処理により得られた粉末を、減圧下で170℃、10時間、乾燥
した。
【0617】
以上の工程により、表面にグラフェンが形成された粉末のリチウムマンガン複合酸化物
(試料C2)を作製した。
【0618】
<電極の作製>
次に、得られた試料C2を用いて電極を作製した。活物質として試料C2を用い、導電
助剤として、アセチレンブラック(AB)を用い、バインダーとしてPVdFを用いた。
【0619】
まず、PVdFと、ABと極性溶媒であるNMP(N-メチル-2-ピロリドン)とを
混練機を用いて混練し、スラリーを得た。電極合剤組成物の配合は、重量比で試料C:A
B:PVdF=90:5:5とした。
【0620】
次に、該電極合剤組成物を集電体であるアルミニウム箔上に塗布した。なお、アルミニ
ウム箔表面には、あらかじめアンダーコートを施した。その後、通風乾燥炉にて、80℃
、30分乾燥させた。ここで得られた電極を電極X3とする。次に、ロールプレス機を用
いて電極X3のプレスを実施した。電極塗工後の膜厚に対して、膜厚を20%減少させる
ようにプレス圧を調整して行った。また、プレス温度を120℃とした。
【0621】
その後、電極X3に熱処理を行った。電極X3に1kPa、170℃10時間の熱処理
を行った電極を電極X4とする。また、電極X3に1kPa、250℃10時間の熱処理
を行った電極を電極X5とする。
【0622】
<XPS分析>
得られた電極X3、X4およびX5のXPS分析を行った。Li1s、O1s、C1s
およびF1sのナロースペクトルを
図53(A)、(B)
図54(A)および(B)に示
す。また、Ni、Mn、Li、O、CおよびFの存在比を表5に示す。表5において、6
つの元素の存在比の和が100atomic%となるように数値を規格化した。
【0623】
【0624】
図53(A)から、X3、X4に比べて電極X5ではLiF等に起因するピークの強度
が増大している。
図54(A)から、X3、X4、X5と電極の熱処理により、さらにそ
の熱処理の高温化により、CF
2、O-CF結合が減少している。
図54(B)から、X
3、X4、X5と電極の熱処理により、さらにその熱処理の高温化により、金属-F結合
が増大している。以上の事から、電極の熱処理、さらにその高温化によって、PVdFに
含有されるCF
2、O-CF結合が切れ、試料CのLiと、CF
2結合およびO-CF結
合が切れることにより生じたFの間にLi-F結合が生じたと考えられる。Li-F結合
が形成されたことにより電極の強度が向上した可能性がある。
【実施例11】
【0625】
本実施例では、本発明の一態様の電極を用いてハーフセルを作製し、特性の評価を行っ
た。
【0626】
<電極の作製>
実施例2に示す工程を用いて得られた試料C2を用いて電極を作製した。活物質として
試料C2を用い、導電助剤として、アセチレンブラック(AB)を用い、バインダーとし
てポリイミドを用いた。
【0627】
まず、ポリイミド(PI)の前駆体と、ABと極性溶媒であるNMP(N-メチル-2
-ピロリドン)とを混練機を用いて混練し、スラリーを得た。電極合剤組成物の配合は、
重量比で試料C:AB:PI=90:5:5となるようにした。ポリイミドの前駆体のN
MP溶液を用いた。溶液の濃度は13.7weight%とした。
【0628】
次に、該電極合剤組成物を集電体であるアルミニウム箔上に塗布した。なお、アルミニ
ウム箔表面には、あらかじめアンダーコートを施した。その後、乾燥炉で80℃、30分
の加熱を行い、溶媒を蒸発させた。ここで得られた電極を電極Z1とする。次に、電極の
プレスを行った。
【0629】
その後、電極Z1に1kPa、300℃10時間の熱処理を行った。得られた電極を電
極Z2とする。
【0630】
<ハーフセル特性>
次に、電極Z2を用いてハーフセルを作製した。ハーフセルの作製条件等については実
施例1と同じ条件を用いた。
【0631】
次に、25℃において充放電特性の測定を行った。充電は、30mA/gの定電流、上
限電圧4.8Vで行い、放電は、30mA/gの定電流、下限電圧2Vで行った。得られ
た充放電カーブを
図55に示す。電極に300℃の高い温度で熱処理を行った電極Z2で
は、放電容量が281mAh/gと非常に高い容量が得られることがわかった。
【符号の説明】
【0632】
100 電極
101 集電体
102 活物質層
120a グラフェン
131 領域
132 領域
133 領域
141 粒子
142 領域
143 領域
300 蓄電池
301 正極缶
302 負極缶
303 ガスケット
304 正極
305 正極集電体
306 正極活物質層
307 負極
308 負極集電体
309 負極活物質層
310 セパレータ
500 蓄電池
501 正極集電体
502 正極活物質層
503 正極
504 負極集電体
505 負極活物質層
506 負極
507 セパレータ
508 電解液
509 外装体
510 正極リード電極
511 負極リード電極
512 溶接領域
513 湾曲部
514 封止部
600 蓄電池
601 正極キャップ
602 電池缶
603 正極端子
604 正極
605 セパレータ
606 負極
607 負極端子
608 絶縁板
609 絶縁板
611 PTC素子
612 安全弁機構
900 回路基板
910 ラベル
911 端子
912 回路
913 蓄電池
914 アンテナ
915 アンテナ
916 層
917 層
918 アンテナ
919 端子
920 表示装置
921 センサ
922 端子
951 端子
952 端子
981 フィルム
982 フィルム
990 蓄電池
991 外装体
992 外装体
993 捲回体
994 負極
995 正極
996 セパレータ
997 リード電極
998 リード電極
1700 曲面
1701 平面
1702 曲線
1703 曲率半径
1704 曲率中心
1800 曲率中心
1801 フィルム
1802 曲率半径
1803 フィルム
1804 曲率半径
1805 電極・電解液など
7100 携帯表示装置
7101 筐体
7102 表示部
7103 操作ボタン
7104 蓄電装置
7200 携帯情報端末
7201 筐体
7202 表示部
7203 バンド
7204 バックル
7205 操作ボタン
7206 入出力端子
7207 アイコン
7300 表示装置
7304 表示部
7400 携帯電話機
7401 筐体
7402 表示部
7403 操作ボタン
7404 外部接続ポート
7405 スピーカ
7406 マイク
7407 蓄電装置
7408 リード電極
7409 集電体
8000 表示装置
8001 筐体
8002 表示部
8003 スピーカ部
8004 蓄電装置
8021 充電装置
8022 ケーブル
8024 蓄電装置
8100 照明装置
8101 筐体
8102 光源
8103 蓄電装置
8104 天井
8105 側壁
8106 床
8107 窓
8200 室内機
8201 筐体
8202 送風口
8203 蓄電装置
8204 室外機
8300 電気冷凍冷蔵庫
8301 筐体
8302 冷蔵室用扉
8303 冷凍室用扉
8304 蓄電装置
8400 自動車
8401 ヘッドライト
8406 モーター
8500 自動車
9600 タブレット型端末
9625 スイッチ
9626 スイッチ
9627 電源スイッチ
9628 操作スイッチ
9629 留め具
9630 筐体
9630a 筐体
9630b 筐体
9631 表示部
9631a 表示部
9631b 表示部
9632a 領域
9632b 領域
9633 太陽電池
9634 充放電制御回路
9635 蓄電体
9636 DCDCコンバータ
9637 コンバータ
9638 操作キー
9639 ボタン
9640 可動部
S1 制御信号
S2 制御信号
S3 変圧信号
BT00 蓄電装置
BT01 端子対
BT02 端子対
BT03 切り替え制御回路
BT04 切り替え回路
BT05 切り替え回路
BT06 変圧制御回路
BT07 変圧回路
BT08 電池部
BT09 電池セル
BT10 トランジスタ
BT11 バス
BT12 バス
BT13 トランジスタ
BT14 電流制御スイッチ
BT15 バス
BT16 バス
BT17 スイッチ対
BT18 スイッチ対
BT21 トランジスタ対
BT22 トランジスタ
BT23 トランジスタ
BT24 バス
BT25 バス
BT31 トランジスタ対
BT32 トランジスタ
BT33 トランジスタ
BT34 バス
BT35 バス
BT41 電池制御ユニット
BT51 絶縁型DC-DCコンバータ
BT52 スイッチ部
BT53 トランス部