(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2023-10-18
(45)【発行日】2023-10-26
(54)【発明の名称】非線形マイクロ波フィルタ
(51)【国際特許分類】
H10N 69/00 20230101AFI20231019BHJP
H10N 60/12 20230101ALI20231019BHJP
H10N 60/82 20230101ALI20231019BHJP
H01P 7/08 20060101ALI20231019BHJP
H01P 1/20 20060101ALI20231019BHJP
【FI】
H10N69/00
H10N60/12 A
H10N60/82
H01P7/08
H01P1/20
(21)【出願番号】P 2020557664
(86)(22)【出願日】2019-11-22
(86)【国際出願番号】 JP2019045772
(87)【国際公開番号】W WO2020105732
(87)【国際公開日】2020-05-28
【審査請求日】2022-08-19
(31)【優先権主張番号】P 2018219739
(32)【優先日】2018-11-22
(33)【優先権主張国・地域又は機関】JP
(73)【特許権者】
【識別番号】503360115
【氏名又は名称】国立研究開発法人科学技術振興機構
(74)【代理人】
【識別番号】100149548
【氏名又は名称】松沼 泰史
(74)【代理人】
【識別番号】100163496
【氏名又は名称】荒 則彦
(74)【代理人】
【識別番号】100161207
【氏名又は名称】西澤 和純
(74)【代理人】
【識別番号】100147267
【氏名又は名称】大槻 真紀子
(72)【発明者】
【氏名】中村 泰信
(72)【発明者】
【氏名】河野 信吾
(72)【発明者】
【氏名】越野 和樹
【審査官】杉山 芳弘
(56)【参考文献】
【文献】特開2017-055417(JP,A)
【文献】特表2016-509800(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
H10N 69/00
H10N 60/12
H10N 60/82
H01P 7/08
H01P 1/20
(57)【特許請求の範囲】
【請求項1】
超伝導量子回路において
マイクロ波によって制御される量子ビットであ
って前記マイクロ波の周波数と同一の共鳴周波数を有する標的量子ビットが形成される回路基板に形成されて、前記標的量子ビットが結合する制御用導波路に結合する量子ビットであり、
前記制御用導波路における導波路端との距離が
前記標的量子ビットの共鳴波長の
0.35+n/2倍~0.65+n/2倍(ただしnは整数)の範囲内であり、
前記標的量子ビットの共鳴周波数との差が所定の範囲内である共鳴周波数をもち、
前記制御用導波路との結合が、前記標的量子ビットと前記制御用導波路との結合に比べて所定の値だけ大きい、
量子ビットを備える、
非線形マイクロ波フィルタ。
【請求項2】
前記標的量子ビットは前記導波路端に位置する
請求項1に記載の非線形マイクロ波フィルタ。
【請求項3】
前記回路基板の基板表面のうち前記標的量子ビットが形成される基板表面の裏面に形成される量子ビットである
請求項1または請求項2に記載の非線形マイクロ波フィルタ。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、非線形マイクロ波フィルタに関する。
本願は、2018年11月22日に、日本に出願された特願2018-219739号に基づき優先権を主張し、その内容をここに援用する。
【背景技術】
【0002】
量子計算機に関する技術の研究や開発が行われている。量子計算機に関する技術において、超伝導量子ビットを用いた量子計算機において2量子ビットゲート操作を行う方法が知られている(特許文献1、2参照)。
【先行技術文献】
【特許文献】
【0003】
【文献】米国特許第7613765号明細書
【文献】米国特許出願公開第2016/0380636号明細書
【発明の概要】
【発明が解決しようとする課題】
【0004】
超伝導量子ビット(以下、単に量子ビットともいう)の制御を行うためには、量子ビットを導波路に結合させて、導波路からマイクロ波パルスを照射する。しかしながら、導波路との結合は量子ビットの輻射緩和の原因となり量子ビットの寿命を短くしてしまう。
従来は、輻射緩和を抑制するために量子ビットと導波路との結合を小さくしていた。しかし、結合を小さくする方法では制御パルスと量子ビットとの相互作用も小さくなるため、ゲート操作に要する時間(ゲート時間)が長くなってしまう、という欠点があった。また周波数フィルタを介在する方法もあるが、周波数フィルタを介在する方法では制御パルスも周波数フィルタによって弱められてしまうため、やはりゲート時間が長くなってしまう。制御パルス強度を大きくしてゲート速度を速めることも考えられるが、制御パルス強度を大きくする場合、量子ビット数が増えると冷凍機にかかる熱的負荷が増大してしまう。
【0005】
本発明は上記の点に鑑みてなされたものであり、量子ビットの操作時間が長くなることを抑制することと、量子ビットの寿命が短くなることを抑制することとを両立できる非線形マイクロ波フィルタを提供する。
【課題を解決するための手段】
【0006】
本発明は上記の課題を解決するためになされたものであり、本発明の一態様は、超伝導量子回路においてマイクロ波によって制御される量子ビットであって前記マイクロ波の周波数と同一の共鳴周波数を有する標的量子ビットが形成される回路基板に形成されて、前記標的量子ビットが結合する制御用導波路に結合する量子ビットであり、前記制御用導波路における導波路端との距離が前記標的量子ビットの共鳴波長の0.35+n/2倍~0.65+n/2倍(ただしnは整数)の範囲内であり、前記標的量子ビットの共鳴周波数との差が所定の範囲内である共鳴周波数をもち、前記制御用導波路との結合が、前記標的量子ビットと前記制御用導波路との結合に比べて所定の値だけ大きい、量子ビットを備える、非線形マイクロ波フィルタである。
【0007】
また、本発明の一態様は、上記の非線形マイクロ波フィルタにおいて、前記標的量子ビットは前記導波路端に位置する。
【0008】
また、本発明の一態様は、上記の非線形マイクロ波フィルタにおいて、前記回路基板の基板表面のうち前記標的量子ビットが形成される基板表面の裏面に形成される量子ビットである。
【発明の効果】
【0009】
本発明によれば、量子ビットの操作時間が長くなることを抑制することと、量子ビットの寿命が短くなることを抑制することとを両立できる。
【図面の簡単な説明】
【0010】
【
図1】本発明の実施形態に係る標的量子ビットの制御方法の一例を示す図である。
【
図2】本発明の実施形態に係る非線形マイクロ波フィルタの有無と標的量子ビットの崩壊との関係の一例を示す図である。
【
図3】本発明の実施形態に係る非線形マイクロ波フィルタの有無と標的量子ビットのラビ振動との関係の一例を示す図である。
【
図4】本発明の実施形態に係る標的量子ビットが半無限導波路の端に備えられる場合の標的量子ビット、及び非線形マイクロ波フィルタの等価回路の一例を示す図である。
【
図5】本発明の実施形態に係る標的量子ビットが半無限導波路の端に備えられない場合の標的量子ビット、及び非線形マイクロ波フィルタの等価回路の一例を示す図である。
【
図6】本発明の実施形態に係る超伝導量子回路の一例を示す図である。
【
図7】本発明の実施形態に係る非線形マイクロ波フィルタが備えられる位置と標的量子ビットの崩壊との関係の一例を示す図である。
【
図8】本発明の実施形態に係る離調と標的量子ビットの崩壊との関係の一例を示す図である。
【
図9】本発明の実施形態に係る離調と崩壊率との関係の一例を示す図である。
【
図10】本発明の実施形態の変形例に係る超伝導量子回路の断面図の一例を示す図である。
【
図11】本発明の実施形態の変形例に係る回路基板の上側表面における標的量子ビットおよび接地パターンの一例を示す図である。
【
図12】本発明の実施形態の変形例に係る回路基板の下側表面における非線形マイクロ波フィルタおよび接地パターンの一例を示す図である。
【
図13】本発明の実施形態の変形例に係る回路基板の下側表面における非線形マイクロ波フィルタおよび接地パターンの設置場所の変形第一例を示す図である。
【
図14】本発明の実施形態の変形例に係る回路基板の下側表面における非線形マイクロ波フィルタおよび接地パターンの設置場所の変形第二例を示す図である。
【
図15】従来の標的量子ビットの制御方法の一例を示す図である。
【発明を実施するための形態】
【0011】
(実施形態)
以下、図面を参照しながら本発明の実施形態について詳しく説明する。
(量子ビットの制御)
本実施形態の標的量子ビットQ1の制御方法について説明する前に、
図15を参照し、従来の標的量子ビットの制御方法について説明する。
図15は、従来の標的量子ビットの制御方法の一例を示す図である。回路基板上には半無限導波路WGが設けられる。標的量子ビットQ1は、半無限導波路WGを伝搬する制御マイクロ波CPによって制御される。ここで標的量子ビットQ1と半無限導波路WGとの結合を結合γ1とする。
【0012】
結合γ1には、2つの意味がある。まず、結合γ1は、標的量子ビットQ1の崩壊率の大きさを表す。また、結合γ1は、標的量子ビットQ1と制御マイクロ波CPとの結合の大きさを表す。標的量子ビットQ1の量子コヒーレンスについての運動方程式は、式(1)によって表される。
【0013】
【0014】
式(1)の右辺の第1項は、標的量子ビットQ1の崩壊を表す項である。式(1)の右辺の第2項は、標的量子ビットQ1と制御マイクロ波CPとの結合を表す項である。
【0015】
ここで標的量子ビットQ1の結合γ1と、量子ビット寿命T1及びゲート時間Tgとの関係について説明する。ゲート時間Tgは、標的量子ビットQ1の操作に要する時間の長さである。
式(2)に示すように、量子ビット寿命T1は、結合γ1に反比例する。つまり、量子ビット寿命T1は、標的量子ビットQ1と半無限導波路WGとの結合γ1が強いほど短くなる。
【0016】
【0017】
一方、式(3)に示すように、ゲート時間Tgは、結合γ1の平方根に反比例する。
【0018】
【0019】
ここで振幅Eは、制御マイクロ波CPの電場振幅である。式(3)によれば、ゲート時間Tgは、標的量子ビットQ1と半無限導波路WGとの結合γ1が強いほど短くなる。
式(2)及び式(3)によれば、量子ビット寿命T1を長くしようとすれば、ゲート時間Tgは長くなる。一方、ゲート時間Tgを短くしようとすれば、量子ビット寿命T1も短くなってしまう。つまり、量子ビット寿命T1の長寿命化とゲート時間Tgの短縮とは互いに相反する関係にある。
【0020】
次に
図1を参照し、本実施形態の標的量子ビットQ1の制御方法について説明する。
図1は、本実施形態に係る標的量子ビットQ1の制御方法の一例を示す図である。標的量子ビットQ1と非線形マイクロ波フィルタQ2とは、ともに半無限導波路WGに結合している。非線形マイクロ波フィルタQ2は量子ビットを備える。
【0021】
式(4)により示されるように、標的量子ビットQ1の共鳴周波数ω1と、非線形マイクロ波フィルタQ2の共鳴周波数ω2とは等しい。以下では共鳴周波数ω1及び共鳴周波数ω2をともに共鳴周波数ω0という。また、共鳴周波数ω0に対応するマイクロ波の波長をマイクロ波波長λ0で表す。マイクロ波波長λ0は2πv/ω0で与えられる。ただし速度vは導波路中のマイクロ波伝播速度を表し、光速の約0.4倍である。
【0022】
【0023】
なお、標的量子ビットQ1の共鳴周波数と、非線形マイクロ波フィルタQ2の共鳴周波数との差は、所定の範囲内であってもよい。したがって、非線形マイクロ波フィルタQ2は、標的量子ビットQ1の共鳴周波数との差が所定の範囲内である共鳴周波数をもつ。
【0024】
また、式(5)により示されるように、非線形マイクロ波フィルタQ2と半無限導波路WGとの結合γ2は、標的量子ビットQ1と半無限導波路WGとの結合γ1に比べて遥かに大きい。
【0025】
【0026】
ここで結合γ2が結合γ1に比べて遥かに大きいとは、例えば、結合γ2が結合γ1の100倍から1000倍程度の大きさであることである。つまり、非線形マイクロ波フィルタQ2は、半無限導波路WGとの結合γ2が、標的量子ビットQ1と半無限導波路WGとの結合に比べて所定の値だけ大きい。
ここで結合γ2の下限値は、例えば、結合γ1の5000倍程度である。また、結合γ2の上限値は、例えば、共鳴周波数の10パーセント程度の値である。結合γ2が共鳴周波数の10パーセント程度の値である場合、結合γ2の結合γ1に対する比は25000倍である。
【0027】
また、式(6)により示されるように、非線形マイクロ波フィルタQ2と導波路端点との距離は、共鳴周波数ω0に相当するマイクロ波波長λ0の(1/4+n/2)倍に等しくない値である。
【0028】
【0029】
距離l2は、半無限導波路WG上の座標の原点からの非線形マイクロ波フィルタQ2の距離を示す。ここで半無限導波路WG上の座標軸であるx軸の正の向きを、半無限導波路WG上に制御マイクロ波CPが入射する向きとは逆向きとする。x軸の原点の位置を半無限導波路WGの端点の位置とし、電場について開放端とする。
距離l1は、x軸の原点からの標的量子ビットQ1の距離を示す。標的量子ビットQ1は端点に配置されるため、距離l1の値は0である。
【0030】
標的量子ビットQ1から放出される1個のマイクロ波光子MPは非線形マイクロ波フィルタQ2により反射されるため、非線形マイクロ波フィルタQ2は完全反射鏡として機能し、導波路端点と併せて共振器を形成する。上述の式(6)の条件により、標的量子ビットQ1の崩壊は抑制される。非線形マイクロ波フィルタQ2が備えられることにより、標的量子ビットQ1の寿命は、非線形マイクロ波フィルタQ2が備えられない場合に比べて格段に長くなる。
【0031】
また、非線形マイクロ波フィルタQ2は人工的な2準位原子としてはたらくため高々1個のマイクロ波光子MPとしか相互作用できず、高強度の制御マイクロ波CPによってすぐに飽和してしまい、制御マイクロ波CPをほぼ完全に透過させる。非線形マイクロ波フィルタQ2が制御マイクロ波CPをほぼ完全に透過させるため、制御マイクロ波CPによる標的量子ビットQ1の制御は、非線形マイクロ波フィルタQ2の影響をほとんど受けない。つまり、非線形マイクロ波フィルタQ2が備えられても、高強度の制御マイクロ波CPによって標的量子ビットQ1を高速に制御することができる。
【0032】
従来の標的量子ビットQ1の制御方法においては、量子ビット寿命T1の長寿命化とゲート時間Tgの短縮とは互いに相反する関係にあることを説明したが、本実施形態の標的量子ビットQ1の制御方法においては、この互いに相反する関係は解消される。
標的量子ビットQ1の崩壊は、非線形マイクロ波フィルタQ2によって完全に抑制されるため、量子ビット寿命T1は、結合γ1の強さに依存しない。一方、非線形マイクロ波フィルタQ2が備えられる場合であっても、ゲート時間Tgと結合γ1との関係は、上述の式(3)を満たす。つまり、ゲート時間Tgは、結合γ1を大きくすることによって短くすることができ、量子ビット寿命T1の長寿命化とゲート時間Tgの短縮との互いに相反する関係は解消される。
【0033】
本実施形態の標的量子ビットQ1の制御方法におけるパラメータの値は以下のとおりである。
共鳴周波数ω1の値は、式(7)が成立するように設定した。
【0034】
【0035】
共鳴周波数ω2の値は、式(8)が成立するように設定した。
【0036】
【0037】
本実施形態では、共鳴周波数ω2の値は、共鳴周波数ω1の値と等しい。
結合γ1は、式(9)が成立するように設定した。
【0038】
【0039】
結合γ2は、式(10)が成立するように設定した。
【0040】
【0041】
距離l1は、式(11)が成立するように設定した。
【0042】
【0043】
距離l2は、式(12)が成立するように設定した。
【0044】
【0045】
(標的量子ビットの寿命)
標的量子ビットQ1の寿命について詳細に説明する。
図1に示した標的量子ビットQ1、非線形マイクロ波フィルタQ2、及びマイクロ波光子MPの状態は、状態ベクトルを用いて式(13)、及び式(14)のように表される。
【0046】
【0047】
【0048】
式(13)の右辺においてσ1
†は量子ビット中に励起を作る操作を表す演算子であり、|vac>は系に全く励起が無い状態を指している。すなわち式(13)は標的量子ビットQ1が初期状態において量子ビットが励起状態にあり、導波路にはマイクロ波光子MPが無いことを示す。式(14)の右辺の第1項は、標的量子ビットQ1が励起されている状態を表し、第2項は非線形マイクロ波フィルタQ2が励起されている状態を表し、第3項は、マイクロ波光子MPが導波路中に放出された状態を表す。
係数α(t)の時間発展は、式(15)によって表され、係数β(t)の時間発展は、式(16)によって表される。
【0049】
【0050】
【0051】
式(15)、及び式(16)を、近似を用いて解き、式(17)~(19)によって表される条件を課すと、式(20)、及び式(21)が得られる。
【0052】
【0053】
【0054】
【0055】
【0056】
【0057】
結合γ2が結合γ1より遥かに大きい条件(式(5)によって示される条件)が満たされる場合、標的量子ビットQ1が励起状態にあることを示す忠実度は式(22)によって表される。
【0058】
【0059】
式(22)によれば、結合γ2が結合γ1の1000倍のとき、標的量子ビットQ1が励起状態にあることを示す忠実度は、0.998となる。つまり、結合γ2が結合γ1より遥かに大きい条件の下において、標的量子ビットQ1の崩壊は殆ど抑制される。
【0060】
図2は、本実施形態に係る非線形マイクロ波フィルタ2の有無と標的量子ビットQ1の崩壊との関係の一例を示す図である。
図2は、共鳴周波数ω2と共鳴周波数ω1とが等しいという条件の下で、共鳴周波数ω1の値を2π×10GHzとした場合の、標的量子ビットQ1が励起状態にある確率|α|
2の時間変化をそれぞれ示す。
【0061】
非線形マイクロ波フィルタQ2が共鳴波長の半整数倍の位置に厳密に備えられない場合であっても、標的量子ビットQ1の崩壊は抑制される。標的量子ビットQ1は、非線形マイクロ波フィルタQ2が式(23)によって示される位置に備えられる場合に崩壊を起こす。
【0062】
【0063】
なお、一般に原子と電磁場との間に結合があると共鳴周波数にシフトが生じるため、厳密には標的量子ビットQ1が導波路と結合しているときには、その共鳴周波数ω1も周波数シフトを生じる。この周波数シフトは、シフト前の共鳴周波数ω0を用いると式(24)によって示されるが、シフト量が非線形マイクロ波フィルタ2の有効になる周波数領域(およそω2-γ2~ω2+γ2)と比較して圧倒的に小さいため、この現象は非線形マイクロ波フィルタ2の動作に影響を与えるものではない。
【0064】
【0065】
共鳴周波数ω1と共鳴周波数ω2とが等しい場合、標的量子ビットQ1は、導波路の端点と非線形マイクロ波フィルタQ2により形成される共振器と相互作用している、と解釈することができる。この共振器は、x=0の位置を開放端、x=l2の位置を固定端とする。この共振器の共鳴周波数は、式(25)によって表される。
【0066】
【0067】
非線形マイクロ波フィルタQ2が形成する共振器の共鳴周波数は式(25)によって表されるため、非線形マイクロ波フィルタQ2の距離l2が上述の式(6)を満たす場合、標的量子ビットQ1は上記共振器と非共鳴的に相互作用し崩壊できなくなる。
【0068】
(量子ビットの制御)
標的量子ビットQ1の制御について詳細に説明する。
標的量子ビットQ1の量子コヒーレンスの運動方程式、及び非線形マイクロ波フィルタQ2の量子コヒーレンスの運動方程式は、式(26)、及び式(27)のように表される。
【0069】
【0070】
【0071】
標的量子ビットQ1の量子コヒーレンスの運動方程式である式(26)において、第2項は非線形マイクロ波フィルタQ2との相互作用を表し、第3項は制御マイクロ波CPとの相互作用を表す。非線形マイクロ波フィルタQ2の量子コヒーレンスの運動方程式式(27)において、第2項は標的量子ビットQ1との相互作用を表し、第3項は制御マイクロ波CPとの相互作用を表す。
標的量子ビットQ1を制御マイクロ波CPによって制御する場合に、非線形マイクロ波フィルタQ2の効果は式(28)が満たされる場合には無視できる。ここで|Ein|2は制御マイクロ波CPの有する単位時間当たりの光子数を表す。
【0072】
【0073】
図3は、本実施形態に係る非線形マイクロ波フィルタQ2の有無と標的量子ビットQ1のラビ振動との関係の一例を示す図である。
図3は、非線形マイクロ波フィルタQ2が共鳴波長の半分の場所に位置し、結合γ2が結合γ1の100倍である場合に、ラビ振動数Ω1を結合γ1の1000倍とした場合の、標的量子ビットQ1の応答を示す。
図3に示す例では、非線形マイクロ波フィルタQ2が備えられる場合の標的量子ビットQ1の応答と、非線形マイクロ波フィルタQ2が備えられない場合の標的量子ビットQ1の応答とは、実質重なっている。
【0074】
制御マイクロ波CPの振幅、すなわちラビ振動数Ω1が大きくなるほど、非線形マイクロ波フィルタQ2が備えられる場合の標的量子ビットQ1の応答と、非線形マイクロ波フィルタQ2が備えられない場合の標的量子ビットQ1の応答との差は小さくなる。つまり、制御マイクロ波CPの振幅が大きいほど、この差は小さくなる。したがって、上述したように、式(28)が満たされる場合には非線形マイクロ波フィルタQ2の効果が無視できることが確かめられる。
【0075】
なお、本実施形態では、半無限導波路WGの端点における境界条件が、電場について開放端である場合について説明したが、これに限らない。半無限導波路WGの端点における境界条件は、電場について固定端であっても構わない。半無限導波路WGの端点における境界条件が電場について固定端である場合にも、導波路の端点と非線形マイクロ波フィルタ2とは共振器を形成していると解釈することができる。この共振器は、x=0の位置を固定端、x=l2の位置を固定端とする。この共振器の共鳴周波数は、式(29)によって表される。
【0076】
【0077】
非線形マイクロ波フィルタ2が形成する共振器の共鳴周波数ωnは式(29)によって表されるため、非線形マイクロ波フィルタ2の距離l2が式(30)を満たす場合、標的量子ビット1は上記共振器と非共鳴的に相互作用し崩壊できなくなる。
【0078】
【0079】
なお、本実施形態では、標的量子ビットQ1が、半無限導波路WGにおいてx=0である位置に備えられる場合、つまり導波路の端に位置する場合について場合について説明したが、これに限らない。標的量子ビットQ1は、無限導波路に備えられてもよい。
標的量子ビットQ1および非線形マイクロ波フィルタQ2が無限導波路に備えられる場合、非線形マイクロ波フィルタQ2が電場に対する固定端境界条件を作り出すため、標的量子ビットQ1と非線形マイクロ波フィルタQ2との距離が共鳴波長の半整数倍である場合に,標的量子ビットQ1の位置における電場の真空揺らぎが消失し、標的量子ビットQ1の崩壊が抑制される。
ただし、標的量子ビットQ1の崩壊を抑制するためには、非線形マイクロ波フィルタQ2と標的量子ビットQ1との距離を、半無限導波路WGの場合に比べてより精度高く共鳴波長の半整数倍に等しくさせる必要がある。
また、標的量子ビットQ1が無限導波路に備えられる場合、標的量子ビットQ1の崩壊を制御するためには、共鳴周波数ω1と共鳴周波数ω2とを半無限導波路WGの場合に比べてより精度高く等しくさせる必要がある。
【0080】
ここで
図4を参照し、標的量子ビットQ1の等価回路、及び非線形マイクロ波フィルタQ2の等価回路について説明する。
図4は、本実施形態に係る標的量子ビットQ1が半無限導波路WGの端に備えられる場合(導波路の端点が電場について開放端の場合)の標的量子ビットQ1、及び非線形マイクロ波フィルタQ2の等価回路の一例を示す図である。
【0081】
キャパシタ―Cd1と、ジョセフソン接合J1に由来するインダクターとによって、非線形なLC共振器LCR1が形成される。非線形なLC共振器LCR1は、標的量子ビットQ1に対応する。キャパシタ―Cd2と、ジョセフソン接合J2に由来するインダクターとによって、非線形なLC共振器LCR2が形成される。非線形なLC共振器LCR2は、非線形マイクロ波フィルタQ2に対応する。
ジョセフソン接合J1およびジョセフソン接合J2はそれぞれ、共鳴周波数調整のための超伝導量子干渉計(SQUID:Superconducting Quantum Interference Device)に置き換えられてもよい。
【0082】
導線R1、及び導線R2は、制御マイクロ波CPが伝搬する半無限導波路WGに対応する。キャパシタ―Cd4は、非線形マイクロ波フィルタQ2と、半無限導波路WGとの間に形成される電気容量に対応する。キャパシタ―Cd3は、標的量子ビットQ1と、半無限導波路WGとの間に形成される電気容量に対応する。導線R1の長さは、半無限導波路WGの端点と非線形マイクロ波フィルタQ2との距離l2に対応し、最適な条件である式(19)で示したように、共鳴周波数ω0に相当するマイクロ波波長λ0の半整数倍である。
接地部GEは、標的量子ビットQ1が形成される超伝導量子回路QCの接地電極に対応する。
【0083】
次に
図5を参照し、標的量子ビットQ1が導波路の端にない場合(導波路の端点が電場について固定端の場合)の等価回路について説明する。
図5は、本実施形態に係る標的量子ビットQ1が半無限導波路WGの端に備えられない場合の標的量子ビットQ1、及び非線形マイクロ波フィルタQ2の等価回路の別の一例を示す図である。
導線R3は、半無限導波路WGに対応する。標的量子ビットQ1が導波路の端にないことに対応して、非線形なLC共振器LCR1と、導線R3とは、導線R1に対して並列に接続される。導線R3の端は、接地部GEに接続される。
【0084】
非線形マイクロ波フィルタQ2は固定端として機能し、導波路端点の固定端と併せて共振器を形成する。この共振器の共鳴周波数と、標的量子ビットQ1の共鳴周波数が一致しないという条件から、導線R1の長さと導線R3の長さとの和は式(30)を満たす必要がある。最適値は式(31)により表される。
【0085】
【0086】
図6は、本実施形態に係る超伝導量子回路QCの一例を示す図である。超伝導量子回路QCは、標的量子ビット1と、非線形マイクロ波フィルタ2と、制御ライン3と、回路基板6とを備える。標的量子ビット1は、
図1の標的量子ビットQ1に対応する。非線形マイクロ波フィルタ2は、
図1の非線形マイクロ波フィルタQ2に対応する。制御ライン3は、
図1の半無限導波路WGに対応する。
【0087】
回路基板6は、一例としてシリコン等の誘電体基板である。回路基板6では、シリコン等の誘電体基板の基板表面上に超伝導膜により回路素子の配線パターン及び接地パターンが形成される。なお、回路基板6の材質がシリコンである場合、回路基板6は所定の温度よりも低い温度において備えられ当該シリコンは誘電体となる。
配線パターンには、標的量子ビット1と、非線形マイクロ波フィルタ2と、制御ライン3とが含まれる。
【0088】
標的量子ビット1は、回路基板6の基板表面上に形成された量子ビットである。本実施形態において量子ビットとは、超伝導量子ビットである。標的量子ビット1は、制御ライン3の端に位置する。標的量子ビット1は、制御ライン3を介して制御マイクロ波CPによって制御されて、量子情報処理に用いられる。制御ライン3は、導波路の一例である。制御ライン3の導波路端における電場の境界条件は開放端境界条件である。
【0089】
非線形マイクロ波フィルタ2は、回路基板6の基板表面上に形成された量子ビットである。非線形マイクロ波フィルタ2は、制御ライン3と結合している。つまり、非線形マイクロ波フィルタ2は、超伝導量子回路QCにおいて制御される量子ビットである標的量子ビット1が形成される回路基板6に形成されて、標的量子ビット1が結合する導波路に結合する量子ビットである。
【0090】
非線形マイクロ波フィルタ2は、標的量子ビット1との距離が、標的量子ビット1の共鳴周波数ω0に相当するマイクロ波波長λ0の半整数倍である位置に備えられる。超伝導量子回路QCでは、一例として、共鳴周波数ω0に相当するマイクロ波波長λ0の2分の1に相当する距離に備えられる。
上述したように、非線形マイクロ波フィルタ2は、制御マイクロ波CPのような高強度の電磁場は透過させる一方で、標的量子ビット1から放出される1個のマイクロ波光子のような低強度の電磁場は反射させる。
【0091】
なお、非線形マイクロ波フィルタ2は、標的量子ビット1との距離が、標的量子ビット1の共鳴周波数ω0に相当するマイクロ波波長λ0の半整数倍から所定の範囲内である位置に備えられてもよい。ここで本実施形態では、標的量子ビット1は導波路における導波路端に備えられる。したがって、非線形マイクロ波フィルタ2は、導波路における導波路端との距離が共鳴波長であるマイクロ波波長λ0の半整数倍から所定の範囲内である。
【0092】
ここで
図7を参照し、非線形マイクロ波フィルタ2が、導波路における導波路端との距離が共鳴波長であるマイクロ波波長λ0の半整数倍から所定の範囲内に備えられる場合について、この所定の範囲の具体例について説明する。
図7は、本実施形態に係る非線形マイクロ波フィルタ2が備えられる位置と標的量子ビットQ1の崩壊との関係の一例を示す図である。
図7に示すグラフは、非線形マイクロ波フィルタ2が備えられる位置が、マイクロ波波長λ0の半整数倍である0.5倍の位置である場合、マイクロ波波長λ0の半整数倍からずれた位置に対応するマイクロ波波長λ0の0.4倍、0.35倍、0.3倍、0.6倍、0.65倍、及び0.7倍のぞれぞれの位置である場合について標的量子ビットQ1が励起状態にある確率|α|
2の時間変化をそれぞれ示す。ここでマイクロ波波長λ0の0.4倍の位置である場合と0.6倍の位置である場合、0.35倍の位置である場合と0.65倍の位置である場合、及び0.3倍の位置である場合と0.7倍の位置である場合とでは、グラフの形はそれぞれ同じである。なお、
図7では、比較のために非線形マイクロ波フィルタ2が備えられない場合の結果を示すグラフも示されている。
【0093】
図7に示すグラフのとおり、非線形マイクロ波フィルタ2が備えられる位置がマイクロ波波長λ0の半整数倍からずれている場合であっても、非線形マイクロ波フィルタ2が備えられ位置が、マイクロ波波長λ0の0.4倍(または0.6倍)、0.35倍(または0.65倍)である場合には、標的量子ビットQ1が励起状態にある確率|α|
2は、時間が経過しても0.996以上に維持されている。
したがって、非線形マイクロ波フィルタ2が、導波路における導波路端との距離が共鳴波長であるマイクロ波波長λ0の半整数倍から所定の範囲内に備えられる場合に標的量子ビットQ1の崩壊を抑制するためには、この所定の範囲とはマイクロ波波長λ0の0.35倍から0.65倍の範囲を例示できる。
【0094】
またなお、上述したように、標的量子ビットQ1の共鳴周波数と、非線形マイクロ波フィルタQ2の共鳴周波数との差は、所定の範囲内であってもよい。ここで
図8及び
図9を参照し、標的量子ビットQ1の共鳴周波数と、非線形マイクロ波フィルタQ2の共鳴周波数との差が所定の範囲内である場合の所定の範囲について説明する。以下の説明において、標的量子ビットQ1の共鳴周波数と、非線形マイクロ波フィルタQ2の共鳴周波数との差を離調(Detuning)という。
【0095】
図8は、本実施形態に係る離調と標的量子ビットQ1の崩壊との関係の一例を示す図である。
図8に示すグラフは、離調が0MHz、10MHz、及び50MHzであるそれぞれの場合について標的量子ビットQ1が励起状態にある確率|α|
2の時間変化をそれぞれ示す。なお、
図8では、比較のために非線形マイクロ波フィルタ2が備えられない場合の結果を示すグラフも示されている。
【0096】
図8によれば、離調が0MHz以外の場合、標的量子ビットQ1が励起状態にある確率|α|
2の時間変化を示すグラフは負の傾きをもっている。つまり非線形マイクロ波フィルタQ2の共鳴周波数が標的量子ビットQ1の共鳴周波数からずれている場合、標的量子ビットQ1は有限の崩壊率をもつ。
【0097】
ここで
図9に離調と崩壊率との関係を示す。
図9は、本実施形態に係る離調と崩壊率との関係の一例を示す図である。
図9に示すグラフは、離調に対する崩壊率を示す。
図9に示すグラフでは、崩壊率は、非線形マイクロ波フィルタ2が備えられない場合の崩壊率の値(式(20)から、結合γ1の2倍であることが導かれる)によって規格化されて示されている。
図9に示すグラフから、例えば離調が結合γ2の値と同程度(50MHz)の場合には、標的量子ビット1の崩壊率は、非線形マイクロ波フィルタ2が備えられない場合の崩壊率の半分程度に抑えられていることがわかる。この
図9から崩壊率が0に近くなる範囲としては、例えば非線形マイクロ波フィルタQ2と半無限導波路WGとの結合γ2の値の10パーセント程度(5MHz)を例示することができる。
【0098】
(非線形マイクロ波フィルタの設置場所の変形例)
本実施形態においては、非線形マイクロ波フィルタ2が回路基板6の基板表面上に形成される場合について説明したが、変形例として非線形マイクロ波フィルタ2aが回路基板6aの基板表面のうち、標的量子ビット1aが形成される基板表面の裏面に形成される場合について説明する。
【0099】
図10~
図13を参照し本実施形態の変形例に係る超伝導量子回路QCaについて説明する。
図10は、本実施形態の変形例に係る超伝導量子回路QCaの断面図の一例を示す図である。超伝導量子回路QCaは、標的量子ビット1aと、非線形マイクロ波フィルタ2aと、回路基板6aと、上部接地電極7aと、下部接地電極8aと、上部バンプ9aと、下部バンプ12aと、基板上面接地電極13と、基板下面接地電極14と、制御用信号線16aとを備える。回路基板6aは、上部接地電極7aと、下部接地電極8aとにより挟まれている。
回路基板6aからみて上部接地電極7aが備えられる側を上側、回路基板6aからみて下部接地電極8aが備えられる側を下側という。
【0100】
標的量子ビット1aは、回路基板6aの上側の基板表面である上側表面S1に形成される。標的量子ビット1aは、上側表面S1において基板上面接地電極13aに囲まれる。基板上面接地電極13aは、上側表面S1に形成される接地パターンの一部である。基板上面接地電極13a-1及び基板上面接地電極13a-2は、基板上面接地電極13aの断面を示す。
【0101】
標的量子ビット1aは、円板10aと、円板10aを囲うリング11aとを備える。リング11a-1及びリング11a-2は、リング11aの断面である。円板10aとリング11aとは、ジョセフソン接合15aにより接続されている。
ここで
図11に回路基板6aの上側表面S1aを示す。
図11は、本実施形態の変形例に係る回路基板6aの上側表面S1aにおける標的量子ビット1aおよび接地パターンの一例を示す図である。
【0102】
図10の非線形マイクロ波フィルタ2aは、回路基板6aの上側表面S1aに形成された標的量子ビット1aの位置に応じた下側表面S2aの位置に形成される。下側表面S2aとは、回路基板6aの下側の基板表面である。つまり、非線形マイクロ波フィルタ2は、回路基板6aの上側表面S1aのうち標的量子ビット1aが形成される上側表面S1aの裏面に形成される量子ビットである。当該位置は、
図4におけるn=0に相当する。
【0103】
非線形マイクロ波フィルタ2aは、下側表面S2aにおいて
図12の基板下面接地電極14aに囲まれる。基板下面接地電極14aは、下側表面S2aに形成される接地パターンの一部である。
図10の基板下面接地電極14a-1及び基板下面接地電極14a-2は、基板下面接地電極14aの断面を示す。
【0104】
非線形マイクロ波フィルタ2aは、中心部20aと、中心部20aを囲うリング21aとを備える。リング21a-1及びリング21a-2は、リング21aの断面である。リング21aと基板下面接地電極14aとは、ジョセフソン接合23aにより接続されている。
ここで
図12に回路基板6aの下側表面S2aを示す。
図12は、本実施形態の変形例に係る回路基板6aの下側表面S2aにおける非線形マイクロ波フィルタ2aおよび接地パターンの一例を示す図である。
【0105】
制御用信号線16aは、下部接地電極8aを下側から貫通して、非線形マイクロ波フィルタ2aの中心部20aに接する。制御用信号線16aは、標的量子ビット1aに標的量子ビット1aを制御する制御マイクロ波CPを供給する。制御用信号線16aは、一例として、ばねを内部に含むばねピンである。制御用信号線16aは、内部に含むばねの弾性力によって中心部20aに接する。
【0106】
上部バンプ9aは、上部接地電極7aと基板上面接地電極13aとの間に備えられる。上部バンプ9a-1及び上部バンプ9a-2は、上部バンプ9aの一例である。下部バンプ12aは、下部接地電極8aと基板下面接地電極14aとの間に備えられる。下部バンプ12a―1及び下部バンプ12a―2は、下部バンプ12aの一例である。
上部バンプ9a及び下部バンプ12aは、一例として、基板上面接地電極13aや基板下面接地電極14aの展延性よりも高い展延性を有する超伝導体によって形成される。
【0107】
超伝導量子回路QCaでは、上部接地電極7aと回路基板6aの上側表面S1a上の接地パターンとの間の不要な空隙、または下部接地電極8aと回路基板6aの下側表面S2a上の接地パターンと間の不要な空隙を除去できるため、隣接する制御用信号線16aを伝搬する制御用信号、または読み取り用信号相互間の漏話を抑制できる。ここで読み取り用信号は、読み取り用信号線(不図示)を伝搬する。超伝導量子回路QCaでは、読み取り用信号線は制御用信号線16a同様に下部接地電極8aを下側から貫通して備えられる。
【0108】
ここで再び
図4を参照し、
図10の超伝導量子回路QCaに対応する等価回路について説明する。
キャパシタ―Cd3は、標的量子ビット1aと制御用信号線16aとの間に形成される電気容量に対応する。キャパシタ―Cd4は、非線形マイクロ波フィルタ2aと制御用信号線16aとの間に形成される電気容量に対応する。
【0109】
次に
図13及び
図14を参照し、超伝導量子回路QCaにおける下側表面S2aの接地パターンの変形例について説明する。
図13は、本実施形態の変形例に係る回路基板6bの下側表面S2bにおける非線形マイクロ波フィルタ2bおよび接地パターンの設置場所の変形第一例を示す図である。非線形マイクロ波フィルタ2bは、回路基板6bの下側表面S2bに形成される。非線形マイクロ波フィルタ2bは、円板20bと、円板20bを囲うリング21bとを備える。リング21bと基板下面接地電極14bとは、ジョセフソン接合23bにより接続されている。
【0110】
円板20bは、非線形マイクロ波フィルタ2bの一部であると同時に、制御ライン24bの一部である。円板20bは、制御ライン24bの端部である。円板25bは、制御ライン24bの端部のうち円板20bと反対側の端部である。
円板25bは、回路基板6bの上側表面S1bに形成された標的量子ビット1bの位置に応じた下側表面S2bの位置に形成される。ここで円板20bと円板25bとの距離は、共鳴波長の半整数倍に等しい。
制御マイクロ波CP1bは、円板20bから入射して制御ライン24bを伝搬した後、円板25bから、回路基板6bの上側表面S1bに形成される標的量子ビット1bへと出射する。
【0111】
図14は、本実施形態の変形例に係る回路基板6cの下側表面S2cにおける非線形マイクロ波フィルタ2cおよび接地パターンの設置場所の変形第二例を示す図である。非線形マイクロ波フィルタ2cは、回路基板6cの下側表面S2cに形成される。非線形マイクロ波フィルタ2cは、円板20bと、制御ライン24cに沿って形成される長方形21cとを備える。長方形21cと基板下面接地電極14cとは、ジョセフソン接合23cにより接続されている。
【0112】
円板20cは、非線形マイクロ波フィルタ2cの一部であると同時に、制御ライン24cの一部である。円板20cは、制御ライン24cの端部である。円板25cは、制御ライン24cの端部のうち円板20cと反対側の端部である。
円板25cは、回路基板6cの上側表面S1cに形成された標的量子ビット1cの位置に応じた下側表面S2cの位置に形成される。ここで円板20cと円板25cとの距離は、共鳴波長の半整数倍に等しい。
制御マイクロ波CP1cは、円板20cから入射して制御ライン24cを伝搬した後、円板25cから、回路基板6cの上側表面S1cに形成される標的量子ビット1cへと出射する。
【0113】
(まとめ)
以上に説明したように、本実施形態に係る非線形マイクロ波フィルタ2は、超伝導量子回路QCにおいて制御される量子ビットである標的量子ビット1が形成される回路基板6に形成されて、標的量子ビット1が結合する制御用導波路(この一例において、制御ライン3)に結合する量子ビットであり、制御用導波路(この一例において、制御ライン3)における導波路端との距離が共鳴波長の半整数倍から所定の範囲内であり、標的量子ビット1の共鳴周波数との差が所定の範囲内である共鳴周波数をもち、制御用導波路(この一例において、制御ライン3)との結合が、標的量子ビット1と制御用導波路(この一例において、制御ライン3)との結合に比べて所定の値だけ大きい量子ビットを備える。
【0114】
この構成により、本実施形態に係る非線形マイクロ波フィルタ2では、制御マイクロ波CPなど高強度のマイクロ波を透過させる一方、標的量子ビット1からの自然放出光など低強度のマイクロ波を反射させるため、量子ビットの操作時間が長くなることを抑制することと、量子ビットの寿命が短くなることを抑制することとを両立できる。つまり、本実施形態に係る非線形マイクロ波フィルタ2では、量子ビット寿命T1の長寿命化とゲート時間Tgの短縮との互いに相反する関係を解消し、標的量子ビット1の短時間での制御と長寿命化とを両立できる。
【0115】
また、本実施形態に係る非線形マイクロ波フィルタ2では、標的量子ビット1は制御用導波路(この一例において、制御ライン3)の端に位置する。
この構成により、本実施形態に係る非線形マイクロ波フィルタ2では、標的量子ビット1および非線形マイクロ波フィルタ2が無限導波路に結合している場合と比較して、非線形マイクロ波フィルタ2の位置制御に関する高い精度が要求されないために、回路設計における自由度を高くすることができる。
【0116】
また、本実施形態の変形例に係る非線形マイクロ波フィルタ2a、2b、2cは、回路基板6a、6b、6cの基板表面のうち標的量子ビット1a、1b、1cが形成される基板表面(この一例において、上側表面S1a、S1b、S1c)の裏面(この一例において、下側表面S2a、S2b、S2c)に形成される量子ビットである。
【0117】
この構成により、本実施形態の変形例に係る非線形マイクロ波フィルタ2a、2b、2cでは、回路基板6a、6b、6cの基板表面上において、標的量子ビット1a、1b、1cの数に依らず一定の配線パターンの密度を確保できるため、標的量子ビット1の短時間での制御と長寿命化とを両立しながら、回路基板6a、6b、6cの基板表面上において配線パターンの密度が大きくなることを抑制できる。
【0118】
以上、図面を参照してこの発明の一実施形態について詳しく説明してきたが、具体的な構成は上述のものに限られることはなく、この発明の要旨を逸脱しない範囲内において様々な設計変更等をすることが可能である。
【符号の説明】
【0119】
QC…超伝導量子回路、1…標的量子ビット、2…非線形マイクロ波フィルタ、3…制御ライン、6…回路基板