(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2023-10-18
(45)【発行日】2023-10-26
(54)【発明の名称】液体ディスペンサーとその流量調整方法
(51)【国際特許分類】
G05D 7/06 20060101AFI20231019BHJP
B05B 1/30 20060101ALI20231019BHJP
【FI】
G05D7/06 Z
B05B1/30
(21)【出願番号】P 2020033269
(22)【出願日】2020-02-28
【審査請求日】2022-11-10
(73)【特許権者】
【識別番号】000004400
【氏名又は名称】オルガノ株式会社
(74)【代理人】
【識別番号】100123788
【氏名又は名称】宮崎 昭夫
(74)【代理人】
【識別番号】100127454
【氏名又は名称】緒方 雅昭
(72)【発明者】
【氏名】星野 隆文
(72)【発明者】
【氏名】川口 修
(72)【発明者】
【氏名】西村 寛之
(72)【発明者】
【氏名】岡部 修一
【審査官】今井 貞雄
(56)【参考文献】
【文献】国際公開第2018/153886(WO,A1)
【文献】特開平05-168995(JP,A)
【文献】特開2006-120149(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
G05D 7/00-7/06
(57)【特許請求の範囲】
【請求項1】
液体を吐出する液体ディスペンサーであって、
液体を吐出するノズルと、
供給源から前記液体が供給され、前記ノズルに連通する配管と、
前記配管に設けられて開閉と開度または流量比である動作度とを制御することが可能である電磁弁と、
前記電磁弁を制御する制御部と、
を有し、
前記制御部は、前記液体を前記ノズルから1滴ずつ滴下させるときに、所定の動作度で前記電磁弁を開くために用いられる信号を所定の時間にわたって前記電磁弁に出力する制御を実行し、
前記所定の動作度は、連続して当該動作度で前記電磁弁を開弁したときには前記ノズルから前記液体が連続して流出する動作度である、液体ディスペンサー。
【請求項2】
前記電磁弁は比例制御弁である、請求項1に記載の液体ディスペンサー。
【請求項3】
前記比例制御弁は、ダイヤフラム弁構造を有する比例制御弁であり、前記所定の時間は1ミリ秒以上100ミリ秒以下であって、前記信号は方形波パルスである、請求項2に記載の液体ディスペンサー。
【請求項4】
前記比例制御弁は、グローブ弁構造を有する比例制御弁であり、前記所定の時間は50ミリ秒以上500ミリ秒以下であり、前記信号は前記所定の時間の期間において動作度0%から前記所定の動作度まで増加する三角波パルスである、請求項2に記載の液体ディスペンサー。
【請求項5】
前記制御部は、パルスである前記信号の出力間隔を変化させることにより、前記ノズルからの滴下速度を変化させる、請求項1乃至4のいずれか1項に記載の液体ディスペンサー。
【請求項6】
利用者によって操作されるスイッチを備え、前記制御部は、前記スイッチが操作されているときに前記ノズルから前記液体が吐出される制御を行う、請求項1乃至5のいずれか1項に記載の液体ディスペンサー。
【請求項7】
液体を吐出するノズルと、供給源から前記液体が供給され、前記ノズルに連通する配管と、前記配管に設けられて開閉と開度または流量比である動作度とを制御することが可能である電磁弁と、を有する液体ディスペンサーの流量調整方法であって、
前記液体を前記ノズルから1滴ずつ滴下させるときに、所定の動作度で前記電磁弁を開くために用いられる信号を所定の時間にわたって前記電磁弁に印加し、
前記所定の動作度は、連続して当該動作度で前記電磁弁を開弁したときには前記ノズルから前記液体が連続して流出する動作度である、流量調整方法。
【請求項8】
前記電磁弁は比例制御弁である、請求項7に記載の流量調整方法。
【請求項9】
前記比例制御弁は、ダイヤフラム弁構造を有する比例制御弁であり、前記所定の時間は1ミリ
秒以上100ミリ秒以下であって、前記信号は方形波パルスである、請求項8に記載の流量調整方法。
【請求項10】
前記比例制御弁は、グローブ弁構造を有する比例制御弁であり、前記所定の時間は50ミリ秒以上500ミリ秒以下であり、前記信号は前記所定の時間の期間において動作度0%から前記所定の動作度まで増加する三角波パルスである、請求項8に記載の流量調整方法。
【請求項11】
パルスである前記信号の出力間隔を変化させることにより、前記ノズルからの滴下速度を変化させる、請求項7乃至10のいずれか1項に記載の流量調整方法。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、純水製造装置などの供給源に接続されて需要に応じて純水などの液体を吐出する液体ディスペンサーと、その流量調整方法に関する。
【背景技術】
【0002】
液体の使用場所においては、利用者による需要に応じて液体を吐出することができる液体ディスペンサーが用いられる。特に、純水を吐出する液体ディスペンサーは、純水ディスペンサーあるいは採水ディスペンサーと呼ばれる。例えば、研究機関などでは比較的小型の純水製造装置を用いて純水を製造することが多く、ユースポイントにおいて純水を例えばビーカー、フラスコ、試験管などに採水するために、純水製造装置に接続する純水ディスペンサーが広く用いられている。純水ディスペンサーは、純水を吐出するノズルと、ノズルへの純水の経路に設けられてノズルに対して純水を供給し、またこの供給を遮断する開閉弁とを備えている。純水ディスペンサーは、通常、純水製造装置の本体とは離れた場所に設けられ、配管によって純水製造装置本体の純水出口に接続される。利用者が開閉弁を操作することによってノズルから純水が吐出し、これにより、利用者はその必要に応じた量で純水を採水あるいは集水することができる。開閉弁としては電磁弁が用いられることが多く、電磁弁を用いる場合には、指で操作できる押しボタンスイッチあるいは足によって操作できる足踏みスイッチ等により電磁弁を制御し、ノズルから純水を吐出させる。このような純水ディスペンサーの例が特許文献1に示されている。
【0003】
純水ディスペンサーでは、ノズルから純水を吐出することに関し、いくつかの採水モードを設定することができる。例えば、利用者がスイッチを操作しているときだけノズルから純水を吐出させるモードを連続採水モードあるいは任意量採水モードと呼ぶ。また流量センサーと電磁弁とを組み合わせ、1回のスイッチ操作があったときに流量センサーによって計測される流量が規定値に達するまで電磁弁を開放することにより、規定容量の純水を採水できるようにする定量採水モードを備える純水ディスペンサーも多い。このような採水モードを備える純水ディスペンサーとしては、例えば、特許文献2に記載されたものがある。メスフラスコに対しその標線まで純水を供給したい場合などのために、純水ディスペンサーにおいては、ノズルから1滴ずつ純水を滴下する滴下採水モードが設けられることも多い。1滴あたりの純水の体積は例えば数十μLであるが、メスフラスコを用いた定量分析の分析精度の向上のためには、1滴当たりの体積は小さい方が好ましい。一滴当たりの体積を小さくするためには、純水の出口となるノズル先端の開口の直径を小さくすればよい。その一方で、純水ディスペンサーの使用場面では、できるだけ大流量、例えば毎分数Lで純水を吐出させることが求められることもある。大流量に対応するためにはノズル先端の開口の直径を大きくする必要がある。特許文献3は、先端形状を工夫することによって大容量での連続した純水の吐出にも対応できるとともに極小体積での滴下採水にも使用できるノズルを開示している。
【0004】
極小体積で液体を滴下させることは、純水ディスペンサーだけではなく、純水以外の液体を吐出する液体ディスペンサーにおいても必要となることがある。例えば、非水溶媒を用いる定量分析を行う場合においても、極小体積でその非水溶媒を滴下させることが必要である。試薬を水または非水溶媒に溶解させた液を滴下させたいこともある。以下の説明においては、滴下採水も含めて液体ディスペンサーから1滴ずつ液体を滴下させることを滴下吐出と呼ぶ。
【先行技術文献】
【特許文献】
【0005】
【文献】特開2018-103154号公報
【文献】国際公開第2019/021556号
【文献】特開2013-180285号公報
【発明の概要】
【発明が解決しようとする課題】
【0006】
滴下吐出は、液体ディスペンサー内に設けられる電磁弁として、流量調節の可能な弁、例えば比例制御弁を使用し、電磁弁を微開状態に絞ってそこを通る液体の流量を減少させることによって実現できる。弁が微開状態であるときには液体は弁を連続的に流れるものの、大気との界面であるノズルの先端において、表面張力により液滴を形成する。液滴がある大きさに達すれば、重力により落下するので、1滴ずつ液体が滴下することになる。しかしながら、ソレノイドを用いる電磁弁では、弁に与えられる開弁用の信号のレベルをゼロではない小さな値とすることによって弁を微開状態としても、その状態において開度を正確に調整することが難しい。例えば、弁に対する開度出力がわずかに変動しても流量が大きく変動し、その結果、1滴ごとの液体の体積がばらつくとともに、液体の滴下間隔も変動する。場合によっては滴下ではなく連続流として液体がノズルから吐出したり、液体が全く吐出されなかったりすることもある。さらに、ソレノイドに通電することによる発熱によってもソレノイドの吸引力が変化して流量が変化するので、連続通電を行ったときとであるかそうでないときであるかに応じて、1滴の大きさや滴下間隔(すなわち滴下する液滴間の時間間隔)が異なることとなる。
【0007】
本発明の目的は、滴下吐出において滴下される液滴の体積を安定させることができる液体ディスペンサーと、その流量調整方法とを提供することにある。
【課題を解決するための手段】
【0008】
本発明の液体ディスペンサーは、液体を吐出する液体ディスペンサーであって、液体を吐出するノズルと、供給源から液体が供給され、ノズルに連通する配管と、配管に設けられて開閉と開度または流量比である動作度とを制御することが可能である電磁弁と、電磁弁を制御する制御部と、を有し、制御部は、液体をノズルから1滴ずつ滴下させるときに、所定の動作度で電磁弁を開くために用いられる信号を所定の時間にわたって電磁弁に出力する制御を実行し、所定の動作度は、連続してその動作度で電磁弁を開弁したときにはノズルから液体が連続して流出する動作度である。
【0009】
本発明の液体ディスペンサーの流量調整方法は、液体を吐出するノズルと、供給源から液体が供給され、ノズルに連通する配管と、配管に設けられて開閉と開度または流量比である動作度とを制御することが可能である電磁弁と、を有する液体ディスペンサーの流量調整方法であって、液体をノズルから1滴ずつ滴下させるときに、所定の動作度で電磁弁を開くために用いられる信号を所定の時間にわたって電磁弁に印加し、所定の動作度は、連続してその動作度で電磁弁を開弁したときにはノズルから液体が連続して流出する開度である。
【発明の効果】
【0010】
本発明によれば、開度の制御を精度よく行うことができる比較的大きな開度で所定の時間にわたって電磁弁を開けることによりノズルの先端から液体を滴下させるので、滴下吐出において滴下される液滴の体積を安定させることができる。
【図面の簡単な説明】
【0011】
【
図1】純水製造装置及び純水ディスペンサーの構成を示す図である。
【
図2】(a),(b)は、それぞれ、実施の一形態の純水ディスペンサーの側面図及び正面図である。
【
図3】(a),(b)は、滴下吐出モードにおいて電磁弁に印加される信号を示す波形図である。
【
図4】設定された滴下間隔に応じて電磁弁に印加される信号を示す波形図である。
【
図5】タッチパネルにおける表示例を示す図である。
【発明を実施するための形態】
【0012】
次に本発明の実施の形態について、図面を参照して説明する。本発明に基づく液体ディスペンサーは、滴下吐出機能を備えるものであり、例えば、純水製造装置と組み合わされて純水を採水するために用いられる純水ディスペンサーである。以下では、液体ディスペンサーが純水ディスペンサーであるものとして説明を行うが、本発明に基づく液体ディスペンサーは、純水ディスペンサーに限られるものではなく、純水以外の液体を利用者による需要に応じて吐出するものであってもよい。
図1は、液体ディスペンサーが純水ディスペンサーである場合に、その純水ディスペンサーを純水の供給源である純水製造装置に組み合わせた状態を示している。
【0013】
純水製造装置50は、水道水などの供給水が供給されて純水を製造する純水製造部51と、純水製造部51の動作を制御する制御装置52とを備えている。純水製造部51は、例えば、逆浸透膜やイオン交換装置を備えて供給水から一次純水を製造する一次純水製造装置と、イオン交換装置や限外濾過膜、紫外線酸化装置などからなる循環精製系を有して一次純水の純度をさらに高めるサブシステムとから構成される。純水製造部51内には各種のセンサー類(不図示)、ポンプ(不図示)及び弁(不図示)が設けられるが、制御装置52は、センサー類からの信号を受け取り、これに基づいてポンプ(不図示)や弁(不図示)を制御することによって、純水製造部51の動作の制御を行なう。純水製造部51の出口には、純水を純水ディスペンサー10に供給するための複数の出口ポート53が接続している。出口ポート53は、純水製造装置50における純水ディスペンサー10との接続位置となるポートであり、純水ディスペンサー10は、例えば、可撓性を有する配管55によって、いずれかの出口ポート53に接続される。図示した例では、出口ポート53が3個設けられており、その各々に純水ディスペンサー10が接続することによって、合計3台の純水ディスペンサー10が純水製造装置50に接続されている。もちろん、出口ポート53の数は3に限られるものではなく、純水製造装置50に接続される純水ディスペンサー10の数も、出口ポート53の数の範囲内で任意に増減することができる。
【0014】
次に、純水ディスペンサー10について説明する。
図1にも示されるように、純水ディスペンサー10は、大別すると、利用者が手に持って動かすことができるヘッド部10aと、例えば実験台の上に載置されて純水製造装置50から純水が供給される本体部10bとから構成されており、ヘッド部10aと本体部10bとは可撓性を有する配管14によって接続されている。純水ディスペンサー10の使用形態として、例えば、実験台の上に整列して置かれた多数の試験管に対して次々と純水を注ぐために用いる、というものがある。このような用途に対応するために、利用者によって把持されて所望の位置に動かすことができるヘッド部10aを設けて、実際に純水の注ぎ口となるノズル16をヘッド部10aに設けるようにしている。
図2(a),(b)はそれぞれ純水ディスペンサー10の側面図と正面図であり、特に
図2(a)では、ヘッド部10aの内部構成が破線によって示されている。ただし
図2では、純水製造装置との接続に用いられる配管55や各種の配線は示されていない。
【0015】
ヘッド部10aは、本体部10bから配管14を介して送られてきた純水をノズル16から吐出するものであり、ノズル16のほかに、配管14に接続する配管15を備えており、配管15には電磁弁13が設けられている。ノズル16は、後述するヘッドホルダ67にヘッド部10aを支持させたときにヘッド部10aの下側となる面に配置するように、配管15の末端に設けられている。ノズル16としては、例えば特許文献3に記載されたものを用いることができる。ノズル16を保護し、また、ノズル16から吐出している純水に大気中からのごみなどが混入しないように、ノズル16の周辺を囲みかつ下方に向かって開く透明な保護カバー74が設けられている。さらにヘッド部10aは、利用者による需要に応じて純水を吐出するために、利用者によって操作されるスイッチ18(
図1参照)を備えている。ヘッド10aには、利用者が把持するためのハンドル(取っ手)70が設けられるともに、ハンドル70を握った利用者がその指で容易に操作できる位置に、ボタン73が設けられている。ボタン73はスイッチ18に機械的に接続しており、ボタン73に対する操作によってスイッチ18が操作されるようになっている。
【0016】
次に、ヘッド部10aに設けられる電磁弁13について説明する。電磁弁13としては、印加される信号によって弁の開閉を制御できるともに弁の開度または流量比も制御できるものが使用される。そのような電磁弁13の一例として、比例制御弁がある。本実施形態の純水ディスペンサーでは、滴下採水モードにおいてごく短時間(例えば1ミリ秒から500ミリ秒の範囲)だけ弁を開ける制御を実行する。そのため、電磁弁13として、応答速度が速いものを使用する必要がある。電磁弁13として比例制御弁を用いる場合、応答速度の観点から、例えば、ダイヤフラム弁構造のものあるいはグローブ弁構造のものを用いることが好ましい。ヘッド部10aの配管15ではなく本体部10bの配管11において、流量センサー12の下流側に電磁弁13を設けることも可能であるが、本体部10bに電磁弁13を設けた場合には、可撓性を有する配管14の変形などによって滴下採水時の液滴の体積が変動するおそれがある。そのため、電磁弁13はヘッド部10aに設けることが好ましい。
【0017】
本体部10bは、実験台の上などに載置される部分であるベース64と、ベース64から上方に延びる柱状部65と、ベース64に一端が取り付けられた屈曲可能なアーム66と、アーム66の先端に設けられてヘッド部10aを取り外し可能に保持するヘッドホルダ67と、を備えている。ヘッドホルダ67には、ヘッド部10aに形成された固定用孔69に係合するピン68が設けられており、ヘッドホルダ67にヘッド部10aを支持させたときにヘッド部10aが容易には移動しないようになっている。可撓性を有する上述した配管14は、本体部10bの背面とヘッド部10aとの間を接続している。操作パネル19はベース64に設けられている。この構成では、ハンドル70を持ってヘッド部10aを上方に動かせば、固定用孔69からヘッドホルダ67のピン68が離脱する。これによって、利用者は、ヘッドホルダ67を介してヘッド部10aを本体部10bに固定して採水を行なったり、あるいは、ヘッド部10aを手で持って実験台の上に整列して置かれた多数の試験管に対して次々と純水を注いだりすることができるようになる。
【0018】
図1に示すように本体部10bの内部には配管11が設けられており、配管11の一端は純水製造装置50からの配管55に接続し、他端はヘッド部10aへの配管14に接続している。配管11には流量センサー12が設けられている。さらに本体部10bには、純水ディスペンサー10の動作を制御する制御部20と、制御部20に接続する操作パネル19とが設けられている。流量センサー12は、例えば、一定の体積(容量)の液体が流れるごとに電気パルスを出力するパルス式のものである。操作パネル19は、利用者からの例えば採水量や採水モードの設定を受け付けるとともに、利用者に対して必要な表示を行うものである。採水モードとしては、例えば、任意量の採水を可能にする連続採水モードと、定量採水機能に基づく採水モードであって利用者が指定した体積の純水をノズル16から吐出する定量採水モードと、純水を1滴ずつノズル16から滴下させる滴下採水モードとがあり、さらに、その他の採水モードが設けられていてもよい。本実施形態の純水ディスペンサー10は、少なくとも滴下採水モードを備えている必要がある。
【0019】
制御部20は、純水ディスペンサー10の全体の制御を行うものであり、例えば、ヘッド部10aのスイッチ18を介して入力した利用者からの採水要求を受け付け、採水モードが定量採水モードである場合には、流量センサー12で検出された流量の累積値(すなわち体積値)が設定値となるまで電磁弁13を開けることにより、その設定値で示される量の純水がヘッド部10aに送水されるようにする制御を行う。採水モードが連続採水モードである場合には、制御部20は、スイッチ18が操作されている期間だけ流量調節弁13を開ける制御を行う。連続採水モードの場合、利用者は、操作パネル19を介してノズルからの純水の流量(すなわち単位時間当たりの吐出量)を指定することができ、制御部20は、指定された流量となるように電磁弁13を制御する。これは、洗浄びんへの採水など、速度が重視される場合と、小容量の試験管やフラスコへの採水など、採水操作の正確さが重視される場合とがあるためである。滴下採水モードでの制御については後述する。さらに制御部20は、図示破線で示す配線により純水製造装置50の制御装置52に接続しており、制御装置52から、純水製造装置50の運転状態に関する情報、特に、製造された純水のTOC(全有機炭素;total organic carbon)値、抵抗率、温度値などの品質データを取得する。制御部20は、取得した水質データを所定のフォーマットで操作パネル19上に表示する。
【0020】
純水ディスペンサー10の本体部10bを構成するこれらの要素のうち、配管11、流量センサー12及び制御部20は、
図2に示すベース64の内部に設けられる。操作パネル19は、液晶表示パネルとタッチセンサーとを一体化させたタッチパネルとして設けられている。操作パネル19は、利用者に対して表示を行なう表示部として機能するとともに、操作パネル19上の所定の位置に対して利用者が触れることにより、利用者からの入力を受け付ける。
【0021】
次に、本実施形態の純水ディスペンサー10における滴下採水モードを説明する。従来の純水ディスペンサーにおいては、弁の開度を絞ることによってノズルに供給される純水の流量を小さな値に制限することにより、ノズルまでは純水が連続的に給送されているものの、流量が小さすぎるがためにノズルからは純水が連続流としては流れ出さない状態として滴下採水を実現していた。このとき、弁の開度がばらつくと、1滴当たりの液体の体積や滴下間隔が大きく変動する。そこで本実施形態では、比較的大きな開度で電磁弁13を短時間、例えば1ミリ秒から500ミリ秒の期間だけ開けることにより、1滴分の液体をノズル16に供給してノズル16の先端に液滴を形成し、ノズル16から1滴ずつ液体を滴下させる。短い時間だけ電磁弁13を開けるが、そのときの開度は、連続してその開度で電磁弁13を開けているのであればノズル16から連続流で純水が吐出することとなる開度である。弁の開度は、一般に、弁体の任意移動量または弁体の全移動量との割合と規定されるが、弁を通過する流体の流量が開度に比例するとは限らない。また、弁がどの程度開いているかを示す指標として、流量比がある。流量比とは、弁を全開した状態での流量に対する弁を実際に通過する流量の比のことである。そこで本実施形態では、必要に応じて開度の代わりに流量比を用いても制御を行ってもよい。電磁弁13の構造やノズル16の構造などに依存するが、例えば流量比が5%以上100%以下であれば、あるいはこのような流量比に対応する開度であれば、ノズル16から連続流で純水が吐出する。本明細書においては、弁における開度の制御にはその弁の流量比の制御も含まれるものとし、弁について開度と流量比とを総称して動作度と呼ぶ。
【0022】
図3は、液体を1滴だけノズル16から滴下するために電磁弁13を駆動する際に電磁弁13に加えられる信号の波形を示している。ここでは電磁弁13は、信号レベルによってその開度または流量比すなわち動作度を制御できるものを使用している。
図3に示すグラフの縦軸は、流量比に換算した信号レベルを示している。電磁弁13としてダイヤフラム弁構造のものを用いるかグローブ弁構造のものを用いるのかによって、電磁弁13に印加することに好適な信号波形は異なる。
図3(a)は、ダイヤフラム弁構造である電磁弁13を滴下採水モードで駆動するための信号波形の例を示し、
図3(b)は、グローブ弁構造である電磁弁13を滴下採水モードで駆動するための信号波形の例を示している。ダイヤフラム弁構造の電磁弁13では、応答速度を高めることはできるものの、弁体の面積が大きくて中間程度の開度または流量比で精度を向上することが難しい。そこでダイヤフラム弁構造の場合は、1パルスごとに1滴がノズルから滴下することを前提として、例えば
図3(a)に示すように、比較的大きな流量比あるいは開度出力によって短時間だけ開弁する方形波パルスで電磁弁13を制御する。より具体的には、開度出力について、60%以上100%以下(流量比であれば16%以上100%以下)とすることが好ましく、75%以上90%以下(流量比では48%以上87%以下)とすることがより好ましい。開弁時間について、1ミリ秒以上100ミリ秒以下とすることが好ましく、5ミリ秒以上50ミリ秒以下とすることがより好ましい。一方、グローブ弁構造では、中間程度の開度または流量比での精度が高いので、
図3(b)に示すように、ダイヤフラム弁構造の場合よりも小さめの最大開度に対応する開度出力あるいは最大流量比となるように、比較的長めの時間をかけて電磁弁13を開き、最大開度または最大流量比となったら電磁弁13を即時に閉じるような三角波パルスで電磁弁13を制御する。より具体的には、最大開度に対応する開度出力を45%以上70%以下(流量比では5%以上65%以下)とすることが好ましく、50%以上65%以下(流量比では10%以上50%以下)とすることがより好ましい。開弁時間について、50ミリ秒以上500ミリ秒以下とすることが好ましく、50ミリ秒以上300ミリ秒以下とすることがより好ましい。
【0023】
開弁のために電磁弁13に印加されるパルス信号の時間精度は例えば0.2ミリ秒程度であって高精度である。また、本実施形態では、精度良く制御できる範囲の開度あるいは流量比を用いて電磁弁13を開ける制御を行う。その結果、本実施形態によれば、ノズル16から滴下する液体の1滴当たりの体積を正確に制御することが可能になる。また、電磁弁13に繰り返し印加するパルス信号の間隔によって、滴下間隔が定まることとなる。滴下される純水の1滴の体積を変化させるためには、開度(あるいは流量比)または開弁時間の少なくとも一方を変化させればよいが、高精度の制御を行うという観点からは、電磁弁13に対する開度出力(あるいは流量比)は固定したまま、開弁時間を変化させることが好ましい。
【0024】
本実施形態の純水ディスペンサー10において、ノズル16の先端に水滴が形成されていない状態でノズル16から連続流が得られるような大きな開度または流量比で電磁弁13を開けた場合を考える。このとき、ノズル16の先端に水滴が形成されて成長し始め、この水滴は、ノズル16の内部の純水と一体化して水柱を形成する。表面張力が重力に勝っている限り、水滴はノズル16からは落下しない。ここで電磁弁13を急激に閉じると、ノズル16内部の純水の流れは停止するが、ノズル16の先端から突出している部分の純水は、流れの慣性により、水滴を成長させる方向にさらに動こうとする。その結果、ノズル16のちょうど先端の位置において上述した水柱にくびれが生じるような力が発生し、重力の作用も加わってノズル16の先端から水滴が離脱するものと考えられる。その後、ノズル16の先端は水滴が形成されていない状態に戻る。このときノズル16から離脱する水滴の体積は、純水の流れが停止しないときに形成される水滴の体積よりも小さいので、本実施形態によれば、後述の実施例からも明らかになるように、微小開度で電磁弁13を連続して開けることによってノズル16から1滴ずつ純水を滴下させる場合よりも小さな体積の水滴で安定して純水を滴下させることができることになる。本明細書において微小開度とは、その開度で連続的に電磁弁13を開けてもノズル16から連続流によっては純水が吐出しない開度のことである。
【0025】
次に、滴下間隔の制御について説明する。上述したように本実施形態の純水ディスペンサー10では、電磁弁13に対してパルス信号を1回印加するごとに、1滴の純水がノズル16から滴下する。パルス信号を繰り返し電磁弁13に印加することとして、パルス信号の間隔を短くすれば、それに応じて滴下間隔も短くなる。任意の滴下間隔を設定できるようにすることにはそれほどの利点もないので、滴下間隔について何種類かのモードを用意し、それらのモードのうちの1つを利用者が選択できるようにすることが好ましい。その場合、利用者がスイッチ18を操作し続けている限り、選択されたモードに応じた滴下間隔で、ノズル16から繰り返して純水が滴下する。1滴だけを滴下させたい場合には、スイッチ18に機械的に接続するボタン26を押してすぐ放すなど、ごく短時間だけスイッチ18を操作すればよい。
図4は、滴下間隔に関して設けられるモードの例を示しており、電磁弁13がダイヤフラム弁構造のものであるとして、各モードにおいて電磁弁13に印加されるパルス信号の波形を示している。ここで示す例では、(a)に示す「ゆっくりモード」、(b)に示す「ふつうモード」及び(c)に示す「はやいモード」の3種類のモードが設定されている。各モードにおいてそのモードに含まれるパルス信号の相互間で開度出力あるいは流量比と開弁時間は同一であり、かつ、これらのモードの相互間でパルス信号の開度出力あるいは流量比と開弁時間は同一である。
【0026】
図5は、滴下間隔の設定のために純水ディスペンサー10の操作パネル19に表示される画面の一例を示している。ここでは3台の純水ディスペンサー10が純水製造装置50に接続されており、任意の1台に純水ディスペンサー10において純水製造装置50に接続されているすべての純水ディスペンサー10についての設定が行えるものとしている。タッチパネル10では、3台の純水ディスペンサー10は、それぞれ「Dis1」、「Dis2」及び「Dis3」で示されている。また、上述の滴下採水における滴下間隔について、上述の3つのモードのほかに「滴下1」及び「滴下2」の2つのランクが設定されており、ランクごとに上述の3つのモードが規定されるようになっている。すなわち滴下間隔として、合計6通りの設定が可能となっている。「滴下1」は、相対的に長い滴下間隔に対応するものであり、一例としてランク「滴下1」において「ゆっくりモード」、「ふつうモード」及び「はやいモード」は、それぞれ、0.8秒、0.6秒、0.4秒の滴下間隔に対応する。一方、「滴下2」は、相対的に短い滴下間隔に対応するものであり、一例としてランク「滴下2」において「ゆっくりモード」、「ふつうモード」及び「はやいモード」は、それぞれ、例えば、0.3秒、0.2秒、0.1秒の滴下間隔に対応する。採水ディスペンサー10において設定可能な最も長い滴下間隔は、メスフラスコに滴下採水を行ったときに、1滴の純水を滴下したのちメスフラスコ内の液面の乱れが収まってメニスカスとメスフラスコの標線との対比が行えるようになるまでの時間よりも長く設定することが好ましい。また滴下間隔を短くすると連続採水に近い形態となるので、滴下間隔は0.1秒以上とすることが好ましい。
【0027】
図5には、「滴下1」及び「滴下2」の各々に、「ゆっくり」、「ふつう」及び「はやい」のボタンが操作パネル19上に表示されていることが示されており、利用者は操作パネル19上に表示された任意のボタンを操作することで、純水ディスペンサー10に所望の滴下間隔を設定することができる。なお、
図5に示される操作パネル19では、連続採水時の流量を増減するための「ゆっくり」、「ふつう」及び「はやい」のボタンも示されており、「ゆっくり」は小流量、「ふつう」は中流量、「はやい」は大流量に対応する。
【実施例】
【0028】
以下、本発明に基づく純水ディスペンサー10において、パルス信号により電磁弁13に対して加えられる開度出力と開弁時間とを変化させたときに、滴下される純水の1滴当たりの体積がどのように変化するかを調べる実験を行った結果を説明する。
【0029】
[実施例1]
ノズル16として特許文献3に記載されるものを使用し、電磁弁13としてはダイヤフラム弁構造のものを使用して電磁弁13に対して
図3(a)に示すような方形波パルス信号を印加することにより、ノズル16から純水を滴下させた。方形波パルス信号により電磁弁13に加えられる開度出力として、60%、75%、80%、85%、90%及び100%を使用した。これらの開度出力における流量比を求めたところ、それぞれ、16%、48%、63%、76%、87%及び100%となった。滴下した純水の1滴の体積を、高精度メスシリンダーを用いて計測した。結果を表1に示す。なお、微小開度により連続的に電磁弁13を開けてノズル16から純水が水滴として繰り返し落下するようにした場合において滴下した純水の1滴の体積は80μLであった。
【0030】
【0031】
表1から明らかになるように、開弁時間が極端に短い場合には、表面張力などの影響により純水が滴下しなかったり、2回のパルス信号で1滴が滴下したりするような滴下不良となったが、開度出力が80%以上すなわち流量比が63%以上であれば開弁時間を15ミリ秒以上とすることにより、開度出力が75%すなわち流量比が48%であれば開弁時間を30ミリ秒以上とすることにより、1滴ずつ純水を良好に滴下させることができた。より開度出力を大きくして流量比が100%に近付いた場合であれば、開弁時間が1ミリ秒であっても純水を良好に滴下させることができた。一方、開度出力を絞って60%(流量比では16%)とした場合であっても、開弁時間が100ミリ秒を超えると、1回に滴下する純水の量が450μL以上となり、必ずしも滴下採水には適したものとならなくなる。したがって、電磁弁13としてダイヤフラム弁構造のものを用いる場合であれば、開弁時間を1ミリ秒以上100ミリ秒以下とすれば好ましいことが分かる。本発明では、小体積の液滴を安定して滴下できることが望まれるので、ダイヤフラム弁構造の電磁弁13を用いる場合、開度出力としては、60%以上100%以下(流量比では16%以上100%以下)であることが好ましく、75%以上90%以下(流量比では48%以上87%以下)であることがより好ましいことが分かる。
【0032】
特に、開度出力80%(流量比63%)として開弁時間を15ミリ秒または20ミリ秒とした場合には、1滴の体積が50μLである水滴を滴下させることができた。これは、微小開度で連続的に電磁弁13を開けてノズル16から水滴を繰り返し滴下させるときに得られる水滴の体積である80μLよりも小さい。表1には示していないが、開度出力80%(流量比63%)として開弁時間を5ミリ秒とし、ディスペンサー部の入口に加わる圧力を表1の計測を行ったときの0.08MPaから0.09MPaへと大きくする方向に調整したときには、1滴の体積が30μLである水滴を滴下させることができた。これは、手操作による一般的な滴下において得られると考えられる水滴の体積である50μLよりも小さい。したがって、表1の結果も合わせれば、開弁時間については5ミリ秒以上50ミリ秒以下とすることがより好ましいことが分かる。
【0033】
次に、純水の繰り返し滴下を行ったときの各液滴の体積のばらつきを調べた。開度出力を80%とし開弁時間を20ミリ秒としたこと以外は表1に結果を示した実験と同じ実験条件を使用し、10回にわたって滴下された純水の各液滴の体積を高精度メスシリンダーによって測定した。結果を表2に示す。
【0034】
【0035】
表2から分かるように、滴下された水滴の体積は50μL±10μLの範囲内に収まっている。ダイヤフラム弁構造の電磁弁13を使用して本発明の方法で制御される純水ディスペンサー10によれば、高精度の滴下が行えることが分かった。
【0036】
[実験例2]
実験例1では電磁弁13としてダイヤフラム弁構造のものを用いたが、同様の実験を、電磁弁13としてグローブ弁構造のものを用いる場合についても行った。ノズル16として特許文献3に記載されるものを使用し、電磁弁13に対して
図3(b)に示すような三角波パルス信号を印加することにより、ノズル16から純水を滴下させた。三角波パルス信号により電磁弁13に加えられる開度出力として、45%、50%、55%、60%、65%及び70%を使用した。ここでいう開度出力は、三角波としてのピークにおける開度出力すなわち最高開度出力のことである。これらの最高開度出力における流量比を求めたところ、それぞれ、5%、10%、14%、33%、50%及び65%となった。滴下された純水の1滴の体積を、高精度メスシリンダーを用いて計測した。結果を表2に示す。なお、微小開度で連続的に電磁弁13を開けてノズル16から純水が水滴として繰り返し落下するようにした場合に、滴下した純水の1滴の体積は50μLから80μLであった。
【0037】
【0038】
表3から明らかになるように、開弁時間が極端に短い場合には、純水が滴下しなかったり、複数回のパルス信号で1滴が滴下したりするような滴下不良となったが、開度出力が45%以上すなわち流量比が5%以上であれば開弁時間を400ミリ秒以上とすることにより、開度出力が55%すなわち流量比が14%であれば開弁時間を50ミリ秒以上とすることにより、1滴ずつ純水を良好に滴下させることができた。グローブ弁構造の電磁弁13を使用した場合、開度出力55%(流量比14%)で開弁時間を50ミリ秒とした場合に、微小開度で連続的に電磁弁13を開けてノズル16から純水が水滴として繰り返し落下させたときの1滴の体積よりも小さい、30μLの体積の水滴を得ることができた。表3より、グローブ弁構造の電磁弁13を用い、三角波パルス信号によって電磁弁13の制御を行う場合には、開度について、開度出力45%以上70%以下(流量比5%以上65%以下)とすることが好ましく、開度出力50%以上65%以下(流量比10%以上50%以下)とすることがより好ましく、開弁時間について、50ミリ秒以上500ミリ秒以下とすることが好ましく、50ミリ秒以上300ミリ秒以下とすることがより好ましいことが分かる。
【0039】
次に、純水の繰り返し滴下を行ったときの各液滴の体積のばらつきを調べた。開度出力を50%とし開弁時間を200ミリ秒としたこと以外は表2に結果を示した実験と同じ実験条件を使用し、10回にわたって滴下された純水の各液滴の体積を高精度メスシリンダーによって測定した。結果を表4に示す。
【0040】
【0041】
表4から分かるように、滴下された水滴の体積は77.5μL±7.5μLの範囲内に収まっている。グローブ弁構造の電磁弁13を使用して本発明の方法で制御される純水ディスペンサー10によれば、高精度の滴下が行えることが分かった。
【符号の説明】
【0042】
10 純水ディスペンサー
10a ヘッド部
10b 本体部
11,14,15,55 配管
12 流量センサー
13 電磁弁
16 ノズル
18 スイッチ
19 操作パネル
20 制御部
50 純水製造装置