IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ ソフトバンクモバイル株式会社の特許一覧

特許7369844無線電力伝送システム、送電システム、受電システム、送電装置、受電装置及び宇宙太陽光発電衛星
<>
  • 特許-無線電力伝送システム、送電システム、受電システム、送電装置、受電装置及び宇宙太陽光発電衛星 図1
  • 特許-無線電力伝送システム、送電システム、受電システム、送電装置、受電装置及び宇宙太陽光発電衛星 図2
  • 特許-無線電力伝送システム、送電システム、受電システム、送電装置、受電装置及び宇宙太陽光発電衛星 図3
  • 特許-無線電力伝送システム、送電システム、受電システム、送電装置、受電装置及び宇宙太陽光発電衛星 図4
  • 特許-無線電力伝送システム、送電システム、受電システム、送電装置、受電装置及び宇宙太陽光発電衛星 図5
  • 特許-無線電力伝送システム、送電システム、受電システム、送電装置、受電装置及び宇宙太陽光発電衛星 図6
  • 特許-無線電力伝送システム、送電システム、受電システム、送電装置、受電装置及び宇宙太陽光発電衛星 図7
  • 特許-無線電力伝送システム、送電システム、受電システム、送電装置、受電装置及び宇宙太陽光発電衛星 図8
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B1)
(11)【特許番号】
(24)【登録日】2023-10-18
(45)【発行日】2023-10-26
(54)【発明の名称】無線電力伝送システム、送電システム、受電システム、送電装置、受電装置及び宇宙太陽光発電衛星
(51)【国際特許分類】
   H02J 50/40 20160101AFI20231019BHJP
   H02J 50/20 20160101ALI20231019BHJP
   H02J 50/50 20160101ALI20231019BHJP
   H04B 7/185 20060101ALI20231019BHJP
【FI】
H02J50/40
H02J50/20
H02J50/50
H04B7/185
【請求項の数】 20
(21)【出願番号】P 2022158858
(22)【出願日】2022-09-30
【審査請求日】2023-01-13
【国等の委託研究の成果に係る記載事項】(出願人による申告)令和3年度 国立研究開発法人情報通信研究機構「革新的情報通信技術研究開発委託研究/完全ワイヤレス社会実現を目指したワイヤレス電力伝送の高周波化および通信との融合技術」、産業技術力強化法第17条の適用を受ける特許出願
【早期審査対象出願】
(73)【特許権者】
【識別番号】501440684
【氏名又は名称】ソフトバンク株式会社
(74)【代理人】
【識別番号】100098626
【弁理士】
【氏名又は名称】黒田 壽
(74)【代理人】
【識別番号】100128691
【弁理士】
【氏名又は名称】中村 弘通
(72)【発明者】
【氏名】長谷川 直輝
(72)【発明者】
【氏名】中本 悠太
(72)【発明者】
【氏名】平川 昂
【審査官】高野 誠治
(56)【参考文献】
【文献】特開2005-319853(JP,A)
【文献】特開2011-142708(JP,A)
【文献】特開2004-266929(JP,A)
【文献】特開2022-058853(JP,A)
【文献】特開2022-105726(JP,A)
【文献】特開2022-110077(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
H02J 50/00 -50/90
H04B 7/14 - 7/22
(57)【特許請求の範囲】
【請求項1】
無線電力伝送を行うシステムであって、
成層圏の空域に位置する浮揚体に搭載されて移動通信の端末装置と基地局との間の通信を中継する中継通信装置にそれぞれ設けられ、所定周波数の電磁波を介して無線電力伝送用の送信信号を前記基地局に送信する複数の送電装置と、
前記基地局に設けられ、前記複数の送電装置から送信された前記複数の送信信号を受信した複数の受信信号を位相合成して電力を出力する一又は複数の受電装置と、を備え、
前記複数の送装置はそれぞれ、
前記中継通信装置と前記基地局との間に構築された通信上りリンクを介して、無線電力伝送に関するフィードバック情報を前記基地局から受信し、
前記フィードバック情報に基づいて、前記中継通信装置と前記基地局との間に構築された通信下りリンクを介して、無線電力伝送用信号を含む下りリンクの送信信号を前基地局に送信する、
ことを特徴とするシステム。
【請求項2】
請求項1のシステムにおいて、
前記受電装置は、前記複数の送電装置にパイロット信号を送信し、
前記複数の送電装置は、
互いに時刻同期され、
前記複数の送電装置から送信された複数の無線電力伝送用の送信信号が前記受電装置に同位相で到達するように、前記受電装置から受信した前記パイロット信号の受信結果に基づいて前記無線電力伝送用の送信信号の送信タイミングを決定する、
ことを特徴とするシステム。
【請求項3】
請求項1のシステムにおいて、
前記電磁波の周波数は、300[GHz]以下である、
ことを特徴とするシステム。
【請求項4】
請求項3のシステムにおいて、
前記電磁波は、マイクロ波である、
ことを特徴とするシステム。
【請求項5】
請求項3のシステムにおいて、
前記電磁波は、前記送電装置から前記受電装置に向かう指向性を有するように形成されたビーム形状の電磁波である、
ことを特徴とするシステム。
【請求項6】
請求項1のシステムにおいて、
前記浮揚体は、成層圏に位置するHAPS、気球又はドローンである、
ことを特徴とするシステム。
【請求項7】
請求項1のシステムにおいて、
前記受電装置は、地上、海上若しくは湖上に位置する、又は、前記送電装置よりも低い低高度の空間に位置する、
ことを特徴とするシステム。
【請求項8】
無線電力伝送の送電装置であって、
成層圏の空域に位置する浮揚体に搭載されて移動通信の端末装置と基地局との間の通信を中継する中継通信装置に設けられ、
所定周波数の電磁波を介して無線電力伝送用の送信信号を前記基地局に送信する送信部を備え、
前記中継通信装置と前記基地局との間に構築された通信上りリンクを介して、前記基地局からの無線電力伝送に関するフィードバック情報を受信し、
前記フィードバック情報に基づいて、前記中継通信装置と前記基地局との間に構築された通信下りリンクを介して、無線電力伝送用信号を含む下りリンクの送信信号を前基地局に送信する、
ことを特徴とする送電装置。
【請求項9】
請求項8の送電装置において、
送電対象が共通の他の送電装置との間で時刻同期を行う同期処理部を備え、
前記送信部は、前記複数の送電装置から送信された複数の無線電力伝送用の送信信号が前記基地局に設けられた受電装置に同位相で到達するように、前記受電装置から受信したパイロット信号の受信結果に基づいて前記無線電力伝送用の送信信号の送信タイミングを決定する、
ことを特徴とする送電装置。
【請求項10】
複数の送電装置を備える無線電力伝送の送電システムであって、
前記複数の送電装置はそれぞれ、請求項8の送電装置である、
ことを特徴とする送電システム。
【請求項11】
無線電力伝送の受電装置であって、
移動通信の基地局に設けられ、
成層圏の空域に位置する浮揚体にそれぞれ搭載されて移動通信の端末装置と基地局との間の通信を中継する中継通信装置に設けられた複数の送電装置から、所定周波数の電磁波を介して無線電力伝送用の送信信号を受信する受信部と、
前記複数の送信信号を受信した複数の受信信号を同位相で合成する合成部と、
を備え、
前記中継通信装置と前記基地局との間に構築された通信上りリンクを介して、無線電力伝送に関するフィードバック情報を前記中継通信装置に送信し、
前記フィードバック情報に基づいて前記中継通信装置と前記基地局との間に構築された通信下りリンクを介して前記送装置から送信された無線電力伝送用信号を含む下りリンクの送信信号を受信する、
ことを特徴とする受電装置。
【請求項12】
請求項11の受電装置において、
前記複数の送電装置にパイロット信号を送信する送信部を備える、
ことを特徴とする受電装置。
【請求項13】
無線電力伝送を行うシステムであって、
成層圏の空域に位置する浮揚体に搭載されて移動通信の端末装置と基地局との間の通信を中継する中継通信装置に設けられ、外部装置から第1周波数の電磁波を介して無線電力伝送用の送信信号を受信し、前記無線電力伝送用の送信信号の周波数を前記第1周波数よりも低い第2周波数に変換し、前記第2周波数の電磁波を介して前記無線電力伝送用の送信信号を前記基地局に送信する送電装置と、
前記基地局に設けられ、前記送電装置から送信された前記送信信号を受信して電力を出力する受電装置と、を備え、
前記送装置は、
前記中継通信装置と前記基地局との間に構築された通信上りリンクを介して、無線電力伝送に関するフィードバック情報を前記基地局から受信し、
前記フィードバック情報に基づいて、前記中継通信装置と前記基地局との間に構築された通信下りリンクを介して、無線電力伝送用信号を含む下りリンクの送信信号を前基地局に送信する、
ことを特徴とするシステム。
【請求項14】
請求項13のシステムにおいて、
前記第1周波数の電磁波は、ミリ波、テラヘルツ波又は光波であり、
前記第2周波数の電磁波は、マイクロ波である、
ことを特徴とするシステム。
【請求項15】
請求項13のシステムにおいて、
前記第1周波数の電磁波は、外部装置から前記送電装置に向かう指向性を有するように形成されたビーム形状の電磁波である、
前記第2周波数の電磁波は、前記送電装置から前記受電装置に向かう指向性を有するように形成されたビーム形状の電磁波である、
ことを特徴とするシステム。
【請求項16】
請求項13のシステムにおいて、
前記外部装置は、大気圏の外側の空間に位置する宇宙太陽光発電衛星であり、
前記浮揚体は、成層圏に位置するHAPS、気球又はドローンである、
ことを特徴とするシステム。
【請求項17】
請求項13のシステムにおいて、
前記受電装置は、地上、海上若しくは湖上に位置する、又は、前記送電装置よりも低い低高度の空間に位置する、
ことを特徴とするシステム。
【請求項18】
請求項13のシステムにおいて、
前記送装置が設けられた前記中継通信装置を搭載する前記浮揚体を複数備える、
ことを特徴とするシステム。
【請求項19】
請求項18のシステムにおいて、
前記受電装置は、前記複数の送電装置にパイロット信号を送信し、
前記複数の送電装置は、
互いに時刻同期され、
前記複数の送電装置から送信された複数の無線電力伝送用の送信信号が前記受電装置に同位相で到達するように、前記受電装置から受信した前記パイロット信号の受信結果に基づいて前記無線電力伝送用の送信信号の送信タイミングを決定する、
ことを特徴とするシステム。
【請求項20】
無線電力伝送の送電装置であって、
成層圏の空域に位置する浮揚体に搭載されて移動通信の端末装置と基地局との間の通信を中継する中継通信装置に設けられ、
第1周波数の電磁波を介して無線電力伝送用の送信信号を受信する受信部と、
前記無線電力伝送用の送信信号の周波数を前記第1周波数よりも低い第2周波数に変換する変換部と、
前記第2周波数の電磁波を介して前記無線電力伝送用の送信信号を前記基地局に送信する送信部と、を備え、
前記中継通信装置と前記基地局との間に構築された通信上りリンクを介して、無線電力伝送に関するフィードバック情報を前記基地局から受信し、
前記フィードバック情報に基づいて、前記中継通信装置と前記基地局との間に構築された通信下りリンクを介して、無線電力伝送用信号を含む下りリンクの送信信号を前基地局に送信する、
ことを特徴とする送電装置。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、無線電力伝送(WPT)に関する。
【背景技術】
【0002】
従来、電磁波を利用して電力を伝送するシステムが知られている。例えば、特許文献1には、電気エネルギーをマイクロ波ビームとして送信する宇宙空間の送電システム(送電装置)と、送電システムから送信されたマイクロ波ビームを受信する地上の受電システム(受電装置)と、を備えた電力供給システムが開示されている。
【先行技術文献】
【特許文献】
【0003】
【文献】特開2008-259392号公報
【発明の概要】
【発明が解決しようとする課題】
【0004】
従来の電磁波を利用して電力を伝送するシステムにおいて、高高度に位置する送電装置から地上、海上、湖上又は低高度の空間に位置する受電装置への安定した無線電力伝送を実現したい、という課題がある。
【課題を解決するための手段】
【0005】
本発明の第1態様に係るシステムは、無線電力伝送を行うシステムである。このシステムは、所定高度に位置する浮揚体に搭載され、所定周波数の電磁波を介して無線電力伝送用の送信信号を送信する複数の送電装置と、前記複数の送電装置から送信された前記複数の送信信号を受信した複数の受信信号を位相合成して電力を出力する一又は複数の受電装置と、を備える。
【0006】
第1態様に係るシステムにおいて、前記受電装置は、前記複数の送電装置にパイロット信号を送信し、前記複数の送電装置は、互いに時刻同期され、前記複数の送電装置から送信された複数の無線電力伝送用の送信信号が前記受電装置に同位相で到達するように、前記受電装置から受信した前記パイロット信号の受信結果に基づいて前記無線電力伝送用の送信信号の送信タイミングを決定してもよい。
【0007】
第1態様に係るシステムにおいて、前記電磁波の周波数は、300[GHz]以下であってもよい。
【0008】
第1態様に係るシステムにおいて、前記電磁波は、マイクロ波であってもよい。
【0009】
第1態様に係るシステムにおいて、前記電磁波は、前記送電装置から前記受電装置に向かう指向性を有するように形成されたビーム形状の電磁波であってもよい。
【0010】
第1態様に係るシステムにおいて、前記浮揚体は、成層圏に位置するHAPS、気球又はドローンであってもよい。
【0011】
第1態様に係るシステムにおいて、前記受電装置は、地上、海上若しくは湖上に位置する、又は、前記送電装置よりも低い低高度の空間に位置するものであってもよい。
【0012】
本発明の第1態様に係る送電装置は、無線電力伝送の送電装置である。この送電装置は、所定高度に位置する浮揚体に搭載され、所定周波数の電磁波を介して無線電力伝送用の送信信号を送信する送信部を備える。
【0013】
第1態様に係る送電装置において、送電対象が共通の他の送電装置との間で時刻同期を行う同期処理部を備え、前記送信部は、前記複数の送電装置から送信された複数の無線電力伝送用の送信信号が前記受電装置に同位相で到達するように、前記受電装置から受信したパイロット信号の受信結果に基づいて前記無線電力伝送用の送信信号の送信タイミングを決定してもよい。
【0014】
本発明の第1態様に係る送電システムは、前記送電装置を複数備える。
【0015】
本発明の第1態様に係る受電装置は、無線電力伝送の受電装置である。この受電装置は、所定高度に位置する浮揚体にそれぞれ搭載された複数の送電装置から、所定周波数の電磁波を介して無線電力伝送用の送信信号を受信する受信部と、前記複数の送信信号を受信した複数の受信信号を同位相で合成する合成部と、を備える。
【0016】
第1態様に係る受電装置において、前記複数の送電装置にパイロット信号を送信する送信部を備えてもよい。
【0017】
本発明の第2態様に係るシステムは、無線電力伝送を行うシステムである。このシステムは、所定高度に位置する浮揚体に搭載され、外部装置から第1周波数の電磁波を介して無線電力伝送用の送信信号を受信し、前記無線電力伝送用の送信信号の周波数を前記第1周波数よりも低い第2周波数に変換し、前記第2周波数の電磁波を介して前記無線電力伝送用の送信信号を送信する送電装置と、前記送電装置から送信された前記送信信号を受信して電力を出力する受電装置と、を備える。
【0018】
第2態様に係るシステムにおいて、前記第1周波数の電磁波は、ミリ波、テラヘルツ波又は光波であり、前記第2周波数の電磁波は、マイクロ波であってもよい。
【0019】
第2態様に係るシステムにおいて、前記第1周波数の電磁波は、外部装置から前記送電装置に向かう指向性を有するように形成されたビーム形状の電磁波であり、前記第2周波数の電磁波は、前記送電装置から前記受電装置に向かう指向性を有するように形成されたビーム形状の電磁波であってもよい。
【0020】
第2態様に係るシステムにおいて、前記外部装置は、大気圏の外側の空間に位置する宇宙太陽光発電衛星であり、前記浮揚体は、成層圏に位置するHAPS、気球又はドローンであってもよい。
【0021】
第2態様に係るシステムにおいて、前記受電装置は、地上、海上若しくは湖上に位置する、又は、前記送電装置よりも低い低高度の空間に位置するものであってもよい。
【0022】
本発明に第2態様に係る送電装置は、無線電力伝送の送電装置である。この送電装置は、所定高度に位置する浮揚体に搭載され、第1周波数の電磁波を介して無線電力伝送用の送信信号を受信する受信部と、前記無線電力伝送用の送信信号の周波数を前記第1周波数よりも低い第2周波数に変換する変換部と、前記第2周波数の電磁波を介して前記無線電力伝送用の送信信号を送信する送信部と、を備える。
【0023】
本発明の第3態様に係るシステムは、無線電力伝送を行うシステムである。このシステムは、は、大気圏よりも高い高度に位置し、所定周波数の電磁波を介して複数の無線電力伝送用の送信信号をマルチビームで送信する宇宙太陽光発電衛星と、前記宇宙太陽光発電衛星よりも低い所定高度に位置する複数の浮揚体のそれぞれに搭載され、前記宇宙太陽光発電衛星からマルチビームで送信された前記複数の無線電力伝送用の送信信号のそれぞれを受信する複数の受電装置と、を備える。
【0024】
第3態様に係るシステムにおいて、前記電磁波は、ミリ波、テラヘルツ波、または光波であってもよい。
【0025】
第3態様に係るシステムにおいて、前記浮揚体は、成層圏に位置するHAPS、気球又はドローンであってもよい。
【0026】
本発明の第3態様に係る宇宙太陽光発電衛星は、大気圏よりも高い高度に位置し、当該宇宙太陽光発電衛星よりも低い所定高度に位置する複数の浮揚体のそれぞれに搭載された複数の受電装置に、所定周波数の電磁波を介して複数の無線電力伝送用の送信信号をマルチビームで送信する送信部を備える。
【0027】
本発明の第3態様に係る受電装置は、無線電力伝送の受電装置である。この受電装置は、宇宙太陽光発電衛星よりも低い所定高度に位置する複数の浮揚体のそれぞれに搭載され、所定周波数の電磁波を介して前記宇宙太陽光発電衛星から送信された無線電力伝送用の送信信号を受信する受信部を備える。
【0028】
本発明の第3態様に係る無線電力伝送の受電システムは、前記受電装置を複数備える。
【発明の効果】
【0029】
本発明によれば、高高度に位置する送電装置から受電装置への安定した無線電力伝送が可能になる。
【図面の簡単な説明】
【0030】
図1】実施形態1に係るシステムの概略構成の一例を示す説明図。
図2】実施形態1の無線電力伝送(WPT)システムを構成するHAPS及び基地局の主要構成の一例を示すブロック図。
図3】(a)は、複数のHAPSからの各送信信号による基地局の受信信号間の位相が整合されていないときの合成信号を示すグラフ。(b)は、複数のHAPSからの各送信信号による基地局の受信信号間の位相が整合されているとき(位相合成されているとき)の合成信号を示すグラフ。
図4】複数の受信信号間の位相が整合するように位相合成する方法の一例を示す説明図。
図5】実施形態2に係るシステムの概略構成の一例を示す説明図。
図6】実施形態2の無線電力伝送(WPT)システムを構成するHAPS及び基地局の主要構成の一例を示すブロック図。
図7】実施形態3に係るシステムの概略構成の一例を示す説明図。
図8】実施形態3の無線電力伝送(WPT)システムを構成するHAPSの主要構成の一例を示すブロック図。
【発明を実施するための形態】
【0031】
以下、図面を参照して本発明の実施形態について説明する。
【0032】
〔実施形態1〕
本書に記載された一実施形態に係る無線電力伝送(WPT)システムは、上空の成層圏などに分散して位置する複数の浮揚体(例えばHAPS、気球、ドローン)に搭載された複数の送電装置から地上、海上、湖上などに位置する受電装置や低高度の空間に位置するドローンなどに搭載された受電装置に安定して給電可能な大空間分散給電システムである。
【0033】
図1は、本実施形態1に係るシステムの概略構成の一例を示す説明図である。
本実施形態1のシステムは、無線電力伝送(WPT)を行うシステムであり、所定高度に位置する浮揚体にそれぞれ搭載される複数の送電装置と、一又は複数の受電装置と、を備える。複数の送電装置は、いずれも、所定周波数の電磁波を介して無線電力伝送用の送信信号を送信する。また、一又は複数の受電装置は、各浮揚体に搭載された複数の送電装置から送信される複数の送信信号を受信した複数の受信信号を位相合成して電力を出力する。
【0034】
浮揚体は、例えば、HAPS、気球又はドローンである。本実施形態は、浮揚体として、高高度プラットフォーム局であるHAPS(「高高度疑似衛星」ともいう。)10を用いる例である。HAPS10は、通信中継装置を搭載し、所定高度の空域に位置して、所定高度のセル形成目標空域に3次元セル(3次元エリア)を形成する。HAPS10の位置する空域は、例えば、高度が11[km]以上及び50[km]以下の成層圏の空域である。この空域は、気象条件が比較的安定している高度15[km]以上25[km]以下の空域であってもよく、特に高度がほぼ20[km]の空域であってもよい。セル形成目標空域は、海、川又は湖の上空であってもよい。
【0035】
HAPS10の中継通信装置は、移動局である端末装置と無線通信するためのビームを地面に向けて形成する。端末装置は、遠隔操縦可能な小型のヘリコプター等の航空機であるドローンに組み込まれた通信端末モジュールでもよいし、飛行機(航空機)の中でユーザが使用するユーザ装置であってもよい。
【0036】
また、HAPS10の中継通信装置は、地上、海上若しくは湖上に位置する中継局であるフィーダ局を介して、移動通信網のコアネットワークに接続されている。HAPS10とフィーダ局との間の通信は、マイクロ波などの電波による無線通信で行ってもよいし、レーザ光などを用いた光通信で行ってもよい。
【0037】
HAPS10は、それぞれ、内部に組み込まれたコンピュータ等で構成された制御部が制御プログラムを実行することにより、自身の飛行移動や中継通信局での処理を自律制御してもよい。例えば、HAPS10は、自身の現在位置情報(例えばGPS(グローバル・ポジショニング・システム)位置情報)、予め記憶した位置制御情報(例えば、飛行スケジュール情報)、周辺に位置する他のHAPSの位置情報などを取得し、それらの情報に基づいて飛行移動や中継通信装置での処理を自律制御してもよい。
【0038】
また、HAPS10での飛行移動や中継通信装置での処理は、移動通信網の通信センター等に設けられた管理装置としての遠隔制御装置によって制御できるようにしてもよい。HAPS10と遠隔制御装置との間の通信は、地上又は海上などの施設であるHAPS制御用通信局によって行う。HAPS制御用通信局は、複数のHAPS10に対応できるように無指向性アンテナを用いたものが好ましいが、指向性アンテナを用いてもよい。このようなHAPS制御用通信局としては、GCS(Ground Control System)(地上制御局)を利用することができる。
【0039】
HAPS10とHAPS制御用通信局との間の無線通信は、HAPS10の飛行移動やセル最適化などを制御するための通信を含むため、高い信頼性と低遅延性が求められる。したがって、HAPS10とHAPS制御用通信局との間の無線通信には、HAPS10とフィーダ局との間で行われる移動通信のフィーダリンクを介した無線通信で用いる周波数帯域よりも低い周波数帯域を用いるのが好ましい。例えば、HAPS10とフィーダ局との間で行われる無線通信にギガヘルツ(GHz)帯の周波数帯域を用いる場合、HAPS10とHAPS制御用通信局との間の無線通信にはメガヘルツ(MHz)帯の周波数帯域を用いる。
【0040】
また、遠隔制御装置によって制御する場合、HAPS10は、遠隔制御装置からの制御情報を受信できるように制御用通信端末装置(例えば、移動通信モジュール)が組み込まれ、遠隔制御装置から識別できるように端末識別情報(例えば、IPアドレス、電話番号など)が割り当てられるようにしてもよい。制御用通信端末装置の識別には通信インターフェースのMACアドレスを用いてもよい。また、HAPS10は、自身又は周辺のHAPSの飛行移動や中継通信装置での処理に関する情報や各種センサなどで取得した観測データなどの情報を、遠隔制御装置等の所定の送信先に送信するようにしてもよい。
【0041】
受電装置は、HAPS10上の送電装置からの無線電力伝送(WPT)により給電される給電対象であり、特に限定されるものではない。本実施形態では、例えば、地上、海上若しくは湖上に位置する受電装置(例えば、移動通信の基地局、移動局、その他の設備装置)、又は、HAPS10の位置よりも低い低高度の空間に位置する受電装置(例えば、他のHAPS、気球、ドローン、飛行機(航空機)、その他の浮揚体)である。本実施形態は、地上に設置されている移動通信の基地局20を受電装置とした例である。
【0042】
基地局20は、例えば、多数のアンテナ素子を有する複数のアレーアンテナ210を備え、複数の端末装置(例えば、移動通信のUE(移動局)やIoTデバイス。以下「UE20」ともいう。)との間でmassive MIMO(以下「mMIMO」ともいう。)伝送方式の通信を行うことができる。mMIMOは、アレーアンテナ210を用いてデータ送受信を行うことにより大容量・高速通信を実現する無線伝送技術である。また、複数のUE20のそれぞれに対して時分割で又は同時にビームを形成するビームフォーミングを行うMU(Multi User)-MIMO伝送方式で通信を行うことができる。多素子のアレーアンテナを用いてMU-MIMO伝送を行うことにより、各UE20の通信環境に応じてUE20ごとに適切なビームを向けて通信できるため、セル全体の通信品質を改善できる。また、同一の無線リソース(時間・周波数リソース)を用いて複数のUE20との通信ができるため、システム容量を拡大することができる。
【0043】
図2は、本実施形態1の無線電力伝送(WPT)システムを構成するHAPS10及び基地局20の主要構成の一例を示すブロック図である。
HAPS10は、送電装置としての通信中継装置100とアンテナ110とを備える。アンテナ110は、例えば、多数のアンテナ素子を有するアレーアンテナである。アンテナ110は単数でもよいし複数であってもよい。例えば、アンテナ110は複数のセクタセルに対応させて複数配置してもよい。
【0044】
通信中継装置100は、通信信号処理部120と、無線処理部130と、電力伝送制御部140と、NW通信部150と、を備える。通信信号処理部120は、基地局20との間で送受信される制御情報等の信号を処理する。無線処理部130は、通信信号処理部120で生成した送信信号をアンテナ110から基地局20に送信したり、基地局20からアンテナ110を介して受信した受信信号を通信信号処理部120に出力したりする。
【0045】
電力伝送制御部140は、基地局20からの制御情報を通信信号処理部120に送ったり、その制御情報に基づいてアレーアンテナ110の無線電力伝送用ビームフォーミング(WPTビームフォーミング)の制御信号(BF制御信号)を生成して無線処理部130に送ったりする。通信信号処理部120は、電力伝送制御部140から受けた制御情報に基づいて、WPT信号を含む下りリンク(DL)の送信信号を生成して無線処理部130に送る。
【0046】
電力伝送制御部140は、基地局20からの受信した情報をNW通信部150に転送し、その情報に基づいて外部プラットフォーム55で生成された制御情報をNW通信部150から受信し、その制御情報に基づいて、WPT信号を含む下りリンク(DL)の送信信号とBF制御信号とを生成してもよい。
【0047】
NW通信部150は、無線通信回線を介して通信ネットワーク50に接続され、外部プラットフォーム55のクラウドシステム、サーバなどと通信することができる。NW通信部150は、基地局20から受信した通信データ又は情報を通信ネットワーク50側に送信したり、基地局20に送信する通信データ又は情報を通信ネットワーク50側から受信したりすることもできる。NW通信部150は、例えば、地上などに位置するフィーダ局と通信する通信部である。
【0048】
HAPS10は、基地局20に対する下りリンクの通信の際に、基地局20毎に又は複数の基地局20が属するターゲットエリア毎に、個別のビームを形成するビームフォーミング(BF)制御を行い、基地局20毎に又はターゲットエリア毎に無線電力伝送を行ってもよい。基地局20毎又はターゲットエリア毎のBF制御は、通信信号処理部120における周波数領域のデジタルBF制御で行ってもよいし、無線処理部130におけるアナログBF制御で行ってもよい。
【0049】
図2において、基地局20は、アンテナ210と、無線処理部220と、通信信号処理部230と、電力出力部240と、電池250と、を備える。アンテナ210は、例えば、多数のアンテナ素子を有する複数のアレーアンテナで構成される。無線処理部220は、通信信号処理部230で生成した情報や送信信号をアンテナ210からHAPS10に送信したり、HAPS10からアンテナ210を介して受信した受信信号を通信信号処理部230に出力したりする。
【0050】
本実施形態において、無線処理部220は、HAPS10から送信された無線電力伝送用の送信信号を受信する。電力出力部240は、例えば整流器を有し、HAPS10からの無線電力伝送用の送信信号を受信した受信信号の電力を、電池充電用の受電電力として出力する。電力出力部240から出力された受電電力により、電池250を充電することができる。
【0051】
無線処理部220は、受電ビーム情報(例えば、受電ビームの方向、幅などの情報)、WPT電波の到来方向の情報などの受電に関する情報を測定又は取得する機能を有してもよい。電力出力部240は、受電電力を測定する機能を有してもよい。受電ビーム情報、WPT電波の到来方向の情報などの受電に関する情報、受電電力の情報、制御情報の少なくとも1つは、HAPS10への情報に含めることができる。
【0052】
HAPS10から基地局20に送信される無線電力伝送用の送信信号の電磁波の周波数は、300[GHz]以下であるのが好ましく、マイクロ波であるのがより好ましい。本実施形態では、成層圏に位置するHAPS10から地上の基地局20に無線電力伝送用の送信信号を送信することから、大気の影響を受けにくい電磁波、特にマイクロ波であるのが好ましい。
【0053】
ここで、HAPS10から基地局20へ無線電力伝送(WPT)を行う場合、単体のHAPS10からの無線電力伝送では十分な受電電力を確保することが難しい。そのため、本実施形態では、複数のHAPS10からの無線電力伝送用の送信信号により基地局20で生成される受信信号を合成した合成信号から電力(合計電力)を得るシステムとなっている。
【0054】
ところが、複数のHAPS10から送信される無線電力伝送用の送信信号を受信した複数の受信信号間の位相が整合されていないと、電力伝送効率が低下し、高効率な無線電力伝送(WPT)を実現することができない。すなわち、複数のHAPS10からの各送信信号による基地局20の受信信号PrIn1,PrIn2間の位相が、図3(a)に示すように整合されていない場合、図3(b)に示すように整合されている場合(位相合成されている場合)と比較して、得られる合計電力PrIncが小さいものとなる。
【0055】
そこで、本実施形態では、複数のHAPS10から送信された無線電力伝送用の送信信号を受信した複数の受信信号間の位相が整合するように位相合成して電力を得るものとし、高効率で安定した無線電力伝送(WPT)を実現している。
【0056】
図4は、複数の受信信号間の位相が整合するように位相合成する方法の一例を示す説明図である。
複数の受信信号間の位相が整合するように位相合成する方法としては、例えば、複数のHAPS10-0,10-1,・・・10-nから送信される無線電力伝送用の送信信号の位相を調整する方法と、基地局20で受信した複数の受信信号の位相を調整する方法とが挙げられる。ただし、後者の位相調整方法では、本システムに対応していない既存の基地局20への設備変更、設定変更が必要となること、受電する側の基地局20で位相調整を行うと当該位相調整に要する電力消費の分だけ伝送電力が目減りすることなどを考慮すると、前者の位相調整方法が好ましい。
【0057】
そのため、本実施形態では、図4に示すように、複数のHAPS10-0,10-1,・・・10-nから送信される無線電力伝送用の送信信号の位相を調整する前者の位相調整方法を採用する。すなわち、複数のHAPS10-0,10-1,・・・10-n間における送信信号経路差を補償するような入力位相Δφ1,Δφ2,・・・,Δφnを、基準となるHAPS10-0以外のHAPS10-1,・・・10-nの送信信号に付加し、基地局20での受信信号が同相になるようにする。
【0058】
具体的な位相調整方法としては、例えば、基地局20からの無線電力伝送に関するフィードバック情報に基づき、複数のHAPS10-0,10-1,・・・10-nから送信される無線電力伝送用の送信信号の位相を調整してもよい。例えば、複数のHAPS10-0,10-1,・・・10-nは、各HAPSと基地局20との間に構築される通信ULを介して、基地局20からの無線電力伝送に関するフィードバック情報を受信して取得する。フィードバック情報は、例えば、基地局20における受電に関する受電装置情報(「WPT受電情報」、「WPT端末情報」、「WPT情報」ともいう。)を含んでもよい。受電装置情報は、例えば、無線電力伝送を要求する要求情報(WPT要求)、基地局20を識別可能な識別情報、基地局20の位置情報、基地局20における受信電力情報、基地局20における受電ビーム情報(例えば、受電ビームの方向、幅などの情報)、基地局20におけるWPT電波の到来方向の情報、基地局20に備える電池の残量情報及び無線電力伝送を承認する承認情報の少なくとも1つの情報を含んでもよい。
【0059】
HAPS10のアレーアンテナ110で受信した基地局20からのフィードバック情報(FB情報)は、通信中継装置100の通信制御部115に送られる。通信制御部115は、基地局20からのフィードバック情報に基づいて制御情報を生成し、その制御情報に基づいて、無線電力伝送用信号(WPT信号)を含む下りリンク(DL)の送信信号と、HAPS10のアレーアンテナ110の無線電力伝送用ビームフォーミング(WPTビームフォーミング)の制御信号(BF制御信号)とを生成してアレーアンテナ110に送る。アレーアンテナ110は、BF制御信号に基づいて基地局20の方向に無線電力伝送用ビーム(WPTビーム)を形成し、そのWPTビームにより、下りリンク(DL)の無線リソースの一部を介してWPT信号を含む下りリンク(DL)の送信信号(調整位相された送信信号)を送信する。
【0060】
HAPS10の通信制御部115は、基地局20から受信したフィードバック情報を外部プラットフォーム55のクラウドシステムやサーバ等に転送し、フィードバック情報に基づいて外部プラットフォーム55で生成された制御情報を受信し、その制御情報に基づいて、WPT信号を含む下りリンク(DL)の送信信号とBF制御信号とを生成してもよい。
【0061】
また、基地局20からの無線電力伝送に関するフィードバック情報は、各HAPS10に対する送信信号の位相を指定する制御情報であってもよい。ただし、この場合、基地局20側で、各HAPS10から送信される送信信号の位相を決定する処理を実行することになる。
【0062】
本実施形態の位相調整方法では、互いに時刻同期されている複数のHAPS10-0,10-1,・・・10-nに対して基地局20からパイロット信号を送信し、複数のHAPS10-0,10-1,・・・10-nは、それぞれの無線電力伝送用の送信信号が基地局20に同位相で到達するように、基地局20からのパイロット信号の受信結果に基づいて当該送信信号の送信タイミングを決定する。
【0063】
具体的には、基地局20から送信されるパイロット信号は、各HAPS10-0,10-1,・・・10-nのアンテナ110に受信されると、各HAPSの無線処理部130から通信信号処理部120を介して電力伝送制御部140へ送られる。電力伝送制御部140は、送電対象(基地局20)が共通の他のHAPSとの間で時刻同期を行う同期処理部として機能し、例えば、PTP(Precision Time Protocol)等による時刻同期を行う。また、電力伝送制御部140は、無線処理部130やアンテナ110などとともに、所定周波数の電磁波を介して無線電力伝送用の送信信号を送信する送信部を構成する。
【0064】
電力伝送制御部140は、パイロット信号の受信時刻により、基準となるHAPS10-0との送信信号経路長の差を把握できるので、この差を補償するための入力位相Δφ1,Δφ2,・・・,Δφnを決定し、決定した入力位相が付加された送信信号の送信タイミングの制御情報を無線処理部130に送る。これにより、無線処理部130は、その制御情報に基づく送信タイミングで、無線電力伝送用の送信信号(位相調整後の送信信号)をアンテナ110から基地局20に送信する。
【0065】
その結果、図4に示すように、複数のHAPS10-0,10-1,・・・10-nのアンテナ110に入力される送信信号PInjφ,PInjφ-Δφ1,・・・,PInjφ-Δφnは、基地局20で受信される時点の位相が同相Pjφになる。よって、図3(b)に示すように、位相合成された受信信号(合成信号)PrIncが最大化され、高効率で安定した無線電力伝送(WPT)が実現される。
【0066】
〔実施形態2〕
他の実施形態に係る無線電力伝送(WPT)システムは、宇宙太陽光発電衛星(SSPS:Space Soler Power Satellite)から、成層圏などに分散して位置する複数の浮揚体(例えばHAPS、気球、ドローン)に搭載された複数の送電装置を中継して、地上、海上、湖上などに位置する受電装置や低高度の空間に位置するドローンなどに搭載された受電装置に安定して給電可能な大空間分散給電システムである。
【0067】
なお、以下の説明では、上述した実施形態1と重複する説明は適宜省略し、上述した実施形態1とは異なる点を中心に説明する。
【0068】
図5は、本実施形態2に係るシステムの概略構成の一例を示す説明図である。
本実施形態2のシステムは、無線電力伝送(WPT)を行うシステムであり、所定高度に位置する浮揚体に搭載される一又は複数の送電装置と、この送電装置から送信された送信信号を受信して電力を出力する受電装置と、を備える。一又は複数の送電装置は、第1周波数の電磁波を介して外部装置から送信される無線電力伝送用の送信信号を受信し、前記無線電力伝送用の送信信号の周波数を前記第1周波数よりも低い第2周波数に変換し、前記第2周波数の電磁波を介して前記無線電力伝送用の送信信号を送信する。
【0069】
浮揚体は、本実施形態2でも、成層圏に位置するHAPS10の例であるが、上述した実施形態1と同様、気球又はドローンなどであってもよい。受信装置も、上述した実施形態1と同様、地上の基地局20の例である。ただし、本実施形態2のHAPS10が基地局20へ送信する無線電力伝送用の送信信号は、外部装置から送信される無線電力伝送用の送信信号の周波数を低い周波数に変換したものである。この外部装置としては、他の浮揚体(例えば他のHAPS)に搭載される送電装置、地上、海上若しくは湖上などに位置する送電装置、HAPS10よりも高高度に位置する送電装置(例えば宇宙太陽光発電衛星など)などが挙げられる。
【0070】
本実施形態は、外部装置が、大気圏よりも高い高度に位置する宇宙太陽光発電衛星30の例である。宇宙太陽光発電衛星30は、太陽光発電装置を搭載し、太陽光発電装置から出力される電力を無線電力伝送により成層圏のHAPS10へ伝送し、このHAPS10から無線電力伝送により受電装置である地上の基地局20へ電力を伝送する。
【0071】
図6は、本実施形態2の無線電力伝送(WPT)システムを構成するHAPS10及び基地局20の主要構成の一例を示すブロック図である。
HAPS10は、上述した実施形態1で備える構成のほか、第1周波数の電磁波を介して送信される宇宙太陽光発電衛星30から無線電力伝送用の送信信号を受信する受信部としてのアンテナ111と、アンテナ111で受信した無線電力伝送用の送信信号の周波数をより低い第2周波数に変換する変換部としての周波数変換部160と、を備える。
【0072】
アンテナ111は、例えば、多数のアンテナ素子を有するアレーアンテナである。アンテナ111は単数でもよいし複数であってもよい。HAPS10の通信中継装置100に設けられる周波数変換部160は、宇宙太陽光発電衛星30からアンテナ111を介して受信した無線電力伝送用の送信信号の周波数(第1周波数)をより低い第2周波数に変換し、周波数変換後の送信信号を無線処理部130に送る。無線処理部130は、周波数変換部160から送られてくる無線電力伝送用の送信信号をアンテナ110から基地局20に送信する。
【0073】
本実施形態において、宇宙太陽光発電衛星30からHAPS10に送信される無線電力伝送用の送信信号の電磁波の周波数は、マイクロ波よりも高い周波数であるのが好ましく、ミリ波、テラヘルツ波又は光波であるのがより好ましい。大気圏よりも高い高度に位置する宇宙太陽光発電衛星30と成層圏に位置するHAPS10との間では大気の影響が小さいため、無線電力伝送用の送信信号の電磁波は、高周波数のもの、特にミリ波、テラヘルツ波又は光波であるのがよい。一方で、成層圏に位置するHAPS10から地上の基地局20に送信される無線電力伝送用の送信信号については、大気の影響が大きいため、上述したとおり、大気の影響を受けにくい電磁波、特にマイクロ波であるのが好ましい。
【0074】
本実施形態では、宇宙太陽光発電衛星30で発電される電力を地上の基地局20に無線電力伝送するにあたり、成層圏に位置するHAPS10を経由させることで、無線電力伝送(WPT)を実現している。すなわち、大気の影響の少ないエリアでの無線電力伝送では、より高周波数の電磁波を介して無線電力伝送用の送信信号を送信し、大気の影響の大きいエリアでの無線電力伝送では、より低周波数の電磁波を介して無線電力伝送用の送信信号を送信することで、高効率で安定した無線電力伝送(WPT)を実現している。
【0075】
また、宇宙太陽光発電衛星30からHAPS10に送信される無線電力伝送用の送信信号の電磁波は、宇宙太陽光発電衛星30からHAPS10に向かう指向性を有するように形成されたビーム形状の電磁波であるのが好ましい。これにより、より高効率な無線電力伝送を実現することができる。このような電磁波には、例えば、ビーム形状をビームフォーミング技術により成形された電磁波を用いることができる。
【0076】
特に、本実施形態では、宇宙太陽光発電衛星30から複数のHAPS10に対して無線電力伝送用の送信信号を送信することから、各HAPS10へ送信される複数の送信信号をマルチビームで送信するのがよい。これによれば、各HAPS10に対し、より高効率な無線電力伝送を実現することができる。
【0077】
本実施形態においても、上述した実施形態1と同様、複数のHAPS10から基地局20への無線電力伝送を行う。そのため、上述した実施形態1と同じく、複数のHAPS10から送信された無線電力伝送用の送信信号を受信した複数の受信信号間の位相が整合するように位相合成する構成を採用するのが好ましい。ただし、本実施形態2において、この構成は必ずしも採用する必要はない。
【0078】
〔実施形態3〕
更に他の実施形態に係る無線電力伝送(WPT)システムは、宇宙太陽光発電衛星(SSPS)から、成層圏などに分散して位置する複数の浮揚体(例えばHAPS、気球、ドローン)に安定して給電可能な大空間分散給電システムである。
【0079】
なお、以下の説明では、上述した実施形態1及び2と重複する説明は適宜省略し、上述した実施形態1及び2とは異なる点を中心に説明する。
【0080】
図7は、本実施形態3に係るシステムの概略構成の一例を示す説明図である。
本実施形態3のシステムは、無線電力伝送(WPT)を行うシステムであり、大気圏よりも高い高度に位置する宇宙太陽光発電衛星30と、宇宙太陽光発電衛星よりも低い所定高度に位置する複数の浮揚体のそれぞれに搭載される複数の受電装置と、を備える。宇宙太陽光発電衛星30は、所定周波数の電磁波を介して複数の無線電力伝送用の送信信号をマルチビームで送信する。複数の受電装置は、宇宙太陽光発電衛星30からマルチビームで送信された当該複数の無線電力伝送用の送信信号のそれぞれを受信する。
【0081】
宇宙太陽光発電衛星30は、本実施形態3でも、上述した実施形態2と同様、大気圏よりも高い高度に位置し、太陽光発電装置を搭載していて、太陽光発電装置から出力される電力を無線電力伝送により成層圏のHAPS10へ伝送する。本実施形態3の受信装置は、浮揚体であるHAPS10であり、本システムの送電対象がHAPS10ということになる。したがって、本実施形態3のHAPS10は、地上の基地局20に無線電力伝送するための機能(電力伝送制御部140等)を備えていないが、地上の基地局20に無線電力伝送するための機能を備えていてもよい。
【0082】
送電対象である受電装置が搭載される浮揚体は、本実施形態3でも、成層圏に位置するHAPS10の例であるが、上述した実施形態1や実施形態2と同様、成層圏に位置する気球又はドローンなどであってもよい。
【0083】
図8は、本実施形態3の無線電力伝送(WPT)システムを構成するHAPS10の主要構成の一例を示すブロック図である。
本実施形態3のHAPS10は、地上の基地局20に無線電力伝送するための機能(電力伝送制御部140、周波数変換部160等)を備えていない点で、上述した実施形態2とは異なっている。また、本実施形態3のHAPS10は、無線処理部170と、電力出力部180と、電池190と、を備える点でも、上述した実施形態2とは異なっている。
【0084】
無線処理部170は、宇宙太陽光発電衛星30から送信される無線電力伝送用の送信信号をアンテナ111を介して受信し、電力出力部180へ送る。電力出力部180は、例えば整流器を有し、宇宙太陽光発電衛星30からの無線電力伝送用の送信信号を受信した受信信号の電力を、電池充電用の受電電力として出力する。電力出力部180から出力された受電電力により、電池190を充電することができる。
【0085】
本実施形態においても、上述した実施形態2と同様、宇宙太陽光発電衛星30からHAPS10に送信される無線電力伝送用の送信信号の電磁波の周波数は、マイクロ波よりも高い周波数であるのが好ましく、ミリ波、テラヘルツ波又は光波であるのがより好ましい。大気圏よりも高い高度に位置する宇宙太陽光発電衛星30と成層圏に位置するHAPS10との間では大気の影響が小さいため、無線電力伝送用の送信信号の電磁波は、高周波数のもの、特にミリ波、テラヘルツ波または光波であるのがよい。
【0086】
また、本実施形態では、宇宙太陽光発電衛星30から複数のHAPS10に対して無線電力伝送用の送信信号を送信することから、各HAPS10へ送信される複数の送信信号をマルチビームで送信する。これにより、各HAPS10に対し、より高効率な無線電力伝送を実現することができる。このようなマルチビームは、例えば、ビーム形状をビームフォーミング技術により成形することにより実現できる。
【0087】
本実施形態によれば、宇宙太陽光発電衛星30から複数の無線電力伝送用の送信信号をマルチビームで送信し、マルチビームで送信された複数の送信信号が成層圏などに分散して位置する複数のHAPS10にそれぞれ受信される。これにより、高効率で安定した無線電力伝送(WPT)を実現することができる。
【0088】
以上、本実施形態1~3によれば、高高度に位置する送電装置から受電装置への安定した無線電力伝送が可能になる。
また、本発明は、高高度に位置する送電装置から地上、海上、湖上又は低高度の空間に位置する受電装置への無線電力伝送の安定化を図ることができるため、持続可能な開発目標(SDGs)の目標9「産業と技術革新の基盤をつくろう」の達成に貢献できる。
【0089】
なお、本明細書で説明された処理工程並びに無線電力伝送システム、送電システム、受電システム、送電装置、受電装置、浮揚体、端末装置、宇宙太陽光発電衛星などの構成要素は、様々な手段によって実装することができる。例えば、これらの工程及び構成要素は、ハードウェア、ファームウェア、ソフトウェア、又は、それらの組み合わせで実装されてもよい。
【0090】
ハードウェア実装については、実体(例えば、各種の送信機、受信機、レクテナ装置、無線通信装置、Node B、端末、ハードディスクドライブ装置、又は、光ディスクドライブ装置)において上記工程及び構成要素を実現するために用いられる処理ユニット等の手段は、1つ又は複数の、特定用途向けIC(ASIC)、デジタルシグナルプロセッサ(DSP)、デジタル信号処理装置(DSPD)、プログラマブル・ロジック・デバイス(PLD)、フィールド・プログラマブル・ゲート・アレイ(FPGA)、プロセッサ、コントローラ、マイクロコントローラ、マイクロプロセッサ、電子デバイス、本明細書で説明された機能を実行するようにデザインされた他の電子ユニット、コンピュータ、又は、それらの組み合わせの中に実装されてもよい。
【0091】
また、ファームウェア及び/又はソフトウェア実装については、上記構成要素を実現するために用いられる処理ユニット等の手段は、本明細書で説明された機能を実行するプログラム(例えば、プロシージャ、関数、モジュール、インストラクション、などのコード)で実装されてもよい。一般に、ファームウェア及び/又はソフトウェアのコードを明確に具体化する任意のコンピュータ/プロセッサ読み取り可能な媒体が、本明細書で説明された上記工程及び構成要素を実現するために用いられる処理ユニット等の手段の実装に利用されてもよい。例えば、ファームウェア及び/又はソフトウェアコードは、例えば制御装置において、メモリに記憶され、コンピュータやプロセッサにより実行されてもよい。そのメモリは、コンピュータやプロセッサの内部に実装されてもよいし、又は、プロセッサの外部に実装されてもよい。また、ファームウェア及び/又はソフトウェアコードは、例えば、ランダムアクセスメモリ(RAM)、リードオンリーメモリ(ROM)、不揮発性ランダムアクセスメモリ(NVRAM)、プログラマブルリードオンリーメモリ(PROM)、電気的消去可能PROM(EEPROM)、フラッシュメモリ、フロッピー(登録商標)ディスク、コンパクトディスク(CD)、デジタルバーサタイルディスク(DVD)、磁気又は光データ記憶装置、などのような、コンピュータやプロセッサで読み取り可能な媒体に記憶されてもよい。そのコードは、1又は複数のコンピュータやプロセッサにより実行されてもよく、また、コンピュータやプロセッサに、本明細書で説明された機能性のある態様を実行させてもよい。
【0092】
また、前記媒体は非一時的な記録媒体であってもよい。また、前記プログラムのコードは、コンピュータ、プロセッサ、又は他のデバイス若しくは装置機械で読み込んで実行可能であればよく、その形式は特定の形式に限定されない。例えば、前記プログラムのコードは、ソースコード、オブジェクトコード及びバイナリコードのいずれでもよく、また、それらのコードの2以上が混在したものであってもよい。
【0093】
また、本明細書で開示された実施形態の説明は、当業者が本開示を製造又は使用するのを可能にするために提供される。本開示に対するさまざまな修正は当業者には容易に明白になり、本明細書で定義される一般的原理は、本開示の趣旨又は範囲から逸脱することなく、他のバリエーションに適用可能である。それゆえ、本開示は、本明細書で説明される例及びデザインに限定されるものではなく、本明細書で開示された原理及び新規な特徴に合致する最も広い範囲に認められるべきである。
【符号の説明】
【0094】
10 :HAPS
20 :基地局
30 :宇宙太陽光発電衛星
50 :通信ネットワーク
55 :外部プラットフォーム
100 :通信中継装置
110,111:アンテナ
115 :通信制御部
120 :通信信号処理部
130 :無線処理部
140 :電力伝送制御部
150 :NW通信部
160 :周波数変換部
170 :無線処理部
180 :電力出力部
190 :電池
210 :アンテナ
220 :無線処理部
230 :通信信号処理部
240 :電力出力部
250 :電池
【要約】
【課題】高高度に位置する送電装置から受電装置への安定した無線電力伝送が可能になるシステムを提供する。
【解決手段】システムは、所定高度に位置する浮揚体10に搭載され、所定周波数の電磁波を介して無線電力伝送用の送信信号を送信する複数の送電装置100と、複数の送電装置から送信された複数の送信信号を受信した複数の受信信号を位相合成して電力を出力する一又は複数の受電装置20とを備える。電磁波の周波数は300[GHz]以下であってもよく、電磁波はマイクロ波であってもよい。電磁波は、送電装置から受電装置に向かう指向性を有するように形成されたビーム形状の電磁波であってもよい。浮揚体は、成層圏に位置するHAPS、気球又はドローンであってもよい。受電装置は、地上、海上若しくは湖上に位置してもよいし、又は、送電装置よりも低い低高度の空間に位置してもよい。
【選択図】図1
図1
図2
図3
図4
図5
図6
図7
図8