(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2023-10-20
(45)【発行日】2023-10-30
(54)【発明の名称】室外機及び空気調和装置
(51)【国際特許分類】
F25B 39/02 20060101AFI20231023BHJP
F24F 1/14 20110101ALI20231023BHJP
F24F 13/22 20060101ALI20231023BHJP
F25B 1/00 20060101ALI20231023BHJP
F28F 13/18 20060101ALI20231023BHJP
【FI】
F25B39/02 J
F24F1/14
F24F13/22 222
F25B1/00 396B
F28F13/18 A
F28F13/18 B
(21)【出願番号】P 2019038597
(22)【出願日】2019-03-04
【審査請求日】2022-01-31
【前置審査】
(73)【特許権者】
【識別番号】516299338
【氏名又は名称】三菱重工サーマルシステムズ株式会社
(74)【代理人】
【識別番号】100112737
【氏名又は名称】藤田 考晴
(74)【代理人】
【識別番号】100136168
【氏名又は名称】川上 美紀
(74)【代理人】
【識別番号】100172524
【氏名又は名称】長田 大輔
(72)【発明者】
【氏名】▲高▼野 雅司
(72)【発明者】
【氏名】中西 道明
(72)【発明者】
【氏名】平尾 豊隆
(72)【発明者】
【氏名】平松 誠司
【審査官】西山 真二
(56)【参考文献】
【文献】特開2010-060159(JP,A)
【文献】特開2017-096545(JP,A)
【文献】特開2010-060162(JP,A)
【文献】特開平08-226715(JP,A)
【文献】特開2014-206325(JP,A)
【文献】特開平11-264632(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
F25B 1/00
F25B 39/02
F24F 13/22
(57)【特許請求の範囲】
【請求項1】
入口部と出口部を有するとともに内部に冷媒が流通する伝熱管と、
前記伝熱管が挿通されるとともに周囲を空気が流通する複数のフィンと、
を備え、
前記フィンは、前記入口部又は前記出口部から所定距離に対応する範囲にわたって撥水処理が施された撥水領域と、撥水処理が施されていない非撥水領域とを有し、
前記撥水領域は、前記伝熱管を流通する冷媒が0℃以下となる範囲に応じて設けられている蒸発器と、
前記蒸発器から導かれた冷媒を吸入して圧縮する圧縮機と、
を備え、
前記冷媒は、等圧での蒸発時に温度が変化する温度すべりを有する冷媒とされ、
前記撥水領域は、前記入口部から所定距離に対応する範囲にわたって設けられ、かつ、
圧力をp、エンタルピをhとした場合のp-h線図において、前記圧縮機の最小回転数における冷凍サイクルの蒸発過程と、0℃における等温線とを比較して前記0℃以下となる範囲を得ることによって決定される室外機。
【請求項2】
入口部と出口部を有するとともに内部に冷媒が流通する伝熱管と、
前記伝熱管が挿通されるとともに周囲を空気が流通する複数のフィンと、
を備え、
前記フィンは、前記入口部又は前記出口部から所定距離に対応する範囲にわたって撥水処理が施された撥水領域と、撥水処理が施されていない非撥水領域とを有し、
前記撥水領域は、前記伝熱管を流通する冷媒が0℃以下となる範囲に応じて設けられている蒸発器と、
前記蒸発器から導かれた冷媒を吸入して圧縮する圧縮機と、
を備え、
前記冷媒は、等圧での蒸発時に温度が変化する温度すべりがない冷媒とされ、
前記撥水領域は、前記出口部から所定距離に対応する範囲にわたって設けられ、かつ、
圧力をp、エンタルピをhとした場合のp-h線図において、前記圧縮機の最小回転数における冷凍サイクルの蒸発過程と、0℃における等温線とを比較して前記0℃以下となる範囲を得ることによって決定される室外機。
【請求項3】
前記非撥水領域には、親水処理が施されている請求項1又は2に記載の室外機。
【請求項4】
請求項1から3のいずれかに記載の室外機と、
前記室外機と冷媒配管で接続された室内機と、
を備えている空気調和装置。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、蒸発器及びこれを備えた室外機並びに空気調和装置に関するものである。
【背景技術】
【0002】
空気調和装置の室外機には、空気と熱交換する室外熱交換器が開示されている。特許文献1には、室外熱交換器を蒸発器として動作させた場合に、フィンに生じた結露を円滑に排水するために、フィンの上部に親水処理を施し、フィンの下部に撥水処理を施すことが開示されている。
【先行技術文献】
【特許文献】
【0003】
【発明の概要】
【発明が解決しようとする課題】
【0004】
フィンに親水処理を施すと、結露水がフィンの表面上を濡らして一様に流れるが、低外気温時における暖房運転では、フィン表面上で結露水が凍結・着霜し、空気の通風抵抗となるおそれがある。
フィンに撥水処理を施すと、フィンの表面上に水滴が形成されて転がるので凍結を抑制することができるが、水滴が空気の通風抵抗となるおそれがある。
【0005】
本発明は、このような事情に鑑みてなされたものであって、蒸発器の着霜と通風抵抗を抑制することができる室外機及び空気調和装置を提供することを目的とする。
【課題を解決するための手段】
【0006】
本発明の一態様に係る参考例としての蒸発器は、入口部と出口部を有するとともに内部に冷媒が流通する伝熱管と、前記伝熱管が挿通されるとともに周囲を空気が流通する複数のフィンと、を備え、前記フィンは、前記入口部又は前記出口部から所定距離に対応する範囲にわたって撥水処理が施された撥水領域と、撥水処理が施されていない非撥水領域とを有し、前記撥水領域は、前記伝熱管を流通する冷媒が0℃以下となる範囲に応じて設けられている。
【0007】
蒸発器の伝熱管を流通する冷媒が0℃以下となると、伝熱管及びフィンに凍結が生じる。そこで、冷媒が0℃以下となる領域に応じて撥水領域をフィンに施すこととした。これにより、撥水領域を施されたフィン上では付着した水分が水滴となり転がるので、着霜を抑制することができる。よって、フィン上で生じた着霜が通風抵抗を増大させることがない。
非撥水領域には、例えば、親水処理を施すことができる。
【0008】
本発明の一態様に係る室外機は、上記の蒸発器と、前記蒸発器から導かれた冷媒を吸入して圧縮する圧縮機と、を備え、前記冷媒は、等圧での蒸発時に温度が変化する温度すべりを有する冷媒とされ、前記撥水領域は、前記入口部から所定距離に対応する範囲にわたって設けられ、かつ、圧力をp、エンタルピをhとした場合のp-h線図において、前記圧縮機の最小回転数における冷凍サイクルの蒸発過程と、0℃における等温線とを比較して前記0℃以下となる範囲を得ることによって決定される。
【0009】
非共沸混合冷媒のように、等圧での蒸発時に温度が変化する温度すべりを有する冷媒を用いた場合には、伝熱管の入口部側が0℃以下となる傾向にある。このため、温度すべりを有する冷媒を用いる場合には、伝熱管の入口部から所定距離に対応する範囲にわたってフィンに撥水領域を設けることとした。
【0010】
本発明の一態様に係る室外機は、上記の蒸発器と、前記蒸発器から導かれた冷媒を吸入して圧縮する圧縮機と、を備え、前記冷媒は、等圧での蒸発時に温度が変化する温度すべりがない冷媒とされ、前記撥水領域は、前記出口部から所定距離に対応する範囲にわたって設けられ、かつ、圧力をp、エンタルピをhとした場合のp-h線図において、前記圧縮機の最小回転数における冷凍サイクルの蒸発過程と、0℃における等温線とを比較して前記0℃以下となる範囲を得ることによって決定される。
【0011】
単一冷媒や共沸混合冷媒のように、等圧での蒸発時に温度が変化する温度すべりがない冷媒を用いた場合には、蒸発器の出口部が0℃以下となる傾向にある。このため、温度すべりがない冷媒を用いる場合には、伝熱管の出口部から所定距離に対応する範囲にわたって撥水領域を設けることとした。
【0012】
さらに、本発明の一態様に係る室外機では、前記撥水領域は、前記圧縮機の最小回転数に基づいて決定されている。
【0013】
圧縮機が最小回転数で運転されている状態は、暖房運転時において室内温度が設定温度に到達している状態といえる。このときに着霜してデフロスト運転が行われると、デフロスト運転による逆サイクル運転によって室内熱交換器が蒸発器となりユーザに不快感を与えるおそれがある。そこで、圧縮機の最小回転数に基づいて撥水領域を定めることとした。これにより、着霜を抑制する必要な範囲にのみ撥水領域を施すことができる。
一方、圧縮機が最小回転数よりも大きい回転数で運転している場合は、設定温度に到達するように暖房負荷をかけている状態を意味するので、仮にデフロスト運転となり室内熱交換器が蒸発器として動作しても、ユーザにとってデフロスト運転することは予測可能と言えるのでそれほどユーザに不快感を与えることはない。
非共沸混合冷媒のように温度すべりがある冷媒を用いた場合には、圧縮機の回転数を上げると圧力損失が増大して伝熱管の出口側が入口側よりも出口側が0℃以下となるおそれがある。このような場合であっても、圧縮機の回転数が大きいのでユーザに大きな不快感を与えることはない。
圧縮機の最小回転数は、圧縮機の仕様によって定めることができ、また、暖房運転時に設定温度に到達した後に設定温度を維持するように指令する回転数を意味する。
【0014】
さらに、本発明の一態様に係る室外機では、前記非撥水領域には、親水処理が施されている。
【0015】
非撥水領域は、着霜のおそれがないので親水処理を施してフィン上に生じた結露水をフィンの表面を一様に濡らすようにして円滑に排出することとした。これにより、通風抵抗を減少させることができる。
【0016】
また、本発明の一態様に係る空気調和装置は、上記のいずれかに記載の室外機と、前記室外機と冷媒配管で接続された室内機と、を備えている。
【発明の効果】
【0017】
フィンに形成した撥水領域を所定範囲に限定することで、蒸発器の着霜と通風抵抗を抑制することができる。
【図面の簡単な説明】
【0018】
【
図1】本発明の第1実施形態に係る空気調和装置の冷媒回路を示した概略構成図である。
【
図5】非共沸混合冷媒を用いた場合のp-h線図である。
【
図7】温度すべりがない冷媒を用いた場合のp-h図である。
【発明を実施するための形態】
【0019】
以下に、本発明に係る実施形態について、図面を参照して説明する。
[第1実施形態]
以下、本発明の第1実施形態について、
図1を用いて説明する。
図1には、本実施形態の空気調和装置1の冷媒回路構成が示されている。空気調和装置1は、圧縮機3の吐出側に設けた四方弁4を切り替えることによって、暖房運転と冷房運転を行うことができる。
図1において、実線の矢印A1で示した方向が暖房運転時の冷媒流れ方向を示し、破線の矢印A2で示した方向が冷房運転時やデフロスト運転時の冷媒流れ方向を示している。
【0020】
空気調和装置1は、冷媒として、R32とR1234yfとが混合された非共沸混合冷媒であるR454Cを用いている。R32は、R123yfに対して低い沸点を有した低沸点冷媒とされている。R1234yfは、R32に対して高い沸点を有した高沸点冷媒とされている。なお、R454Cに変えて、R454Bや他のR400番台の非共沸混合冷媒を用いても良い。
【0021】
空気調和装置1は、非共沸混合冷媒(以下、単に「冷媒」という場合もある。)を圧縮する圧縮機3と、四方弁4と、室外熱交換器5と、膨張弁7と、室内熱交換器9とを備えている。これら圧縮機3、四方弁4、室外熱交換器5、膨張弁7及び室内熱交換器9を冷媒配管によって接続することで冷凍サイクルを行う冷媒回路が構成される。
【0022】
圧縮機3と、四方弁4と、室外熱交換器5と、膨張弁7とは、室外機2内に設置されている。室内熱交換器9は、室内機10内に設置されている。なお、膨張弁7を室内機10内に設置する構成としても良い。
【0023】
圧縮機3は、例えばスクロール圧縮機やロータリー圧縮機とされており、図示しない電動モータによって駆動される。電動モータは、インバータ装置を備えており、図示しない制御部からの指令によって回転数が任意に変更されるようになっている。
【0024】
四方弁4は、暖房運転時には圧縮機3から吐出された冷媒が室内熱交換器9へ導かれるように切り換えられ、冷房運転時やデフロスト運転時には圧縮機3から吐出された冷媒が室外熱交換器5へ導かれるように切り換えられる。四方弁4の制御は、図示しない制御部によって行われる。
【0025】
室外熱交換器5は、暖房運転時には蒸発器として動作し、冷房運転時やデフロスト運転時には凝縮器として動作する。室外熱交換器5に対して、室外ファン6から空気(外気)が送られるようになっている。
【0026】
室内熱交換器9は、暖房運転時には凝縮器として動作し、冷房運転時やデフロスト運転時には蒸発器として動作する。
【0027】
膨張弁7は、凝縮器として動作する熱交換器5,9にて凝縮液化された冷媒を膨張させる。膨張弁7の開度は、制御部によって制御される。
【0028】
図2には、室外熱交換器5の概略構成が示されている。室外熱交換器5は、フィンチューブ型熱交換器とされ、内部に冷媒が流通する伝熱管12と、複数のフィン14から構成されるフィン群14Aとを備えている。
【0029】
伝熱管12は、入口部12aと出口部12bとを備えている。入口部12aは下方に位置しており、出口部12bは上方に位置している。伝熱管12は、入口部12aと出口部12bとの間で蛇行するように設けられている。なお、入口部12aと出口部12bの上下方向の位置は、
図2に示した本実施形態に限定されるものではなく、上下が逆になっていても良く、また高さ方向の中間位置に入口部12aや出口部12bが存在していても良い。
【0030】
フィン群14Aは、
図2において上下方向に延在する板状のフィン14が所定ピッチで積層方向(
図2において左右方向)に整列した状態で構成されている。したがって、
図2に示したフィン群14Aは、積層した状態のフィン14を正面視した場合の外形状を示している。各フィン14は、金属製とされており、例えばアルミ合金製である。各フィン14に複数の貫通孔が形成されており、これら貫通孔を挿通するように伝熱管12が配置される。各フィン14と伝熱管12とは、物理的に接触しており、良好な熱伝導が行われるようになっている。
【0031】
伝熱管12の入口部12a側に位置するフィン群14Aすなわちハッチングで示したフィン群14Aの下部には、各フィン14の下部に撥水処理を施した撥水領域14aが形成されている。撥水処理としては、例えば撥水材料をフィン14の母材(金属部分)にコーティングすることによって行われる。
【0032】
撥水領域14aの上方すなわち伝熱管12の出口部12b側に位置するフィン群14Aには、親水処理が施された親水領域(非撥水領域)14bが形成されている。親水処理としては、例えば親水材料をフィン14の母材(金属部分)にコーティングすることによって行われる。このように、フィン群14Aは、撥水領域14aと親水領域14bとの2領域に分けられている。
【0033】
図3には、撥水領域14aにおける結露水の状態が示されている。フィン14の表面上が撥水処理されている撥水領域14aでは、同図に示すように、結露水は液滴Dとなり、重力によって転がるように下方へと移動する。このように撥水領域14aでは液滴Dが転がり移動するので凍結しにくくなっている。しかし、液滴Dの大きさによってはフィン14間を通過する空気の通風抵抗となる。
【0034】
図4には、親水領域14bにおける結露水の状態が示されている。フィン14の表面上が親水処理されている親水領域14bでは、同図に示すように、結露水はフィン14の表面を濡らすように水膜Fとなり一様に広がって重力により下方へと流れる。このように親水領域14bでは水膜Fが一様に広がり薄い膜となって流れるので、フィン14間を通過する空気の通風抵抗が液滴Dの場合(
図3参照)に比べて小さくなる。しかし、水膜Fがフィン14の表面上に付着し続けるので凍結し着霜するおそれがある。
【0035】
図3及び
図4に示したように、撥水領域14a及び親水領域14bのそれぞれの結露水の流れ状態に応じて、撥水領域14aと親水領域14bが適切に定められている。すなわち、結露水が凍結するおそれがある領域には撥水領域14aを採用し、結露水の凍結を抑制する。結露水が凍結するおそれがない領域には親水領域14bを採用し、通風抵抗の増大を図る。
【0036】
撥水領域14aと親水領域14bとの境界は、伝熱管12を流れる冷媒温度に応じて決定される。すなわち、伝熱管12を流れる冷媒温度が0℃以下となる範囲に対応する領域は撥水領域14aとし、伝熱管12を流れる冷媒温度が0℃を超える範囲に対応する領域は親水領域14bとする。
なお、撥水領域14aと親水領域14bの境界を定める冷媒温度は、厳密に0℃とする必要はなく、例えば0℃~3℃や-3℃~0℃といった範囲で境界を定めても良い。但し、0℃以下となる冷媒温度で境界を定めると親水領域14bで凍結するおそれがあるので、0℃以上に境界を定める方が好ましい。
【0037】
非共沸混合冷媒では、伝熱管12の入口部12a側から所定範囲にわたって冷媒温度が0℃以下となる領域が存在する。したがって、撥水領域14aは、
図2に示したように、入口部12aから所定領域すなわち下方から上方に向けて形成される所定領域に撥水領域14aが規定される。
【0038】
図5には、非共沸混合冷媒を用いる場合に伝熱管12の入口部12a側で冷媒温度が0℃以下となる理由が示されている。
図5は、非共沸混合冷媒を用いた場合のp-h線図である。すなわち、横軸がエンタルピhを示し、縦軸が圧力pを示す。太実線は、飽和液線S1及び飽和蒸気線S2を示し、細実線は冷凍サイクルCを示し、破線は0℃における等温線Tを示す。同図から分かるように、非共沸混合冷媒は、等圧での蒸発時に温度が変化する温度すべりを有するので、飽和液線S1と飽和蒸気線S2との間の湿り蒸気領域では、等温線Tが右下がりとなる。一方、暖房運転時の室外熱交換器5を示す冷凍サイクルCの蒸発過程では、略平行な直線となっている。冷凍サイクルCの蒸発過程は僅かに右下がりとなっているが、これは伝熱管12内を流れる冷媒の圧力損失である。
【0039】
図5から分かるように、非共沸混合冷媒を用いる場合には、温度すべりが生じるので、0℃における等温線Tを下回る領域は、伝熱管12の入口部12a側(
図5において左側)となる。したがって、伝熱管12の入口部12a側に撥水領域14aを形成することになり、
図2に示したように、伝熱管12内の冷媒が0℃以下となる所定範囲に対応する領域となるように下方から上方に向けて所定範囲に撥水領域14aを形成する。
【0040】
図6には、圧縮機3の回転数による冷媒温度の影響が示されている。同図において、横軸は蒸発器面積[%]を示し、縦軸は蒸発器温度[℃]を示す。ここで、蒸発器とは、暖房運転時の室外熱交換器5を意味する。横軸の蒸発器面積は、伝熱管12の入口部12aから積算したフィン14の伝熱面積である。したがって、0%が入口部12aを示し、100%が出口部12bを示す。蒸発器温度は、伝熱管12を流れる冷媒温度である。
【0041】
図6に示されているように、圧縮機3の回転数が最小運転の場合は、入口部12a側から所定範囲にわたって蒸発器温度が0℃以下となる。同図に示された場合では、蒸発器面積が0%以上34.5%以下の範囲にわたって撥水領域14aを形成する。
【0042】
圧縮機3の回転数が最小運転よりも増大して中間運転となると、入口部12aから出口部12bにわたって蒸発器温度は0℃を上回る。これは、圧縮機3の回転数の増大に伴い伝熱管12における圧力損失が増大し、
図5に示したp―h線図における冷凍サイクルCの蒸発過程を示す直線が左上がりとなるからである。
【0043】
さらに圧縮機3の回転数が増加して最大運転となると、出口部12b側から所定範囲にわたって蒸発器温度が0℃以下となる。これは、さらに伝熱管12における圧力損失が増大し、冷凍サイクルCの蒸発過程を示す直線がさらに左上がりとなり、かつ圧縮機3の吸入圧力が低下するからである。このように圧縮機3の回転数が最大運転となると出口部12b側が0℃以下となるが、本実施形態では親水領域14bとなっており撥水領域14aとされていない。したがって、圧縮機3の回転数が大きい場合は出口部12b側で凍結するおそれがある。しかし、親水領域14bで凍結し着霜してデフロスト運転を行う場合であっても、圧縮機3の回転数が大きい場合は設定温度に到達するように暖房負荷をかけている状態を意味するので、仮にデフロスト運転となり室内熱交換器9が蒸発器として動作しても、ユーザにとってデフロスト運転することは予測可能と言えるのでそれほどユーザに不快感を与えることはない。
【0044】
最小運転における圧縮機3の最小回転数は、圧縮機3の仕様によって定めることができる。または、圧縮機3の最小回転数は、暖房運転時に設定温度に到達した後に設定温度を維持するように制御部が指令する回転数として定めることができる。
【0045】
本実施形態によれば、以下の作用効果を奏する。
暖房運転時に蒸発器として動作する室外熱交換器5の伝熱管12を流通する冷媒が0℃以下となると、伝熱管12及びフィン14に凍結が生じる。そこで、冷媒が0℃以下となる領域に応じて撥水領域14aをフィン14に施すこととした。これにより、撥水領域14aを施されたフィン14上では付着した水分が水滴となり転がるので、着霜を抑制することができる。よって、フィン14上で生じた着霜が通風抵抗を増大させることがない。
【0046】
非共沸混合冷媒のように、等圧での蒸発時に温度が変化する温度すべりを有する冷媒を用いた場合には、伝熱管12の入口部12a側が0℃以下となる傾向にある。このため、温度すべりを有する冷媒を用いる場合には、伝熱管12の入口部12aから所定距離に対応する範囲にわたってフィン14に撥水領域14aを設けることとした。これにより、着霜を抑制するのに必要な範囲にのみ撥水領域を施すことができる。
【0047】
圧縮機3が最小回転数で運転されている状態は、暖房運転時において室内温度が設定温度に到達している状態といえる。このときに着霜してデフロスト運転が行われると、デフロスト運転による逆サイクル運転によって室内熱交換器9が蒸発器となりユーザに不快感を与えるおそれがある。そこで、圧縮機3の最小回転数に基づいて撥水領域を定めることとした。これにより、ユーザのフィーリングを改善することができる。
【0048】
撥水領域14a以外の非撥水領域は、着霜のおそれがないので親水領域14bとした。これにより、フィン14上に生じた結露水をフィン14の表面を一様に濡らすようにして円滑に排出することで、通風抵抗を減少させることができる。
【0049】
[第2実施形態]
次に、本発明の第2実施形態について、
図7を用いて説明する。本実施形態は、第1実施形態に対して、用いる冷媒が異なり、これに応じて撥水領域の範囲が異なる。その他の構成については第1実施形態と同様であるのでその説明を省略する。
【0050】
単一冷媒や共沸混合冷媒のように、等圧での蒸発時に温度が変化する温度すべりがない冷媒を用いた場合には、伝熱管12の出口部12bが0℃以下となる傾向にある。具体的には、
図7に示すように、温度すべりがない冷媒では、飽和液線S1’と飽和蒸気線S2’との間の湿り蒸気領域における0℃の等温線T’は、圧力一定である。一方、冷凍サイクルC’の蒸発過程における直線は、圧力損失のため僅かに右下がりとなる。これにより、出口部12b側が0℃以下となることになる。
このため、温度すべりがない冷媒を用いる場合には、伝熱管12の出口部12bから所定距離に対応する範囲にわたって撥水領域14a’が設けられる。したがって、親水領域14b’は、伝熱管12の入口部12a側に設けられる。
【0051】
なお、上述した各実施形態において、親水領域14b,14bには親水コーティングを施すことを一例としたが、例えば熱水処理等のコーティングによらない処理によって親水領域を形成することとしても良い。また、親水処理を施さずに撥水処理を施さない非撥水領域としても良い。この場合であっても、撥水領域にて着霜を抑制できるという効果が得られる。
【符号の説明】
【0052】
1 空気調和装置
2 室外機
3 圧縮機
4 四方弁
5 室外熱交換器(蒸発器)
6 室外ファン
7 膨張弁
9 室内熱交換器
10 室内機
12 伝熱管
12a 入口部
12b 出口部
14 フィン
14A フィン群
14a 撥水領域
14b 親水領域(非撥水領域)
D 液滴
F 水膜