IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ 株式会社豊田自動織機の特許一覧 ▶ トヨタ自動車株式会社の特許一覧

<>
  • 特許-燃料電池システム 図1
  • 特許-燃料電池システム 図2
  • 特許-燃料電池システム 図3
  • 特許-燃料電池システム 図4
  • 特許-燃料電池システム 図5
  • 特許-燃料電池システム 図6
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2023-10-20
(45)【発行日】2023-10-30
(54)【発明の名称】燃料電池システム
(51)【国際特許分類】
   H01M 8/04858 20160101AFI20231023BHJP
   H01M 8/04537 20160101ALI20231023BHJP
   H01M 10/48 20060101ALI20231023BHJP
   H02J 7/00 20060101ALI20231023BHJP
   B60L 3/00 20190101ALN20231023BHJP
   B60L 50/60 20190101ALN20231023BHJP
   B60L 50/75 20190101ALN20231023BHJP
   B60L 58/12 20190101ALN20231023BHJP
   B60L 58/18 20190101ALN20231023BHJP
   B60L 58/40 20190101ALN20231023BHJP
【FI】
H01M8/04858
H01M8/04537
H01M10/48 P
H02J7/00 X
B60L3/00 S
B60L50/60
B60L50/75
B60L58/12
B60L58/18
B60L58/40
【請求項の数】 3
(21)【出願番号】P 2020009493
(22)【出願日】2020-01-23
(65)【公開番号】P2021118064
(43)【公開日】2021-08-10
【審査請求日】2022-08-04
(73)【特許権者】
【識別番号】000003218
【氏名又は名称】株式会社豊田自動織機
(73)【特許権者】
【識別番号】000003207
【氏名又は名称】トヨタ自動車株式会社
(74)【代理人】
【識別番号】100074099
【弁理士】
【氏名又は名称】大菅 義之
(74)【代理人】
【識別番号】100121083
【弁理士】
【氏名又は名称】青木 宏義
(74)【代理人】
【識別番号】100138391
【弁理士】
【氏名又は名称】天田 昌行
(72)【発明者】
【氏名】立川 克之
【審査官】藤森 一真
(56)【参考文献】
【文献】特開2019-145220(JP,A)
【文献】特開2009-163958(JP,A)
【文献】特開2019-187062(JP,A)
【文献】特開2009-165244(JP,A)
【文献】特開2007-073241(JP,A)
【文献】特開2018-006125(JP,A)
【文献】国際公開第2019/035172(WO,A1)
【文献】特開2008-004482(JP,A)
【文献】特開2011-036101(JP,A)
【文献】特開2011-138736(JP,A)
【文献】特開2009-176491(JP,A)
【文献】特開2016-015246(JP,A)
【文献】特開2018-113126(JP,A)
【文献】特開2021-118065(JP,A)
【文献】特開2021-118063(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
B60L 1/00 - 3/12
B60L 7/00 - 13/00
B60L 15/00 - 58/40
H01M 8/04 - 8/0668
H02J 7/00 - 7/12
H02J 7/34 - 7/36
(57)【特許請求の範囲】
【請求項1】
燃料電池と、
前記燃料電池の電圧を所定電圧に変換する複数のDCDCコンバータと、
前記複数のDCDCコンバータにそれぞれ1つずつ接続される複数の蓄電装置と、
前記燃料電池の電圧が閾値を超えないように前記複数のDCDCコンバータに流れる電流を調整する高電位回避処理、または、前記蓄電装置の電圧及び前記蓄電装置に流れる電流を用いて前記蓄電装置の状態を推定する状態推定処理を実行する制御部と、
を備え、
前記制御部は、前記複数のDCDCコンバータのうちの第1のDCDCコンバータに対して停止要求を発生させているとともに、前記第1のDCDCコンバータ以外の第2のDCDCコンバータに対して停止要求を発生させていない場合、前記第1のDCDCコンバータを停止させ、
前記第2のDCDCコンバータに対して前記高電位回避処理を実行するとともに前記第1のDCDCコンバータに接続される蓄電装置に対して前記状態推定処理を実行する
ことを特徴とする燃料電池システム。
【請求項2】
請求項1に記載の燃料電池システムであって、
前記制御部は、前記複数のDCDCコンバータに対して停止要求を発生させている場合、前回の制御タイミングにおいて前記状態推定処理を実行していない蓄電装置に接続される第3のDCDCコンバータを停止させ、
前記第3のDCDCコンバータ以外の第4のDCDCコンバータに対して前記高電位回避処理を実行するとともに前記第3のDCDCコンバータに接続される蓄電装置に対して前記状態推定処理を実行する
ことを特徴とする燃料電池システム。
【請求項3】
請求項2に記載の燃料電池システムであって、
前記制御部は、前記複数のDCDCコンバータに対して停止要求を発生させている場合で、かつ、前記第のDCDCコンバータに接続される蓄電装置が満充電状態である場合、前記複数のDCDCコンバータを停止させ、
前記燃料電池と前記複数のDCDCコンバータのうちの少なくとも1つのDCDCコンバータとの間に接続される抵抗により前記燃料電池から出力される電力を消費させることで前記高電位回避処理を実行するとともに前記複数のDCDCコンバータに接続される蓄電装置に対して前記状態推定処理を実行する
ことを特徴とする燃料電池システム。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、燃料電池システムに関する。
【背景技術】
【0002】
燃料電池の電圧を所定電圧に変換するDCDCコンバータと、DCDCコンバータと負荷との間に接続される蓄電装置とを備える燃料電池システムにおいて、負荷から要求される電力が減少することや蓄電装置が満充電状態になることなどに伴うDCDCコンバータの停止要求の発生をトリガとして、蓄電装置の内部抵抗や内部起電力などの蓄電装置の状態を推定するものがある。なお、蓄電装置の内部抵抗や内部起電力は、蓄電装置の電圧や蓄電装置に流れる電流を用いて推定することが考えられる。一般に、蓄電装置の電圧の最大値と最小値との差が大きいほど、蓄電装置の内部抵抗や内部起電力の推定精度が向上する。関連する技術として、特許文献1がある。
【0003】
また、他の燃料電池システムにおいて、複数のDCDCコンバータと、複数のDCDCコンバータにそれぞれ1つずつ接続される複数の蓄電装置とを備えるものがある。
【0004】
ところで、燃料電池から出力される電流が減少すると、燃料電池の電圧が増加するため、燃料電池の電圧が閾値を超えて燃料電池が劣化するおそれがある。
【0005】
そのため、上記他の燃料電池システムでは、各DCDCコンバータの停止要求が発生した場合、各DCDCコンバータを継続して動作させて、燃料電池から出力される電流を減少させないようにすることが考えられるが、各蓄電装置の電圧が比較的大きな変化幅で変動する機会が減り、各蓄電装置の電圧の最大値と最小値との差が比較的小さくなるため、各蓄電装置の状態の推定精度が低下するおそれがある。
【先行技術文献】
【特許文献】
【0006】
【文献】特開2016-15246号公報
【発明の概要】
【発明が解決しようとする課題】
【0007】
本発明の一側面に係る目的は、複数のDCDCコンバータと、複数のDCDCコンバータにそれぞれ1つずつ接続される複数の蓄電装置とを備える燃料電池システムにおいて、燃料電池の劣化を抑制しつつ、各蓄電装置の状態の推定精度の低下を抑制することである。
【課題を解決するための手段】
【0008】
本発明に係る一つの形態である燃料電池システムは、燃料電池と、燃料電池の電圧を所定電圧に変換する複数のDCDCコンバータと、複数のDCDCコンバータにそれぞれ1つずつ接続される複数の蓄電装置と、燃料電池の電圧が閾値を超えないように複数のDCDCコンバータに流れる電流を調整する高電位回避処理、または、蓄電装置の電圧及び蓄電装置に流れる電流を用いて蓄電装置の状態を推定する状態推定処理を実行する制御部とを備える。
【0009】
制御部は、複数のDCDCコンバータのうちの第1のDCDCコンバータに対して停止要求を発生させているとともに、第1のDCDCコンバータ以外の第2のDCDCコンバータに対して停止要求を発生させていない場合、第1のDCDCコンバータを停止させ、第2のDCDCコンバータに対して高電位回避処理を実行するとともに第1のDCDCコンバータに接続される蓄電装置に対して状態推定処理を実行する。
【0010】
これにより、第2のDCDCコンバータ及び第1のDCDCコンバータに接続される蓄電装置に対して、高電位回避処理及び状態推定処理の両方の処理を排他的に実行することができるため、燃料電池の劣化を抑制しつつ、各蓄電装置の状態の推定精度の低下を抑制することができる。
【0011】
また、制御部は、複数のDCDCコンバータに対して停止要求を発生させている場合、前回の制御タイミングにおいて状態推定処理を実行していない蓄電装置に接続される第3のDCDCコンバータを停止させ、第3のDCDCコンバータ以外の第4のDCDCコンバータに対して高電位回避処理を実行するとともに第3のDCDCコンバータに接続される蓄電装置に対して状態推定処理を実行するように構成してもよい。
【0012】
これにより、第3及び第4のDCDCコンバータの停止要求が連続して発生しても、第3のDCDCコンバータ及び第3のDCDCコンバータに接続される蓄電装置に対して高電位回避処理と状態推定処理とを交互に実行することができるとともに、第4のDCDCコンバータ及び第4のDCDCコンバータに接続される蓄電装置に対して高電位回避処理と状態推定処理とを交互に実行することができるため、燃料電池の劣化を抑制しつつ、各蓄電装置の状態の推定精度の低下を抑制することができる。
【0013】
また、制御部は、複数のDCDCコンバータに対して停止要求を発生させている場合で、かつ、第のDCDCコンバータに接続される蓄電装置が満充電状態である場合、複数のDCDCコンバータを停止させ、燃料電池と複数のDCDCコンバータのうちの少なくとも1つのDCDCコンバータとの間に接続される抵抗により燃料電池から出力される電力を消費させることで高電位回避処理を実行するとともに複数のDCDCコンバータに接続される蓄電装置に対して状態推定処理を実行するように構成してもよい。
【0014】
これにより、燃料電池から出力される電力を抵抗により消費させることができるため、蓄電装置が満充電状態であり燃料電池から出力される電力を蓄電装置に供給できない場合でも、高電位回避を実行することができる。そのため、複数のDCDCコンバータの停止要求が発生する場合、蓄電装置が満充電状態であっても、高電位回避処理及び状態推定処理の両方の処理を排他的に実行することができるため、燃料電池の劣化を抑制しつつ、各蓄電装置の状態の推定精度の低下を抑制することができる。
【発明の効果】
【0015】
本発明によれば、複数のDCDCコンバータと、複数のDCDCコンバータにそれぞれ1つずつ接続される複数の蓄電装置とを備える燃料電池システムにおいて、燃料電池の劣化を抑制しつつ、各蓄電装置の状態の推定精度の低下を抑制することができる。
【図面の簡単な説明】
【0016】
図1】実施形態の燃料電池システムの一例を示す図である。
図2】制御部の動作の一例を示すフローチャートである。
図3】制御部の動作の一例を示すフローチャートである。
図4】制御部の動作の一例を示すフローチャートである。
図5】制御部の動作の一例を示すフローチャートである。
図6】実施形態の燃料電池システムの他の例を示す図である。
【発明を実施するための形態】
【0017】
以下図面に基づいて実施形態について詳細を説明する。
図1は、実施形態の燃料電池システムの一例を示す図である。
【0018】
図1に示す燃料電池システム1は、フォークリフトなどの産業車両や電気自動車などの車両Veに搭載され、負荷Lo1や負荷Lo2に電力を供給する。なお、負荷Lo1は、マイクロコンピュータやメモリなどに電力を供給するための電源などであり、負荷Lo2は、走行用モータや電装部品などである。
【0019】
また、燃料電池システム1は、燃料電池FCと、水素タンクTと、エアコンプレッサACと、インバータInvと、蓄電装置S1、S2と、DCDCコンバータCnv1と、負荷Lo1と、DCDCコンバータCv2と、制御部Cnt1、Cnt2と、電圧検出部Sv1、Sv2と、電流検出部Si1、Si2と、制御部3とを備える。なお、制御部Cnt1、Cnt2の機能を制御部3に含めて、制御部3、制御部Cnt1、及び制御部Cnt2を一体にしてもよい。
【0020】
燃料電池FCは、互いに直列接続される複数の燃料電池セルにより構成される燃料電池スタックであり、水素と酸素との電気化学反応を利用して発電を行う。
【0021】
水素タンク2は、水素を燃料電池FCに供給する。具体的には、水素タンクTと燃料電池FCとの間に水素の噴射状態を調整することが可能な不図示のインジェクタを備えており、インジェクタの開閉によって水素が供給される。この場合、制御部3は、インジェクタの開閉を制御することで燃料電池FCに供給される水素の量を調整する。
【0022】
エアコンプレッサ3は、酸素が含まれる空気を燃料電池FCに供給する。
インバータInvは、エアコンプレッサ3のモータを駆動する。制御部3は、インバータInvの動作を制御することにより、燃料電池FCに供給される空気(酸素)の量を調整する。
【0023】
蓄電装置S1は、リチウムイオンキャパシタなどにより構成され、DCDCコンバータCv1と負荷Lo1との間に接続される。DCDCコンバータCv1から出力される電力が、負荷Lo1が要求する電力より大きい場合、余剰分の電力が蓄電装置S1に供給され、蓄電装置S1が充電される。また、DCDCコンバータCv1から出力される電力が、負荷Lo1が要求する電力より小さい場合、不足分の電力が蓄電装置S1から負荷Lo1に供給される。
【0024】
蓄電装置S2は、リチウムイオンキャパシタなどにより構成され、DCDCコンバータCv2と負荷Lo2との間に接続される。DCDCコンバータCv2から出力される電力が、負荷Lo2が要求する電力より大きい場合、余剰分の電力が蓄電装置S2に供給され、蓄電装置S2が充電される。また、負荷Lo2から蓄電装置S2に回生電力が供給されると、蓄電装置S2が充電される。また、DCDCコンバータCv2から出力される電力が、負荷Lo2が要求する電力より小さい場合、不足分の電力が蓄電装置S2から負荷Lo2に供給される。また、本実施形態では一例として、蓄電装置S2の上限電圧>蓄電装置S1の上限電圧とする。なお、上限電圧は蓄電装置に印加できる耐電圧などであり、設計に応じて適宜変更可能である。本実施形態では一例として、蓄電装置S1の上限電圧が50V、蓄電装置S2の上限電圧が85Vとする。
【0025】
なお、蓄電装置S1、S2は、充電及び放電することが可能な蓄電装置(リチウムイオン電池など)であれば、リチウムイオンキャパシタに限定されない。
【0026】
電圧検出部Sv1は、電圧計などにより構成され、蓄電装置S1の電圧を検出し、その検出した電圧を制御部3に出力する。
【0027】
電流検出部Si1は、電流計などにより構成され、蓄電装置S1に流れる電流を検出し、その検出した電流を制御部3に出力する。
【0028】
電圧検出部Sv2は、電圧計などにより構成され、蓄電装置S2の電圧を検出し、その検出した電圧を制御部3に出力する。
【0029】
電流検出部Si2は、電流計などにより構成され、蓄電装置S2に流れる電流を検出し、その検出した電流を制御部3に出力する。
【0030】
DCDCコンバータCv1は、スイッチング素子を備え、入力される制御信号S1によりスイッチング素子がオン、オフすることで、燃料電池FCの電圧を一定電圧に変換し、負荷Lo1や蓄電装置S1に出力する。
【0031】
DCDCコンバータCv2は、スイッチング素子を備え、入力される制御信号S2によりスイッチング素子がオン、オフすることで、燃料電池FCの電圧を一定電圧に変換し、負荷Lo2や蓄電装置S2に出力する。
【0032】
制御部Cnt1は、マイクロコンピュータなどにより構成され、制御信号S1を出力する。
【0033】
制御部Cnt2は、マイクロコンピュータなどにより構成され、制御信号S2を出力する。
【0034】
記憶部2は、RAM(Random Access Memory)またはROM(Read Only Memory)などのメモリにより構成され、後述する、蓄電装置S1の電圧と蓄電装置S1の充電率(蓄電装置S1の満充電容量に対する現在の充電容量の割合)との対応関係を示す情報D1、蓄電装置S2の電圧と蓄電装置S2の充電率(蓄電装置S2の満充電容量に対する現在の充電容量の割合)との対応関係を示す情報D2、及び、状態更新フラグF1、F2の状態を記憶する。
【0035】
制御部3は、マイクロコンピュータなどにより構成され、インバータInvの動作を制御することで燃料電池FCの発電量(電力)を制御する。すなわち、燃料電池FCに供給される空気(酸素)の量が増加するほど、燃料電池FCの発電量が増加し、燃料電池FCに供給される空気の量が減少するほど、燃料電池FCの発電量が減少する。なお、制御部3は、燃料電池FCに供給される空気の量を段階的に増加または減少させてもよい。また、制御部3は、燃料電池FCに供給される空気の量をゼロにすると、所定時間経過後に、燃料電池FCの発電が停止して燃料電池FCの発電量がゼロになるものとする。また、燃料電池FCから出力される電流が増加するほど、燃料電池FC(燃料電池セル)の電圧が減少し、燃料電池FCから出力される電流が減少するほど、燃料電池FC(燃料電池セル)の電圧が増加するものとする。
【0036】
また、制御部3は、負荷Lo1、Lo2や蓄電装置S1、S2から要求される電力に応じた電流が燃料電池FCから出力されるように、かつ、燃料電池FCの電圧が閾値を超えないように、インバータInv、制御部Cnt1、及び制御部Cnt2の動作を制御する。なお、燃料電池FCの電圧が閾値を超えて燃料電池FCが劣化しないように、DCDCコンバータCnv1またはDCDCコンバータCnv2に流れる電流を調整する処理を高電位回避処理という。また、負荷Lo1や蓄電装置S1から要求される電力が増加するほど、制御信号S1のデューティ比が増加し、負荷Lo1や蓄電装置S1から要求される電力が減少するほど、制御信号S1のデューティ比が減少するものとする。また、負荷Lo2や蓄電装置S2から要求される電力が増加するほど、制御信号S2のデューティ比が増加し、負荷Lo2や蓄電装置S2から要求される電力が減少するほど、制御信号S2のデューティ比が減少するものとする。また、閾値は、燃料電池FCが劣化するおそれがあるときの燃料電池FCの電圧とし、燃料電池FCの電圧が閾値を超えそうなとき、制御信号S1、S2のデューティ比の減少が制限される。
【0037】
また、制御部3は、蓄電装置S1に対する状態推定処理の実行時、電圧検出部Sv1により検出される電圧や電流検出部Si1により検出される電流などを用いて、蓄電装置S1の状態(充電率、内部抵抗、内部起電力など)を推定する。
【0038】
例えば、制御部3は、記憶部2に記憶されている、蓄電装置S1の電圧と蓄電装置S1の充電率との対応関係を示す情報D1を参照して、電圧検出部Sv1により検出される電圧に対応する充電率を求める。
【0039】
例えば、制御部3は、下記式1を計算することにより、蓄電装置S1の内部抵抗Ri1を算出する。なお、電圧VH1は、電流検出部Si1により検出される電流が電流IH1であるときに電圧検出部Sv1により検出される電圧とする。また、電圧VL1は、電流検出部Si1により検出される電流が電流IL1であるときに電圧検出部Sv1により検出される電圧とする。電流IH1>電流IL1(例えば、ゼロ)とする。
【0040】
内部抵抗Ri1=(電圧VH1-電圧VL1)/(電流IH1-電流IL1)・・・式1
【0041】
例えば、制御部3は、下記式2を計算することにより、蓄電装置S1の内部起電力E1を算出する。なお、制御部3は、過去に算出した複数の内部抵抗Ri1の平均値を用いて、内部起電力E1を算出してもよい。
【0042】
内部起電力E1=電圧VH1-内部抵抗Ri1×電流IH1・・・式2
【0043】
なお、制御部3は、蓄電装置S1の電圧の最大値と最小値との差が所定電圧以上である場合、蓄電装置S1の状態(内部抵抗Ri1や内部起電力E1)を推定するように構成してもよい。これにより、蓄電装置S1の状態の推定精度を向上させることができる。
【0044】
また、制御部3は、蓄電装置S2に対する状態推定処理の実行時、電圧検出部Sv2により検出される電圧や電流検出部Si2により検出される電流などを用いて、蓄電装置S2の状態(充電率、内部抵抗、内部起電力など)を推定する。
【0045】
例えば、制御部3は、記憶部2に記憶されている、蓄電装置S2の電圧と蓄電装置S2の充電率との対応関係を示す情報D2を参照して、電圧検出部Sv2により検出される電圧に対応する充電率を求める。
【0046】
例えば、制御部3は、下記式3を計算することにより、蓄電装置S2の状態として、蓄電装置S2の内部抵抗Ri2を算出する。なお、電圧VH2は、電流検出部Si2により検出される電流が電流IH2であるときに電圧検出部Sv2により検出される電圧とする。また、電圧VL2は、電流検出部Si2により検出される電流が電流IL2であるときに電圧検出部Sv2により検出される電圧とする。電流IH2>電流IL2(例えば、ゼロ)とする。
【0047】
内部抵抗Ri2=(電圧VH2-電圧VL2)/(電流IH2-電流IL2)・・・式3
【0048】
例えば、制御部3は、下記式4を計算することにより、蓄電装置S2の状態として、蓄電装置S2の内部起電力E2を算出する。なお、制御部3は、過去に算出した複数の内部抵抗Ri2の平均値を用いて、内部起電力E2を算出してもよい。
【0049】
内部起電力E2=電圧VH2-内部抵抗Ri2×電流IH2・・・式4
【0050】
なお、制御部3は、蓄電装置S2の電圧の最大値と最小値との差が所定電圧以上である場合、蓄電装置S2の状態(内部抵抗Ri2や内部起電力E2)を推定するように構成してもよい。これにより、蓄電装置S2の状態の推定精度を向上させることができる。
【0051】
また、制御部3は、負荷Lo1から要求される電力がゼロであり、蓄電装置S1が満充電状態であると、または、蓄電装置S1に異常が発生すると、DCDCコンバータCnv1を動作状態から停止状態に遷移させる必要があると判断する。例えば、制御部3は、車両Veのイグニッションがオフになった旨を車両Veに搭載される走行制御部から受信すると、負荷Lo1(記憶部2や制御部3など)から要求される電力がゼロであると判断する。例えば、制御部3は、蓄電装置S1の充電率が、蓄電装置S1の満充電状態に対応する充電率以上になると、蓄電装置S1が満充電状態であると判断する。例えば、制御部3は、電圧検出部Sv1により検出される電圧が過電圧閾値以上になると、または、電流検出部Si1により検出される電流が過電流閾値以上になると、蓄電装置S1に異常が発生したと判断する。
【0052】
また、制御部3は、負荷Lo2から要求される電力がゼロであり、蓄電装置S2が満充電状態であると、または、蓄電装置S2に異常が発生すると、DCDCコンバータCnv2を動作状態から停止状態に遷移させる必要があると判断する。例えば、制御部3は、車両Veの速度がゼロになった旨を走行制御部から受信すると、負荷Lo1から要求される電力がゼロであると判断する。例えば、制御部3は、蓄電装置S2の充電率が、蓄電装置S2の満充電状態に対応する充電率以上になると、蓄電装置S2が満充電状態であると判断する。例えば、制御部3は、電圧検出部Sv2により検出される電圧が過電圧閾値以上になると、または、電流検出部Si2により検出される電流が過電流閾値以上になると、蓄電装置S2に異常が発生したと判断する。なお、制御部3は、負荷Lo1、Lo2から要求される電力がそれぞれゼロであり、蓄電装置S1、S2がそれぞれ満充電状態であると、燃料電池FCの発電が停止するように、インバータInvの動作を制御してもよい。
【0053】
ところで、燃料電池FCの発電中、または、燃料電池FCの発電停止直後において、DCDCコンバータCnv1、Cnv2のうちの一方のDCDCコンバータが停止して一方のDCDCコンバータから出力される電流がゼロになる場合、燃料電池FCから出力される電流が減少し、燃料電池FCの電圧が増加するため、燃料電池FCの電圧が閾値を超えることで燃料電池FCが劣化するおそれがある。
【0054】
そこで、制御部3は、DCDCコンバータCnv1、Cnt2のうちの一方のDCDCコンバータを動作状態から停止状態に遷移させようとする場合、一方のDCDCコンバータに接続される蓄電装置に対して状態推定処理を実行しつつ、燃料電池FCの電圧が閾値を超えることで燃料電池FCが劣化しないように他方のDCDCコンバータに対して高電位回避処理を実行する。すなわち、制御部3は、DCDCコンバータCnv1、Cnt2のうちの一方のDCDCコンバータを停止させようとする場合、状態推定処理及び高電位回避処理の両方の処理を排他的に同時に実行する。なお、高電位回避処理が実行される際に燃料電池FCから出力される余剰電力は、DCDCコンバータCnv1を介して蓄電装置S1に供給される、または、DCDCコンバータCnv2を介して蓄電装置S2に供給されるものとする。
【0055】
また、燃料電池FCの発電中、または、燃料電池FCの発電停止直後において、DCDCコンバータCnv1、Cnv2が同時に停止してDCDCコンバータCnv1、Cnv2から出力される電流がゼロになる場合、燃料電池FCから出力される電流が減少し、燃料電池FCの電圧が増加するため、燃料電池FCの電圧が閾値を超えることで燃料電池FCが劣化するおそれがある。
【0056】
そこで、制御部3は、DCDCコンバータCnv1、Cnt2を同時に動作状態から停止状態に遷移させようとする場合、燃料電池FCの電圧が閾値を超えることで燃料電池FCが劣化しないように、DCDCコンバータCnv1、Cnv2のうちの一方のDCDCコンバータに接続される蓄電装置に対して状態推定処理を実行しつつ、他方のDCDCコンバータに対して高電位回避処理を実行する。すなわち、制御部3は、DCDCコンバータCnv1、Cnv2を同時に停止させようとする場合、状態推定処理及び高電位回避処理の両方の処理を排他的に同時に実行する。
【0057】
図2図5は、制御部3の動作の一例を示すフローチャートである。なお、制御部3は、制御タイミング毎に、図2及び図3に示すフローチャートを同時に実行した後、図4及び図5に示すフローチャートを同時に実行する。
【0058】
図2に示すフローチャートについて説明する。
制御部3は、DCDCコンバータCnv1を動作状態から停止状態に遷移させる必要があると判断すると(ステップS11:Yes)、蓄電装置S1に対応する状態推定要求Re1を発生させる(ステップS12)。
【0059】
図3に示すフローチャートについて説明する。
制御部3は、DCDCコンバータCnv2を動作状態から停止状態に遷移させる必要があると判断すると(ステップS21:Yes)、蓄電装置S2に対応する状態推定要求Re2を発生させる(ステップS22)。
【0060】
図4に示すフローチャートについて説明する。
まず、制御部3は、状態推定要求Re1を発生させていない場合(ステップS31:No)、次回の制御タイミングまで待機する。
【0061】
また、制御部3は、状態推定要求Re1を発生させている場合で(ステップS31:Yes)、かつ、状態推定要求Re2を発生させていない場合(ステップS32:Yes)、DCDCコンバータCnv1(第1のDCDCコンバータ)を停止させるとともに、DCDCコンバータCnv2(第2のDCDCコンバータ)に対して高電位回避処理を実行し(ステップS33)、DCDCコンバータCnv1に接続される蓄電装置S1に対して状態推定処理を実行する(ステップS34)。すなわち、制御部3は、DCDCコンバータCnv1に対して停止要求を発生させているとともに、DCDCコンバータCnv2に対して停止要求を発生させていない場合、DCDCコンバータCnv1を停止させるとともにDCDCコンバータCnv2に対して高電位回避処理を実行するとともにDCDCコンバータCnv1に接続される蓄電装置S1に対して状態推定処理を実行する。なお、制御部3は、DCDCコンバータCnv1を停止させる前に電圧検出部Sv1により検出される電圧を電圧VH1とし、DCDCコンバータCnv1を停止させる前に電流検出部Si1により検出される電流を電流IH1とし、DCDCコンバータCnv1を停止させた後に電圧検出部Sv1により検出される電圧を電圧VL1とし、DCDCコンバータCnv1を停止させた後に電流検出部Si1により検出される電流を電流IL1とし、蓄電装置S1の状態(充電率、内部抵抗、内部起電力など)を推定する。
【0062】
次に、制御部3は、状態更新フラグF1をオンするとともに状態更新フラグF2をオフし(ステップS35)、次回の制御タイミングまで待機する。なお、状態更新フラグF1、F2の状態は記憶部2に記憶されるものとする。また、状態更新フラグF1がオンしているとともに状態更新フラグF2がオフしている場合、前回の制御タイミングにおいて、蓄電装置S1の状態を推定しているとともに蓄電装置S2の状態を推定していないことを示している。また、状態更新フラグF2がオンしているとともに状態更新フラグF1がオフしている場合、前回の制御タイミングにおいて、蓄電装置S2の状態を推定しているとともに蓄電装置S1の状態を推定していないことを示している。
【0063】
また、制御部3は、状態推定要求Re1を発生させている場合で(ステップS31:Yes)、かつ、状態推定要求Re2を発生させている場合(ステップS32:No)、状態更新フラグF1がオンしているか否かを判断する(ステップS36)。
【0064】
次に、制御部3は、状態更新フラグF1がオンしている場合、すなわち、前回の制御タイミングにおいて、蓄電装置S1の状態を推定している場合(ステップS36:Yes)、次回の制御タイミングまで待機する。
【0065】
一方、制御部3は、状態更新フラグF1がオフしている場合、すなわち、前回の制御タイミングにおいて、蓄電装置S1の状態を推定していない場合(ステップS36:No)、DCDCコンバータCnv1(第3のDCDCコンバータ)を停止させるとともに、DCDCコンバータCnv2(第4のDCDCコンバータ)に対して高電位回避処理を実行し(ステップS33)、DCDCコンバータCnv1に接続される蓄電装置S1に対して状態推定処理を実行する(ステップS34)。すなわち、制御部3は、DCDCコンバータCnv1、Cnv2に対して停止要求を同時に発生させている場合で、かつ、前回の制御タイミングにおいて、蓄電装置S1の状態を推定していない場合、DCDCコンバータCnv1を停止させるとともにDCDCコンバータCnv2に対して高電位回避処理を実行するとともに蓄電装置S1に対して状態推定処理を実行する。
【0066】
そして、制御部3は、状態更新フラグF1をオンするとともに状態更新フラグF2をオフし(ステップS35)、次回の制御タイミングまで待機する。
【0067】
なお、図4に示すフローチャートにおいて、ステップS35及びステップS36を省略してもよい。このように構成する場合、制御部3は、状態推定要求Re1を発生させている場合で(ステップS31:Yes)、かつ、状態推定要求Re2を発生させている場合(ステップS32:No)、次回の制御タイミングまで待機する。
【0068】
図5に示すフローチャートについて説明する。
まず、制御部3は、状態推定要求Re2を発生させていない場合(ステップS41:No)、次回の制御タイミングまで待機する。
【0069】
また、制御部3は、状態推定要求Re2を発生させている場合で(ステップS41:Yes)、かつ、状態推定要求Re1を発生させていない場合(ステップS42:Yes)、DCDCコンバータCnv2(第1のDCDCコンバータ)を停止させるとともに、DCDCコンバータCnv1(第2のDCDCコンバータ)に対して高電位回避処理を実行し(ステップS43)、DCDCコンバータCnv2に接続される蓄電装置S2に対して状態推定処理を実行する(ステップS44)。すなわち、制御部3は、DCDCコンバータCnv2に対して停止要求を発生させているとともに、DCDCコンバータCnv1に対して停止要求を発生させていない場合、DCDCコンバータCnv2を停止させるとともにDCDCコンバータCnv1に対して高電位回避処理を実行するとともにDCDCコンバータCnv2に接続される蓄電装置S2に対して状態推定処理を実行する。なお、制御部3は、DCDCコンバータCnv2を停止させる前に電圧検出部Sv2により検出される電圧を電圧VH2とし、DCDCコンバータCnv2を停止させる前に電流検出部Si2により検出される電流を電流IH2とし、DCDCコンバータCnv2を停止させた後に電圧検出部Sv2により検出される電圧を電圧VL2とし、DCDCコンバータCnv2を停止させた後に電流検出部Si2により検出される電流を電流IL2とし、蓄電装置S2の状態(充電率、内部抵抗、内部起電力など)を推定する。
【0070】
次に、制御部3は、状態更新フラグF2をオンするとともに状態更新フラグF1をオフし(ステップS45)、次回の制御タイミングまで待機する。
【0071】
また、制御部3は、状態推定要求Re2を発生させている場合で(ステップS41:Yes)、かつ、状態推定要求Re1を発生させている場合(ステップS42:No)、状態更新フラグF2がオンしているか否かを判断する(ステップS46)。
【0072】
次に、制御部3は、状態更新フラグF2がオンしている場合、すなわち、前回の制御タイミングにおいて、蓄電装置S2の状態を推定している場合(ステップS46:Yes)、次回の制御タイミングまで待機する。
【0073】
一方、制御部3は、状態更新フラグF2がオフしている場合、すなわち、前回の制御タイミングにおいて、蓄電装置S2の状態を推定していない場合(ステップS46:No)、DCDCコンバータCnv2(第3のDCDCコンバータ)を停止させるとともに、DCDCコンバータCnv1(第4のDCDCコンバータ)に対して高電位回避処理を実行し(ステップS43)、DCDCコンバータCnv2に接続される蓄電装置S2に対して状態推定処理を実行する(ステップS44)。すなわち、制御部3は、DCDCコンバータCnv1、Cnv2に対して停止要求を同時に発生させている場合で、かつ、前回の制御タイミングにおいて、蓄電装置S2の状態を推定していない場合、DCDCコンバータCnv2を停止させるとともにDCDCコンバータCnv1に対して高電位回避処理を実行するとともに蓄電装置S2に対して状態推定処理を実行する。
【0074】
そして、制御部3は、状態更新フラグF2をオンするとともに状態更新フラグF1をオフし(ステップS45)、次回の制御タイミングまで待機する。
【0075】
なお、図5に示すフローチャートにおいて、ステップS45及びステップS46を省略してもよい。このように構成する場合、制御部3は、状態推定要求Re2を発生させている場合で(ステップS41:Yes)、かつ、状態推定要求Re1を発生させている場合(ステップS42:No)、次回の制御タイミングまで待機する。
【0076】
このように、実施形態の燃料電池システム1では、DCDCコンバータCnv1、Cnv2のうちの一方のDCDCコンバータ(第1のDCDCコンバータ)に対して停止要求を発生させているとともに、他方のDCDCコンバータ(第2のDCDCコンバータ)に対して停止要求を発生させていない場合、一方のDCDCコンバータを停止させるとともに他方のDCDCコンバータに対して高電位回避処理を実行するとともに一方のDCDCコンバータに接続される蓄電装置に対して状態推定処理を実行する構成である。これにより、DCDCコンバータCnv1、Cnv2のうちの一方のDCDCコンバータと他方のDCDCコンバータに接続される蓄電装置に対して、高電位回避処理及び状態推定処理の両方の処理を排他的に実行することができるため、燃料電池FCの劣化を抑制しつつ、蓄電装置S1、S2の状態の推定精度の低下を抑制することができる。
【0077】
また、実施形態の燃料電池システム1では、DCDCコンバータCnv1、Cnv2に対して停止要求を発生させている場合で、かつ、前回の制御タイミングにおいて、一方のDCDCコンバータ(第3のDCDCコンバータ)に接続される蓄電装置の状態が推定されていない場合、一方のDCDCコンバータを停止させるとともに他方のDCDCコンバータ(第4のDCDCコンバータ)に対して高電位回避処理を実行するとともに一方のDCDCコンバータに接続される蓄電装置に対して状態推定処理を実行する構成である。これにより、DCDCコンバータCnv1、Cnv2の停止要求が連続して発生しても、一方のDCDCコンバータ及び一方のDCDCコンバータに接続される蓄電装置に対して高電位回避処理と状態推定処理とを交互に実行することができるとともに、他方のDCDCコンバータ及び他方のDCDCコンバータに接続される蓄電装置に対して高電位回避処理と状態推定処理とを交互に実行することができるため、燃料電池FCの劣化を抑制しつつ、蓄電装置S1、S2の状態の推定精度の低下を抑制することができる。
【0078】
また、本発明は、以上の実施の形態に限定されるものでなく、本発明の要旨を逸脱しない範囲内で種々の改良、変更が可能である。
【0079】
<変形例1>
図6は、実施形態の燃料電池システムの他の例を示す図である。なお、図6に示す構成において、図1に示す構成には同じ符号を付し、その説明を省略する。
【0080】
図6に示す燃料電池システム1において、図1に示す燃料電池システム1と異なる点は、燃料電池FCとDCDCコンバータCnv1との接続点と、グランドとの間に、互いに直列接続される抵抗R1及びスイッチSW1が接続されている点と、燃料電池FCとDCDCコンバータCnv2との接続点と、グランドとの間に、互いに直列接続される抵抗R2及びスイッチSW2が接続されている点である。なお、スイッチSW1、SW2は、MOSFET(Metal Oxide Semiconductor Field Effect Transistor)などの半導体スイッチや電磁式リレーなどにより構成される。
【0081】
制御部3は、状態推定要求Re1、Re2を発生させている場合で、かつ、状態更新フラグF1がオフしている場合で、かつ、蓄電装置S2が満充電状態でない場合、DCDCコンバータCnv1を停止させるとともにDCDCコンバータCnv2に対して高電位回避処理を実行するとともにDCDCコンバータCnv1に接続される蓄電装置S1に対して状態推定処理を実行する。
【0082】
また、制御部3は、状態推定要求Re1、Re2を発生させている場合で、かつ、状態更新フラグF1がオフしている場合で、かつ、蓄電装置S2が満充電状態である場合、DCDCコンバータCnv1、Cnv2を停止させるとともに、スイッチSW1、SW2のうちの少なくとも1つのスイッチを導通させて抵抗R1、R2のうちの少なくとも1つの抵抗により燃料電池FCから出力される電力を消費させることで高電位回避処理を実行するとともに、蓄電装置S1、S2に対して状態推定処理を実行する。
【0083】
また、制御部3は、状態推定要求Re1、Re2を発生させている場合で、かつ、状態更新フラグF2がオフしている場合で、かつ、蓄電装置S1が満充電状態でない場合、DCDCコンバータCnv2を停止させるとともにDCDCコンバータCnv1に対して高電位回避処理を実行するとともにDCDCコンバータCnv2に接続される蓄電装置S1に対して状態推定処理を実行する。
【0084】
また、制御部3は、状態推定要求Re1、Re2を発生させている場合で、かつ、状態更新フラグF2がオフしている場合で、かつ、蓄電装置S1が満充電状態である場合、DCDCコンバータCnv1、Cnv2を停止させるとともに、スイッチSW1、SW2のうちの少なくとも1つのスイッチを導通させて抵抗R1、R2のうちの少なくとも1つの抵抗により燃料電池FCから出力される電力を消費させることで高電位回避処理を実行するとともに、蓄電装置S1、S2に対して状態推定処理を実行する。
【0085】
なお、状態推定要求Re1、Re2のうちの一方の状態推定要求を発生させるとともに他方の状態推定要求を発生させないときの制御部3の動作は、図4に示すステップS31~S35または図5に示すステップS41~S45と同様である。
【0086】
このように、図6に示す燃料電池システム1によれば、燃料電池FCから出力される電力を抵抗R1や抵抗R2により消費させることができるため、蓄電装置S1、S2が満充電状態であり燃料電池FCから出力される電力を蓄電装置S1、S2に供給できない場合でも、高電位回避を実行することができる。そのため、DCDCコンバータCnv1、Cnv2の停止要求が発生する場合、蓄電装置S1、S2が満充電状態であっても、高電位回避処理及び状態推定処理の両方の処理を排他的に実行することができるため、燃料電池FCの劣化を抑制しつつ、蓄電装置S1、S2の状態の推定精度の低下を抑制することができる。
【0087】
<変形例2>
図1または図6に示す燃料電池システム1において、燃料電池FCに接続される3つ以上のDCDCコンバータと、それらDCDCコンバータにそれぞれ1つずつ接続される複数の蓄電装置とが備えられていてもよい。なお、全てのDCDCコンバータのうち、停止要求が発生しているDCDCコンバータを第1のDCDCコンバータとし、停止要求が発生していないDCDCコンバータを第2のDCDCコンバータとする。また、全てのDCDCコンバータのうち、前回の制御タイミングにおいて状態推定処理を実行していない蓄電装置に接続されるDCDCコンバータを第3のDCDCコンバータとし、第3のDCDCコンバータ以外のDCDCコンバータを第4のDCDCコンバータとする。
【0088】
すなわち、制御部3は、第1のDCDCコンバータに対して停止要求を発生させているとともに、第2のDCDCコンバータに対して停止要求を発生させていない場合、第1のDCDCコンバータを停止させるとともに第2のDCDCコンバータに対して高電位回避処理を実行するとともに第1のDCDCコンバータに接続される蓄電装置に対して状態推定処理を実行する。
【0089】
また、制御部3は、全てのDCDCコンバータに対して停止要求を発生させている場合、第3のDCDCコンバータを停止させるとともに第4のDCDCコンバータに対して高電位回避処理を実行するとともに第3のDCDCコンバータに接続される蓄電装置に対して状態推定処理を実行する。
【0090】
また、制御部は、全てのDCDCコンバータに対して停止要求を発生させている場合で、かつ、第のDCDCコンバータに接続される蓄電装置が満充電状態である場合、全てのDCDCコンバータを停止させるとともに燃料電池と全てのDCDCコンバータのうちの少なくとも1つのDCDCコンバータとの間に接続される抵抗により燃料電池から出力される電力を消費させることで高電位回避処理を実行するとともに全てのDCDCコンバータに接続される蓄電装置に対して状態推定処理を実行する。
【0091】
このように構成しても、燃料電池FCの劣化を抑制しつつ、各蓄電装置の状態の推定精度の低下を抑制することができる。
【符号の説明】
【0092】
1 燃料電池システム
2 記憶部
3 制御部
Ve 車両
FC 燃料電池
T 水素タンク
AC エアコンプレッサ
Inv インバータ
Cnv1、Cnv2 DCDCコンバータ
Cnt1、Cnt2 制御部
S1、S2 蓄電装置
Sv1、Sv2 電圧検出部
Si1、Si2 電流検出部
Lo1、Lo2 負荷
R1、R2 抵抗
SW1、SW2 スイッチ
図1
図2
図3
図4
図5
図6