(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2023-10-20
(45)【発行日】2023-10-30
(54)【発明の名称】最適化されたドーピングプロファイルおよび異なる遷移領域の厚さを有するシリコンベース変調器
(51)【国際特許分類】
G02F 1/025 20060101AFI20231023BHJP
【FI】
G02F1/025
(21)【出願番号】P 2020561611
(86)(22)【出願日】2019-01-25
(86)【国際出願番号】 US2019015258
(87)【国際公開番号】W WO2019148011
(87)【国際公開日】2019-08-01
【審査請求日】2022-01-18
(32)【優先日】2018-07-31
(33)【優先権主張国・地域又は機関】US
(32)【優先日】2018-01-26
(33)【優先権主張国・地域又は機関】US
(73)【特許権者】
【識別番号】519382455
【氏名又は名称】シエナ コーポレーション
(74)【代理人】
【識別番号】100145713
【氏名又は名称】加藤 竜太
(74)【代理人】
【識別番号】100165157
【氏名又は名称】芝 哲央
(74)【代理人】
【識別番号】100120684
【氏名又は名称】宮城 三次
(72)【発明者】
【氏名】ドリール-シマール,アレクサンドル
(72)【発明者】
【氏名】パインショー,イヴ
【審査官】堀部 修平
(56)【参考文献】
【文献】特表2017-509022(JP,A)
【文献】米国特許第07085443(US,B1)
【文献】米国特許出願公開第2011/0222812(US,A1)
【文献】特表2002-540469(JP,A)
【文献】米国特許出願公開第2015/0212345(US,A1)
(58)【調査した分野】(Int.Cl.,DB名)
G02F 1/00-1/125,1/21-7/00
(57)【特許請求の範囲】
【請求項1】
PN接合領域(12)である導波路コア(1)と、
前記導波路コア(1)の横方向に隣接するp側領域(16)である第1の遷移領域(2)と、
前記導波路コア(1)の横方向であって、前記第1の遷移領域(2)と反対側に隣接するn側領域(16)である第2の遷移領域(2)と、
前記第1の遷移領域(2)に隣接する第1の電気的接触領域(3)と、
前記第2の遷移領域(2)に隣接する第2の電気的接触領域(3)とを備え、
前記導波路コア(1)、前記第1の遷移領域(2)、および前記第2の遷移領域(2)は縦方向に直線状に延び、前記第1の遷移領域および前記第2の遷移領域のうちの少なくとも一つは、前記縦方向に沿ってドーピング濃度が変化している、
シリコンベース変調器(10)。
【請求項2】
前記ドーピング濃度の変化は、前記縦方向にドーピング濃度が異なる複数の領域によって形成されている、請求項1に記載のシリコンベース変調器。
【請求項3】
前記ドーピング濃度の変化により、所与のアクセス抵抗に対して光損失がより低くなる、および所与の光損失に対してアクセス抵抗がより低くなる、のうちの一の結果が生じる、請求項1または2に記載のシリコンベース変調器。
【請求項4】
前記導波路コア(1)はpのP型ドーピングを有し、前記第1の電気的接触領域(3)はp++のP型ドーピングを有し、第1の遷移領域(2)はk(k≧2)の分割P1,P2,…Pkを有し、各分割が、p≦p1<p2…<pk≦p++となるように、それぞれ濃度レベルp1,p2,…pkで効果的にドープされ、
前記導波路コア(1)はnのN型ドーピングを有し、前記第2の電気的接触領域(3)はn++のN型ドーピングを有し、第2の遷移領域(2)はk(k≧2)の分割N1,N2,…Nkを有し、各分割が、n≦n1<n2…<nk≦n++となるように、それぞれ濃度レベルn1,n2,…nkで効果的にドープされている、請求項1から3までのいずれか一項に記載のシリコンベース変調器。
【請求項5】
前記ドーピング濃度の変化は、前記第1の遷移領域(2)と前記第2の遷移領域(2)とで異なる、請求項1から4までのいずれか一項に記載のシリコンベース変調器。
【請求項6】
前記ドーピング濃度の変化は、前記縦方向において周期的である、請求項1から5までのいずれか一項に記載のシリコンベース変調器。
【請求項7】
対応する電気的接触領域(3)に隣接する、前記第1の遷移領域(2)および前記第2の遷移領域(2)のうちの少なくとも1つにおける前記対応する電気的接触領域(3)と隣接する位置における前記ドーピング濃度は、電気的接触領域(3)と等しい、請求項1から5までのいずれか一項に記載のシリコンベース変調器。
【請求項8】
前記導波路コア(1)に隣接する、前記第1の遷移領域(2)および前記第2の遷移領域(2)のうちの少なくとも1つにおける前記対応する導波路コア(1)と隣接する位置における前記ドーピング濃度が導波路コア(1)と等しい、請求項1から5までのいずれか一項に記載のシリコンベース変調器。
【請求項9】
前記第1の遷移領域(2)および前記第2の遷移領域(2)のうちの少なくとも1つは、前記導波路コア(1)と対応する前記電気的接触領域(3)との間の厚さについて、複数の互いに厚さが異なる部分を有し、その厚さが異なる部分を有することで、均一な厚さに対するアクセス抵抗を低減する、請求項1から8までのいずれか一項に記載のシリコンベース変調器。
【請求項10】
縦方向における前記ドーピング濃度の変化
により、
横方向に沿った各位置のドーピング濃度の縦方向平均が、前記導波路コア(1)からの距離の関数として
指数関数的に増加する、請求項1から9までのいずれか一項に記載のシリコンベース変調器。
【請求項11】
前記第1の遷移領域(2)および前記第2の遷移領域(2)の少なくとも1つは、横方向に沿ってドーピング濃度が変化している、請求項1から10までのいずれか一項に記載のシリコンベース変調器。
【請求項12】
横方向に沿った前記ドーピング濃度の変化におけるドーピング値は、対応する電気的接触領域(3)におけるドーピング値の最大値を有する、請求項11に記載のシリコンベース変調器。
【請求項13】
横方向に沿った前記ドーピング濃度の変化におけるドーピング値は、前記導波路コア(1)におけるドーピング値と、対応する前記電気的接触領域(3)における別のドーピング値との間である、請求項11に記載のシリコンベース変調器。
【請求項14】
シリコンベース変調器(10)における遷移領域(2)の横方向ドーピングのための入力プロファイルを決定するステップであって、当該遷移領域は、導波路コア(1)と電気的接触領域(3)との間にあり、前記導波路コア(1)および前記遷移領域(2)は縦方向に直線状に延び、前記遷移領域(2)の前記入力プロファイルは、前記縦方向である光伝搬方向において均一のドーピング濃度を有し、横方向に沿ってドーピング濃度が変化しているステップと、
複数の注入ステップおよび各注入ステップにおけるドーパント濃度を規定するステップと、
前記横方向に沿った各位置の縦方向平均が前記入力プロファイルの同一の横方向位置におけるドーピング濃度と等しくなるように、前記縦方向におけるドーパントの出力プロファイルを決定するステップと、
前記出力プロファイルに基づきドーピングを行うステップと
を含むプロセスによるシリコンベース変調器(10)の生成方法。
【発明の詳細な説明】
【技術分野】
【0001】
本開示は、一般に光通信に関する。より詳細には、本開示は、遷移領域における最適化された横方向ドーピングプロファイル、遷移領域における最適化された縦方向ドーピングプロファイル、および低減されたアクセス抵抗のための遷移領域における可変スラブ厚さのうちの一以上を有するシリコンベース変調器に関する。
【背景技術】
【0002】
光通信システムには、シリコンベース変調器が広く用いられている。当技術分野で周知であるように、シリコン変調器は、リッジ導波路におけるPN接合の使用に基づくことができる。このような導波路は、薄いスラブ(例えば、厚さ100nm程度)に囲まれた厚いシリコン導波路コア領域(例えば、厚さ200ないし250nm)を設けることにより形成される。このPN接合は、典型的には、導波路の一方の側をN型ドーパントでドーピングし、他方の側をP型ドーパントでドーピングすることにより、横方向に形成される。pおよびn領域は、それぞれの側で電極に電気的に接続される。
【0003】
導波路コア領域におけるシリコンのドーピング濃度は、過度の光損失を避けるために弱くなければならず、典型的には、1×10
17-ないし1×10
18cm
-3の範囲である。電極間の良好なオーミック接触を可能にするために、電極近傍でのドーピング濃度は高くなければならず、典型的には、1×10
20ないし1×10
21cm
-3の範囲である。PN接合の両側には、弱ドープ領域と高ドープ領域とを接続する遷移領域がある。当技術分野では、光損失と接触抵抗との間の妥協を図るために、遷移領域内に中間ドーピングレベルを使用し、3段階プロファイルを形成することが知られている。1つ、2つ、または3つの均一にドープされたセクションをこの遷移領域で使用することができる。例えば、
図1を参照されたい。これらのドープされたセクションの各々は、それらの垂直方向ドーピング濃度プロファイルおよびシリコン導波路の形状(例えば高さ)の両方において均一である。したがって、このドーピングプロファイルは、デバイス内の横方向(すなわち、接合部と各電極との間の方向)において、各ドープセクション内で不変である。
【発明の概要】
【0004】
一実施形態では、シリコンベース変調器(10)は、PN接合領域(12)である導波路コア(1)と、前記導波路コア(1)の横方向に隣接するp側領域(16)である第1の遷移領域(2)と、前記導波路コア(1)の横方向であって、前記第1の遷移領域(2)と反対側に隣接するn側領域(16)である第2の遷移領域(2)と、前記第1の遷移領域(2)に隣接する第1の電気的接触領域(3)と、前記第2の遷移領域(2)に隣接する第2の電気的接触領域(3)とを備え、前記第1の遷移領域および前記第2の遷移領域のうちの少なくとも一つは、縦方向に沿ってドーピング濃度が変化している。ドーピング濃度の変化は、前記縦方向にドーピング濃度が異なる複数の領域によって形成することができる。ドーピング濃度の変化により、所与のアクセス抵抗に対して光損失がより低くなる、および所与の光損失に対してアクセス抵抗がより低くなる、のうちの一の結果を生じさせることができる。導波路コア(1)はpのP型ドーピングを有し、前記第1の電気的接触(3)はp++のP型ドーピングを有し、第1の遷移領域(2)はk(k≧2)の分割P1,P2,…Pkを有し、各分割が、p≦p1<p2…<pk≦p++となるように、それぞれ濃度レベルp1,p2,…pkで効果的にドープされることとでき、記導波路コア(1)はnのN型ドーピングを有し、前記第2の電気的接触(3)はn++のN型ドーピングを有し、第2の遷移領域(2)はk(k≧2)の分割N1,N2,…Nkを有し、各分割が、n≦n1<n2…<nk≦n++となるように、それぞれ濃度レベルn1,n2,…nkで効果的にドープされることとできる。
【0005】
前記ドーピング濃度の変化は、前記第1の遷移領域(2)と前記第2の遷移領域(2)とで異なるものとできる。前記ドーピング濃度の変化は、前記縦方向において周期的とすることができる。対応する電気的接触領域(3)に隣接する、前記第1の遷移領域(2)および前記第2の遷移領域(2)のうちの少なくとも1つにおける前記ドーピング濃度は、それと等しいとすることができる。前記導波路コア(1)に隣接する、前記第1の遷移領域(2)および前記第2の遷移領域(2)のうちの少なくとも1つにおける前記ドーピング濃度がそれと等しいとすることができる。前記第1の遷移領域(2)および前記第2の遷移領域(2)のうちの少なくとも1つは、前記波長コア(1)と対応する前記電気的接触領域(3)との間の厚さが可変であり、その厚さが可変であることで、均一な厚さに対するアクセス抵抗を低減することができる。縦方向における前記ドーピング濃度の変化は、前記波長コア(3)からの距離の関数として指数関数的に増加する、実効的な横方向のドーピングプロファイルをもたらすことができる。前記第1の遷移領域(2)および前記第2の遷移領域(2)の少なくとも1つは、横方向に沿ってドーピング濃度が変化することとできる。横方向に沿った前記ドーピング濃度の変化におけるドーピング値は、対応する電気的接触領域(3)におけるドーピング値の最大値を有することとできる。横方向に沿った前記ドーピング濃度の変化におけるドーピング値は、対応する電気的接触領域(3)におけるドーピング値の最大値を有することとできる。横方向に沿った前記ドーピング濃度の変化におけるドーピング値は、前記波長コア(1)におけるドーピング値と、対応する前記電気的接触領域(3)における別のドーピング値との間であることとできる。
【0006】
別の実施形態では、シリコンベース変調器(10)は、シリコンベース変調器(10)における遷移領域(2)の横方向ドーピングのための入力プロファイルを決定するステップであって、当該遷移領域は、導波路コア(1)と電気的接触領域(3)との間にあり、前記遷移領域(2)の前記入力プロファイルは、縦方向である光伝搬方向に均一にドープされ、横方向に沿ってドーピングが変化しているステップと、複数の注入ステップおよび関連するドーパント濃度を規定するステップと、前記横方向に沿った各位置で、その平均が同一の横方向位置における前記入力プロファイルのドーパント濃度と等しくなるように、前記縦方向におけるドーパントの出力プロファイルを決定するステップとを含むプロセスによって得られる。
【0007】
別の実施形態では、最適化された横方向プロファイルを有するシリコンベース変調器は、PN接合領域である導波路コアと、導波路コアに隣接するp側領域であって、第1の横方向ドーピングプロファイルを有する第1の遷移領域と、第1の遷移領域と反対側の導波路コアに隣接するn側領域であって、第2の横方向ドーピングプロファイルを有する第2の遷移領域と、第1の遷移領域に隣接する第1の電気的接触領域と、第2の遷移領域に隣接する第2の電気的接触領域とを含み、第1の横方向ドーピングプロファイルおよび第2の横方向ドーピングプロファイルのうちの少なくとも1つは、波長コア内の第1のドーピング値から対応する電気的接触領域内の第2のドーピング値まで横方向に変化している。第1の横方向ドーピングプロファイルおよび第2の横方向ドーピングプロファイルのうちの1つ以上におけるドーピング値は、波長コアからの距離の関数として指数関数的に増加することができる。第1の横方向ドーピングプロファイルおよび第2の横方向ドーピングプロファイルのうちの1つ以上のドーピング値は、対応する電気的接触領域における第2のドーピング値の最大値を有することができる。第1の横方向ドーピングプロファイルおよび第2の横方向ドーピングプロファイルのうちの少なくとも1つのドーピング値は、波長コア内の第1のドーピング値と、対応する電気的接触領域の第2のドーピング値との間にあるとすることができる。第1の横方向ドーピングプロファイルおよび第2の横方向ドーピングプロファイルのうちの1つ以上は、所与のアクセス抵抗に対するより低い光損失または所与の光損失に基づくより低いアクセス抵抗に基づいて設定することができる。第1の横方向ドーピングプロファイルと第2の横方向ドーピングプロファイルは異なるとすることができる。
【0008】
別の実施形態では、最適化された横方向プロファイルを有するシリコンベース変調器は、第1の遷移領域に隣接する第1の電気的接触領域および第2の遷移領域に隣接する第2の電気的接触領域で強いドーパント注入を行うステップと、第1の電気的接触領域および第2の電気的接触領域において活性化および拡散イオンの両方に対して長いアニーリング処理を実行するステップと、導波路コアにおいて、前記強いドーパント注入と比較して弱いドーパント注入を行うステップと、前記弱いドーパント注入を活性化するために、長いアニーリング処理と比較して短いアニーリング処理を行うステップとを含み、各アニーリング処理は、ドーパントイオンを結晶構造に集積させ活性化させる短時間の昇温を含み、前記長いアニーリング処理および短いアニーリング処理は、第1の遷移領域および第2の遷移領域の各々において、波長コアから対応する電気的接触領域へ横方向に変化するドーピングプロファイルを生じさせる。
【0009】
さらなる実施形態では、最適化された縦方向プロファイルを有するシリコンベース変調器は、PN接合領域である導波路コアと、導波路コアに隣接するp側領域であって、第1の縦方向ドーピングプロファイルを有する第1の遷移領域と、第1の遷移領域と反対側で導波路コアに隣接するn側領域であって、第2の縦方向ドーピングプロファイルを有する第2の遷移領域と、第1の遷移領域に隣接する第1の電気的接触領域と、第2の遷移領域に隣接する第2の電気的接触領域とを有し、第1の縦方向ドーピングプロファイルは、第1の横方向ドーピングプロファイルを模倣するために、第1の遷移領域における縦方向に沿ったドーピング濃度の変化を有する。前記第1の縦方向ドーピングプロファイルは、縦方向に異なる形状を有する均一にドープされた領域によって形成され得る。請求項1に記載のシリコンベース変調器では、第1の横方向ドーピングプロファイルは、所与のアクセス抵抗に対するより低い光損失に基づいて、または所与の光損失に対するより低いアクセス抵抗に基づいて決定することができる。
【図面の簡単な説明】
【0010】
【
図1A】
図1Aは、一以上の実施形態による横方向PN接合のためのシリコン変調器構造を示す。
【
図1B】
図1Bは、一以上の実施形態による垂直方向PN接合(L字形接合と呼ぶことがある)のためのシリコン変調器構造を示す。
【
図1C】
図1Cは、一以上の実施形態によるU字形PN接合のためのシリコン変調器構造を示す。
【
図2】
図2は、一以上の実施形態による、シリコン導波路、光モードプロファイル、およびドーピングプロファイルをグラフィックに図示している。
【
図3】
図3は、一以上の実施形態による、シリコンベース変調器のドーピングプロファイルを生成する方法のフローチャートを示す。
【
図4】
図4は、一以上の実施形態による抵抗を示す等価回路を有する光変調器を示す。
【
図5】
図5は、一以上の実施形態による光損失を示す光変調器を示す。
【
図6】
図6は、一以上の実施形態による横方向ドーピングプロファイルの最適化プロセスのフローチャートを示す。
【
図7】
図7は、一以上の実施形態による、P型およびN型ドーパントの抵抗率対不純物濃度のグラフである。
【
図8A】
図8Aは、一以上の実施形態による、P型およびN型ドーパントのための光損失の関数としてのセグメント当たりの抵抗を示す。
【
図8B】
図8Bは、一以上の実施形態による、P型およびN型ドーパントのための光損失の関数としてのセグメント当たりの抵抗を示す。
【
図9】
図9は、一以上の実施形態による、光損失およびドーピングの関数としてのセグメントあたりの抵抗のグラフを示す。
【
図10】
図10は、一以上の実施形態による、シリコンベース変調器ドーピングプロファイルの断面図および上面図である。
【
図12】
図12は、一以上の実施形態による、様々な縦方向に変化するドーピングプロファイル(z軸)を有する光変調器10を示す。
【
図13A】
図13Aは、一以上の実施形態による、初期のnドーパントプロファイルと、それに関連する光変調器の上面図とのグラフを示す。
【
図13B】
図13Bは、一以上の実施形態による、初期のnドーパントプロファイルと、それに関連する光変調器の上面図とのグラフを示す。
【
図14A】
図14Aは、1つ以上の実施形態による様々な縦方向に変化するプロファイルの図を示す。
【
図14B】
図14Bは、1つ以上の実施形態による様々な縦方向に変化するプロファイルの図を示す。
【
図14C】
図14Cは、1つ以上の実施形態による様々な縦方向に変化するプロファイルの図を示す。
【
図16】
図16は、一以上の実施形態による光変調器および等価回路の上面図である。
【
図17】
図17は、一以上の実施形態による、2つの注入ステップを有する入力プロファイルおよび出力プロファイルとして段階的プロファイルを有する例示的な実施形態を示す。
【
図18】
図18は、一以上の実施形態による、
図17の入力プロファイルからの出力プロファイルの図である。
【
図19】
図19は、一以上の実施形態による、80GHz、100GHz、および120GHzのカットオフ周波数を有するRCフィルタの応答のグラフを示す。
【
図20A】
図20Aは、一以上の実施形態による、様々な変化する縦方向プロファイルを有するPN接合を示す。
【
図20B】
図20Bは、一以上の実施形態による、様々な変化する縦方向プロファイルを有するPN接合を示す。
【
図20C】
図20Cは、一以上の実施形態による、様々な変化する縦方向プロファイルを有するPN接合を示す。
【
図22】
図22は、一以上の実施形態による、
図20AのPN接合の時間の関数としての平均空乏幅プロファイルのグラフを示す。
【
図23】
図23は、一以上の実施形態による、
図20BのPN接合の時間の関数としての平均空乏幅プロファイルのグラフを示す。
【
図24】
図24は、一以上の実施形態による、
図20CのPN接合の時間の関数としての平均空乏幅プロファイルのグラフを示す。
【
図25A】
図25Aは、一以上の実施形態による入力プロファイルおよび出力プロファイルを有する第1の例示的な実施形態を示す。
【
図25B】
図25Bは、一以上の実施形態による入力プロファイルおよび出力プロファイルを有する第1の例示的な実施形態を示す。
【
図26A】
図26Aは、一以上の実施形態による入力プロファイルおよび出力プロファイルを有する第2の例示的な実施形態を示す。
【
図26B】
図26Bは、一以上の実施形態による入力プロファイルおよび出力プロファイルを有する第2の例示的な実施形態を示す。
【
図27A】
図27Aは、一以上の実施形態による入力プロファイルおよび出力プロファイルを有する第3の例示的な実施形態を示す。
【
図27B】
図27Bは、一以上の実施形態による入力プロファイルおよび出力プロファイルを有する第3の例示的な実施形態を示す。
【
図28A】
図28Aは、一以上の実施形態による入力プロファイルおよび出力プロファイルを有する第4の例示的な実施形態を示す。
【
図28B】
図28Bは、一以上の実施形態による入力プロファイルおよび出力プロファイルを有する第4の例示的な実施形態を示す。
【
図29A】
図29Aは、一以上の実施形態による入力プロファイルおよび出力プロファイルを有する第5の例示的な実施形態を示す。
【
図29B】
図29Bは、一以上の実施形態による入力プロファイルおよび出力プロファイルを有する第5の例示的な実施形態を示す。
【
図30A】
図30Aは、一以上の実施形態による入力プロファイルおよび出力プロファイルを有する第6の例示的な実施形態を示す。
【
図30B】
図30Bは、一以上の実施形態による入力プロファイルおよび出力プロファイルを有する第6の例示的な実施形態を示す。
【
図31】
図31は、一以上の実施形態による、縦方向に変化するプロファイルの別の実施形態の上面図である。
【
図32A】
図32Aは、一以上の実施形態による、セグメントあたりの抵抗の関数としての光学的損失を示す、Nドーパントのグラフを示す図である。
【
図32B】
図32Bは、一以上の実施形態による、セグメントあたりの抵抗の関数としての光学的損失を示す、Pドーパントのグラフを示す図である。
【
図33A】
図33Aは、一以上の実施形態による、変化する遷移領域厚さを有するシングルモードシリコン変調器を示す図である。
【
図33B】
図33Bは、一以上の実施形態による、変化する遷移領域厚さを有するシングルモードシリコン変調器を示す図である。
【
図34A】
図34Aは、一以上の実施形態による、変化する遷移領域厚さを有するマルチモードシリコン変調器を示す。
【
図34B】
図34Bは、一以上の実施形態による、変化する遷移領域厚さを有するマルチモードシリコン変調器を示す。
【
図35】
図35は、一以上の実施形態による、導波路コアと遷移領域とを有する様々な変調器の断面図と、遷移領域における異なるスラブ厚さを示す関連する計算された光モードを示す。
【
図36】
図36は、一以上の実施形態による、導波路コアと遷移領域とを有する様々な変調器の断面図と、遷移領域における異なるスラブ厚さを示す関連する計算された光モードを示す。
【
図37】
図37は、一以上の実施形態による、導波路コアと遷移領域とを有する様々な変調器の断面図と、遷移領域における異なるスラブ厚さを示す関連する計算された光モードを示す。
【
図38】
図38は、一以上の実施形態による、導波路コアと遷移領域とを有する様々な変調器の断面図と、遷移領域における異なるスラブ厚さを示す関連する計算された光モードを示す。
【
図39】一以上の実施形態による、遷移領域における異なるスラブ厚さを説明するための完全変調器シミュレーションのグラフを示す図である。
【発明を実施するための形態】
【0011】
[関連出願の相互参照]
本開示は、2018年1月26日に出願された、「最適化されたドーピングプロファイルおよび低減された接触抵抗を有するシリコン変調器」と題する米国仮特許出願第62/622,494号、および2018年7月31日に出願された、「低減された接触抵抗を有するシリコンベース変調器」と題する米国仮特許出願第62/712,659号の優先権を主張し、それらの内容を参照によって本願に援用する。
【0012】
本開示は、様々な図面を参照して本明細書に図示および説明されており、同様の参照番号は、適宜、同様のシステム構成要素/方法ステップを示すために使用される。
【0013】
本明細書に開示される実施形態は、シリコンベース変調器の設計に関する。具体的には、本明細書に開示された実施形態は、ドーピングプロファイルが遷移領域内の横方向および/または縦方向の位置に沿って変化し、光減衰または接触アクセス抵抗のいずれかの点で改善された性能を達成する新規なシリコン変調器を記載する。本明細書に開示される実施形態では、シリコン変調器は、コアを有する導波路と、コアと導波路の両側の電極との間の遷移領域とを含むことができ、遷移領域の形状は、改善された性能を達成するために変化される。遷移領域の形状は、例えば、遷移領域の高さ(すなわち、厚さ)を含むことができる。本明細書で説明するように、アクセス抵抗は、外界と変調PN接合(導波路コア)との間の抵抗を記述する。
【0014】
シリコンは光通信のための変調器に広く用いられている材料であるが、当業者であれば、本明細書に開示された主題が他の半導体材料に基づく変調器に適用可能であることが容易に理解されよう。
【0015】
図1は、それぞれが異なるPN接合形状を有する3つの典型的なシリコン変調器の断面図を示す。当業者には、これらの3種類のPN接合に加えて、本開示から逸脱することなく、本明細書に開示されたシリコン変調器において使用される他のタイプのPN接合が存在し得ることが容易に理解されよう。
【0016】
図1の遷移領域の各々におけるドーピング濃度は均一(それぞれN+およびP+)であるが、
図2は、光減衰と接触抵抗との間の最適なトレードオフを達成するために遷移領域2における新規で不均一なドーピングプロファイルを示す。ここで、xはNP接合と各側電極との間の遷移領域2内の位置を表し、N(x)は所与の位置におけるドーピングレベルを表す。説明のために、p側の電極のみを
図2に示す。
【0017】
まず、光減衰を考える。η(x)は、横方向の光モード強度プロファイルを表すものとする。
図2に見られるように、1つ以上の実施形態では、焦点が遷移領域2上にあるので、このプロファイルの原点は、導波路の中間ではなく、遷移領域の始まりに設定される。このモードは、主に、リッジ導波路の厚い部分によって画定される導波路コア1に含まれるが、スラブ領域内に延在するある程度の光があってもよい。スラブ領域における所与の位置における光の強度は、導波路コア1からの距離が大きくなるにつれて指数関数的に減少する。
【0018】
したがって、遷移領域2では、そのモードプロファイルは次のように近似することができる
【0019】
位置xにおいて幅dxにわたるモードエネルギーの微小部分は、次の式によって与えられる。
【0020】
自由キャリアが存在すると光の吸収が起こる。周知のSoref方程式(例えばR. Soref and B. Bennett, “Electrooptical effects in silicon,” IEEE J. Quantum Electron., vol. 23, no. 1, pp. 123-129, 1987。なおその内容は参照により援用される)によれば、減衰係数と自由キャリア濃度との間に線形依存性がある。自由キャリア濃度はドーパント濃度に等しいので、位置xにおける減衰寄与は、この位置におけるドーパント濃度と、この同じ位置におけるモードエネルギーの割合とに直接比例すると考えることができる。
ただし、Aは定数である
【0021】
全体的なモードエネルギーは一定であると考えることができる。したがって、同じ式を以下のように書くことができる。
ただし、dAは他の定数である。
【0022】
焦点が位置0およびxにおいてのみ減衰の寄与に基づく場合、それらは共に以下の減衰を提供すると考える。
【0023】
その条件から、ドーピング濃度が位置0においてΔN
0、位置xにおいてΔNxの量だけわずかに変化する摂動を考慮することができる。この減衰寄与は以下のようになる。
【0024】
最後の2つの方程式を考えると、当業者であれば、以下が成立すれば、減衰は変化しないことを容易に理解するであろう。
【0025】
【0026】
ここで、接触抵抗を考える。ドーピング濃度が増加するにつれて、ドープされたシリコンの薄層のシート抵抗は減少する。ある特定の範囲内で、シート抵抗Rは、ドーピング濃度Nに依存することが実験的に見出されている。
ここで、Kは定数であり、γは約0.7であると知られている。
【0027】
変調器の接触抵抗は、電極と導波路との間の微小なシート抵抗の和である。
【0028】
繰り返すが、位置0およびxにおける寄与だけに焦点を合わせると、式は次のように書くことができる。
【0029】
ここで、既に導入された量を有する位置0およびxにおけるドーピング濃度の変化に起因する接触抵抗の変化を考える。
【0030】
光減衰を変化させないように選択されたΔNxを用いると、式は次のようになる。
【0031】
【0032】
次のような線形の項が消失すると、すなわち、次のようになる。
ΔN
0の値や符号によらず、必然的に接触抵抗が増大する。言い換えると、1つ以上の実施形態では、ドーピングプロファイルは、上記方程式が満たされたときに最適であり、最も低い接触抵抗を提供するものである。
【0033】
位置xにおけるドーピング濃度は、上記式(13)から分離することができ、したがって、最適ドーピングプロファイルに対する式を提供する。
【0034】
式(1)によって与えられるモードプロファイルの場合、以下の式によって与えられる最適な横方向ドーピングプロファイルを有する。
【0035】
上記および
図2に示すように、ドーピングプロファイルN(z)は、導波路コア1からの距離の関数として指数関数的に増加する傾向がある。1つまたは複数の実施形態では、より高い限界が、電極近傍のオーミックコンタクト3のために選択されたものであるドーピング濃度Nmaxに配置されてもよい。このような修正が行われると、
図2の下側に示されるようなプロファイルが達成され得る。
【0036】
製造中、ドーピングは、シリコンの表面にドーパントイオンを衝突させることによって達成される。CMOS製造の多くの工程と同様に、この注入は、マスクを使用することによって特定の位置でのみ行われる。注入後、イオンは材料中に格子間質となり、自由キャリアを提供または捕捉する所望のドーパント効果を提供しない。
【0037】
所望のドーパント効果を提供するために、ドーパントは、結晶構造内に集積されることが要求される。1つまたは複数の実施形態では、短い時間の間の温度の上昇を伴うアニールプロセスは、ドーパントイオンが結晶構造内に集積され、活性化されることを可能にする。
【0038】
アニールプロセスは、ドーパントを活性化するだけでなく、それらをその近傍で拡散させることも可能にする。この拡散は、初期ドーパント分布のぼかしを、深さ方向にもマスクエッジから横方向にも離れるようにする。
【0039】
適切に長時間のアニールプロセスを選択することにより、
図2に示される最適なものに近いドーパントプロファイルを得ることが可能である。
【0040】
1つまたは複数の実施形態では、導波路コア1内のドーパント分布、すなわち、PN接合を形成するものは、可能な限りシャープであることが要求され、この位置でのドーパント分布は、アニールプロセス中に可能な限り拡散することが要求される。遷移領域2における滑らかなプロファイルと、導波路コア1における急峻なプロファイルとを両立させるために、
図3に示した製造方法P1を実施することができる。
【0041】
第1のステップS1では、電極領域3で第1の強い注入が行われる。第2のステップS2では、第1のステップで注入されたイオンを活性化させ、拡散させるために、長いアニーリングが行われる。
【0042】
第3のステップS3では、導波路コア領域1に第2の弱い注入を行う。
【0043】
第4のステップS4では、第2の短いアニールを行い、その拡散を可能な限り低く保ちながら第2の弱い注入を活性化する。
【0044】
1つまたは複数の実施形態では、
図3の方法および上述の方程式を用いて、導波路コア1とシリコン変調器の電極との間の遷移領域における最適な横方向ドーピングプロファイルを計算することができる。加えて、実施形態はまた、上記の説明に従って、計算された最適プロファイルに近づくドーピングプロファイルを有する1つ以上のシリコン変調器デバイスの製造に関する。本明細書で説明するように、横方向とは、波長コア1から電極領域3への方向を意味する。すなわち、遷移領域2におけるドーピングプロファイルは、導波路コア1から電極領域3へ、横方向、すなわち、
図1を見て右から左へ、あるいは左から右へと変化する。逆に、縦方向はページ内にある。
【0045】
横方向ドーピングプロファイルの最適化
ここで、最適ドーピングプロファイルの定量的評価について説明する。
図4は、抵抗を示す等価回路を有する光変調器10を示し、
図5は、光損失を示す光変調器10を示す。この場合も、光変調器10は、PN接合領域12、電気接触領域14、および遷移領域16の3つの部分を含む。PN接合領域12は、PN接合による位相シフトを光波が蓄積する領域である。電気的接触領域14は、光変調器10に印加される電気信号が、ドープされたシリコン層から金属に遷移する場所である。遷移領域16は、PN接合領域12と電気的接触領域14との間にあり、遷移領域16の位置はPN接合形状に応じて変化することができる。例えば、遷移領域16内のスラブのシリコン厚さは約90nmとすることができる。
【0046】
様々の実施形態では、最適化は、2つの遷移領域16について記載されている。本明細書に記載されているように、最適化された横方向ドーピングプロファイルは、所与のアクセス抵抗に対してより低い光学損失を提供するか、またはその逆である。空乏型変調器の電気回路は、
図4に示されている。ここで、R
contactは接触抵抗であり、R
trPおよびR
trNは、遷移領域に関連する抵抗であり、R
pnおよびC
pnは、PN接合領域の抵抗およびキャパシタンスである。移相器(PN接合領域12)の総抵抗は、2R
contact+R
pn+R
trP+R
trNによって与えられる。しかし、横方向ドーピングプロファイルを最適化する状況では、R
trPおよびR
trNの寄与だけが考慮される。横方向ドーピングプロファイルは、接触抵抗に影響を与えず、PN接合における抵抗に影響を及ぼさない。
【0047】
比較のための基準として、従来のドーピングプロファイルを有する光変調器10において抵抗を測定した。長さ150ミクロンのセグメントについて実験的に測定された抵抗は、Rcontactが約2.5Ω、Rpnが約12Ω、RtrPが約26Ω、およびRtrNが約15Ωであった。したがって、横方向ドーピングプロファイルは、PN接合領域12の総抵抗のかなりの寄与因子である。
【0048】
図5を参照すると、光損失(OL)は実験的にシミュレートされ、実験的に確認され、1)側壁粗さ損失、2)PN接合領域における損失、3)P側の損失、および4)N側の損失に分解される。物理光変調器10におけるこれらの値は次の通りである。1)側壁粗さ損失の約2dB/cm-注入なしでの導波路の損失。この損失は、光モード幅と導波路の粗な側壁との重なりから生じる。2)PN接合領域における損失(典型的な動作点2Vでバイアスされる)が約-3.8dB/cm(モード強度の最大部分)。3)P側の損失が約0.8dB/cmである。4)N側の損失は約1.1dB/cmである。光損失の大部分は、PN接合領域12のドーパントからのものである。しかし、アクセス領域における伝搬損失は無視できない。
【0049】
図6は、横方向ドーピングプロファイルの最適化プロセスP2のフローチャートである。第1のステップS11では、収束の条件として目標抵抗を設ける。
【0050】
第2のステップS12において、最適化プロセスは、この特定の抵抗値に対する光損失を最小化する。
【0051】
第3のステップS13では、濃度プロファイルを制限する。最大ドーピング濃度が定義される(電気的接触領域で必要とされるドーピング濃度に対応して)。最小ドーピング濃度も定義される(この値はPN接合領域ドーピング濃度によって必ずしも決定されるものではないが、この値は掃引される)。
【0052】
第4のステップS14では、種々の光導波路ジオメトリーの光モードが、例えば、Lumerical Mode解法でのようにシミュレートされ、ドーパントは摂動であると考える。その結果、シミュレートされた構造体はドーパントを含まない。光損失は、ドープ領域上の非摂動モードのオーバーラップを使用して後に計算される。このドープされた領域の複素実効屈折率は、Soref方程式を用いて得られる。垂直ドーピングプロファイルは均一であると考える
【0053】
第5のステップS15において、横方向プロファイルの最適化は、PおよびNに対して独立して行われる。
【0054】
第6のステップS16において、ドープされたシリコン領域の抵抗率は、周知の実験結果を用いて得られる。例えば、
図7は、P型およびN型ドーパントの抵抗率対不純物濃度のグラフである。
【0055】
本明細書で言及されるように、最適な横方向プロファイルは、目標抵抗値(OLが最小化される)を用いて計算される。プロファイルが見つかると、この特定の抵抗値に対して最適なOLが計算される。横方向プロファイルの最適化の影響を評価するために、一連のプロファイルを、様々な目標抵抗値(5~30Ω)を用いて計算した。
【0056】
図8Aおよび
図8Bは、P型およびN型ドーパントのための光損失の関数としてのセグメント当たりの抵抗を示す。白ドットは、実際の変調器の実験データを表し、黒ドットは、同じ変調器に対するシミュレーション結果である。黒と白のドット間の差は、製造プロセスにおける誤差、またはOL/Rパラメータの実験的な特性の誤差に関連付けることができる。しかし、これら2点が近接していることにより、主な結論が変わることはない。この“x”マーカーは、最適化されたドーピングプロファイルを用い、実験変調器と同じOLを有する変調器に対応する。
【0057】
図9の上の図は、(Pのみの)
図8Aと同じ曲線である。
図9の下の図は、(上の図中のマーカーによって示される)アクセス抵抗の様々な値についての最適化された横方向プロファイル(線形(左グラフ)および対数目盛(右グラフ))である。本明細書で説明するように、最適なプロファイルは、実際には、指数形状に従う。
【0058】
この技術のためのポテンシャルゲインは、単一のPN接合について12~16Ωの間である。
【0059】
一実施形態では、変調器は、2つのダイオードの逆並列接続を含む直列プッシュプル(SPP)とすることができる。その結果、回路全体の容量が半分になり、その抵抗値は予め示されたものの2倍となる。これにより、改善が2倍になる。
【0060】
1つのPN接合について12~16Ω、またはSPP変調器について24~32Ωの改善は、約4~5GHzの帯域幅の改善をもたらす(そのような改善は、実験変調器について本明細書で提供される実験データに基づいてシミュレートされた)。
【0061】
したがって、他のいかなるパラメータも劣化させることなく帯域幅を増加させるので、このアプローチの利点は大きい。さらに、従来使用されてきた非最適な横方向プロファイルは、潜在的なマスクのミスアライメントのために、マッハツェンダー(Mach-Zehender)変調器(MZM)アームの損失の不均衡を生じやすく、その結果、マッハツェンダー干渉計(MZI)の消滅比(ER)が低下する可能性が高い。
【0062】
縦方向のプロファイル
式(15)に従ったドーピングプロファイルは、前述の製造方法によって達成可能であるが、本明細書で議論される1つまたは複数の実施形態は、集合体におけるこのような横方向のドーピングプロファイルを模倣することに関連しており、異なる形状を有する均一にドーピングされた領域の構成を使用して、ドーピング濃度が縦方向に沿って徐々に変化する。実際、導波路を伝搬する光の減衰は、多くの縦方向セクションを通して経験される減衰の総和である。全体の減衰は、その後、横方向のドーピングプロファイルの縦方向平均に相当する。同様に、接触抵抗は、完全な幾何学的ドーパントプロファイルに依存する。
【0063】
以下の説明は、異なる形状を有する一様にドープされた領域の構成を使用して、そのような横方向ドーピングプロファイルが、縦方向に沿った変化を介して達成され得る例を提供する。以下の説明は、光モードが閉じ込められる領域1と各電極との間に存在する遷移領域2の構成に焦点を当てる。遷移領域2では、光モードが指数関数的に減衰する。遷移領域2は、光変調器の性能に支配的な影響を有する。高いドーピング濃度は、高い光損失を有するが良好な変調帯域幅を有する変調器をもたらすが、低ドーピング濃度は、低い光損失を有するが帯域幅が低減された変調器を生成する。
【0064】
1つ以上の実施形態において、第1の実施例では、スラブ状遷移領域2、例えば、スラブ状のp型遷移領域2を濃度レベルp+で均一にドーピングする代わりに(ここで、p<p+<p++であり、pはPN接合のP側のP領域1の濃度レベルであり、p++は正極によって接触されるP++領域3の濃度レベル)、そのようなp型遷移領域2を、横方向に沿って順に配置されたk(k≧2)の分割P1,P2,…Pkに分割してもよい。各分割は、p≦p1<p2…<pk≦p++となるような濃度レベルp1,p2,…pkでそれぞれドープされ、最もドープの弱い分割P1はP領域1に、最も強くドープされた分割PkはP++領域3に隣接し、隣接する2つの分割間の境界は波の伝播方向に沿って蛇行する。また、n遷移領域についても、n,n+,n++,N1,N2等を用いて同様である。さらに、一様にドーピングされた領域を用いて、任意の縦方向のドーピングプロファイル効果を実現してもよい。横方向ドーピングプロファイルの最適化に加えて、本開示は、光変調器10の各側に、縦方向位置の関数として、均一なドーピング濃度を有するが不均一な幅を有する2つの領域を有する遷移領域2を設けることを含む。
【0065】
このようなドーピングプロファイルの一例が、本明細書に開示される1つ以上の実施形態に従って、
図10に示されている。具体的には、
図10は、遷移領域2を2分割(k=2)する例示的なシナリオを示し、非周期パターンを含む遷移領域2を示す。
図10に示すように、遷移領域2は、p側の2つのドーピング濃度p1、p2と、n側の2つのドーピング濃度n1、n2とを含む。
【0066】
この場合も、遷移領域2の目的は、低い光損失と低アクセス抵抗との間のトレードオフを提供することである。この領域におけるドーピング濃度は、高い変調帯域幅を達成するために必要とされる低いアクセス抵抗を提供するために可能な限り高くなるように要求される。しかし、低い光損失を得るためにはドーピング濃度を可能な限り低くすることも必要である。光モードは、主に導波路コア(リッジ導波路の厚い部分)内に含まれるが、典型的には指数減衰の形態でスラブ領域内に延在する。
【0067】
最適なトレードオフのために、遷移領域におけるドーピング濃度は、本明細書で段落[0062]に記載されているように、導波路から電極領域へ特定の方法で連続的に増加することが要求される。しかし、特定の空間依存性ドーピング濃度を提供することは、マスクを介した照明を含む典型的な製造リソグラフィに起因して、実際には容易ではない。このような2進法は、むしろ均一にドープされた部分の製造により適している。
【0068】
ドーピング幅の縦方向依存性は、横方向ドーピングプロファイルを模倣することを可能にする。実際に、導波路を伝搬する光の減衰は、多くの縦方向部分によって経験される減衰の和である。次いで、全体的な減衰は、横方向ドーピングプロファイルの縦方向の平均と等価である。同様に、アクセス抵抗は、完全な幾何学的ドーパントプロファイルに依存する。
【0069】
図11A~
図11Dは、2つの分割(k=2)についてのP
1とP
2との間の可能な蛇行境界の4つの変形をさらに提供する。
図11A~
図11Dに見られるように、縦方向に変化する遷移領域の各々は、異なるジオメトリー/形状を有する。具体的には、
図11Aは3つのドーピングレベルを模倣するが、2つのレベルのみの使用に基づく遷移領域を示す。
図11Bは、2つのドーピングレベル間の線形遷移を含む遷移領域を示す。
図11Cは、2つのドーピングレベル間の非線形遷移を含む遷移領域を示す。
図11Dは、局所的な非均一性および/または大きなパターン周期を最小化するために、インターリーブ方式を使用して、2つのドーピングレベル間の非線形遷移を含む遷移領域を示す。
【0070】
それにもかかわらず、当業者であれば、
図11A~
図11Dは、可能な境界パターンの網羅的なリストではないことが容易に理解されよう。他の可能なパターンは、ジグザグ、正弦波、またはそれらの組み合わせを含むことができ、波の伝播の方向に沿って非周期的であり得る。当業者であれば、分割の形状が異なっていてもよく、これらの分割の大きさは必ずしも同じでなくてもよいことが容易に理解されよう。
【0071】
1つまたは複数の実施形態では、縦方向に変化する遷移領域2は、以下の特性のうちの1つ以上を含むことができる。
【0072】
縦方向に変化するドーピングプロファイルは周期的であっても非周期的であってもよい。
【0073】
ドーピング濃度p1およびpは等しくてもよい。
【0074】
ドーピング濃度p2およびp++は等しくてもよい。
【0075】
ドーピング濃度n1およびnは等しくてもよい。
【0076】
ドーピング濃度n2およびn++は等しくてもよい。
【0077】
縦方向に変化するドーピングプロファイルは、その縦方向平均が、段落[0062]に与えられた最適な横方向ドーピングプロファイルと一致するように選択することができる。
【0078】
1つまたは複数の実施形態では、アニールプロセスは、空間分布をぼかし、滑らかな空間的に変化するプロファイルとするために、縦方向に変化するドーピングの注入後に有利に使用することができる。
【0079】
遷移領域2における縦方向に変化するドーピングプロファイルは、PN接合内の電界が実質的に縦方向の変動を含まないようにすることができる。このように、導波路内のPおよびN領域1は、PN接合の縦方向に均一な空乏化をもたらすのに十分な減衰帯域として作用する。
【0080】
上述した第1の実施例は、改善された性能を有するシリコン変調器を製造することを可能にする。製造において柔軟性を持たせるために、第1の実施例に記載された実施形態は、光損失と接触抵抗との間のトレードオフを最適化する横方向プロファイルを容易に得ることを可能にする。より具体的には、所与の許容可能な光損失について、より低い接触抵抗を有する変調器が得られ、これはより高い帯域幅のデバイスが得られることになる。
【0081】
縦方向プロファイルを有するカスタム横方向プロファイルの再生
この場合も、ドーパントの縦方向の変化を使用して、カスタム横方向注入プロファイルを実施することができる。典型的には、光変調器のドープされた領域は、フォトリソグラフィマスクを用いてフォトレジスト層をパターニングし、特定のエネルギー、線量、および角度のイオンを注入し、続いて急速熱リフローを行うことによって製造される。これにより、シリコンがフォトレジストによって保護された不純物を回避しながら、(フォトレジストが除去された)XZ軸に沿って均一に分布する濃度(原理的に)を有するシリコン格子内への不純物の集積化がもたらされる。Y方向に沿った注入プロファイルは、注入レシピに依存し、均一なドーピング濃度を有すると仮定される。このようなプロセス(種々の注入レシピおよび異なるマスクを有する)の反復は、典型的には、段階的な注入プロファイルを生成する。
【0082】
図12は、様々な縦方向に変化するドーピングプロファイル(Z軸)を有する光変調器10を示す。一実施形態では、任意の横方向ドーピングプロファイル(X軸)(入力プロファイルとも呼ばれる)(例えば、階段状(線20)または連続(線22))は、縦方向に変化するプロファイル(Z軸)(本明細書では出力プロファイルとも呼ばれる)を使用して効果的に達成することができ、この最適化は、所望の入力プロファイルに基づいて適切な出力プロファイルを決定するように働くこれにより、より少ない注入ステップ(マスクが陰影で示されている)を有する精巧なドーパントプロファイルを製造することができ、カスタムアニール時間を必要としない。これらの入力プロファイルは、光伝搬方向(Z軸)と縦軸(Y軸)(左上の図)で均一であり、出力プロファイルはZ方向に変化している。
【0083】
光変調器の長所(FOM)を示す3つの主要な図は、1)光損失、2)Vπ、3)電気/光(EO)帯域幅である。本明細書に記載された実施形態の関連性を確認するために、変調器FOMに対するその影響を適切に特徴付けることが必要である。
図13Aおよび
図13Bは、初期のNドーパントプロファイルおよびそれに関連する光変調器30の上面図のグラフを示す。
【0084】
横方向プロファイル(すなわち、入力プロファイル)が縦プロファイル(すなわち、出力プロファイル)に変換される場合、入力プロファイルと出力プロファイルの両方の光学的損失が同じままであることが望ましい。これが真であることを確実にするために、プロセスは以下を含む。
【0085】
1.入力プロファイルが定義される(例えば、
図13Aのグラフ)。このプロファイルは、横方向プロファイルについて本明細書に記載された最適化に基づくことができる。
【0086】
2.注入ステップ数(およびそれらのドーパント濃度)を定義する。(この例では、3つの注入ステップが示されている)(
図13Aの点線32,34は、導波路のN側の
図13Bの点線36に示されている)
【0087】
3.X軸(
図13Bの点線36)に沿った各位置で、Z方向の出力プロファイルドーパントは、その平均が、同じX位置(黒丸)における入力プロファイルのドーパント濃度に等しいように決定される。ドーパント注入に関連する伝搬損失(dB/cm)は、濃度密度に線形比例するので、両方のプロファイルにおける損失は等しくなる。
【0088】
図14A,
図14B,
図14Cは、様々な縦方向に変化するプロファイルの図である。原理的には、逆バイアスで動作するPN接合では、電流が流れないため、Vπはアクセス抵抗の影響を受けない。その結果、PN接合(X軸およびZ軸上)の所与の側の任意の点は、同じ電位にある。このステートメントを確認するために、
図14A,
図14B,
図14Cに示すPN接合について、電圧の関数としてのDCシミュレーションを行った。1つのPN接合は一様であり(
図14A)、第2は中程度にドープされた歯(
図14B)を有し、第3のPN接合は高濃度にドープされた歯を有する(
図14C)。
【0089】
3つのシミュレーションのための電圧の関数としての空乏幅が
図15のグラフに示されている。
図14A,
図14B,
図14Cの実施形態についての3つの曲線は、実際に
図15のグラフに重畳し、アクセス抵抗が変調器DC V
πに影響を及ぼさないことを示している。
【0090】
縦方向のプロファイルが変調器の帯域幅にどのように影響を及ぼすかを評価するために、G. L. Li, T. G. B. Mason, and P. K. L. Yu, “Analysis of Segmented Traveling-Wave Optical Modulators,” J. Lightwave Technol., JLT, vol. 22, no. 7, p. 1789, Jul. 2004から取られた式[16]によって与えられる光変調器のEO応答を考慮する。当該文献の内容は、本明細書中に参照によって援用される。
単なる正規化定数である2/NVsの項を除いて、光変調器のEO応答は3つの項に分解される。
【0091】
1)項Vnは、セグメントnに現れる電圧である(光変調器の上面視で等価回路である
図16を参照)。曲線Vn対セグメント数(または変調器に沿った位置)は、変調器(SiP変調器のEO応答における支配的な項である)に蓄積された無線周波数(RF)損失を表す。セグメントN-1の平均化された抵抗が同じままである場合、次のセグメントの電圧(Vn)は変化しない。
【0092】
2)eΔφは、RFと光波との間の速度不整合を考慮に入れる位相項である。比較的低いキャパシタンスを有するPN接合の場合、接合の抵抗は、RF速度に重大な影響を及ぼさない。したがって、この項は、アクセス抵抗の減少/増加と共に変化しない。さらに、抵抗がRF速度に影響を及ぼす場合には、この効果を補償するために、RF導波路設計をわずかに変更することができる。最後に、出力プロファイルのアクセス抵抗が入力プロファイル1と同じである場合、この項は正確に同じである。結論として、この項は役割を果たさない。
【0093】
3)第3項(1/(1-iωRC))は、1つのセグメントのPN接合の抵抗-コンデンサRC応答に由来する。ドーピングプロファイルの縦方向の変化を有することの影響を示すために、
図17は、入力プロファイル40として段階的プロファイルを有する例示的な実施形態を示し、2つの注入ステップを有する出力プロファイルを示す。典型的な抵抗およびキャパシタンス値が
図17に示されている。典型的なPN接合は、この接合のRCカットオフ周波数が100GHzに近い。中間ドーパントを含まないベースラインPN接合は、約13.5Ω/mmの抵抗を有する。したがって、帯域幅は80GHzに近い
【0094】
図18は、
図17の入力プロファイル40からの出力プロファイルを示す図であり、3つの一様な部分(50,51,52)のRC定数を別々に評価することにより、解析を簡略化することができる。この場合、中央部50は、入力プロファイルよりも小さいアクセス抵抗(Ω/mm)を有し、一方、側部51,52は、入力プロファイルよりも大きいアクセス抵抗を有する。変調器のカットオフ周波数は、空乏ベースシリコン変調器の典型的な3db帯域幅に比べて比較的大きいので、この効果は、全体の帯域幅にわずかな影響しか及ぼさない。
図19のグラフは、カットオフ周波数が80GHz、100GHz、120GHzのRCフィルタの応答を示している。このように、RCフィルタは40GHzで約0.5dBの影響を有し、その変動は約0.25dBである。結論として、高い周波数では、区間51,52内のPN接合は、区間50内のPN接合よりもわずかに小さくなるが、この効果は、変調器帯域幅に対するVnの影響と比較して無視できる。
【0095】
上記の説明を検証するために、
図20A,
図20B,
図20Cに示される3つのPN接合61,62,63について電荷キャリアシミュレーションを行った。PN接合部61は、均一な縦方向プロファイルを有する。PN接合62は、階段状の縦方向プロファイルを有する。この例では、縦方向のプロファイル(歯)が存在するが、各領域におけるカットオフ周波数は、変調器の帯域幅よりもはるかに大きい。PN接合部63は、完全にエッチングされたアクセス領域を有する階段状の縦方向プロファイルを有する。この例では、シリコンは、歯の側面から完全に除去され(ハッチング領域)、接合部の側面の抵抗を劇的に増大させる。
【0096】
これらの実施形態では、電荷キャリア濃度は経時変化するバイアス電圧でシミュレートされた。シミュレーションは40GHz印加信号の2周期にわたって行われた。
図21は、電荷キャリア濃度シミュレーションの時間対バイアス電圧のグラフである。光導波路の周りの電荷キャリアは、マーカー70によって示される時間ステップで示されるようになり、平均空乏幅(全PN接合にわたって平均化される)も、以下のように時間の関数として表示される
【0097】
図22は、
図20のPN接合61の時間の関数としての平均空乏幅プロファイルのグラフを示している。この状況では、空乏領域が導波路(矢印71)に沿って一様に開口していることがわかる。Pドーパント(正)は左側にあり、Nドーパントは右側にある。平均空乏幅プロファイルは、時間の関数として提示される。
【0098】
図23は、
図20BのPN接合の時間の関数としての平均空乏幅プロファイルのグラフを示す。この状況では、空乏領域は、縦方向ドーピングプロファイルが存在するが、位置に沿って一様に開口することがわかる。カットオフ周波数は、40GHzにおける空乏領域の開口が均一に見えるように、様々な領域に対して十分に大きい。時間の関数としての平均空乏幅プロファイルは、
図22に示されるものと同一である。
【0099】
図24は、
図20CのPN接合の時間の関数としての平均空乏幅プロファイルのグラフを示す。この場合、外側領域のRCフィルタが非常に大きくなるため、空乏領域が位置に沿って均一でないことがわかる。PN接合は、アクセスシリコンスラブが完全にエッチングされていない中心(円72)でのみ開く。したがって、平均空乏幅は、2つの先行する場合よりもはるかに小さい(すなわち、空乏幅は側部で変調されず、中心においてのみ変化する)。なお、空乏領域の中心における開口は、先の2つの場合と全く同じである。これらのシミュレーションは、EO応答に対する縦方向プロファイルの影響についての検討が有効であることを証明する。
【0100】
横方向に変化するドーパントプロファイルを縦方向に変化するプロファイルに実装することは、以下の理由で関連する。
【0101】
光損失は同じままである。
【0102】
DC Vπは、接合部のアクセス抵抗の影響を受けない。したがって、DCVπも変わらない。
【0103】
EO帯域幅も前記のように非常に類似している。
【0104】
巨視的な観点から、出力プロファイルの総抵抗が入力プロファイルに等しい場合、RF損失は同一である(すなわち、Vnの項は同一である)。
【0105】
微視的な観点から、各セグメントのRCフィルタ方程式は、ドーパントの縦方向の変動によってわずかに影響を受けるであろう。いくつかの領域は、いくつかの他の領域よりもアクセス抵抗が低い。しかし、この効果は、(RCカットオフ周波数>>変調器帯域幅である)われわれの関心をひくケースにおいては無視し得る。したがって、等価抵抗については、縦方向に変化するプロファイルのEO帯域幅は同じままである。
【0106】
縦方向プロファイルの抵抗を評価するために、ドーパントPおよびNを独立に計算する。各プロファイルは、Z軸においてM個の区画に分離され、各区画を独立した並列回路として考慮して抵抗が計算される。したがって、全体の抵抗は以下の式で与えられる。
【0107】
図25Aおよび
図25Bは、入力プロファイルおよび出力プロファイルを有する第1の例示的な実施形態を示す。入力プロファイルは、Nドーパント最適化横方向ドーパント(OL=1.1dB/cm)と2つのドーピングレベルとを有する。入力抵抗は8.5Ω/セグメントであり、出力抵抗は17.7Ω/セグメントである。この最適化された横方向プロファイルを実現するために、2つのレベルの縦方向プロファイルが使用されるが、これは十分に良好ではない。しかし、電流変調器の非最適化抵抗は15Ωである。したがって、この出力プロファイルの性能は、3レベルの非最適化された横方向プロファイルに近い。
【0108】
図26Aおよび
図26Bは、入力プロファイルおよび出力プロファイルを有する第2の例示的な実施形態を示す。入力プロファイルは、Nドーパント最適化横方向ドーパント(OL=1.1dB/cm)と3つのドーピングレベルとを有する。入力抵抗は8.5Ω/セグメントであり、出力抵抗は10.2Ω/セグメントである。実際の非最適化された抵抗は15Ωである。したがって、最適化された横方向プロファイルを実現するために3レベルの縦方向プロファイルを使用することにより、著しい改善がもたらされる。
【0109】
図27Aおよび
図27Bは、入力プロファイルおよび出力プロファイルを有する第3の例示的な実施形態を示す。入力プロファイルは、Nドーパント最適化横方向ドーパント(OL=1.1dB/cm)と4つのドーピングレベルとを有する。入力抵抗は8.5Ω/セグメントであり、出力抵抗は8.9Ω/セグメントである。したがって、この出力プロファイルは、入力プロファイルとほぼ同一の抵抗を有する。ドーピングレベルの数が増加すると、出力プロファイルアクセス抵抗は入力プロファイルの値となる傾向があると結論することができる。しかし、3つのドーピングレベルですでにかなりの利得が得られている。同様のシミュレーションは、P型ドーパントでも得られた。
【0110】
図28Aおよび
図28Bは、入力プロファイルおよび出力プロファイルを有する第4の例示的な実施形態を示す。入力プロファイルは、Nドーパント最適化横方向ドーパント(OL=0.92dB/cm)と2つのドーピングレベルとを有する。入力抵抗は16.1Ω/セグメントであり、出力抵抗は28.9Ω/セグメントである。ここでは、最適化された横方向プロファイルを実現するために、2つのレベルの縦方向プロファイルを使用することは十分ではない。しかし、電流変調器の最適化されない抵抗は26Ωである。したがって、この出力プロファイルの性能は、3レベルの非最適化された横方向プロファイルに近い。
【0111】
図29Aおよび
図29Bは、入力プロファイルおよび出力プロファイルを有する第5の実施形態を示す。入力プロファイルは、Nドーパント最適化横方向ドーパント(OL=0.92dB/cm)と3つのドーピングレベルとを有する。入力抵抗は16.1Ω/セグメントであり、出力抵抗は18.8Ω/セグメントである。実際の非最適化された抵抗は26Ωである。したがって、最適化された横方向プロファイルを実現するために3つのレベルの縦方向プロファイルを使用することにより、著しい改善がもたらされる。
【0112】
図30Aおよび
図30Bは、入力プロファイルおよび出力プロファイルを有する第6の例示的な実施形態を示す。入力プロファイルは、Nドーパント最適化横方向ドーパント(OL=0.92dB/cm)と4つのドーピングレベルとを有する。入力抵抗は16.1Ω/セグメントであり、出力抵抗は16.9Ω/セグメントである。出力プロファイルは、入力プロファイルとほぼ同一の抵抗を有する。
【0113】
この場合も、横方向ドーパントプロファイルを最適化することにより、光変調器を大幅に改善することができる。しかしながら、このようなプロファイルは、プロセスの開発努力を必要とすることもあろう。アクセス抵抗が同じに保たれるので(ドーピングレベルの数>2である場合)、光変調器(光損失、VπおよびEO帯域幅)の他の性能指数を低下させることなく、ドーパントの縦方向の変動を使用してカスタム横注入プロファイルを実施することができることが示されている。
【0114】
このアプローチは、2つの状況において有益であり、1)単純な製造プロセスを維持しながら、より低いアクセス抵抗を有するより複雑な横方向プロファイルを模倣することにより、変調器性能を改善し、2)それらが2つのドーピングレベルを有するのみであるので、変調器の性能を維持することである。
【0115】
図31は、縦方向に変化するプロファイルの別の実施形態の上面図を示す。この場合も、ドーピングされた領域の縦方向の変化を用いて、様々な横方向ドーピングプロファイルを複製することが示されている。
【0116】
図32Aおよび
図32Bは、セグメント当たりの抵抗の関数としての光損失を示す、N(
図32A)およびP(
図32B)ドーパントのグラフを示す。最適化プロセスはまた、別のスラブ厚さで実行されている。他方のスラブ厚は150nmである(ライン81)(先の実施例では90nmであった(ライン80)。より厚いスラブは、低いアクセス抵抗を有するが、同時に、光モードは、導波路の中央部分に閉じ込められない。その結果、光損失が大きくなる。この最適化プロセスを実行する前に、2つの態様のどれが支配的であるかは明確ではなかった。
図32Aおよび
図32Bに見られるように、いまやより薄いスラブがより有利であることは明らかである。
【0117】
シリコンスラブ厚さ最適化によるシリコン変調器アクセス抵抗の低減
1つまたは複数の実施形態では、縦方向/横方向に沿って均一な厚さを有するスラブ状の遷移領域2を有する代わりに、遷移領域2は、様々な厚さを有するように設計することができる。より具体的には、第2の実施例では、構造全体の接触抵抗を低減するために、スラブ厚さを変調器の各側で変化させる。
図33A,
図33B,
図34A,
図34Bは、断面において、本明細書に開示される1つまたは複数の実施形態にしたがってスラブ厚さを変化させるための様々な構成を示す。他の構成も可能であり、例えば、縦方向(図示せず)の厚さ変動である。明確にするために、異なる厚さの変化を、横方向および縦方向のいずれか、または両方の方向(図示せず)に採用することができる。
【0118】
図33Aおよび
図33Bは、2つおよび3つのシリコン厚さを有する電極に近接してスラブ厚を増加させた構成を示している。これらの場合、N+/P+領域2の抵抗は、均一なドーピングプロファイルを仮定して2倍減少し、変調器帯域幅の改善に変換される。いくつかの構成では、約10Ωの接触抵抗の減少は、変調器帯域幅を約5GHzだけ改善し、そのような改善は無視できない。これらの構成は、(導波路を規定する)シリコン層のエッチングが、光モード(典型的には約200~300nm)を閉じ込めるのに十分な幅であるので、
図1A~
図1Cに示された変調器と比較して、光モードプロファイルおよび実効屈折率を著しく変更することはない。
【0119】
図34Aおよび
図34Bは、遷移領域2(光モードが指数的に減衰する領域)が、シリコン層が依然として導波路の厚さに近い厚さである場合に開始する他の構成を示す。典型的には、このような光導波路は、複数の伝播モードをサポートする。これらの構成は、薄い遷移領域2(光モードを閉じ込める)が高度にドープされたシリコンのみから構成されるので、特に興味深い。その結果、
図1で抵抗が最も高い部分(すなわち、薄いP/Nドープ部)が完全に除去され、接触抵抗が大幅に低減される。さらに、この設計の最適化は、例えば、第1の伝播モードに断熱的に結合することによって、または、高次の伝播モードを選択的に減衰させるためにドーパントプロファイルを調節することによって、高次モードの励起を防止するために行うことができる。
【0120】
遷移領域2の厚さの変化は、その縦方向平均が、第2の実施例にしたがって、段落[0036]に与えられた最適な横方向ドーピングプロファイルと一致するように選択されてもよく、スラブ厚さを変更することにより、伝搬損失を著しく増大させることなく、全体構造の接触抵抗をさらに減少させることができる。接触抵抗を低減することは、より高い変調帯域幅に達するために重要である。
【0121】
例示の目的で、厚さの変化は、
図33A-
図33Bおよび
図34A-
図34Bに直角のステップであることが示されているが、当業者であれば、直線傾斜、曲線傾斜、またはそれらの組合せなどの他の形状の厚さ変動を使用してもよいことが容易に理解されよう。
【0122】
例示の目的で、
図33A-
図33Bおよび
図34A-
図34Bは、それぞれ、厚さの1つと2つの変化を示している。それにもかかわらず、当業者には、厚さの変化の数がより大きくてもよいことが容易に理解されよう。さらに、
図33A-
図33Bおよび
図34A-
図34Bは、一例として、横方向PN接合を使用するシリコン変調器の接触抵抗を低減する方法を示している。しかし、第2の実施例で説明した技術は、他のタイプの接合形状にも適用可能であることは、当業者には容易に理解されよう。
【0123】
さらに、1つ以上の実施形態では、第1の実施例および第2の実施例の特徴を組み合わせるようにシリコン変調器を設計することができ、その結果、遷移領域2は、変化する縦方向/横方向ドーピング濃度および変化する縦方向/横方向の厚さの両方を有する。2つの実施例からの特徴のこのような組み合わせは、所与の光損失に対してさらに接触抵抗を減少させることができる。
【0124】
シリコンスラブ厚さの最適化
遷移領域2のスラブ領域の厚さを変化させて、光損失を一定に保ちながら、変調器のアクセス抵抗を改善することができる。逆に、特定のアクセス抵抗に対する変調器の光損失を改善するためにスラブ領域の厚さを変えることができる。これは、横方向および縦方向のプロファイルについて本明細書に記載された最適化と同様である。
【0125】
上記のステートメントを評価するために、光モードプロファイルを計算し、スラブ内および導波路コア内のパワーの割合を計算した。スラブ内の光パワーが小さければ、光モードへの影響を小さくしてシリコンをより多くドープできることになり、結果として、より高速な変調器またはより低い光損失の変調器が得られることになる。また、完全な変調器シミュレーションも実施した。変調器のメリット(光損失、Vpi、およびEO BW)をレガシー変調器と比較している。
【0126】
適切な厚さの選択により、側面に切り欠きを有する遷移領域2のスラブ導波路を使用することにより、モード閉じ込めの改善、スラブ領域内に集中する光パワーの低減が可能となり、その結果、変調器の性能を大幅に向上させることができる。実際の設計では、2GHzから3GHzの間で改善が見られる。Siベース変調器でできる改善は限られていることを考えると、数GHzの改善は、動作するチップか“欠陥のあるチップ”かの違いになる。
【0127】
光モードプロファイルの評価
図35~
図38は、導波路コア1と遷移領域2と、遷移領域2における異なるスラブ厚さを例示する、関連する計算された光モードとを有する様々な変調器の断面図である。
図35は、遷移領域2におけるスラブ厚さの変化のないベースライン変調器である。断面図は、導波路コア1と遷移領域2と、SiO
2クラッドなどのクラッド80とを含む。一実施形態では、導波路コア1の厚さは220nmであり、幅は500nmであり、遷移領域2のスラブの厚さは90nmである。光モードは、ポインティングベクトルを計算するために使用される。このベースライン変調器の重要な値は、500nm×220nmのコア内のモードの割合(72.1%)とスラブ内のモードの部分(3.8%)である。
【0128】
図36は、スラブの厚さが2つのレベルで変化する遷移領域2を含む。薄いスラブは90nm、厚いスラブは150nmである。ここでは、光モードの閉じ込めがやや少ない(72.1%ではなく71.3%)が、スラブ内の光パワーの量はベースラインよりもさらに大きい(3.8%ではなく4.3%)ことがわかる。Δwの値を大きくすることで、スラブ内の光パワー量をベースラインと同等にすることができる。しかし、Δwは大きすぎて、この新しい導波路形状ではアクセス抵抗の利点が得られない。その結果、このアプローチはあまり有用ではなかった。
【0129】
図37は、スラブの厚さが2レベルで変化しているが、
図36よりも小さい厚さを有する遷移領域2を含む。具体的には、薄いスラブは50nmであり、厚いスラブは90nmである。ここでは、光モードがより閉じ込められていることがわかるが(72.1%ではなく76.2%)、より重要なことは、スラブ内の光パワーの量がはるかに少ないことである(3.8%ではなく0.7%)。これは、比較的簡単なプロセス変更を伴う一方で、変調器のEO帯域幅を改善することができる。
【0130】
図38は、
図37から変化した形状を有する遷移領域2を含み、すなわち、厚さは
図37と同じであるが、Δwははるかに小さい。ここでは、光モードは、ベースラインと比較して、まだより閉じ込められている(72.1%の代わりに74.7%)が、
図37の以前の場合よりも少ないことが見て取れる。さらに重要なことに、スラブ内の光パワーの量は、ベースラインよりもはるかに低いままである(3.8%の代わりに1.2%)。
【0131】
完全変調器のシミュレーション
図39は、遷移領域2(
図38に示す構造)における様々なスラブ厚を利用した基準変調器および第2の変調器を示す。様々なスラブ厚を利用した変調器は、均一な厚さ90nmのスラブを利用したベースライン変調器と同じ位相応答(同じVpi)およびOLを有する。しかし、同じ光損失に対してアクセス抵抗が小さくなり、この例ではEO帯域幅が2GHz改善される。両方の変調器をマッチさせるために、注入レシピとこれらの層のマスク位置を微調整した。
【0132】
なお、横方向プロファイルおよび縦方向プロファイルが別々に本明細書に記載されているが、当業者は、シリコン変調器10が、その横方向プロファイルおよび縦方向プロファイルの両方の変化を同時に含んでもよいことを理解するであろう。さらに、当業者は、N側およびP側の遷移領域2は、異なるドーピングプロファイルを有してもよいことも理解するであろう。
【0133】
本開示は、好ましい実施形態およびその特定の例を参照して図示および説明してきたが、他の実施形態および例が同様の機能を実行し、および/または同様の結果を達成し得ることは、当業者には容易に明らかであろう。そのようなすべての等価な実施形態および例は、本開示の精神および範囲内にあり、それによって企図され、以下の特許請求の範囲に包含されることが意図されている。