(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2023-10-23
(45)【発行日】2023-10-31
(54)【発明の名称】熱処理方法
(51)【国際特許分類】
H01L 21/26 20060101AFI20231024BHJP
H01L 21/265 20060101ALI20231024BHJP
【FI】
H01L21/26 T
H01L21/265 602B
H01L21/26 G
H01L21/26 J
(21)【出願番号】P 2019145205
(22)【出願日】2019-08-07
【審査請求日】2022-06-17
(73)【特許権者】
【識別番号】000207551
【氏名又は名称】株式会社SCREENホールディングス
(74)【代理人】
【識別番号】100088672
【氏名又は名称】吉竹 英俊
(74)【代理人】
【識別番号】100088845
【氏名又は名称】有田 貴弘
(72)【発明者】
【氏名】河原▲崎▼ 光
(72)【発明者】
【氏名】野崎 仁秀
【審査官】桑原 清
(56)【参考文献】
【文献】特開2017-041468(JP,A)
【文献】特開2012-069890(JP,A)
【文献】特開2012-074430(JP,A)
【文献】特開2012-238779(JP,A)
【文献】特開2018-157064(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
H01L 21/26
H01L 21/265
(57)【特許請求の範囲】
【請求項1】
裏面に膜が形成された基板にフラッシュ光を照射することによって該基板を加熱する熱処理方法であって、
連続点灯ランプから前記基板に光を照射することによって前記基板を予備加熱する予備加熱工程と、
予備加熱された前記基板の表面にフラッシュランプからフラッシュ光を照射することによって前記基板をフラッシュ加熱する主加熱工程と、
前記予備加熱工程および前記主加熱工程を実行するときに、前記基板の斜め下方に設けられた第1放射温度計によって前記基板の裏面の温度を継続して測定する裏面温度測定工程と、
前記主加熱工程を実行するときに、前記基板の斜め上方に設けられた第2放射温度計によってフラッシュ光照射時の前記基板の表面の上昇温度を測定する表面上昇温度測定工程と、
予備加熱されている前記基板が一定温度に到達してからフラッシュ光を照射するまでの間に前記第1放射温度計によって測定された前記基板の裏面の温度に前記第2放射温度計によって測定されたフラッシュ光照射時の前記基板の表面の上昇温度を加算して前記基板の表面温度を算定する表面温度算定と、
を備え
、
前記第1放射温度計の前記基板に対する受光角が60°以上89°以下であることを特徴とする熱処理方法。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、裏面に膜が形成された半導体ウェハー等の薄板状精密電子基板(以下、単に「基板」と称する)にフラッシュ光を照射することによって該基板を加熱する熱処理方法に関する。
【背景技術】
【0002】
半導体デバイスの製造プロセスにおいて、極めて短時間で半導体ウェハーを加熱するフラッシュランプアニール(FLA)が注目されている。フラッシュランプアニールは、キセノンフラッシュランプ(以下、単に「フラッシュランプ」とするときにはキセノンフラッシュランプを意味する)を使用して半導体ウェハーの表面にフラッシュ光を照射することにより、半導体ウェハーの表面のみを極めて短時間(数ミリ秒以下)に昇温させる熱処理技術である。
【0003】
キセノンフラッシュランプの放射分光分布は紫外域から近赤外域であり、従来のハロゲンランプよりも波長が短く、シリコンの半導体ウェハーの基礎吸収帯とほぼ一致している。よって、キセノンフラッシュランプから半導体ウェハーにフラッシュ光を照射したときには、透過光が少なく半導体ウェハーを急速に昇温することが可能である。また、数ミリ秒以下の極めて短時間のフラッシュ光照射であれば、半導体ウェハーの表面近傍のみを選択的に昇温できることも判明している。
【0004】
このようなフラッシュランプアニールは、極短時間の加熱が必要とされる処理、例えば典型的には半導体ウェハーに注入された不純物の活性化に利用される。イオン注入法によって不純物が注入された半導体ウェハーの表面にフラッシュランプからフラッシュ光を照射すれば、当該半導体ウェハーの表面を極短時間だけ活性化温度にまで昇温することができ、不純物を深く拡散させることなく、不純物活性化のみを実行することができるのである。
【0005】
フラッシュランプアニールに限らず、半導体ウェハーの熱処理においては、ウェハー温度の管理が重要となる。特許文献1,2には、処理対象となる半導体ウェハーの斜め上方および斜め下方に放射温度計を設け、半導体ウェハーの主面から放射された放射光を受光して当該主面の温度を測定する技術が開示されている。
【先行技術文献】
【特許文献】
【0006】
【文献】特開2012-238779号公報
【文献】特開2012-238782号公報
【発明の概要】
【発明が解決しようとする課題】
【0007】
しかしながら、極めて照射時間の短いフラッシュ光を照射したときには半導体ウェハーの表面温度もサブミリ秒の単位で急激に変化するため、その表面温度を正確に測定することは困難である。また、半導体製造プロセスが複雑になるにつれて、フラッシュランプアニールの対象となる半導体ウェハーに成膜処理がなされていることも多い。放射温度計によって半導体ウェハーの温度を測定する際には、測定対象の放射率が必要となるが、半導体ウェハーに膜が形成されていると放射率がウェハー基材から変動するため、温度測定がさらに困難となる。
【0008】
本発明は、上記課題に鑑みてなされたものであり、基板の表面温度を正確に測定することができる熱処理方法を提供することを目的とする。
【課題を解決するための手段】
【0009】
上記課題を解決するため、請求項1の発明は、裏面に膜が形成された基板にフラッシュ光を照射することによって該基板を加熱する熱処理方法において、連続点灯ランプから前記基板に光を照射することによって前記基板を予備加熱する予備加熱工程と、予備加熱された前記基板の表面にフラッシュランプからフラッシュ光を照射することによって前記基板をフラッシュ加熱する主加熱工程と、前記予備加熱工程および前記主加熱工程を実行するときに、前記基板の斜め下方に設けられた第1放射温度計によって前記基板の裏面の温度を継続して測定する裏面温度測定工程と、前記主加熱工程を実行するときに、前記基板の斜め上方に設けられた第2放射温度計によってフラッシュ光照射時の前記基板の表面の上昇温度を測定する表面上昇温度測定工程と、予備加熱されている前記基板が一定温度に到達してからフラッシュ光を照射するまでの間に前記第1放射温度計によって測定された前記基板の裏面の温度に前記第2放射温度計によって測定されたフラッシュ光照射時の前記基板の表面の上昇温度を加算して前記基板の表面温度を算定する表面温度算定と、を備え、前記第1放射温度計の前記基板に対する受光角が60°以上89°以下であることを特徴とする。
【発明の効果】
【0011】
請求項1の発明によれば、第1放射温度計の基板に対する受光角が60°以上89°以下であるため、裏面の膜の種類にかかわらず第1放射温度計によって基板の裏面の温度を正確に測定することができ、その基板の裏面の温度に第2放射温度計によって測定されたフラッシュ光照射時の基板の表面の上昇温度を加算して基板の表面温度を算定するため、フラッシュ光照射時の基板の表面温度を正確に測定することができる。
【図面の簡単な説明】
【0013】
【
図1】本発明に係る熱処理方法を実施するための熱処理装置の構成を示す縦断面図である。
【
図7】複数のハロゲンランプの配置を示す平面図である。
【
図8】下部放射温度計とサセプタに保持された半導体ウェハーとの位置関係を示す図である。
【
図9】下部放射温度計,上部放射温度計および制御部の機能ブロック図である。
【
図10】半導体ウェハーの処理手順を示すフローチャートである。
【
図11】半導体ウェハーの表面温度の変化を示す図である。
【
図12】形成された膜の放射率への影響を示す図である。
【発明を実施するための形態】
【0014】
以下、図面を参照しつつ本発明の実施の形態について詳細に説明する。
【0015】
図1は、本発明に係る熱処理方法を実施するための熱処理装置1の構成を示す縦断面図である。
図1の熱処理装置1は、基板として円板形状の半導体ウェハーWに対してフラッシュ光照射を行うことによってその半導体ウェハーWを加熱するフラッシュランプアニール装置である。処理対象となる半導体ウェハーWのサイズは特に限定されるものではないが、例えばφ300mmやφ450mmである(本実施形態ではφ300mm)。なお、
図1および以降の各図においては、理解容易のため、必要に応じて各部の寸法や数を誇張または簡略化して描いている。
【0016】
熱処理装置1は、半導体ウェハーWを収容するチャンバー6と、複数のフラッシュランプFLを内蔵するフラッシュ加熱部5と、複数のハロゲンランプHLを内蔵するハロゲン加熱部4と、を備える。チャンバー6の上側にフラッシュ加熱部5が設けられるとともに、下側にハロゲン加熱部4が設けられている。また、熱処理装置1は、チャンバー6の内部に、半導体ウェハーWを水平姿勢に保持する保持部7と、保持部7と装置外部との間で半導体ウェハーWの受け渡しを行う移載機構10と、を備える。さらに、熱処理装置1は、ハロゲン加熱部4、フラッシュ加熱部5およびチャンバー6に設けられた各動作機構を制御して半導体ウェハーWの熱処理を実行させる制御部3を備える。
【0017】
チャンバー6は、筒状のチャンバー側部61の上下に石英製のチャンバー窓を装着して構成されている。チャンバー側部61は上下が開口された概略筒形状を有しており、上側開口には上側チャンバー窓63が装着されて閉塞され、下側開口には下側チャンバー窓64が装着されて閉塞されている。チャンバー6の天井部を構成する上側チャンバー窓63は、石英により形成された円板形状部材であり、フラッシュ加熱部5から出射されたフラッシュ光をチャンバー6内に透過する石英窓として機能する。また、チャンバー6の床部を構成する下側チャンバー窓64も、石英により形成された円板形状部材であり、ハロゲン加熱部4からの光をチャンバー6内に透過する石英窓として機能する。
【0018】
また、チャンバー側部61の内側の壁面の上部には反射リング68が装着され、下部には反射リング69が装着されている。反射リング68,69は、ともに円環状に形成されている。上側の反射リング68は、チャンバー側部61の上側から嵌め込むことによって装着される。一方、下側の反射リング69は、チャンバー側部61の下側から嵌め込んで図示省略のビスで留めることによって装着される。すなわち、反射リング68,69は、ともに着脱自在にチャンバー側部61に装着されるものである。チャンバー6の内側空間、すなわち上側チャンバー窓63、下側チャンバー窓64、チャンバー側部61および反射リング68,69によって囲まれる空間が熱処理空間65として規定される。
【0019】
チャンバー側部61に反射リング68,69が装着されることによって、チャンバー6の内壁面に凹部62が形成される。すなわち、チャンバー側部61の内壁面のうち反射リング68,69が装着されていない中央部分と、反射リング68の下端面と、反射リング69の上端面とで囲まれた凹部62が形成される。凹部62は、チャンバー6の内壁面に水平方向に沿って円環状に形成され、半導体ウェハーWを保持する保持部7を囲繞する。チャンバー側部61および反射リング68,69は、強度と耐熱性に優れた金属材料(例えば、ステンレススチール)にて形成されている。
【0020】
また、チャンバー側部61には、チャンバー6に対して半導体ウェハーWの搬入および搬出を行うための搬送開口部(炉口)66が形設されている。搬送開口部66は、ゲートバルブ185によって開閉可能とされている。搬送開口部66は凹部62の外周面に連通接続されている。このため、ゲートバルブ185が搬送開口部66を開放しているときには、搬送開口部66から凹部62を通過して熱処理空間65への半導体ウェハーWの搬入および熱処理空間65からの半導体ウェハーWの搬出を行うことができる。また、ゲートバルブ185が搬送開口部66を閉鎖するとチャンバー6内の熱処理空間65が密閉空間とされる。
【0021】
さらに、チャンバー側部61には、貫通孔61aおよび貫通孔61bが穿設されている。貫通孔61aは、後述するサセプタ74に保持された半導体ウェハーWの上面から放射された赤外光を上部放射温度計25(第2放射温度計)の赤外線センサー29に導くための円筒状の孔である。一方、貫通孔61bは、半導体ウェハーWの下面から放射された赤外光を下部放射温度計20(第1放射温度計)の赤外線センサー24に導くための円筒状の孔である。貫通孔61aおよび貫通孔61bは、それらの貫通方向の軸がサセプタ74に保持された半導体ウェハーWの主面と交わるように、水平方向に対して傾斜して設けられている。貫通孔61aの熱処理空間65に臨む側の端部には、上部放射温度計25が測定可能な波長領域の赤外光を透過させるフッ化カルシウム材料からなる透明窓26が装着されている。また、貫通孔61bの熱処理空間65に臨む側の端部には、下部放射温度計20が測定可能な波長領域の赤外光を透過させるフッ化バリウム材料からなる透明窓21が装着されている。
【0022】
また、チャンバー6の内壁上部には熱処理空間65に処理ガスを供給するガス供給孔81が形設されている。ガス供給孔81は、凹部62よりも上側位置に形設されており、反射リング68に設けられていても良い。ガス供給孔81はチャンバー6の側壁内部に円環状に形成された緩衝空間82を介してガス供給管83に連通接続されている。ガス供給管83は処理ガス供給源85に接続されている。また、ガス供給管83の経路途中にはバルブ84が介挿されている。バルブ84が開放されると、処理ガス供給源85から緩衝空間82に処理ガスが送給される。緩衝空間82に流入した処理ガスは、ガス供給孔81よりも流体抵抗の小さい緩衝空間82内を拡がるように流れてガス供給孔81から熱処理空間65内へと供給される。処理ガスとしては、例えば窒素(N2)等の不活性ガス、または、水素(H2)、アンモニア(NH3)等の反応性ガス、或いはそれらを混合した混合ガスを用いることができる(本実施形態では窒素ガス)。
【0023】
一方、チャンバー6の内壁下部には熱処理空間65内の気体を排気するガス排気孔86が形設されている。ガス排気孔86は、凹部62よりも下側位置に形設されており、反射リング69に設けられていても良い。ガス排気孔86はチャンバー6の側壁内部に円環状に形成された緩衝空間87を介してガス排気管88に連通接続されている。ガス排気管88は排気部190に接続されている。また、ガス排気管88の経路途中にはバルブ89が介挿されている。バルブ89が開放されると、熱処理空間65の気体がガス排気孔86から緩衝空間87を経てガス排気管88へと排出される。なお、ガス供給孔81およびガス排気孔86は、チャンバー6の周方向に沿って複数設けられていても良いし、スリット状のものであっても良い。また、処理ガス供給源85および排気部190は、熱処理装置1に設けられた機構であっても良いし、熱処理装置1が設置される工場のユーティリティであっても良い。
【0024】
また、搬送開口部66の先端にも熱処理空間65内の気体を排出するガス排気管191が接続されている。ガス排気管191はバルブ192を介して排気部190に接続されている。バルブ192を開放することによって、搬送開口部66を介してチャンバー6内の気体が排気される。
【0025】
図2は、保持部7の全体外観を示す斜視図である。保持部7は、基台リング71、連結部72およびサセプタ74を備えて構成される。基台リング71、連結部72およびサセプタ74はいずれも石英にて形成されている。すなわち、保持部7の全体が石英にて形成されている。
【0026】
基台リング71は円環形状から一部が欠落した円弧形状の石英部材である。この欠落部分は、後述する移載機構10の移載アーム11と基台リング71との干渉を防ぐために設けられている。基台リング71は凹部62の底面に載置されることによって、チャンバー6の壁面に支持されることとなる(
図1参照)。基台リング71の上面に、その円環形状の周方向に沿って複数の連結部72(本実施形態では4個)が立設される。連結部72も石英の部材であり、溶接によって基台リング71に固着される。
【0027】
サセプタ74は基台リング71に設けられた4個の連結部72によって支持される。
図3は、サセプタ74の平面図である。また、
図4は、サセプタ74の断面図である。サセプタ74は、保持プレート75、ガイドリング76および複数の基板支持ピン77を備える。保持プレート75は、石英にて形成された略円形の平板状部材である。保持プレート75の直径は半導体ウェハーWの直径よりも大きい。すなわち、保持プレート75は、半導体ウェハーWよりも大きな平面サイズを有する。
【0028】
保持プレート75の上面周縁部にガイドリング76が設置されている。ガイドリング76は、半導体ウェハーWの直径よりも大きな内径を有する円環形状の部材である。例えば、半導体ウェハーWの直径がφ300mmの場合、ガイドリング76の内径はφ320mmである。ガイドリング76の内周は、保持プレート75から上方に向けて広くなるようなテーパ面とされている。ガイドリング76は、保持プレート75と同様の石英にて形成される。ガイドリング76は、保持プレート75の上面に溶着するようにしても良いし、別途加工したピンなどによって保持プレート75に固定するようにしても良い。或いは、保持プレート75とガイドリング76とを一体の部材として加工するようにしても良い。
【0029】
保持プレート75の上面のうちガイドリング76よりも内側の領域が半導体ウェハーWを保持する平面状の保持面75aとされる。保持プレート75の保持面75aには、複数の基板支持ピン77が立設されている。本実施形態においては、保持面75aの外周円(ガイドリング76の内周円)と同心円の周上に沿って30°毎に計12個の基板支持ピン77が立設されている。12個の基板支持ピン77を配置した円の径(対向する基板支持ピン77間の距離)は半導体ウェハーWの径よりも小さく、半導体ウェハーWの径がφ300mmであればφ270mm~φ280mm(本実施形態ではφ270mm)である。それぞれの基板支持ピン77は石英にて形成されている。複数の基板支持ピン77は、保持プレート75の上面に溶接によって設けるようにしても良いし、保持プレート75と一体に加工するようにしても良い。
【0030】
図2に戻り、基台リング71に立設された4個の連結部72とサセプタ74の保持プレート75の周縁部とが溶接によって固着される。すなわち、サセプタ74と基台リング71とは連結部72によって固定的に連結されている。このような保持部7の基台リング71がチャンバー6の壁面に支持されることによって、保持部7がチャンバー6に装着される。保持部7がチャンバー6に装着された状態においては、サセプタ74の保持プレート75は水平姿勢(法線が鉛直方向と一致する姿勢)となる。すなわち、保持プレート75の保持面75aは水平面となる。
【0031】
チャンバー6に搬入された半導体ウェハーWは、チャンバー6に装着された保持部7のサセプタ74の上に水平姿勢にて載置されて保持される。このとき、半導体ウェハーWは保持プレート75上に立設された12個の基板支持ピン77によって支持されてサセプタ74に保持される。より厳密には、12個の基板支持ピン77の上端部が半導体ウェハーWの下面に接触して当該半導体ウェハーWを支持する。12個の基板支持ピン77の高さ(基板支持ピン77の上端から保持プレート75の保持面75aまでの距離)は均一であるため、12個の基板支持ピン77によって半導体ウェハーWを水平姿勢に支持することができる。
【0032】
また、半導体ウェハーWは複数の基板支持ピン77によって保持プレート75の保持面75aから所定の間隔を隔てて支持されることとなる。基板支持ピン77の高さよりもガイドリング76の厚さの方が大きい。従って、複数の基板支持ピン77によって支持された半導体ウェハーWの水平方向の位置ずれはガイドリング76によって防止される。
【0033】
また、
図2および
図3に示すように、サセプタ74の保持プレート75には、上下に貫通して開口部78が形成されている。開口部78は、下部放射温度計20が半導体ウェハーWの下面から放射される放射光(赤外光)を受光するために設けられている。すなわち、下部放射温度計20が開口部78およびチャンバー側部61の貫通孔61bに装着された透明窓21を介して半導体ウェハーWの下面から放射された光を受光して当該半導体ウェハーWの温度を測定する。さらに、サセプタ74の保持プレート75には、後述する移載機構10のリフトピン12が半導体ウェハーWの受け渡しのために貫通する4個の貫通孔79が穿設されている。
【0034】
図5は、移載機構10の平面図である。また、
図6は、移載機構10の側面図である。移載機構10は、2本の移載アーム11を備える。移載アーム11は、概ね円環状の凹部62に沿うような円弧形状とされている。それぞれの移載アーム11には2本のリフトピン12が立設されている。移載アーム11およびリフトピン12は石英にて形成されている。各移載アーム11は水平移動機構13によって回動可能とされている。水平移動機構13は、一対の移載アーム11を保持部7に対して半導体ウェハーWの移載を行う移載動作位置(
図5の実線位置)と保持部7に保持された半導体ウェハーWと平面視で重ならない退避位置(
図5の二点鎖線位置)との間で水平移動させる。水平移動機構13としては、個別のモータによって各移載アーム11をそれぞれ回動させるものであっても良いし、リンク機構を用いて1個のモータによって一対の移載アーム11を連動させて回動させるものであっても良い。
【0035】
また、一対の移載アーム11は、昇降機構14によって水平移動機構13とともに昇降移動される。昇降機構14が一対の移載アーム11を移載動作位置にて上昇させると、計4本のリフトピン12がサセプタ74に穿設された貫通孔79(
図2,3参照)を通過し、リフトピン12の上端がサセプタ74の上面から突き出る。一方、昇降機構14が一対の移載アーム11を移載動作位置にて下降させてリフトピン12を貫通孔79から抜き取り、水平移動機構13が一対の移載アーム11を開くように移動させると各移載アーム11が退避位置に移動する。一対の移載アーム11の退避位置は、保持部7の基台リング71の直上である。基台リング71は凹部62の底面に載置されているため、移載アーム11の退避位置は凹部62の内側となる。なお、移載機構10の駆動部(水平移動機構13および昇降機構14)が設けられている部位の近傍にも図示省略の排気機構が設けられており、移載機構10の駆動部周辺の雰囲気がチャンバー6の外部に排出されるように構成されている。
【0036】
図1に戻り、チャンバー6の上方に設けられたフラッシュ加熱部5は、筐体51の内側に、複数本(本実施形態では30本)のキセノンフラッシュランプFLからなる光源と、その光源の上方を覆うように設けられたリフレクタ52と、を備えて構成される。また、フラッシュ加熱部5の筐体51の底部にはランプ光放射窓53が装着されている。フラッシュ加熱部5の床部を構成するランプ光放射窓53は、石英により形成された板状の石英窓である。フラッシュ加熱部5がチャンバー6の上方に設置されることにより、ランプ光放射窓53が上側チャンバー窓63と相対向することとなる。フラッシュランプFLはチャンバー6の上方からランプ光放射窓53および上側チャンバー窓63を介して熱処理空間65にフラッシュ光を照射する。
【0037】
複数のフラッシュランプFLは、それぞれが長尺の円筒形状を有する棒状ランプであり、それぞれの長手方向が保持部7に保持される半導体ウェハーWの主面に沿って(つまり水平方向に沿って)互いに平行となるように平面状に配列されている。よって、フラッシュランプFLの配列によって形成される平面も水平面である。
【0038】
キセノンフラッシュランプFLは、その内部にキセノンガスが封入されその両端部にコンデンサーに接続された陽極および陰極が配設された棒状のガラス管(放電管)と、該ガラス管の外周面上に付設されたトリガー電極とを備える。キセノンガスは電気的には絶縁体であることから、コンデンサーに電荷が蓄積されていたとしても通常の状態ではガラス管内に電気は流れない。しかしながら、トリガー電極に高電圧を印加して絶縁を破壊した場合には、コンデンサーに蓄えられた電気がガラス管内に瞬時に流れ、そのときのキセノンの原子あるいは分子の励起によって光が放出される。このようなキセノンフラッシュランプFLにおいては、予めコンデンサーに蓄えられていた静電エネルギーが0.1ミリセカンドないし100ミリセカンドという極めて短い光パルスに変換されることから、ハロゲンランプHLの如き連続点灯の光源に比べて極めて強い光を照射し得るという特徴を有する。すなわち、フラッシュランプFLは、1秒未満の極めて短い時間で瞬間的に発光するパルス発光ランプである。なお、フラッシュランプFLの発光時間は、フラッシュランプFLに電力供給を行うランプ電源のコイル定数によって調整することができる。
【0039】
また、リフレクタ52は、複数のフラッシュランプFLの上方にそれら全体を覆うように設けられている。リフレクタ52の基本的な機能は、複数のフラッシュランプFLから出射されたフラッシュ光を熱処理空間65の側に反射するというものである。リフレクタ52はアルミニウム合金板にて形成されており、その表面(フラッシュランプFLに臨む側の面)はブラスト処理により粗面化加工が施されている。
【0040】
チャンバー6の下方に設けられたハロゲン加熱部4は、筐体41の内側に複数本(本実施形態では40本)のハロゲンランプHLを内蔵している。ハロゲン加熱部4は、複数のハロゲンランプHLによってチャンバー6の下方から下側チャンバー窓64を介して熱処理空間65への光照射を行って半導体ウェハーWを加熱する。
【0041】
図7は、複数のハロゲンランプHLの配置を示す平面図である。40本のハロゲンランプHLは上下2段に分けて配置されている。保持部7に近い上段に20本のハロゲンランプHLが配設されるとともに、上段よりも保持部7から遠い下段にも20本のハロゲンランプHLが配設されている。各ハロゲンランプHLは、長尺の円筒形状を有する棒状ランプである。上段、下段ともに20本のハロゲンランプHLは、それぞれの長手方向が保持部7に保持される半導体ウェハーWの主面に沿って(つまり水平方向に沿って)互いに平行となるように配列されている。よって、上段、下段ともにハロゲンランプHLの配列によって形成される平面は水平面である。
【0042】
また、
図7に示すように、上段、下段ともに保持部7に保持される半導体ウェハーWの中央部に対向する領域よりも周縁部に対向する領域におけるハロゲンランプHLの配設密度が高くなっている。すなわち、上下段ともに、ランプ配列の中央部よりも周縁部の方がハロゲンランプHLの配設ピッチが短い。このため、ハロゲン加熱部4からの光照射による加熱時に温度低下が生じやすい半導体ウェハーWの周縁部により多い光量の照射を行うことができる。
【0043】
また、上段のハロゲンランプHLからなるランプ群と下段のハロゲンランプHLからなるランプ群とが格子状に交差するように配列されている。すなわち、上段に配置された20本のハロゲンランプHLの長手方向と下段に配置された20本のハロゲンランプHLの長手方向とが互いに直交するように計40本のハロゲンランプHLが配設されている。
【0044】
ハロゲンランプHLは、ガラス管内部に配設されたフィラメントに通電することでフィラメントを白熱化させて発光させるフィラメント方式の光源である。ガラス管の内部には、窒素やアルゴン等の不活性ガスにハロゲン元素(ヨウ素、臭素等)を微量導入した気体が封入されている。ハロゲン元素を導入することによって、フィラメントの折損を抑制しつつフィラメントの温度を高温に設定することが可能となる。したがって、ハロゲンランプHLは、通常の白熱電球に比べて寿命が長くかつ強い光を連続的に照射できるという特性を有する。すなわち、ハロゲンランプHLは少なくとも1秒以上連続して発光する連続点灯ランプである。また、ハロゲンランプHLは棒状ランプであるため長寿命であり、ハロゲンランプHLを水平方向に沿わせて配置することにより上方の半導体ウェハーWへの放射効率が優れたものとなる。
【0045】
また、ハロゲン加熱部4の筐体41内にも、2段のハロゲンランプHLの下側にリフレクタ43が設けられている(
図1)。リフレクタ43は、複数のハロゲンランプHLから出射された光を熱処理空間65の側に反射する。
【0046】
図1に示すように、チャンバー6には、上部放射温度計25および下部放射温度計20の2つの放射温度計(本実施形態ではパイロメーター)が設けられている。上部放射温度計25はサセプタ74に保持された半導体ウェハーWの斜め上方に設置されるとともに、下部放射温度計20はサセプタ74に保持された半導体ウェハーWの斜め下方に設けられている。
図8は、下部放射温度計20とサセプタ74に保持された半導体ウェハーWとの位置関係を示す図である。下部放射温度計20の赤外線センサー24の半導体ウェハーWに対する受光角θは60°以上89°以下である。受光角θは、下部放射温度計20の赤外線センサー24の光軸と半導体ウェハーWの法線(主面に対して垂直な線)とのなす角度である。また、同様に、上部放射温度計25の赤外線センサー29の半導体ウェハーWに対する受光角も60°以上89°以下である。
【0047】
制御部3は、熱処理装置1に設けられた上記の種々の動作機構を制御する。制御部3のハードウェアとしての構成は一般的なコンピュータと同様である。すなわち、制御部3は、各種演算処理を行う回路であるCPU、基本プログラムを記憶する読み出し専用のメモリであるROM、各種情報を記憶する読み書き自在のメモリであるRAMおよび制御用ソフトウェアやデータなどを記憶しておく磁気ディスクを備えている。制御部3のCPUが所定の処理プログラムを実行することによって熱処理装置1における処理が進行する。
【0048】
図9は、下部放射温度計20,上部放射温度計25および制御部3の機能ブロック図である。半導体ウェハーWの斜め下方に設けられて半導体ウェハーWの下面の温度を測定する下部放射温度計20は、赤外線センサー24および温度測定ユニット22を備える。赤外線センサー24は、サセプタ74に保持された半導体ウェハーWの下面から開口部78を介して放射された赤外光を受光する。赤外線センサー24は、温度測定ユニット22と電気的に接続されており、受光に応答して生じた信号を温度測定ユニット22に伝達する。温度測定ユニット22は、図示を省略する増幅回路、A/Dコンバータ、温度変換回路等を備えており、赤外線センサー24から出力された赤外光の強度を示す信号を温度に変換する。温度測定ユニット22によって求められた温度が半導体ウェハーWの下面の温度である。
【0049】
一方、半導体ウェハーWの斜め上方に設けられて半導体ウェハーWの上面の温度を測定する上部放射温度計25は、赤外線センサー29および温度測定ユニット27を備える。赤外線センサー29は、サセプタ74に保持された半導体ウェハーWの上面から放射された赤外光を受光する。赤外線センサー29は、フラッシュ光が照射された瞬間の半導体ウェハーWの上面の急激な温度変化に対応できるように、InSb(インジウムアンチモン)の光学素子を備えている。赤外線センサー29は、温度測定ユニット27と電気的に接続されており、受光に応答して生じた信号を温度測定ユニット27に伝達する。温度測定ユニット27は、赤外線センサー29から出力された赤外光の強度を示す信号を温度に変換する。温度測定ユニット27によって求められた温度が半導体ウェハーWの上面の温度である。
【0050】
下部放射温度計20および上部放射温度計25は、熱処理装置1全体のコントローラである制御部3と電気的に接続されており、下部放射温度計20および上部放射温度計25によってそれぞれ測定された半導体ウェハーWの下面および上面の温度は制御部3に伝達される。制御部3は、温度算定部31を備える。温度算定部31は、制御部3のCPUが所定の処理プログラムを実行することによって実現される機能処理部である。温度算定部31の処理内容についてはさらに後述する。
【0051】
また、制御部3には表示部33および入力部34が接続されている。制御部3は、表示部33に種々の情報を表示する。入力部34は、熱処理装置1のオペレータが制御部3に種々のコマンドやパラメータを入力するための機器である。オペレータは、表示部33の表示内容を確認しつつ、入力部34から半導体ウェハーWの処理手順および処理条件を記述した処理レシピの条件設定を行うこともできる。表示部33および入力部34としては、双方の機能を兼ね備えたタッチパネルを用いることもでき、本実施形態では熱処理装置1の外壁に設けられた液晶のタッチパネルを採用している。
【0052】
上記の構成以外にも熱処理装置1は、半導体ウェハーWの熱処理時にハロゲンランプHLおよびフラッシュランプFLから発生する熱エネルギーによるハロゲン加熱部4、フラッシュ加熱部5およびチャンバー6の過剰な温度上昇を防止するため、様々な冷却用の構造を備えている。例えば、チャンバー6の壁体には水冷管(図示省略)が設けられている。また、ハロゲン加熱部4およびフラッシュ加熱部5は、内部に気体流を形成して排熱する空冷構造とされている。また、上側チャンバー窓63とランプ光放射窓53との間隙にも空気が供給され、フラッシュ加熱部5および上側チャンバー窓63を冷却する。
【0053】
次に、熱処理装置1における半導体ウェハーWの処理手順について説明する。
図10は、半導体ウェハーWの処理手順を示すフローチャートである。以下に説明する熱処理装置1の処理手順は、制御部3が熱処理装置1の各動作機構を制御することにより進行する。
【0054】
まず、給気のためのバルブ84が開放されるとともに、排気用のバルブ89,192が開放されてチャンバー6内に対する給排気が開始される。バルブ84が開放されると、ガス供給孔81から熱処理空間65に窒素ガスが供給される。また、バルブ89が開放されると、ガス排気孔86からチャンバー6内の気体が排気される。これにより、チャンバー6内の熱処理空間65の上部から供給された窒素ガスが下方へと流れ、熱処理空間65の下部から排気される。
【0055】
また、バルブ192が開放されることによって、搬送開口部66からもチャンバー6内の気体が排気される。さらに、図示省略の排気機構によって移載機構10の駆動部周辺の雰囲気も排気される。なお、熱処理装置1における半導体ウェハーWの熱処理時には窒素ガスが熱処理空間65に継続的に供給されており、その供給量は処理工程に応じて適宜変更される。
【0056】
続いて、ゲートバルブ185が開いて搬送開口部66が開放され、装置外部の搬送ロボットにより搬送開口部66を介して処理対象となる半導体ウェハーWがチャンバー6内の熱処理空間65に搬入される(ステップS1)。このときには、半導体ウェハーWの搬入にともなって装置外部の雰囲気を巻き込むおそれがあるが、チャンバー6には窒素ガスが供給され続けているため、搬送開口部66から窒素ガスが流出して、そのような外部雰囲気の巻き込みを最小限に抑制することができる。
【0057】
搬送ロボットによって搬入された半導体ウェハーWは保持部7の直上位置まで進出して停止する。そして、移載機構10の一対の移載アーム11が退避位置から移載動作位置に水平移動して上昇することにより、リフトピン12が貫通孔79を通ってサセプタ74の保持プレート75の上面から突き出て半導体ウェハーWを受け取る。このとき、リフトピン12は基板支持ピン77の上端よりも上方にまで上昇する。
【0058】
半導体ウェハーWがリフトピン12に載置された後、搬送ロボットが熱処理空間65から退出し、ゲートバルブ185によって搬送開口部66が閉鎖される。そして、一対の移載アーム11が下降することにより、半導体ウェハーWは移載機構10から保持部7のサセプタ74に受け渡されて水平姿勢にて下方より保持される。半導体ウェハーWは、保持プレート75上に立設された複数の基板支持ピン77によって支持されてサセプタ74に保持される。また、半導体ウェハーWは、被処理面である表面を上面として保持部7に保持される。複数の基板支持ピン77によって支持された半導体ウェハーWの裏面(表面とは反対側の主面)と保持プレート75の保持面75aとの間には所定の間隔が形成される。サセプタ74の下方にまで下降した一対の移載アーム11は水平移動機構13によって退避位置、すなわち凹部62の内側に退避する。
【0059】
図11は、半導体ウェハーWの表面温度の変化を示す図である。半導体ウェハーWがチャンバー6内に搬入されてサセプタ74に保持された後、時刻t1にハロゲン加熱部4の40本のハロゲンランプHLが一斉に点灯して予備加熱(アシスト加熱)が開始される(ステップS2)。ハロゲンランプHLから出射されたハロゲン光は、石英にて形成された下側チャンバー窓64およびサセプタ74を透過して半導体ウェハーWの下面に照射される。ハロゲンランプHLからの光照射を受けることによって半導体ウェハーWが予備加熱されて温度が上昇する。なお、移載機構10の移載アーム11は凹部62の内側に退避しているため、ハロゲンランプHLによる加熱の障害となることは無い。
【0060】
ハロゲンランプHLからの光照射によって昇温する半導体ウェハーWの温度は下部放射温度計20によって測定される。すなわち、サセプタ74に保持された半導体ウェハーWの下面(裏面)から開口部78を介して放射された赤外光を透明窓21を通して下部放射温度計20が受光して半導体ウェハーWの裏面温度を測定する(ステップS3)。なお、ハロゲンランプHLによる予備加熱を開始する前から下部放射温度計20による温度測定を開始するようにしても良い。
【0061】
ところで、半導体ウェハーWには処理目的に応じた種々の膜が成膜されていることが多い。例えば、フォトマスク用のレジスト膜や層間絶縁膜、高誘電率膜等が半導体ウェハーWに成膜されていることがある。これらの膜は典型的には半導体ウェハーWの表面(被処理面)に成膜されているのであるが、近年半導体デバイスの製造プロセスが複雑になるにつれて半導体ウェハーWの裏面にも何らかの膜が形成されることがある。そして、裏面に膜が形成されたままの半導体ウェハーWが熱処理装置1にて熱処理の対象となるのである。
【0062】
下部放射温度計20によって半導体ウェハーWの裏面の温度を非接触で測定する際には、当該裏面の放射率を下部放射温度計20に設定する必要がある。半導体ウェハーWの裏面に膜が形成されていなければウェハー基材であるシリコンの放射率を下部放射温度計20に設定すればよいところ、半導体ウェハーWの裏面にも膜が形成されていると、裏面の放射率も膜によって変動することとなる。
【0063】
図12は、形成された膜の放射率への影響を示す図である。同図には、半導体ウェハーWの裏面に膜厚1μmの窒化ケイ素(SiN)の膜が形成されている場合、半導体ウェハーWの裏面に膜厚1μmの二酸化ケイ素(SiO
2)の膜が形成されている場合、および、半導体ウェハーWの裏面に何も成膜されず基材のシリコンが露出している場合を例示している。また、
図12の横軸には半導体ウェハーWに対する放射温度計の受光角を示し、縦軸には放射率を示している。
【0064】
図12に示すように、受光角が比較的小さいときには、半導体ウェハーWの裏面に成膜された膜の種類によって放射率が大きく異なる。すなわち、放射率が膜の種類に依存している。一方、受光角が大きくなると、半導体ウェハーWの裏面に成膜された膜の種類による放射率の差異が小さくなる。すなわち、放射率の膜の種類への依存性が低下するのである。
【0065】
本実施形態においては、下部放射温度計20の半導体ウェハーWに対する受光角θを60°以上89°以下と比較的大きくしている。よって、半導体ウェハーWの裏面の放射率の膜の種類への依存性は低い。従って、下部放射温度計20には受光角θに対応するシリコンの放射率を設定しておけば、半導体ウェハーWの裏面に成膜されている膜の種類にかかわらず下部放射温度計20によって半導体ウェハーWの裏面の温度を正確に測定することが可能である。
【0066】
下部放射温度計20によって測定された半導体ウェハーWの裏面温度は制御部3に伝達される。制御部3は、ハロゲンランプHLからの光照射によって昇温する半導体ウェハーWの温度が所定の予備加熱温度T1に到達したか否かを監視しつつ、ハロゲンランプHLの出力を制御する。すなわち、制御部3は、下部放射温度計20による測定値に基づいて、半導体ウェハーWの温度が予備加熱温度T1となるようにハロゲンランプHLの出力をフィードバック制御する。このように下部放射温度計20は、予備加熱段階においてハロゲンランプHLの出力を制御するための温度センサーでもある。なお、下部放射温度計20は半導体ウェハーWの裏面の温度を測定しているが、ハロゲンランプHLによる予備加熱の段階では半導体ウェハーWの表裏面に温度差が生じることはなく、下部放射温度計20によって測定される裏面温度は半導体ウェハーW全体の温度であるとみなせる。
【0067】
半導体ウェハーWの温度が予備加熱温度T1に到達した後、制御部3は半導体ウェハーWをその予備加熱温度T1に暫時維持する。具体的には、下部放射温度計20によって測定される半導体ウェハーWの温度が予備加熱温度T1に到達した時刻t2に制御部3がハロゲンランプHLの出力を調整し、半導体ウェハーWの温度をほぼ予備加熱温度T1に維持している。
【0068】
このようなハロゲンランプHLによる予備加熱を行うことによって、半導体ウェハーWの全体を予備加熱温度T1に均一に昇温している。ハロゲンランプHLによる予備加熱の段階においては、より放熱が生じやすい半導体ウェハーWの周縁部の温度が中央部よりも低下する傾向にあるが、ハロゲン加熱部4におけるハロゲンランプHLの配設密度は、基板Wの中央部に対向する領域よりも周縁部に対向する領域の方が高くなっている。このため、放熱が生じやすい半導体ウェハーWの周縁部に照射される光量が多くなり、予備加熱段階における半導体ウェハーWの面内温度分布を均一なものとすることができる。
【0069】
半導体ウェハーWの温度が予備加熱温度T1に到達して所定時間が経過した時刻t3にフラッシュ加熱部5のフラッシュランプFLがサセプタ74に保持された半導体ウェハーWの表面にフラッシュ光照射を行う(ステップS4)。このとき、フラッシュランプFLから放射されるフラッシュ光の一部は直接にチャンバー6内へと向かい、他の一部は一旦リフレクタ52により反射されてからチャンバー6内へと向かい、これらのフラッシュ光の照射により半導体ウェハーWのフラッシュ加熱が行われる。
【0070】
フラッシュ加熱は、フラッシュランプFLからのフラッシュ光(閃光)照射により行われるため、半導体ウェハーWの表面温度を短時間で上昇することができる。すなわち、フラッシュランプFLから照射されるフラッシュ光は、予めコンデンサーに蓄えられていた静電エネルギーが極めて短い光パルスに変換された、照射時間が0.1ミリセカンド以上100ミリセカンド以下程度の極めて短く強い閃光である。そして、フラッシュランプFLからのフラッシュ光照射により、半導体ウェハーWの表面温度は極めて短時間のうちに急激に上昇する。
【0071】
半導体ウェハーWの表面温度は上部放射温度計25によって監視されている。但し、上部放射温度計25は、半導体ウェハーWの表面の絶対温度を測定するものではなく、当該表面の温度変化を測定する。すなわち、上部放射温度計25は、フラッシュ光照射時の予備加熱温度T1からの半導体ウェハーWの表面の上昇温度(ジャンプ温度)ΔTを測定するのである(ステップS5)。なお、フラッシュ光照射時にも半導体ウェハーWの裏面温度が下部放射温度計20によって測定されているものの、照射時間が極めて短く強度の強いフラッシュ光を照射したときには、半導体ウェハーWの表面近傍のみが急激に加熱されるため、半導体ウェハーWの表裏面で温度差が生じ、下部放射温度計20によっては半導体ウェハーWの表面の温度を測定することはできない。また、下部放射温度計20と同様に、上部放射温度計25の半導体ウェハーWに対する受光角も60°以上89°以下としているため、半導体ウェハーWの表面に成膜されている膜の種類にかかわらず上部放射温度計25によって半導体ウェハーWの表面の上昇温度ΔTを正確に測定することができる。
【0072】
次に、制御部3の温度算定部31がフラッシュ光照射時に半導体ウェハーWの表面が到達した最高温度を算定する(ステップS6)。半導体ウェハーWの裏面の温度は少なくとも予備加熱時に半導体ウェハーWが一定温度に到達した時刻t2からフラッシュ光が照射される時刻t3までの間は継続して下部放射温度計20によって測定されている。フラッシュ光照射前の予備加熱の段階では半導体ウェハーWの表裏面に温度差が生じておらず、フラッシュ光照射前に下部放射温度計20によって測定された半導体ウェハーWの裏面温度は表面温度でもある。温度算定部31は、フラッシュ光を照射する直前の時刻t2から時刻t3までの間に下部放射温度計20によって測定された半導体ウェハーWの裏面の温度(予備加熱温度T1)に上部放射温度計25によって測定されたフラッシュ光照射時の半導体ウェハーWの表面の上昇温度ΔTを加算して当該表面の最高到達温度T2を算定する。温度算定部31は、算定した最高到達温度T2を表示部33に表示するようにしても良い。
【0073】
下部放射温度計20の半導体ウェハーWに対する受光角θは60°以上89°以下と比較的大きく、半導体ウェハーWの裏面に成膜されている膜の種類にかかわらず下部放射温度計20によって半導体ウェハーWの裏面の温度を正確に測定することができる。下部放射温度計20によって正確に測定された半導体ウェハーWの裏面温度(=表面温度)に上部放射温度計25によって測定された半導体ウェハーWの上面の上昇温度ΔTを加算することによって、フラッシュ光照射時の半導体ウェハーWの表面の最高到達温度T2を正確に算定することができる。
【0074】
フラッシュ光照射が終了した後、所定時間経過後の時刻t4にハロゲンランプHLが消灯する。これにより、半導体ウェハーWが予備加熱温度T1から急速に降温する。降温中の半導体ウェハーWの温度は下部放射温度計20によって測定され、その測定結果は制御部3に伝達される。制御部3は、下部放射温度計20の測定結果より半導体ウェハーWの温度が所定温度まで降温したか否かを監視する。そして、半導体ウェハーWの温度が所定以下にまで降温した後、移載機構10の一対の移載アーム11が再び退避位置から移載動作位置に水平移動して上昇することにより、リフトピン12がサセプタ74の上面から突き出て熱処理後の半導体ウェハーWをサセプタ74から受け取る。続いて、ゲートバルブ185により閉鎖されていた搬送開口部66が開放され、リフトピン12上に載置された半導体ウェハーWが装置外部の搬送ロボットによりチャンバー6から搬出され、半導体ウェハーWの加熱処理が完了する(ステップS7)。
【0075】
本実施形態においては、下部放射温度計20をサセプタ74に保持された半導体ウェハーWの斜め下方に設け、下部放射温度計20の半導体ウェハーWに対する受光角θを60°以上89°以下と比較的大きくしている。よって、半導体ウェハーWの裏面の放射率の膜の種類への依存性は低く、半導体ウェハーWの裏面に成膜されている膜の種類にかかわらず下部放射温度計20によって半導体ウェハーWの裏面の温度を正確に測定することができる。
【0076】
また、上部放射温度計25をサセプタ74に保持された半導体ウェハーWの斜め上方に設け、上部放射温度計25の半導体ウェハーWに対する受光角も60°以上89°以下としている。よって、半導体ウェハーWの表面に成膜されている膜の種類にかかわらず上部放射温度計25によって半導体ウェハーWの表面の上昇温度ΔTを正確に測定することができる。
【0077】
フラッシュ光照射直前の時刻t2から時刻t3までの間に下部放射温度計20によって半導体ウェハーWの裏面温度を測定する。フラッシュ光照射時には上部放射温度計25によって半導体ウェハーWの表面の上昇温度ΔTを測定する。下部放射温度計20によって正確に測定された半導体ウェハーWの裏面温度に上部放射温度計25によって測定された半導体ウェハーWの表面の上昇温度ΔTを加算することにより、フラッシュ光照射時の半導体ウェハーWの表面温度を正確に求めることができる。
【0078】
以上、本発明の実施の形態について説明したが、この発明はその趣旨を逸脱しない限りにおいて上述したもの以外に種々の変更を行うことが可能である。例えば、上記実施形態においては、フラッシュ加熱部5に30本のフラッシュランプFLを備えるようにしていたが、これに限定されるものではなく、フラッシュランプFLの本数は任意の数とすることができる。また、フラッシュランプFLはキセノンフラッシュランプに限定されるものではなく、クリプトンフラッシュランプであっても良い。また、ハロゲン加熱部4に備えるハロゲンランプHLの本数も40本に限定されるものではなく、任意の数とすることができる。
【0079】
また、上記実施形態においては、1秒以上連続して発光する連続点灯ランプとしてフィラメント方式のハロゲンランプHLを用いて半導体ウェハーWの予備加熱を行っていたが、これに限定されるものではなく、ハロゲンランプHLに代えて放電型のアークランプ(例えば、キセノンアークランプ)を連続点灯ランプとして用いて予備加熱を行うようにしても良い。
【符号の説明】
【0080】
1 熱処理装置
3 制御部
4 ハロゲン加熱部
5 フラッシュ加熱部
6 チャンバー
7 保持部
10 移載機構
20 下部放射温度計
25 上部放射温度計
31 温度算定部
63 上側チャンバー窓
64 下側チャンバー窓
65 熱処理空間
74 サセプタ
FL フラッシュランプ
HL ハロゲンランプ
W 半導体ウェハー