(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2023-10-23
(45)【発行日】2023-10-31
(54)【発明の名称】六方晶窒化ホウ素粉末及びその製造方法、並びに化粧料及びその製造方法
(51)【国際特許分類】
C01B 21/064 20060101AFI20231024BHJP
A61K 8/19 20060101ALI20231024BHJP
A61Q 1/02 20060101ALI20231024BHJP
A61Q 1/12 20060101ALI20231024BHJP
【FI】
C01B21/064 M
A61K8/19
A61Q1/02
A61Q1/12
C01B21/064 H
(21)【出願番号】P 2019234698
(22)【出願日】2019-12-25
【審査請求日】2022-07-12
(73)【特許権者】
【識別番号】000003296
【氏名又は名称】デンカ株式会社
(74)【代理人】
【識別番号】100088155
【氏名又は名称】長谷川 芳樹
(74)【代理人】
【識別番号】100128381
【氏名又は名称】清水 義憲
(74)【代理人】
【識別番号】100185591
【氏名又は名称】中塚 岳
(72)【発明者】
【氏名】松井 隆貴
【審査官】佐藤 慶明
(56)【参考文献】
【文献】特開2018-165241(JP,A)
【文献】特開2016-076586(JP,A)
【文献】特開2016-135729(JP,A)
【文献】国際公開第2018/101241(WO,A1)
【文献】特開平07-041311(JP,A)
【文献】特開2004-035273(JP,A)
【文献】特開平05-186205(JP,A)
【文献】特開2010-037123(JP,A)
【文献】国際公開第2022/264335(WO,A1)
(58)【調査した分野】(Int.Cl.,DB名)
C01B 21/064
A61K 8/19
A61Q 1/00 - 1/14
(57)【特許請求の範囲】
【請求項1】
六方晶窒化ホウ素の一次粒子が凝集して形成される二次粒子を含み、
レーザー回折・散乱法によって測定される体積基準の粒子径の累積分布において、小粒径からの積算値が全体の50%に達したときの粒子径をD50としたときに、BET比表面積に対するD50の比が5[μg/m]以上であ
り、
BET比表面積が2.3~3.5[m
2
/g]であり、
D50が14.8~20.8[μm]である、化粧料の原料用六方晶窒化ホウ素粉末。
【請求項2】
BET比表面積が3[m
2/g]未満である、請求項1に記載の
化粧料の原料用六方晶窒化ホウ素粉末。
【請求項3】
かさ密度が0.47g/cm
3
以下である、請求項1又は2に記載の化粧料の原料用六方晶窒化ホウ素粉末。
【請求項4】
六方晶窒化ホウ素と助剤とを含む混合粉末を、不活性ガス、アンモニアガス又はこれらの混合ガスの雰囲気中、1600℃以上且つ1900℃未満で焼成して、前記混合粉末における六方晶窒化ホウ素よりも高い結晶性を有する六方晶窒化ホウ素を含む焼成物を得る焼成工程と、
前記焼成物を粉砕、洗浄、及び乾燥し、乾燥粉末を得る精製工程と、
前記乾燥粉末を、不活性ガス、アンモニアガス又はこれらの混合ガスの雰囲気中、1900~2100℃でアニールするアニール工程と、を有し、
前記アニール工程では、前記乾燥粉末を5℃/分以上の昇温速度で昇温し、且つ1900~2100℃に加熱する時間が2時間以下である、六方晶窒化ホウ素粉末の製造方法。
【請求項5】
前記焼成工程の前に、
ホウ素を含む化合物の粉末と窒素を含む化合物の粉末を含有する原料粉末を、不活性ガス、アンモニアガス又はこれらの混合ガスの雰囲気中、600~1300℃で焼成して、六方晶窒化ホウ素を含む仮焼物を得る仮焼工程を有し、
前記焼成工程における前記混合粉末は前記仮焼物と前記助剤とを含む、請求項
4に記載の六方晶窒化ホウ素粉末の製造方法。
【請求項6】
前記アニール工程で得られる前記六方晶窒化ホウ素粉末は、レーザー回折・散乱法によって測定される体積基準の粒子径の累積分布において、小粒径からの積算値が全体の50%に達したときの粒子径をD50としたときに、BET比表面積に対するD50の比が5[μg/m]以上である、請求項
4又は
5に記載の六方晶窒化ホウ素粉末の製造方法。
【請求項7】
前記アニール工程で得られる前記六方晶窒化ホウ素粉末は、
BET比表面積が2.3~3.5[m
2
/g]であり、D50が14.8~20.8[μm]である、請求項4又は5に記載の窒化ホウ素粉末の製造方法。
【請求項8】
請求項1~
3のいずれか一項の六方晶窒化ホウ素粉末を含む化粧料。
【請求項9】
請求項
4~7のいずれか一項に記載の製造方法で得られる六方晶窒化ホウ素粉末を原料として用いて化粧料を製造する、化粧料の製造方法。
【発明の詳細な説明】
【技術分野】
【0001】
本開示は、六方晶窒化ホウ素粉末及びその製造方法、並びに化粧料及びその製造方法に関する。
【背景技術】
【0002】
窒化ホウ素は、潤滑性、高熱伝導性、及び絶縁性等を有しており、固体潤滑剤、離型剤、樹脂及びゴムの充填材、化粧料(化粧品ともいう)の原料、並びに耐熱性を有する絶縁性焼結体等、幅広い用途に利用されている。
【0003】
化粧料に配合される六方晶窒化ホウ素粉末の機能としては、化粧料への滑り性、伸び性、隠ぺい性の向上、及び、光沢性の付与等が挙げられる。特に、六方晶窒化ホウ素粉末は、同様の機能を有するタルク粉末及びマイカ粉末に比べて滑り性に優れているため、優れた滑り性が求められる化粧料に汎用されている。特許文献1では、六方晶窒化ホウ素粉末の滑り性を改善するために、平均粒子径と最大粒子径を所定の数値範囲にすることが提案されている。
【先行技術文献】
【特許文献】
【0004】
【発明の概要】
【発明が解決しようとする課題】
【0005】
化粧料に対する顧客の要求レベルの高水準化に対応するため、化粧料に用いられる原料特性もさらなる向上が求められている。例えば、ファンデーション等に用いられる原料は、一層優れた伸び性を有することが必要であると考えられる。伸び性を改善するためには、粉末をある程度嵩高くすることが有効であると考えられる。
【0006】
本開示では、伸び性に優れる化粧料を製造することが可能な六方晶窒化ホウ素粉末及びその製造方法を提供する。また、本開示では、上述の六方晶窒化ホウ素粉末を用いることによって伸び性に優れる化粧料及びその製造方法を提供する。
【課題を解決するための手段】
【0007】
本開示の一側面に係る六方晶窒化ホウ素粉末は、六方晶窒化ホウ素の一次粒子が凝集して形成される二次粒子を含み、レーザー回折・散乱法によって測定される体積基準の粒子径の累積分布において、小粒径からの積算値が全体の50%に達したときの粒子径をD50としたときに、BET比表面積に対するD50の比が5[μg/m]以上である。
【0008】
上記六方晶窒化ホウ素粉末におけるBET比表面積は、主として六方晶窒化ホウ素粉末の一次粒子の粒径に依存する。一方、D50は、主として当該一次粒子が凝集して形成される二次粒子の粒径に依存する。したがって、BET比表面積に対するD50の比は、一次粒子に対する二次粒子の大きさ及び上記六方晶窒化ホウ素粉末全体に対する二次粒子の割合と相関があるといえる。上記六方晶窒化ホウ素粉末は、上記比が5[μg/m]以上であるため、一次粒子が凝集して構成される二次粒子の割合、及び/又は、一次粒子に対する二次粒子のサイズを大きくすることができる。二次粒子は、一次粒子に比べて粒子内の空隙が大きい。したがって、このような二次粒子を含む六方晶窒化ホウ素粉末は嵩高くなり、ふわふわとした外観を有する。このような六方晶窒化ホウ素粉末を塗り伸ばすと、凝集していた二次粒子が破壊されながら塗り伸ばされる。このため、伸び性に優れる。このような六方晶窒化ホウ素粉末は、化粧料の原料用として好適である。
【0009】
上記六方晶窒化ホウ素粉末のBET比表面積は3[m2/g]未満であってよい。これによって、一次粒子の粒径が大きくなり、滑り性を十分に高くすることができる。
【0010】
上記六方晶窒化ホウ素粉末のD50は12μm以上であってよい。このような六方晶窒化ホウ素粉末は、一層優れた伸び性を有する。
【0011】
上記六方晶窒化ホウ素粉末は、化粧料の原料用であってよい。上記六方晶窒化ホウ素粉末は、伸び性に優れることから、化粧料の原料用に好適である。
【0012】
本開示の一側面に係る六方晶窒化ホウ素粉末の製造方法は、六方晶窒化ホウ素と助剤とを含む混合粉末を、不活性ガス、アンモニアガス又はこれらの混合ガスの雰囲気中、1600℃以上且つ1900℃未満で焼成して、混合粉末における六方晶窒化ホウ素よりも高い結晶性を有する六方晶窒化ホウ素を含む焼成物を得る焼成工程と、焼成物を粉砕、洗浄、及び乾燥し、乾燥粉末を得る精製工程と、乾燥粉末を、不活性ガス、アンモニアガス又はこれらの混合ガスの雰囲気中、1900~2100℃でアニールするアニール工程と、を有し、アニール工程では、乾燥粉末を5℃/分以上の昇温速度で昇温し、且つ1900~2100℃に加熱する時間が2時間以下である。
【0013】
上記製造方法では、助剤を用いて1700℃以上且つ1900℃未満の温度で焼成することによって、結晶性の高い六方晶窒化ホウ素を含む焼成物を得ることができる。この焼成物を粉砕後、洗浄することによって、残存する助剤等が低減され、その後のアニール時の粒成長を抑制できる。そして、乾燥後、既に結晶化した六方晶窒化ホウ素を含む焼成物を所定条件でアニールをしていることから、六方晶窒化ホウ素の一次粒子の粒成長を抑制しつつ、一次粒子を凝集させて二次粒子の形成を促進することができる。したがって、二次粒子の割合、及び/又は、一次粒子に対する二次粒子のサイズを大きくすることができる。
【0014】
二次粒子は、一次粒子に比べて粒子内の空隙が大きい。したがって、このような二次粒子を含む六方晶窒化ホウ素粉末は嵩高くなり、ふわふわとした外観を有する。このような六方晶窒化ホウ素粉末を塗り伸ばすと、凝集していた二次粒子が破壊されながら塗り伸ばされる。したがって、上記製造方法によれば、伸び性に優れる六方晶窒化ホウ素粉末を製造することができる。この六方晶窒化ホウ素粉末は化粧料の原料用として好適である。
【0015】
上記製造方法は、焼成工程の前に、ホウ素を含む化合物の粉末と窒素を含む化合物の粉末を含有する原料粉末を、不活性ガス、アンモニアガス又はこれらの混合ガスの雰囲気中、600~1300℃で焼成して、低結晶性の六方晶窒化ホウ素を含む仮焼物を得る仮焼工程を有してよい。そして、焼成工程における混合粉末は仮焼物と助剤とを含んでよい。このように、焼成工程よりも低い温度で仮焼を行うことによって、粒成長が抑制され、伸び性の向上に寄与する二次粒子を形成し易い一次粒子が得られやすくなる。
【0016】
上記製造方法のアニール工程で得られる六方晶窒化ホウ素粉末は、レーザー回折・散乱法によって測定される体積基準の粒子径の累積分布において、小粒径からの積算値が全体の50%に達したときの粒子径をD50としたときに、BET比表面積に対するD50の比が5[μg/m]以上であってよい。
【0017】
本開示の一側面に係る化粧料は、上述の六方晶窒化ホウ素粉末を含む。上述の六方晶窒化ホウ素粉末は、塗り伸ばしたときに優れた伸び性を有する。このため、このような六方晶窒化ホウ素粉末を含む化粧料は、優れた伸び性を有する。
【0018】
本開示の一側面に係る化粧料の製造方法は、上述のいずれかの製造方法で得られる六方晶窒化ホウ素粉末を原料として用いて化粧料を製造する。上述の製造方法で得られる六方晶窒化ホウ素粉末は、塗り伸ばしたときに優れた伸び性を有する。このため、このような六方晶窒化ホウ素粉末を原料として用いて製造された化粧料は、優れた伸び性を有する。
【発明の効果】
【0019】
本開示によれば、伸び性に優れる化粧料を製造することが可能な六方晶窒化ホウ素粉末及びその製造方法を提供することができる。また、本開示によれば、上述の六方晶窒化ホウ素粉末を用いることによって伸び性に優れる化粧料及びその製造方法を提供することができる。
【発明を実施するための形態】
【0020】
以下、本開示の実施形態を説明する。ただし、以下の実施形態は、本開示を説明するための例示であり、本開示を以下の内容に限定する趣旨ではない。
【0021】
六方晶窒化ホウ素の一次粒子が凝集して形成される二次粒子を含み、レーザー回折・散乱法によって測定される体積基準の粒子径の累積分布において、小粒径からの積算値が全体の50%に達したときの粒子径をD50としたとき、BET比表面積に対するD50の比が5[μg/m]以上である。当該比(D50/BET)は、6[μg/m]以上であってよく、7[μg/m]以上であってもよい。これによって、二次粒子のサイズ及び割合が一層大きくなり、伸び性を一層向上することができる。
【0022】
上記比(D50/BET)は、30[μg/m]未満であってよく、20[μg/m]未満であってもよい。これによって、化粧料の原料として用いたときのざらつき感を低減することができる。
【0023】
本開示におけるD50は、市販のレーザー回折式粒子径分布測定装置で測定される。D50は、化粧料の原料として用いたときの滑り性を一層向上する観点から、12μm以上であってよいし、14μm以上であってもよい。D50は、化粧料の原料として用いたときに外観上のぎらつきを低減する観点から、25μm以下であってもよいし、20μm以下であってもよい。D50は、例えば、原料粉末の粒度分布、仮焼温度及び仮焼時間、焼成温度及び焼成時間、アニール温度及びアニール時間、並びに昇温速度等によって調整することができる。
【0024】
BET比表面積は、吸着ガスを窒素として、市販の比表面積測定装置を用いて測定される値である。BET比表面積は、3[m2/g]未満であってよく、2.5[m2/g]未満であってもよい。これによって、伸び性のみならず、滑り性も十分に高くすることができる。BET比表面積は、0.5[m2/g]以上であってよく、1[m2/g]以上であってもよい。これによって、皮膚及びシワへの付着性を高めることができる。
【0025】
六方晶窒化ホウ素粉末のかさ密度は、0.47g/cm3以下であってよく、0.43cm3以下であってよく、0.37cm3以下であってもよい。このように低いかさ密度を有することによって、一層ふわふわとした外観を有する六方晶窒化ホウ素粉末とすることができる。かさ密度は、JIS R1628-1997の「ファインセラミックス粉末のかさ密度測定方法」に準拠して測定することができる。
【0026】
本実施形態によれば、六方晶窒化ホウ素粉末における二次粒子の割合、及び/又は、一次粒子に対する二次粒子のサイズを大きくすることができる。二次粒子は、一次粒子に比べて粒子内の空隙を大きくすることができる。したがって、このような二次粒子を含む六方晶窒化ホウ素粉末は嵩高くなり、ふわふわとした外観を有する。このような六方晶窒化ホウ素粉末を塗り伸ばすと、凝集していた二次粒子が破壊されながら塗り伸ばされる。このため、伸び性に優れる。このような六方晶窒化ホウ素粉末は、化粧料の原料用として好適である。すなわち、本開示は、六方晶窒化ホウ素を化粧料の原料として使用する使用方法も提供することができる。
【0027】
一実施形態に係る化粧料は、上述の六方晶窒化ホウ素粉末を含有する。したがって、この六方晶窒化ホウ素粉末を含有する化粧料は、伸び性に優れる。化粧料としては、例えば、ファンデーション(パウダーファンデーション、リキッドファンデーション、クリームファンデーション)、フェイスパウダー、ポイントメイク、アイシャドー、アイライナー、マニュキュア、口紅、頬紅、及びマスカラ等が挙げられる。これらのうち、ファンデーション及びアイシャドーには、六方晶窒化ホウ素粉末が特に良く適合する。化粧料における六方晶窒化ホウ素粉末の含有量は、例えば0.1~70質量%である。化粧料は公知の方法によって製造することができる。化粧料の製造方法は、例えば、六方晶窒化ホウ素粉末と他の原料とを配合して混合する工程を有する。
【0028】
一実施形態に係る六方晶窒化ホウ素粉末の製造方法は、ホウ素を含む化合物の粉末と窒素を含む化合物の粉末を含有する原料粉末を、不活性ガス、アンモニアガス又はこれらの混合ガスの雰囲気中、600~1300℃で焼成して、六方晶窒化ホウ素を含む仮焼物を得る仮焼工程と、六方晶窒化ホウ素と助剤とを含む混合粉末を、不活性ガス、アンモニアガス又はこれらの混合ガスの雰囲気中、1600℃以上且つ1900℃未満で焼成して、混合粉末における六方晶窒化ホウ素よりも高い結晶性を有する六方晶窒化ホウ素を含む焼成物を得る焼成工程と、焼成物を粉砕、洗浄、及び乾燥し、乾燥粉末を得る精製工程と、乾燥粉末を、窒素ガス、ヘリウムガス、又はアルゴンガス等の不活性雰囲気中、1900~2100℃の温度でアニールするアニール工程と、を含む。
【0029】
ホウ素を含む化合物としては、ホウ酸、酸化ホウ素及びホウ砂等が挙げられる。窒素を含む化合物としては、ジシアンジアミド、メラミン、及び尿素が挙げられる。ホウ素を含む化合物の粉末と窒素を含む化合物の粉末を含有する原料粉末におけるホウ素原子と窒素原子のモル比は、ホウ素原子:窒素原子=2:8~8:2であってよく、3:7~7:3であってもよい。原料粉末は、上記化合物以外の成分を含んでもよい。例えば、仮焼用助剤として炭酸リチウム及び炭酸ナトリウムなどの炭酸塩を含んでよい。また、炭素等の還元性物質を含んでよい。
【0030】
上述の成分を含有する原料粉末を、例えば電気炉を用いて、窒素ガス、ヘリウムガス、又はアルゴンガス等の不活性雰囲気中、アンモニア雰囲気中、或いはこれらを混合した混合ガス雰囲気中で仮焼する。仮焼温度は、600~1300℃であってよく、800~1200℃であってよく、900~1100℃であってもよい。仮焼時間は、例えば0.5~5時間であってよく、1~4時間であってもよい。
【0031】
仮焼によって得られる仮焼物は、低結晶性の六方晶窒化ホウ素、及び非晶質の六方晶窒化ホウ素からなる群より選ばれる少なくとも一方を含む。仮焼工程は、後述の焼成工程よりも低温で窒化ホウ素の反応を進行させる。このため、粒成長を抑制し、最終的に得られる窒化ホウ素粉末における一次粒子の粒径を小さくすることができる。
【0032】
次に、得られた仮焼物と助剤とを配合して混合し、混合粉末を得る。助剤としては、ホウ酸ナトリウム等のホウ酸塩、並びに、炭酸ナトリウム、炭酸カルシウム及び炭酸リチウム等の炭酸塩が挙げられる。六方晶窒化ホウ素を含む仮焼物100質量部に対する、助剤の配合量は2~20質量部であってよく、2~8質量部であってもよい。このような混合粉末を、例えば電気炉中、窒素ガス、ヘリウムガス、又はアルゴンガス等の不活性雰囲気中、アンモニア雰囲気中、或いはこれらを含む混合ガス雰囲気中で焼成する。
【0033】
焼成工程では、助剤の存在下、窒化ホウ素の生成及び結晶化が進行する。これによって、仮焼物に含まれる窒化ホウ素の結晶性を高めることができる。焼成温度は、1600℃以上且つ1900℃未満である。この焼成温度は、1650~1850℃であってもよく、1650~1750℃であってもよい。焼成時間は、例えば0.5~5時間であってよく、1~4時間であってもよい。
【0034】
焼成温度が低くなり過ぎると、六方晶窒化ホウ素の二次粒子が十分に生成し難くなる傾向にある。二次粒子のサイズ、及び/又は、割合が小さくなると、化粧料の原料に用いた場合に滑り性が低下する傾向にある。焼成時間が短くなり過ぎたときも同様の傾向にある。一方、焼成温度が高くなり過ぎると、六方晶窒化ホウ素の結晶成長及び凝集が進み過ぎて、化粧料の原料に用いた場合にぎらつきが強くなる傾向にある。
【0035】
焼成工程で得られた焼成物は、六方晶窒化ホウ素以外に不純物を含む場合がある。不純物としては、残存する助剤、及び水溶性ホウ素化合物等が挙げられる。精製工程では、このような不純物を、洗浄によって低減する。洗浄後、固液分離して乾燥し、乾燥粉末を得る。洗浄に用いる洗浄液としては、水、酸性物質を含む水溶液、有機溶媒、有機溶媒と水との混合液等が挙げられる。不純物の二次的な混入を避ける観点から、電気伝導度が1mS/m以下の水を使用してよい。酸性物質としては、例えば塩酸、硝酸等の無機酸が挙げられる。有機溶媒としては、例えば、メタノール、エタノール、プロパノール、イソプロピルアルコール及びアセトン等の水溶性の有機溶媒が挙げられる。洗浄方法に特に制限はなく、例えば、焼成物を洗浄液中に浸漬し撹拌して洗浄してよく、焼成物に洗浄液をスプレーして洗浄してもよい。
【0036】
洗浄終了後、デカンテーション、吸引ろ過機、加圧ろ過機、回転式ろ過機、沈降分離機又はこれらを組み合わせた装置を用いて洗浄液を固液分離してよい。分離した固形分を通常の乾燥機で乾燥して乾燥粉末を得てもよい。乾燥機は、例えば、棚式乾燥機、流動層乾燥機、噴霧乾燥機、回転型乾燥機、ベルト式乾燥機、及びこれらの組み合わせが挙げられる。乾燥後に、粗大粒子を除去するために、例えば篩による分級を行ってもよい。
【0037】
アニール工程では、乾燥粉末を、例えば電気炉を用いて、窒素ガス、ヘリウムガス、又はアルゴンガス等の不活性雰囲気中、アンモニア雰囲気中、或いはこれらを混合した混合ガス雰囲気中で1900~2100℃に加熱する。このアニール温度は、一次粒子を十分に凝集させる観点から、1950℃以上であってよい。また、アニール温度は、一次粒子の粒成長を抑制する観点から2050℃以下であってよい。アニール工程では、焼成工程と同等の温度に加熱していることから、一次粒子が凝集した二次粒子を十分に形成することができる。
【0038】
一次粒子の粒成長及び過度な凝集を抑制するため、アニール工程において1900~2100℃の温度に加熱する時間は2時間以下であり、1時間以下であってもよい。一方、十分な二次粒子を形成する観点から、アニール工程において1900~2100℃の温度に加熱する時間は0.5時間以上であってよい。
【0039】
アニール工程では、乾燥粉末を5℃/分以上の昇温速度で昇温する。このような昇温速度で昇温することによって、一次粒子の粒成長及び一次粒子の過度な凝集を抑制することができる。なお、昇温速度は、昇温開始時の温度と1900℃の温度差(昇温幅)を、昇温開始時点から1900℃に到達するまでの所要時間で割って求めることができる。上記昇温速度の上限は、例えば15℃/分であってよい。
【0040】
このようにして、上述の六方晶窒化ホウ素粉末を得ることができる。上記製造方法には、六方晶窒化ホウ素粉末の実施形態に係る説明を適用することができる。六方晶窒化ホウ素粉末の製造方法は、上述の実施形態に限定されない。例えば、アニール工程は複数回繰り返して行ってもよい。また、アニール工程の後に、超音波振動を与えるホモジナイザ等を用いて、二次粒子を破壊しない程度に六方晶窒化ホウ素粉末を解砕する解砕工程を行ってもよい。
【0041】
以上、本開示の幾つかの実施形態について説明したが、本開示は上記実施形態に何ら限定されるものではない。
【実施例】
【0042】
実施例及び比較例を参照して本開示の内容をより詳細に説明するが、本開示は下記の実施例に限定されるものではない。
【0043】
(実施例1)
[六方晶窒化ホウ素粉末の調製]
<仮焼工程>
ホウ酸粉末(純度99.8質量%以上、関東化学社製)100.0g、及びメラミン粉末(純度99.0質量%以上、和光純薬社製)90.0gを、アルミナ製乳鉢を用いて10分間混合し混合原料を得た。乾燥後の混合原料を、六方晶窒化ホウ素製の容器に入れ、電気炉内に配置した。電気炉内に窒素ガスを流通させながら、10℃/分の速度で室温から1000℃に昇温した。1000℃で2時間保持した後、加熱を止めて自然冷却した。温度が100℃以下になった時点で電気炉を開放した。このようにして、低結晶性の六方晶窒化ホウ素を含む仮焼物を得た。
【0044】
<焼成工程>
仮焼物100.0gに、助剤として炭酸ナトリウム(純度99.5質量%以上)を3.0g添加し、アルミナ製乳鉢を用いて10分間混合した。混合物を、上述の電気炉内に配置した。電気炉内に窒素ガスを流通させながら、10℃/分の速度で室温から1700℃に昇温した。1700℃の焼成温度で4時間保持した後、加熱を止めて自然冷却した。温度が100℃以下になった時点で電気炉を開放した。得られた焼成物を回収し、アルミナ製乳鉢で3分間粉砕して、六方晶窒化ホウ素の粗粉を得た。
【0045】
<精製工程>
六方晶窒化ホウ素の粗粉中に含まれる不純物を除くため、希硝酸500g(硝酸濃度:5質量%)に、粗粉を30g投入し、室温で60分間撹拌した。撹拌後、吸引ろ過によって固液分離し、ろ液が中性になるまで水(電気伝導度1mS/m)を入れ替えて洗浄した。洗浄後、乾燥機を用いて120℃で3時間乾燥して乾燥粉末を得た。得られた乾燥粉末から、超音波振動篩(KFS-1000、興和工業所社製、目開き250μm)を用いて、粗粒を除去した。
【0046】
<アニール工程>
粗粒を除去した乾燥粉末を、上述の電気炉内に配置した。電気炉内に窒素ガスを流通させながら、5℃/分の速度で室温から2000℃に昇温した。2000℃で2時間保持した後、加熱を止めて自然冷却した。温度が100℃以下になった時点で電気炉を開放した。
【0047】
<解砕工程>
得られた六方晶窒化ホウ素の粗粉30gと水300mlに投入し、ホモジナイザ(SONIC & MATERIALS,INC.製、商品名:VC505)を用いて、500W、20kHzの条件で5分間超音波分散させた。その後、分散液を濾過して固形分を分離して乾燥した。得られた乾燥粉末から、超音波振動篩(株式会社興和工業所製、KFS-1000、興和工業所社製、目開き250μm)を用いて粗粒を除去し、実施例1の六方晶窒化ホウ素粉末を得た。
【0048】
[六方晶窒化ホウ素粉末の評価]
<粒度分布の測定>
実施例1で調製した六方晶窒化ホウ素粉末の体積基準の粒度分布を、レーザー回折式粒子径分布測定装置(日機装株式会社製、装置名:MT3300EX)を用いて測定した。体積基準の粒子径の累積分布において、小粒径からの積算値が全体の50%に達したときの粒子径(D50)を求めた。結果は表2に示すとおりであった。
【0049】
<比表面積(N)の測定>
実施例1で作製した六方晶窒化ホウ素粉末のBET比表面積を、比表面積測定装置(ユアサアイオニクス社製、装置名:MONOSORB)を用いて、BET1点法により測定した。吸着ガスとして窒素ガスを、キャリアガスとしてヘリウムガスを用いた。試料1gを300℃、15分間の条件で乾燥脱気してから測定を行った。測定結果は、表2に示すとおりであった。また、表2には、BET比表面積に対するD50の比を、「D50/BET」の欄に示した。
【0050】
<伸び性の評価>
人工皮膚(縦×横=10mm×50mm)の一端に、六方晶窒化ホウ素粉末0.2gを載せた。人工皮膚の表面に六方晶窒化ホウ素粉末を塗り付けるように、ヘラを用いて六方晶窒化ホウ素粉末を縦方向に沿って伸ばした。市販の画像解析ソフトウェア(WinROOF)を用いて画像解析を行って、人工皮膚の全面積に対する、六方晶窒化ホウ素粉末の塗布面積の割合を求めた。この面積割合が大きいほど伸び性が優れている。伸び性の評価基準は、面積割合に応じて表1に示すとおりとした。伸び性の評価結果は表2に示すとおりであった。
【0051】
【0052】
(実施例2)
アニール工程における2000℃での加熱時間を1時間にしたこと以外は、実施例1と同様にして六方晶窒化ホウ素粉末を調製した。そして、実施例1と同様にして、六方晶窒化ホウ素粉末の各測定及び評価を行った。結果は表2に示すとおりであった。
【0053】
(実施例3)
アニール工程における室温から2000℃までの昇温速度を10℃/分にしたこと以外は、実施例1と同様にして六方晶窒化ホウ素粉末を調製した。そして、実施例1と同様にして、六方晶窒化ホウ素粉末の各測定及び評価を行った。結果は表2に示すとおりであった。
【0054】
(実施例4)
乾燥後の混合原料に助剤として炭酸ナトリウム(純度99.5質量%以上)を3.0g添加し、仮焼工程を行わずに焼成工程を行ったこと以外は、実施例1と同様にして六方晶窒化ホウ素粉末を製造した。そして、実施例1と同様にして、六方晶窒化ホウ素粉末の各測定及び評価を行った。結果は表2に示すとおりであった。
【0055】
(比較例1)
アニール工程を行わず、精製工程で粗粒を除去して得られた乾燥粉末を、比較例1の六方晶窒化ホウ素粉末とした。実施例1と同様にして、六方晶窒化ホウ素粉末の各測定及び評価を行った。結果は表2に示すとおりであった。
【0056】
(比較例2)
アニール工程における室温から2000℃までの昇温速度を2℃/分にしたこと以外は、実施例1と同様にして六方晶窒化ホウ素粉末を調製した。そして、実施例1と同様にして、六方晶窒化ホウ素粉末の各測定及び評価を行った。結果は表2に示すとおりであった。
【0057】
【0058】
実施例1~4は、いずれも一次粒子が凝集した二次粒子を含有していた。実施例1~4は、比較例1,2よりも、D50/BETの値が大きく、ふわふわ感のある外観を有していた。このため、実施例1~4の方が、比較例1,2よりも、伸び性の向上に寄与する二次粒子を多く含有しており、優れた伸び性を有していた。
【産業上の利用可能性】
【0059】
本開示によれば、伸び性に優れる化粧料を製造することが可能な六方晶窒化ホウ素粉末及びその製造方法が提供される。また、上述の六方晶窒化ホウ素粉末を用いることによって伸び性に優れる化粧料及びその製造方法が提供される。