IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ 日本板硝子株式会社の特許一覧 ▶ 光村印刷株式会社の特許一覧

(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2023-10-23
(45)【発行日】2023-10-31
(54)【発明の名称】画像表示装置に適したガラス板
(51)【国際特許分類】
   C03C 15/00 20060101AFI20231024BHJP
   G02B 5/02 20060101ALI20231024BHJP
   G02F 1/1333 20060101ALI20231024BHJP
【FI】
C03C15/00 Z
G02B5/02 C
G02F1/1333 500
【請求項の数】 12
(21)【出願番号】P 2022091209
(22)【出願日】2022-06-03
(62)【分割の表示】P 2021160656の分割
【原出願日】2019-07-01
(65)【公開番号】P2022130405
(43)【公開日】2022-09-06
【審査請求日】2022-06-03
(31)【優先権主張番号】P 2018130000
(32)【優先日】2018-07-09
(33)【優先権主張国・地域又は機関】JP
(31)【優先権主張番号】P 2019017246
(32)【優先日】2019-02-01
(33)【優先権主張国・地域又は機関】JP
(31)【優先権主張番号】P 2019081614
(32)【優先日】2019-04-23
(33)【優先権主張国・地域又は機関】JP
(73)【特許権者】
【識別番号】000004008
【氏名又は名称】日本板硝子株式会社
(73)【特許権者】
【識別番号】591097964
【氏名又は名称】光村印刷株式会社
(74)【代理人】
【識別番号】100107641
【弁理士】
【氏名又は名称】鎌田 耕一
(72)【発明者】
【氏名】筏井 正博
(72)【発明者】
【氏名】大泉 真治
(72)【発明者】
【氏名】桐山 淳一
(72)【発明者】
【氏名】田上 勉
【審査官】菅原 洋平
(56)【参考文献】
【文献】特開2018-018378(JP,A)
【文献】国際公開第2016/187194(WO,A1)
【文献】特表2017-510531(JP,A)
【文献】国際公開第2016/186935(WO,A1)
【文献】国際公開第2020/013012(WO,A1)
(58)【調査した分野】(Int.Cl.,DB名)
C03C 15/00
G02B 5/02
G02F 1/1333
(57)【特許請求の範囲】
【請求項1】
複数の微小変形部を有する主面を備え、
前記複数の微小変形部は複数の凹部であり、
前記主面に垂直な方向から観察して前記微小変形部を囲む最小の直角四角形の互いに隣接する2辺の長さの平均値を当該微小変形部の寸法と定義したときに、前記複数の微小変形部の前記寸法の平均値が3.2μm~35.5μmであり、かつ
前記複数の微小変形部に占める前記寸法が0.5μm~3.0μmの微小変形部A1の個数基準の比率が5%未満であるとの条件a1、及び/又は、前記複数の微小変形部の前記寸法の変動係数が40%以下であるとの条件d1、を満たし、
前記主面の200μm四方の領域を前記方向から観察して前記複数の微小変形部を周囲から区別する二値化処理Aをした画像の二次元フーリエ変換像に3~30個の輝点が観察されるか、又は前記二値化処理Aをした画像の二次元フーリエ変換像に1個の輝点が、前記二値化処理Aに代えて二値化処理Bをした画像の二次元フーリエ変換像に2以上の輝点がそれぞれ観察される、ガラス板。
ここで、二値化処理Aは画像を256×256の画素に区分けして実施する二値化処理であり、二値化処理Bは画像を65536×65536の画素に区分けして実施する二値化処理である。
【請求項2】
前記主面において前記複数の微小変形部はそれぞれ実質的に平坦な連続部によって囲まれている、請求項1に記載のガラス板。
【請求項3】
前記主面の面積に対する前記複数の微小変形部の面積の合計が占める比率が1.5~60%である、請求項1に記載のガラス板。
【請求項4】
前記複数の微小変形部の前記寸法の変動係数が23%以下である、請求項1に記載のガラス板。
【請求項5】
前記複数の微小変形部の前記寸法の変動係数が23%を超える、請求項1に記載のガラス板。
【請求項6】
前記複数の微小変形部に占める前記寸法が0.5μm~3.6μmの微小変形部A2の個数基準の比率が5%未満であるとの条件a2を満たす、請求項1に記載のガラス板。
【請求項7】
前記複数の微小変形部に占める前記寸法が0.5μm~4.0μmの微小変形部A3の個数基準の比率が5%未満であるとの条件a3を満たす、請求項6に記載のガラス板。
【請求項8】
前記複数の微小変形部の前記寸法の平均値が3.2μm以上13.6μm以下である、請求項1に記載のガラス板。
【請求項9】
前記複数の微小変形部の前記寸法の平均値が7μm以上13.6μm以下である、請求項に記載のガラス板。
【請求項10】
グロスをX(%)、ヘイズをY(%)と表示したときに、Y≦-1/6X+20及びY≦-1/40X+8の少なくとも1つの関係式を満たす、請求項1に記載のガラス板。
【請求項11】
前記複数の微小変形部の前記寸法の変動係数が3%以上である、請求項1に記載のガラス板。
【請求項12】
前記複数の微小変形部に占める前記寸法が35.5μmを上回る微小変形部Bの個数基準の比率が15%未満であるとの条件bを満たす、請求項1に記載のガラス板。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、ガラス板、特に画像表示装置と組み合わせて使用することに適したガラス板に関する。
【背景技術】
【0002】
液晶表示装置に代表される画像表示装置の画像表示側に配置されるガラス板には、環境光の鏡面反射を抑制するために防眩機能が付与されることがある。防眩機能はガラス板の表面に形成された微小変形部、具体的には微小凹凸、により発現する。防眩機能は、グロスを指標としてその値が小さいほど優れていると評価される。一方、微小凹凸により生じる光の拡散はヘイズにより評価される。表示される画像の鮮明さを損なわないためには小さいヘイズが望ましい。通常、微小凹凸は、サンドブラスト法、エッチング法、或いはこれらの組み合わせによってガラス板の表面に形成される。
【0003】
画像表示装置の高精細化に伴い、スパークルと呼ばれる現象が問題になっている。スパークルは、防眩機能が付与された防眩ガラスの主面の微小凹凸と画像表示装置の画素サイズとの関係に依存して発生する輝点である。スパークルは、特に画像表示装置に対してユーザの視点が相対的に移動する場合に不規則な光のゆらぎとして認識されやすくなるが、ユーザの視点が静止していても観察される。
【0004】
特許文献1には、算術平均粗さRaが0.01~0.1μm、平均間隔RSmが1~20μmの基礎表面と、この基礎表面に分散した直径3~20μm、深さ0.2~1.5μmの窪み体と呼ばれる凹部とを有する主面を備えたガラス板が開示されている。この主面は、サンドブラスト法の後にエッチング法を適用することによって形成される。特許文献1の実施例には、上記主面を有するガラス板がスパークルを抑制できたことが開示されている。
【0005】
特許文献2には、算術平均粗さRaが0.02~0.4μm、平均間隔RSmが5~30μmの主面を有するガラス板が開示されている。この主面の微小凹凸は、組成を調整したエッチング液を用いたエッチング法によって、サンドブラスト法による前処理を実施することなく形成される。特許文献2の実施例には、上記微小凹凸を有するガラス板がスパークルを抑制できたことが開示されている。
【0006】
特許文献3には、表面粗さRMSの変化量に対するグロスの変化量ΔGloss/ΔRMSを-800以下としたガラス板が開示されている。このガラス板は、プレエッチングを伴うエッチング法、言い換えると2段階のエッチングによって作製される。特許文献3の実施例の欄によると、ΔGloss/ΔRMSが小さくなるほどスパークルは抑制される。
【先行技術文献】
【特許文献】
【0007】
【文献】特開2016-136232号公報
【文献】特表2017-523111号公報
【文献】国際公開第2014/112297号
【発明の概要】
【発明が解決しようとする課題】
【0008】
スパークルを抑制するにつれて、グロス及びヘイズを共に小さい値に制御することは難
しくなる。例えば特許文献2において、スパークルが抑制されていない比較例4はグロス75%、ヘイズ3.0%であるのに対し、スパークルを抑制した実施例8はグロス75%、ヘイズ13.6%であり、グロスを同一とするとヘイズが10%程度高くなっている。特許文献3においても、スパークルが抑制された例1~6のグロスは、スパークルが抑制されておらずヘイズがほぼ同じ範囲にある例7~10のグロスよりも大きくなっている。以上の第1の観点からは、スパークルを抑制しながらグロス及びヘイズを適切に制御することに適した微小凹凸を備えたガラス板が望まれている。
【0009】
画像表示装置と組み合わせて使用されるガラス板はタッチパネルとして使用されることがある。タッチパネルの表面にはユーザに良好な操作感を提供することも求められる。以上の第2の観点からは、スパークルの抑制と共にユーザに良好な操作感を提供することに適した微小凹凸を備えたガラス板が望まれている。
【0010】
スパークルの抑制に適した従来の微小凹凸は、凹部及び凸部の大きさと位置とが基本的に不規則であるために、量産時にそれを正確に再現することが容易ではない。一方、本発明者の検討によると、大きさ及び位置の規則性を改善した微小凹凸からは、不自然な反射光、より具体的には反射光のムラが観察されることがある。以上の第3の観点からは、スパークルの抑制に適し、量産の際に再現性が高く、それ自体から発生する反射光のムラの緩和に適した、微小凹凸を備えたガラス板が望ましい。
【0011】
従来、エッチング法等によりガラス板の主面を部分的に後退させてこの主面に形成した微小凹凸の形状は、主面に垂直方向から見て、円、楕円、内角が鈍角若しくはそれ未満の角度である多角形、又は左記のいずれかの形状に近似できる形状に限られていた。また、主面に分散する微小凹凸の形状は互いに類似したものになることが通常であった。このため、主面設計の自由度が低く、これがスパークルを抑制したガラス板においてその他の諸特性、例えばグロス及びヘイズ、を制御しにくい一因になっていた。以上の第4の観点からは、スパークルの抑制に適し、かつ設計の自由度が高いガラス板が望ましい。
【0012】
本発明の目的は、以上に挙げた観点の少なくとも1つから、スパークルの抑制に適し、かつ実用性に優れたガラス板を提供することにある。
【課題を解決するための手段】
【0013】
第1の観点を考慮し、本発明は、その第1の側面から、
複数の微小変形部を有する主面を備え、
前記複数の微小変形部は複数の凹部又は複数の凸部であり、
前記主面に垂直な方向から観察して前記微小変形部を囲む最小の直角四角形の互いに隣接する2辺の長さの平均値を当該微小変形部の寸法と定義したときに、前記複数の微小変形部の前記寸法の平均値が3.2μm~35.5μmであり、かつ
前記複数の微小変形部に占める前記寸法が0.5μm~3.0μmの微小変形部A1の個数基準の比率が5%未満であるとの条件a1、及び/又は、前記複数の微小変形部の前記寸法の変動係数が40%以下であるとの条件d1、を満たす、
ガラス板、を提供する。
【0014】
第2の観点を考慮し、本発明は、その第2の側面から、
複数の微小変形部を有する主面を備え、
前記複数の微小変形部は複数の凸部であり、
前記主面に垂直な方向から観察して前記微小変形部を囲む最小の直角四角形の互いに隣接する2辺の長さの平均値を当該微小変形部の寸法と定義したときに、前記複数の微小変形部の前記寸法の平均値が3.2μm~35.5μmである、
ガラス板、を提供する。
【0015】
第3の観点を考慮し、本発明は、その第3の側面から、まず、
複数の微小変形部を有する主面を備え、
前記複数の微小変形部は複数の凹部又は複数の凸部であり、
前記主面に垂直な方向から観察して前記微小変形部を囲む最小の直角四角形の互いに隣接する2辺の長さの平均値を当該微小変形部の寸法と定義したときに、前記複数の微小変形部の前記寸法の平均値が3.2μm~35.5μmであり、かつ
前記主面の200μm四方の領域を前記方向から観察して前記複数の微小変形部を周囲から区別する二値化処理Aをした画像の二次元フーリエ変換像に3~30個の輝点が観察されるか、又は前記二値化処理Aをした画像の二次元フーリエ変換像に1個の輝点が、前記二値化処理Aに代えて二値化処理Bをした画像の二次元フーリエ変換像に2以上の輝点がそれぞれ観察される、
ガラス板、を提供する。
ここで、二値化処理Aは画像を256×256の画素に区分けして実施する二値化処理であり、二値化処理Bは画像を65536×65536の画素に区分けして実施する二値化処理である。
【0016】
二次元フーリエ変換像は、画像の縦横をそれぞれ所定数の画素に区分けし、微小変形部とその周囲の領域とが区別されるように画素の二値化処理を実施した処理画像から得ることができる。後述するように、主面の200μm四方の領域に代えて、寸法が0.5μm以上の微小変形部が80~150個存在する主面の領域に対して、二値化処理A又はBを実施し、その処理画像の二次元フーリエ変換像に基づいて輝点数をカウントしてもよい。この場合も、二値化処理Aをした画像の二次元フーリエ変換像に3~30個の輝点が観察されるか、又は二値化処理Aをした画像の二次元フーリエ変換像に1個の輝点が、二値化処理Aに代えて二値化処理Bをした画像の二次元フーリエ変換像に2以上の輝点がそれぞれ観察されることが好ましい。なお、二値化処理の際の画素数は「階調」の段階の数として表記されることがあり、本明細書ではこの表記に従う。すなわち、例えば256×256の階調での二値化処理は、画像の縦横それぞれを256等分して256×256の区分を定め、その区分ごとに二値化を実施する処理(二値化処理A)である。階調数は2の整数乗に設定され、その値が大きくなるほど輝点の検出感度は向上する。
【0017】
第4の観点を考慮し、本発明は、その第4の側面から、
複数の微小変形部を有する主面を備え、
前記複数の微小変形部は複数の凹部又は複数の凸部であり、
前記主面に垂直な方向から観察して前記微小変形部を囲む最小の直角四角形の互いに隣接する2辺の長さの平均値を当該微小変形部の寸法と定義したときに、前記複数の微小変形部の前記寸法の平均値が3.2μm以上であり、かつ
前記方向から観察したときに、前記複数の微小変形部は、i)前記直角四角形の辺から選択した前記直角四角形の頂点を含まない一部の後退部に接する直線部を有する微小変形部、又はii)少なくとも1つの内角が優角である多角形である微小変形部、に相当する第1微小変形部と、前記第1微小変形部と形状が相違する第2微小変形部と、を含む、
ガラス板、を提供する。
【発明の効果】
【0018】
本発明によれば、スパークルの抑制に適し、かつ実用性が高いガラス板を提供できる。本発明の第1の側面から提供されるガラス板は、スパークルを抑制しながらグロス及びヘイズを広い範囲で適切に制御することに適している。
【0019】
本発明の第2の側面から提供されるガラス板は、スパークルを抑制しながらユーザに良好な操作感を提供することに適している。
【0020】
本発明の第3の側面から提供されるガラス板は、スパークルの抑制に適し、量産による再現性が高く、それ自体から発生する反射光のムラの緩和にも適している。
【0021】
本発明の第4の側面から提供されるガラス板は、スパークルの抑制に適し、かつ設計の自由度にも優れている。
【図面の簡単な説明】
【0022】
図1】本発明のガラス板の一例の主面の一部を拡大して示した平面図である。
図2A】微小変形部が凸部である場合の図1の断面図である。
図2B】微小変形部が凹部である場合の図1の断面図である。
図3】微小変形部の各種形状を示す平面図である。
図4】微小変形部の丸まった隅角部を示す平面図である。
図5A】従来のガラス板の一例の主面の一部を拡大して示す平面図である。
図5B】従来のガラス板の別の例の主面の一部を拡大して示す断面図である。
図6】例1のガラス板の主面の50μm四方(50μm×50μmの領域)を走査型電子顕微鏡(SEM)で観察した像を示す図である。
図7】例2のガラス板の主面の50μm四方をSEMで観察した像を示す図である。
図8】例3のガラス板の主面の50μm四方をSEMで観察した像を示す図である。
図9】例4のガラス板の主面の50μm四方をSEMで観察した像を示す図である。
図10】例5のガラス板の主面の50μm四方をSEMで観察した像を示す図である。
図11】例6のガラス板の主面の50μm四方をSEMで観察した像を示す図である。
図12】例7のガラス板の主面の50μm四方をSEMで観察した像を示す図である。
図13】例8のガラス板の主面の200μm四方をSEMで観察した像と、この像から得た二次元フーリエ変換像(FT像)とを示す図である。
図14】例9のガラス板の主面の200μm四方をSEMで観察した像と、この像から得たFT像とを示す図である。
図15】例10のガラス板の主面の200μm四方をSEMで観察した像と、この像から得たFT像とを示す図である。
図16】例11のガラス板の主面の200μm四方をSEMで観察した像と、この像から得たFT像とを示す図である。
図17】例12のガラス板の主面の200μm四方をSEMで観察した像と、この像から得たFT像とを示す図である。
図18】例13のガラス板の主面の200μm四方をSEMで観察した像と、この像から得たFT像とを示す図である。
図19】例14のガラス板の主面の200μm四方をSEMで観察した像と、この像から得たFT像とを示す図である。
図20】例15のガラス板の主面の200μm四方をSEMで観察した像と、この像から得たFT像とを示す図である。
図21】例16のガラス板の主面の200μm四方をSEMで観察した像と、この像から得たFT像とを示す図である。
図22】例17のガラス板の主面の200μm四方をSEMで観察した像と、この像から得たFT像とを示す図である。
図23】例18のガラス板の主面をSEMで観察した像と、この像から得たFT像とを示す図である。
図24】例22と同様にして得たガラス板の主面の200μm四方をSEMで観察した像を示す図である。
図25】例27と同様にして得たガラス板の主面の200μm四方をSEMで観察した像を示す図である。
図26】例1~35及び特許文献1~3実施例のガラス板のグロスとヘイズとの関係を示す図である。
【発明を実施するための形態】
【0023】
以下、本発明の各実施形態を説明するが、以下の説明は本発明を特定の実施形態に制限する趣旨ではない。各実施形態について繰り返しになる説明は基本的に省略する。各実施形態には、その実施形態に明らかに適用できない場合を除いてその他の実施形態についての説明を適用できる。
【0024】
[第1の実施形態]
まず、第1の側面から提供されるガラス板の一形態を説明する。この一形態においてガラス板は複数の微小変形部を有する主面を備えている。複数の微小変形部は複数の凹部又は複数の凸部である。複数の微小変形部は、所定範囲の平均寸法を有し、寸法分布についての所定の条件を満たす。この条件は、少なくとも、以下に述べる条件a1及び/又は条件d1である。
【0025】
図1に示すように、ガラス板10の主面1には複数の微小変形部2が形成されている。微小変形部2は、ガラス板10の主面1がガラス板の厚み方向(図1紙面垂直方向でもある)に局所的に変位した微小領域である。微小変形部2は、凸部(図2A)、凹部(図2B)のいずれであってもよい。図2A、Bに示した凸部又は凹部の断面形状は例示であって、これに限られるものではない。
【0026】
図1に示した微小変形部2は、主面1に垂直な方向から見て円形であるが、微小変形部の形状はこれに限らない。図3に各種形状の微小変形部2A~2Kを示す。微小変形部の形状は、例えば、円形2A、楕円形2B、多角形2C~2D及び2H~2K、これらの複数が互いに接するように若しくは一部重複するように組み合わされた形状2E~2F、左記いずれかの形状から1又は複数の部分が除去された形状2G、又は左記いずれかの形状に近似できる形状である。
【0027】
微小変形部の形状は、少なくとも1つの内角が優角、言い換えると180°を超え360°未満の角度、である多角形2H~2Kであってもよい。内角に優角を有する多角形は、例えばL字型2H、凸字型2I、クランク型2J、疑似ダンベル型2Kである。主面1に垂直な方向から見て、微小変形部2Hはその内角に1つの優角2pを有し、微小変形部2I~2Kはその内角に2以上の優角2pを有する。
【0028】
図3も微小変形部の形状を例示したものに過ぎない。なお、微小変形部の形状は、厳密には、微小変形部2とそれを囲む連続部5との境界、すなわち凸部であれば底部、凹部であれば開口部を基準に定められる。この基準は後述する面積比率及び平均最短距離にも適用される。
【0029】
実際の微小変形部はその隅角部がやや丸まった形状になることがある。しかし形状を類型化して記述するため、本明細書では、隅角部における局部的な変形部がその隅角部を構成する線分の25%以下であればこの変形部を無視して形状を記述する。例えば、図4に示す微小変形部2Lは、正確には隅角部が丸まった正方形であるが、ここでは正方形として取り扱う。
【0030】
微小変形部の形状の種類は2以上に及んでいてもよく、3以上、さらには4以上であってもよい。なお、形状の種類は、互いに相似である形状を同一とみなしてその数等を定めることとする。複数種の微小変形部の存在は、主面における微小変形部の配置の自由度を向上させる。特に、平均寸法が所定範囲にある微小変形部を、主面に対する微小変形部の面積比率が所定範囲となり、かつ微小変形部が所定以上の平均最短距離を保つように配置するべき場合、複数種の形状の微小変形部の使用は、その配置の設計の自由度を向上させ、両立が難しい条件の成立を容易にする。主面の面内方向における微小変形部の周期性を所定範囲に低下させて配置するべき場合も同様である。
【0031】
以下に述べる微小変形部の形状A及び形状Bは、上述した設計の自由度の向上への寄与が特に大きい。
(形状A)主面に垂直な方向から見て、微小変形部を囲む最小の直角四角形の辺から選択した直角四角形の頂点を含まない一部、言い換えると直角四角形の辺の一部であって直角四角形の頂点を含まない一部、が直角四角形の内部へと後退した領域(以下、「後退部」)に接する直線部を有する微小変形部
(形状B)主面に垂直な方向から見て、少なくとも1つの内角が優角である多角形である微小変形部
【0032】
微小変形部2F、2Gは形状Aに相当する。これらの形状は、仮想的な最小の直角四角形3の辺の一部が後退した後退部3f、3gに接する直線部2f、2gを有している。後退して後退部3f、3gを形成する直角四角形3の辺の一部は直角四角形3の頂点3pを含まないように設定される。直線部2f、2gの長さは特に限定されないが、例えば1μm以上、さらには1.5μm以上である。なお、従来の防眩ガラスの主面でも偶発的に形成されることがあった円が部分的に重複した形状(図5A参照)は直線部を有さず、形状Aには相当しない。微小変形部2H~2Kは形状Bに相当する。形状A及びBは、従来の防眩ガラスではその形成が全く検討されていなかった。しかし、これらの形状は、互いに近接しすぎることなく微小変形部を主面に配置する際には有用である。
【0033】
微小変形部は、形状A又は形状Bに相当する形状を有する第1微小変形部と、第1微小変形部とは異なる形状を有する第2微小変形部とを含むことが好ましい。第2微小変形部は、形状A又は形状Bに相当する形状であってもそれ以外の形状であってもよい。第1微小変形部は、個数基準で、微小変形部全体の10%以上、さらには20%以上を占めていてもよく、90%以下、さらには80%以下であってもよい。第2微小変形部も同様の比率で主面に配置することができる。
【0034】
微小変形部の相互の平均最短距離は、4.5μm以上、さらには7μm以上、特に15μm以上であることが好ましく、305μm以下、さらに150μm以下、特に80μm以下、場合によっては50μm以下であってもよい。本明細書において、微小変形部の平均最短距離は、ガラス板の主面の直角四角形の領域内に存在する微小変形部の個数の平方根で当該直角四角形と同面積の正方形の一辺の長さを除して定めることとする。ただし、微小変形部が上記領域内に存在するかは、その微小変形部の幾何中心の位置に基づいて定める。また、上記領域は、30個以上、好ましくは50個以上、より好ましくは80~100個の微小変形部を含むように定めることとする。以下に述べる微小変形部の「寸法」に関する数値も、特に断らない限り、同様の個数の微小変形部が存在するように定めたある領域内の微小変形部に基づいて定めることとする。
【0035】
微小変形部の「寸法」は以下のように定める。まず、主面1に垂直な方向から観察し、微小変形部2を囲む面積が最小となる直角四角形3を仮想的に設定する。次に、この仮想的な直角四角形3の隣接する2辺3a、3b(図3の微小変形部2A~2Bを参照)の長
さをそれぞれ測定する。最後に、2辺3a、3bの長さの平均値を算出し、それを寸法とする。円である微小変形部2Aの寸法はその円の直径となる。
【0036】
複数の微小変形部の寸法の平均値は3.2μm以上、場合によっては4μm以上、さらには5μm以上、特に5.5μm以上、とりわけ6μm以上、場合によっては7μm以上、さらには9μm以上の範囲に調整されていることが望ましい。平均値がこれ以下になって微細な微小変形部が増加すると、ミー散乱による透過光の散乱が顕著になる。透過光の散乱をより確実に低下させて望ましいヘイズを達成するために、微小変形部は以下の条件a1を満たすことが望ましく、条件a2を満たすことがより望ましく、条件a3を満たすことがさらに望ましく、条件a4を満たすことが特に望ましく、条件a5を満たすことがとりわけ望ましい。
【0037】
(条件a1)複数の微小変形部に占める寸法が0.5μm~3.0μmの微小変形部A1の個数基準の比率が5%未満、好ましくは3%未満である。
(条件a2)複数の微小変形部に占める寸法が0.5μm~3.6μmの微小変形部A2の個数基準の比率が5%未満、好ましくは3%未満である。
(条件a3)複数の微小変形部に占める寸法が0.5μm~4.0μmの微小変形部A3の個数基準の比率が5%未満、好ましくは3%未満である。
(条件a4)複数の微小変形部に占める寸法が0.5μm~5.3μmの微小変形部A4の個数基準の比率が5%未満、好ましくは3%未満である。
(条件a5)複数の微小変形部に占める寸法が0.5μm~6.5μmの微小変形部A5の個数基準の比率が5%未満、好ましくは3%未満である。
【0038】
従来の防眩ガラスでは寸法が0.5μm~3.0μm程度の微細な微小凹凸に注意が払われてこなかった。ガラス板の主面の全面にサンドブラスト/エッチング法や表面凹凸を発達させる条件でエッチング法を適用すると、この程度に微細な微小凹凸が相当数発生し、可視域の光に対するミー散乱が顕著になりやすい。図5Aに、従来の防眩ガラスの主面の典型的な一例を示す。主面11に存在する微小変形部である凹部の径の分布は極めて広い。凹部の一部が隣接する凹部と接続して一体化していることも、凹部の径の分布をさらに広くしている。
【0039】
図5Bに、図5Aの状態からエッチング等により主面の後退がさらに進行した状態の断面を示す。この状態では、凹部の径が拡大し、主面12から連続した平坦部が失われていく。図5Bに示した状態においても、微細な凹部は残存し、凹部の径の分布は依然として広い。
【0040】
微小変形部の寸法の平均値の上限は、ガラス板と組み合わせて使用する画像表示装置の画素密度、より詳細にはその画像表示装置のサブ画素サイズに応じて適宜定めるとよく、具体的には、サブ画素サイズの短辺の半分程度以下とすることが好ましい。微小変形部の寸法の平均値の上限は、(d/1.9)μm、好ましくは(d/2)μmの範囲に設定するとよい。ここで、サブ画素サイズdはサブ画素の短辺である。
【0041】
画素密度125ppiの画像表示装置は、通常dが67.5μm程度であるから、微小変形部2の寸法の平均値の上限は35.5μm、好ましくは33.8μmである。画素密度264ppiの画像表示装置についての上記上限は16.9μm、好ましくは16.0μmである。画素密度326ppiの画像表示装置についての上記上限は13.6μm、好ましくは13.0μmである。
【0042】
防眩機能を有するガラス板が求められる画像表示装置の画素密度は概ね125ppi以上であるから、微小変形部の寸法の平均値の上限は35.5μm以下として、必要に応じ
て35.5μmよりも小さい範囲に設定するとよい。具体的には、組み合わせて使用する画像表示装置のサブ画素サイズの短辺をdμmとしたときに、微小変形部の寸法の平均値は35.5μm以下かつ(d/1.9)μm以下に設定するとよい。
【0043】
微小変形部の寸法の平均値は、上述した理由から、通常、3.2μm~35.5μmに設定される。ただし、高精細化した画像表示装置にも適用される可能性があれば、微小変形部の寸法の平均値の上限を、例えば16.9μm以下、さらには13.6μm以下、必要があれば12μm以下、特に10μm未満に設定してもよい。
【0044】
図5A及びBを参照して説明したように、従来の防眩ガラスでは凹部の径の分布が極めて広い。このため、微小変形部である凹部の寸法の平均値を上述の範囲に調整すると、寸法0.5μm~3.0μm程度の微細な微小変形部の比率が高くなる。その一方、微細な微小変形部の比率を低下させるためにエッチングを進行させると、微小変形部が大きくなり過ぎてスパークルを抑制できなくなる。
【0045】
微小変形部の形状によっては寸法がdに基づく計算値よりやや大きくてもスパークルの原因にならないことはある。しかし、スパークルをより確実に抑制するためには、微小変形部が以下の条件b及び/又は条件cを満たすことが望ましい。
【0046】
(条件b)複数の微小変形部に占める寸法が35.5μmを上回る微小変形部Bの個数基準の比率が15%未満、好ましくは10%未満である。
(条件c)組み合わせて使用する画像表示装置のサブ画素サイズの短辺をdμmとしたときに、複数の微小変形部に占める寸法が(d/1.9)μmを上回る微小変形部Cの個数基準の比率が15%未満、好ましくは10%未満である。
【0047】
微小変形部の寸法はバラツキが少なく揃っていることが好ましい。任意に選択した50個、好ましくは80~100個の微小変形部について測定した寸法の変動係数は、例えば40%以下、35%以下、30%以下、25%以下、23%以下、さらに22%以下であり、好ましくは21%以下であり、より好ましくは18%以下であり、場合によっては15%以下、13%以下、10%以下、さらには5%以下、特に3%以下である。従来は微小変形部の寸法の変動係数は着目されていなかった。変動係数に着目すれば、以下の望ましい条件d1を導くことができる。なお、変動係数は、周知のとおり、標準偏差を平均値で除して求めることができる。
【0048】
(条件d1)複数の微小変形部の寸法の変動係数が40%以下、さらには上述した値以下である。
【0049】
ただし、微小変形部の寸法には、上述の変動係数が3~40%、さらには3~23%、特に5~22%、場合によっては5~21%となる程度のバラツキが存在してもよい。この程度のバラツキは反射ムラの緩和に寄与することがある。反射ムラの緩和を重視するべき場合、変動係数は23%を超えていてもよい。例えば、微小変形部の寸法の変動係数が3~40%の範囲にあり、かつ当該寸法の平均値が13.6μm以下、特に9μm以上13.6μm以下であるガラス板は、画素密度326ppiの画像表示装置との組み合わせにおいて、スパークルを抑制し、かつ反射ムラを抑制することに適している。この場合、変動係数は、12.3%以上、さらには12.5%以上が特に好適であり、例えば12.3~35%である。また、この場合、上述した二値化処理Aをした画像の二次元フーリエ変換像の輝点が15個以下であると、反射ムラをさらに抑制することが可能となる。
【0050】
なお、互いに寸法が明確に異なり、かつ寸法によって区分可能な複数の寸法の微小変形部を意図的に形成する場合には、微小変形部の寸法のバラツキを種類ごとに検討してもよ
い。「互いに寸法が明確に異なる」と言えるのは、例えば、ガラス板の主面の微小変形部が、寸法の平均値がμα、最小値がminαである微小変形部αと、寸法の平均値がμβ、最大値がmaxβである微小変形部βとを含み、μα>μβ、かつminα-maxβ>1μmの関係が成立する場合である。後者の式はminα-maxβ>2μm、さらにminα-maxβ>3μmであってもよい。また、「区分可能」と言えるのは、minαとmaxβとの間の寸法を有する微小変形部が実質的に存在しない場合である。特定の寸法を有する微小変形部が「実質的に存在しない」とは、該当する微小変形部の比率、例えばminαとmaxβとの間の寸法を有する微小変形部の比率が個数基準で全体の3%未満、特に1%未満、とりわけ0.5%未満であることをいう。この例において、微小変形部は、微小変形部α、βのそれぞれと互いに寸法が明確に異なり、かつ区分可能な微小変形部γをさらに含んでいてもよい。互いに寸法が明確に異なり、かつ寸法によって区分可能な複数種の微小変形部が含まれる場合は、条件d1と共に、又は条件d1に代えて、以下の条件d2を満たすことが望ましい。
【0051】
(条件d2)
互いに寸法が明確に異なり、かつ区分可能な複数の寸法の微小変形部が含まれている場合は、各微小変形部(α、β、γ・・・)の寸法それぞれについて算出した変動係数が、それぞれ23%以下、22%以下、21%以下、15%以下、10%以下、さらには7%以下、好ましくは5%以下である。なお、各微小変形部(α、β、γ・・・)は、個数基準で、微小変形部全体の15%以上、20%以上、さらには30%以上を占めるように設定される。
【0052】
ガラス板は、条件d1及び/又は条件d2を満たしていることが好ましい。条件d2を満たすガラス板は、その前提として、条件a1を満たすことが好ましい。
【0053】
複数の微小変形部2は、凸部であっても凹部であっても構わない。ただし、以下の理由からは凸部であることが好ましい。第1に、タッチパネルとして使用するガラス板については、凸部が凹部よりも指への抵抗が小さい表面を提供できる。したがって、ユーザの操作感を重視するべき場合には凸部が有利である。第2に、エッチング法等によりガラス表面を後退させる過程において、時間の経過と共に凹部の寸法は所望の設計値から拡大することがあるのに対し、凸部の寸法は設計値からの拡大、いわゆるオーバーエッチングによる寸法の拡大、を容易に防止できる。このため、スパークルをより確実に防止するべき場合には凸部が有利である。後述するとおり、凹部又は凸部は、それぞれが実質的に平坦な連続部によって囲まれていることが好ましい。
【0054】
ただし、エッチング加工の効率性、言い換えるとエッチングするガラスの量の少なさを重視するべき場合には、凹部が有利である。
【0055】
微小変形部2の深さ又は高さは、特に制限されないが、例えば0.1μm以上、好ましくは0.2μm以上、より好ましくは0.3μm以上であり、例えば1μm以下、好ましくは0.8μm以下、より好ましくは0.7μm以下である。
【0056】
図1に戻って、主面1においてそれぞれの微小変形部2を囲む連続部5について説明する。連続部5は、微小変形部2により分断されることなく、微小変形部2の間及びその周囲に広がっている。言い換えると、主面1において、微小変形部2は連続部5に囲まれた島状の領域を形成している。連続部5は実質的に平坦な領域であることが好ましい。本明細書において「実質的に平坦」な領域とは、その領域内の表面粗さ曲線に基づいて算術平均粗さRaの算出式により算出した表面粗さが0.07μm以下、好ましくは0.05μm以下、より好ましくは0.02μm以下、特に好ましくは0.01μm以下の領域である。実質的に平坦に該当するかは、例えば、断面SEM観察により評価することができる
。なお、図5Bから明らかなように、従来のエッチング法により凹凸を発達させたガラス板の表面には、実質的に平坦な領域が存在しない。従来のエッチング法では、表面凹凸を発達させるために、事前にサンドブラストして微細な凹部を生成してから、或いは析出物を局所的に生成させながら、エッチングを進行させる。これらの方法では、事実上、微小変形部の起点の位置と寸法の分布とを制御できないため、凹凸が発達した段階では主面の表面から平坦な領域が失われる(図5B)。
【0057】
実質的に平坦な領域は、ガラス板の主面の40%以上、50%以上、さらには60%以上を占めていてもよい。この領域は微小変形部が占める面積の残部を占めていてもよい。
【0058】
図1では、主面1上に同一の微小変形部2が規則的に配列している。この設計は、基本的には量産品の特性を安定化させる上では好ましい。大きさが不均一な微小変形部を不規則に配置した設計は、エッチング等による加工時に互いに結合して一体化し、過度に大きい微小変形部を生じさせやすい(図5A参照)。また、特に大きな面積のガラス板については特性の局所的な相違を十分に抑制することも容易ではない。規則的な配列によればこれらの不利益は解消される。しかし、微小変形部の配置の規則性が高い主面からは不自然な虹状の反射光のムラが観察されることがある。このムラはスパークルほどには目立たないが、抑制することが望ましい。
【0059】
反射光のムラは、微小変形部の配列の規則性を緩和することにより抑制できる。具体的には、主面の200μm四方の領域、及び/又は寸法が0.5μm以上の微小変形部が80~150個存在する主面の領域、を主面に垂直な方向から観察して微小変形部を周囲の領域から区別する上述の二値化処理Aをした画像の二次元フーリエ変換像に、2~30個、さらに3~30個、好ましくは5~25個、より好ましくは9~18個、特に好ましくは13~17個、別のより好ましい例としては5~15個の輝点が観察される程度に、主面の面内方向についての微小変形部の配置の周期性を低下させることが好ましい。防眩機能を有する従来のガラス板は、微小変形部の配置に周期性が全くないか、あったとしてもその程度がごく低いため、上記二次元フーリエ変換像に観察される輝点は1つのみとなる。他方、図1に示した程度に周期性が高い配列は、上記二次元フーリエ変換像に数百程度以上の多数の輝点を発生させる。
【0060】
なお、「寸法が0.5μm以上の微小変形部が80~150個存在する主面の領域」は、主面上に直角四角形の領域として設定するとよい。この場合、微小変形部の個数は、直角四角形の領域にその一部が存在する微小変形部も含めてカウントすることとする。
【0061】
微小変形部の配列の規則性を緩和すると、上述の輝点の数が、製造ロットによって、或いは局所的に、相違することがある。これは、エッチング条件等の製造条件が不可避的に僅かに変動することによって、微小変形部の位置や大きさが影響を受けたためと考えられる。本発明者の検討によると、このような輝点の数の不安定化は、その製造条件で得られる平均的な輝点の個数が15程度以下となる場合に顕著になり、この影響により輝点の個数が1つに減少したガラス板が得られることもある。このようなガラス板からも、輝点の個数が2以上のガラス板と実質的に変わらない程度に所望の特性が得られることが確認されている。これは、二値化処理Aによっては確認できない程度の規則性が存在するためと考えられる。実際に、輝点の個数が1つに減少した製造ロットのガラス板に対し、256×256より高い階調、例えば8192×8192の階調を適用して画像の二値化処理を実施すると、上述の輝点は2以上観察される。階調が高くなるほど輝点の数は増えるためである。また、配列の規則性をさらに緩和して設計したガラス板からも所望の特性を得ることは可能である。ただし、緩和の程度によっては、二値化処理Bのような数万程度の高い階調で二値化しなければ2以上の輝点数を測定できず、規則性の存在を確認できないことがある。以上を考慮に入れると、簡便には8192×8192の階調、厳密には二値化
処理B(65536×65536)により2以上の輝点が確認できることを前提として、二値化処理Aによる輝点の数が1つであるように微小変形部を設計してもよいことになる。一方、特許文献1~3に開示されている従来のガラス板を数千程度の高い階調、さらには二値化処理Bを適用して測定しても、得られる輝点の数は1つとなる。
【0062】
微小変形部の面積比率、より詳しくは主面に垂直な方向から見た微小変形部の面積の合計の主面の面積に占める比率は、特に制限されないが、例えば1.5~60%、さらには1.5~50%、特に1.5~40%である。微小変形部の面積比率は、好ましくは2%以上、より好ましくは5%以上、場合によっては8%以上であり、好ましくは45%以下、より好ましくは40%以下、特に好ましくは30%以下、場合によっては25%以下、さらには23%以下、特に20%以下である。
【0063】
上述した微小変形部を有するガラス板は、スパークルを抑制しながらグロス及びヘイズを共に望ましい範囲に調整することに適している。具体的には、グロスをX(%)、ヘイズをY(%)と表示したときに、式(I)の関係を満たすことが可能である。326ppiの画像表示装置と組み合わせて使用してもスパークルを防止できる程度に微細に微小変形部を制御しても、具体的には例えば微小変形部の平均寸法を3.2μm~13.6μmに設定したとしても、式(I)を満たすガラス板を提供することもできる。
【0064】
Y≦-1/6X+20 (I)
【0065】
本発明者の検討により、ヘイズが十分に抑制されていれば、グロスがある程度高くてもガラス板の実用性を確保できることが明らかになった。上述した微小変形部を有するガラス板は、このような範囲にヘイズ及びグロスに調整することにも適しており、具体的には式(II)の関係を満たすことが可能である。
【0066】
Y≦-1/40X+8 (II)
【0067】
式(II)を具備するガラス板において、Yの値は6以下、さらに5以下であってもよい。X及びYの値は、それぞれ100≦X≦160、0≦Y≦6、さらには100≦X≦150、0≦Y≦5の範囲に制限されていてもよい。式(II)は、Y≦-1/40X+7.5であってもよい。
【0068】
本発明により提供される、微小変形部を有するガラス板は、式(I)及び(II)の少なくとも1つの関係を満たすことができる。
【0069】
特許文献1~3において比較例として提示されているガラス板の中には、式(I)及び/又は(II)を満たす程度にヘイズ及びグロスが低いものが含まれている(特許文献2比較例1~5及び特許文献3実験例8)。しかし、従来、この程度にヘイズ及びグロスが低いガラス板は、特許文献1~3に報告されているとおりスパークルを抑制できないものであった。これは微小変形部が全体的に大きすぎるためである。このようなガラス板は、条件bを満たすことが難しく、寸法のバラツキが大きいために条件d1を満たすことも難しい。一方、スパークルが抑制されるように微小変形部全体の寸法を制御すると(特許文献1~3の各実施例)、微細な微小変形部の比率が増加して条件a1が満たされなくなり、特にヘイズを抑制することが難しくなる。特許文献1~3に開示されている従来のエッチング法では、条件d1が満たされる程度に微小変形部の寸法を揃えることも困難である。このため、特許文献1~3の実施例は、式(I)及び(II)の関係を満たしていない。
【0070】
このような従来の技術水準に対し、本形態によれば、例えばスパークルが抑制されるよ
うに画素密度326ppiから計算される値以下、具体的には13.6μm以下、さらには12μm以下、場合によっては10μm未満にまで微小変形部の寸法の平均値を制限しても、式(I)及び/又は(II)の関係を満たすガラス板を提供することが可能である。言い換えると、本発明は、上述した側面から以下のガラス板を提供することもできる。
【0071】
複数の微小変形部を有する主面を備え、
前記複数の微小変形部は複数の凹部又は複数の凸部であり、
前記主面に垂直な方向から観察して前記微小変形部を囲む最小の直角四角形の互いに隣接する2辺の平均値を当該微小変形部の寸法と定義したときに、前記複数の微小変形部の前記寸法の平均値が3.2μm~13.6μmであり、かつ
グロスをX(%)、ヘイズをY(%)と表示したときに、式(I)及び(II)の少なくとも1つを満たす、
ガラス板。
【0072】
このガラス板は、さらに条件b及び/又は条件cを満たしていてもよく、条件d1及び/又は条件d2を満たしていてもよく、第1の実施形態で述べたその他の特徴を具備していてもよい。なお、本明細書において、グロスは、日本工業規格(JIS) Z8741-1997の「鏡面光沢度測定方法」の「方法3(60度鏡面光沢)」に従って、ヘイズはJIS K7136:2000に従ってそれぞれ測定される。
【0073】
[第2の実施形態]
次に、上述の第2の側面から提供されるガラス板の一形態を説明する。この一形態においてガラス板は複数の微小変形部を有する主面を備えている。複数の微小変形部は複数の凸部である。複数の微小変形部はそれぞれ実質的に平坦な連続部によって囲まれていることが好ましい。複数の微小変形部は所定範囲の平均寸法を有する。
【0074】
本形態においても、微小変形部の平均寸法は、3.2μm~35.5μmの範囲内に設定される。微小変形部の形状、寸法、相互の距離、面積比率の好ましい範囲及び条件は、第1の実施形態で述べたとおりである。本形態においても、上述した二次元フーリエ変換像には、第1の実施形態で述べた個数の輝点が観察される程度に微小変形部の配置の周期性を低下させることが好ましい。本形態によっても、式(I)及び/又は(II)を満たすガラス板を提供することが可能であり、その他第1の実施形態で述べたその他の特徴を具備することも可能である。
【0075】
ただし本形態では、主面に形成されている微小変形部は凸部である。凸部の高さの好ましい範囲は第1の実施形態で述べたとおりである。微小変形部が凸部であるため、タッチパネルとしてガラス板を使用するユーザにより優れた操作感を提供できる。微小変形部が凹部であるガラス板との操作感の相違は、相対湿度が低い環境下でより顕著になる。また、微小変形部の製造に際して凸部はその寸法を所定限度以下に制御しやすいため、凸部によればスパークルがより確実に防止される。さらに、凸部を囲む連続部が実質的に平坦である場合、本形態によるガラス板の主面は、雰囲気から付着する粉塵やユーザの指から転写される皮脂の除去が相対的に容易になる。
【0076】
[第3の実施形態]
さらに、上述の第3の側面から提供されるガラス板の一形態を説明する。この一形態においてガラス板は複数の微小変形部を有する主面を備えている。複数の微小変形部は複数の凹部又は複数の凸部である。複数の微小変形部は所定範囲の平均寸法を有する。主面から得た所定の二次元フーリエ変換像は、所定範囲の個数の輝点を有する。所定範囲の個数は、二値化処理を256×256(二値化処理A)、必要に応じさらに65536×65536(二値化処理B)の階調で実施した場合に基づいて定めることができる。
【0077】
本形態においても、微小変形部の平均寸法は、3.2μm~35.5μmの範囲内に設定される。微小変形部の形状、寸法、相互の距離、面積比率の好ましい範囲及び条件は、第1の実施形態で述べたとおりである。本形態においても、微小変形部は好ましくは凸部であり、その好ましい高さは第1の実施形態で述べたとおりである。本形態によっても、式(I)及び/又は(II)を満たすガラス板を提供することが可能である。
【0078】
ただし本形態では、微小変形部の配列は、図1に示したような周期性が高い配列ではなく、二値化処理Aによる二次元フーリエ変換像に、3~30個、好ましくは5~25個、より好ましくは9~18個、特に好ましくは13~17個、別の好ましい例としては5~15個の輝点が観察される程度の周期性を有している。この程度に緩和した周期性は、量産の際の再現性の確保とそれ自体から発生する反射光のムラの緩和との両立に適している。上述したとおり、周期性を緩和すると、製造ロットによっては輝点の数が1つのみとなる場合がある。しかしこの場合も、256×256より高い階調、例えば数千程度、さらには65536×65536の階調による二値化処理Bを実施すると、2以上の輝点が観察されることから、程度が低いながらも周期性は確認できる。
【0079】
上述したとおり、二次元フーリエ変換像は、ガラス板の主面の200μm四方の領域、又は寸法が0.5μm以上の微小変形部が80~150個存在する主面の領域、を主面に垂直な方向から観察して微小変形部を周囲の領域から区別する二値化処理をした画像から得ることができる。1辺を200μmとする領域の設定は簡便に実施できる。一方、個数に基づく領域の設定は、微小変形部の分布密度が小さい主面における微小変形部の周期性を正しく評価することに、より適している。
【0080】
本形態では、ガラス板が、二次元フーリエ変換像が所定の個数の輝点を有するとの条件に代えて、微小変形部の寸法の変動係数が3~40%、さらには3~23%であるとの条件を具備していてもよい。この場合の変動係数の好ましい範囲は、5~22%であり、さらには8~21%、特に12.5~21%である。
【0081】
本形態では、ガラス板が、二次元フーリエ変換像が所定の個数の輝点を有するとの条件に代えて、微小変形部の寸法の変動係数が3%以上であるとの条件と、条件a1、すなわち微細な微小変形部の比率が小さいとの条件とを具備していてもよい。この場合の変動係数の好ましい範囲は、5%以上、さらには8%以上、特に12.5%以上である。
【0082】
[第4の実施形態]
引き続き、上述の第4の側面から提供されるガラス板の一形態を説明する。この一形態においてガラス板は複数の微小変形部を有する主面を備えている。複数の微小変形部は複数の凹部又は複数の凸部である。複数の微小変形部は所定範囲の平均寸法を有する。複数の微小変形部は、所定形状の第1微小変形部と、第1微小変形部とは異なる形状を有する第2変形部とを含んでいる。
【0083】
本形態において、微小変形部の平均寸法は、3.2μm以上、例えば3.2μm~50μm、好ましくは3.2μm~35.5μmの範囲に設定される。第1微小変形部は見かけ上の寸法が大きくてもスパークルを発生させにくい。微小変形部の形状、寸法、相互の距離、面積比率の好ましい範囲及び条件は、第1の実施形態で述べたとおりである。本形態においても、微小変形部は好ましくは凸部であり、その好ましい高さは第1の実施形態で述べたとおりである。本形態においても、上述した二次元フーリエ変換像には、第1の実施形態で述べた個数の輝点が観察される程度に微小変形部の配置の周期性を低下させることが好ましい。本形態によっても、式(I)及び/又は(II)を満たすガラス板を提供することが可能である。
【0084】
ただし本形態では、微小変形部が、上述した形状A又は形状Bに相当する第1微小変形部と、第1微小変形部とは異なる形状を有する第2微小変形部を含んでいる。第2微小変形部は、形状A又は形状Bに相当するものであっても相当しないものであってもよい。第1微小変形部及び第2微小変形部の好ましい存在比率は第1の実施形態で述べたとおりである。第1微小変形部は、従来はその形成が意図されてこなかったものであり、その特徴ある形状から明らかなように、第2微小変形部と組み合わせることによって、主面上への微小変形部の配置の設計の自由度をより向上させる。特徴ある微小変形部の形状は、微小変形部の面積比率や規則性の調整を容易にする。
【0085】
[画像表示装置としての実施形態]
最後に、画像表示装置としての実施形態について説明する。本発明は、その一形態として、サブ画素サイズの短辺がdμmである画像表示装置と、当該画像表示装置の画像表示側に配置されるガラス板とを備え、ガラス板が上述した第1~第4実施形態の少なくとも1つで述べたガラス板である、ガラス板を備えた画像表示装置を提供する。ただし、ガラス板の微小変形部の平均寸法は、好ましくは、3.2μm以上(d/1.9)μm以下、特に4μm以上(d/2)μm以下の範囲に設定される。
【0086】
[ガラス板]
ガラス板の組成に特段の制限はない。ガラス板は、ソーダライムガラス、アルミノシリケートガラス、無アルカリガラスに代表される各種組成を有するものであってよい。ガラス板の厚みは、特段の制限はないが、例えば0.1mm~4.0mmの範囲、特に0.5mm~3.0mmの範囲である。
【0087】
[ガラス板の加工]
(強化処理)
ガラス板には、必要に応じ、物理強化処理又は化学強化処理を施してもよい。これらの処理は、従来から実施されている方法により実施すれば足りるため、ここではその説明を省略する。
【0088】
(薄膜形成)
ガラス板の表面には、必要に応じ、諸機能を付加するために薄膜を形成してもよい。薄膜は、微小変形部2を配置した主面1に形成してもよいし、反対側の主面に形成してもよい。薄膜としては、反射抑制膜、指紋付着防止膜等が挙げられる。これらの薄膜も、従来から実施されている方法により形成すれば足りるため、ここではその説明を省略する。薄膜は、典型的には、真空蒸着法、スパッタリング法、化学気相法等の気相成膜法、ゾルゲル法等の湿式成膜法により形成される。
【0089】
以下、実施例により本発明をより詳細に説明するが、以下の実施例は本発明を制限する趣旨で開示されるものではない。
【0090】
[ガラス板の作製]
以下のようにしてガラス板の主面に微小変形部である微小凹凸を形成した。用いたガラス板は厚さ1.1mmのアルミノシリケートガラスである。このガラス板の一方の主面にフォトリソグラフィーにより各種の微小凹凸を形成した。フォトマスクの現像及び洗浄に引き続いて実施するエッチングに用いるエッチング液としては濃度1.5wt%のフッ酸(フッ化水素水溶液)を用いた。エッチングは、形成される凹部の深さ又は凸部の高さがほぼ0.3~0.6μmとなるように実施した。
【0091】
なお、例18のガラス板は、フォトリソグラフィーによらず、サンドブラストとフッ酸
によるエッチングにより作製した。
【0092】
[ガラス板の評価]
ガラス板の評価は以下のように実施した。
(微小変形部の寸法及び面積比率)
SEMを用い、微小変形部の主面を広さ126×95μmにわたって観察し、微小変形部の面積比率と寸法とを測定した。微小変形部の寸法は84個について測定した。
【0093】
(グロス及びヘイズ)
グロスは、JIS Z8741-1997の「鏡面光沢度測定方法」の「方法3(60度鏡面光沢)」に基づいて測定した。ヘイズは、JIS K7136:2000に基づいて測定した。
【0094】
(FT輝点数)
二次元フーリエ変換像における輝点数の測定には、画像処理ソフトウェア「Imagej 1.50i」を用いた。このソフトウェアは、パブリックドメインにあり、フーリエ解析機能を備えている。具体的には、SEM観察により得られた画像において微小変形部がその周囲から区別されるように閾値を設定し、フーリエ変換像を作成してその像に現れた揮点の数をカウントした。なお、上記ソフトウェアによる解析は基本的に256×256の階調(二値化処理A)で実施し、後述する場合は65536×65536の階調(二値化処理B)で実施した。
【0095】
(スパークル抑制効果)
緑色のサブ画素のみを発光させた階調表示(R,G,B)を(0,255,0)とした125ppi及び326ppiのディスプレイの表面に微小凹凸を形成した主面がディスプレイの外側を向くようにガラス板を載せ、ディスプレイを静止させた状態で画像のチラツキを評価した。結果は以下に基づいて評価した。
×:画面のチラツキが確認できる。
△:画面のチラツキが僅かに確認できる。
○:画面のチラツキが確認できない。
【0096】
(反射ムラ)
表面が黒色の検査台の上方に20Wの蛍光灯を設置し、その蛍光灯の下方約30cmにガラス板を保持した。この状態でガラス板から約30cm離れた位置からガラス板の主面の表面反射を観察した。結果は以下に基づいて評価した。
×:虹色の干渉色を確認できる。
○:僅かに干渉色を確認できる。
◎:干渉色を確認できない。
【0097】
結果を表1及び2に示す。また、SEMを用いて例1~18から得られたガラス板の主面を観察した結果を図6~23に示す。各SEM像は、50μm四方の領域(図6~12;例1~7)、200μm四方の領域(図13~22;例8~17)、100μm四方の領域(図23;例18)を観察したものである。また、図13~23には、得られたSEM像から得られた二次元フーリエ変換像を併せて示す。この変換像における輝点は○印で囲んだ位置にある。例1~7からは、50μm四方の領域の測定により少なくとも100を超える輝点が確認されたため、輝点数がさらに増加することになる200μm四方を対象とした測定は省略した。また、例18については、200μm四方の領域についての二次元フーリエ変換像も観察したが、輝点数は、図23と同様、1つのみとなった。図示を省略するが、例19~35についても、ガラス板の主面には微小変形部が形成されている。
【0098】
なお、特許文献2図1及び図2のSEM像について、上記と同様にして二次元フーリエ変換像を作成したところ、例18と同様、輝点数は1であった。従来の防眩ガラスは、そのいずれについても、主面の面内方向についての微小変形部の周期性を確認することができなかった。
【0099】
輝点数が相対的に少なくなるように、具体的には15以下、さらには10以下となるように設計したガラス板を繰り返し製造すると、製造ロットによって輝点数が表1及び2に示した値よりも小さくなる場合があり、輝点数が1となったサンプルも確認された。このようなサンプルのSEMを用いた観察した結果を図24及び25に示す。図24及び25は、それぞれ例22及び27と同じ製造条件を適用して得られたサンプルから得られた結果である。ただし、輝点数を除いた表2の各項目については、これらのサンプルからも、それぞれ例22及び27とほぼ同様の良好な結果が得られた。また、図24及び25に示したサンプルについて、ソフトウェアによる解析をより高い階調、具体的には8192×8192又はそれ以上の階調、で実施してFT輝点数をカウントしたところ、それぞれの輝点数は2以上現れた。例32~35も、二値化処理AによるとFT輝点数は1となったが、ソフトウェアによる解析をより高い階調、具体的には65536×65536の階調(二値化処理B)で実施した場合にはFT輝点数は2以上になった。これに対し、同程度に高い階調で例18のサンプルを解析しても輝点数は1のままであった。
【0100】
さらに、微小変形部の面積比率がほぼ同一であって微小変形部の形状(凹又は凸)が相違する例13及び14について、ガラス板の主面の触感テストを実施した。このテストは、主面を乾いた指先にて5回程度擦り付けることによって実施した。微小変形部が凸部である例14が例13よりも触感に優れていた。その他のガラス板についても同様の触感テストを実施したところ、面積比率が同じ範囲にある場合、微小変形部が凸部であるガラス板は、微小変形部が凹部であるガラス板よりも触感に優れていることが確認できた。
【0101】
また、例1~17の連続部について断面SEMを用いて表面粗さ曲線を測定し、連絡部に相当する部分について同曲線から算術平均粗さRaと同様の式により平均粗さを算出したところ、その値はいずれも0.008μm以下になった。また、例1~17の微小変形部である凸部の頂部又は凹部の底部について同様に平均粗さを算出したところ、その値は、いずれも0.008μm以下になった。例19~35についても同様の測定を実施したところ、平均粗さは同様に低く抑えられていた。
【0102】
図26に例1~16、19~35のグロスとヘイズとの関係を示す。図26に示した実線の斜線は、グロスをX(%)、ヘイズをY(%)と表示したときに、Y=-1/6X+20で示される。表1の例1~16のガラス板の特性は、図26においてこの直線の下方に、より詳しくは上記斜線とY=-1/6X+15で表される図26では図示を省略する斜線との間にプロットされる。特に例1~6のガラス板は、寸法の平均値が3.2μm~13.6μmであって、画素密度326ppiの画像表示装置と組み合わせにおいてスパークルを抑制しながらも、グロス及びヘイズとを従来よりもバランスよく低下させたものである。
【0103】
例19~35は、ヘイズが十分に抑えられているがグロスがやや高く、例22、25、27を除いてY≦-1/6X+20の関係を具備しない。しかし、これらのサンプルからも、実用上問題がない特性が得られることが確認された。特に、例19~35のガラス板は、画素密度326ppiの画像表示装置と組み合わせにおいてスパークルが抑制され、ヘイズが十分に低下し、かつ反射ムラも良好に抑制されたものであった。図26に示した破線の斜線は、Y=-1/40X+8で示される。例19~35のガラス板の特性は、図26においてこの直線の下方にプロットされている。
【0104】
図26にプロットされたPD1~3は、それぞれ特許文献1~3においてスパークルを抑制できた実施例として開示されているガラス板の特性を示したものである。特許文献1~3の実施例のガラス板は、画素密度326ppiの画像表示装置と組み合わせにおいてスパークルを抑制しているが、グロス及びヘイズを共に小さく抑えることには成功していない。特許文献1~3の技術は、これらの文献に比較例として提示されているように、スパークルの発生を許容しなければグロスとヘイズとを適切に設定できない。特許文献1~3の実施例のガラス板は、寸法が3μm程度以下の微小変形部の比率が高いために特性がやや劣ることになったと考えられる。これらの特許文献に開示されている従来の技術では、適度な寸法の微小変形部を寸法のバラツキを抑制して形成することが難しい。
【0105】
特許文献1~3に示されているような従来の防眩ガラスでは、その主面に形成された微小凹凸の形状及び配置が制御されていない。このため、わずかな製造条件の相違で大きく特性が変化することがある。例えば、図26の実線の斜線に最も近い*のガラス板(グロス66%、ヘイズ9.6%)は、エッチングの時間を5秒間短くするだけでグロス及びヘイズがともに大きく上昇する(グロス75%、へイズ13.6%;特許文献2実施例8及び9を参照)。
【0106】
表1の例1~4及び6~7を参照すると、寸法の標準偏差を測定した例から算出した寸法の変動係数(標準偏差/平均値)は、いずれも2.8~2.9%程度と十分に小さくなった。また、例5には、寸法が明確に異なり、区分可能な2種の微小変形部α、βが存在し(微小変形部αの最小寸法は微小変形部βの最大寸法よりも2μm以上大きい)、各微小変形部について算出した寸法の変動係数はともに2.8~2.9%程度であった。
【0107】
微小変形部がランダムに配置されているように見える例8及び9においても、微小変形部の個数を相当数含む領域を対象として判断するとその配置に周期性が存在することが確認できた。例8、9とも200μm四方には130~140個の微小変形部が存在し、これに対応するFT輝点数は5である。一方、これの1/4程度の微小変形部を含む100μm四方の領域から得られるFT輝点数は、例8,9とも、従来のランダムな微小変形部と同様、1つのみであった。FT輝点数に基づく微小変形部の周期性の判定は、微小変形部を80~150個含むように領域を設定することが正確を期す上では望ましい。このような個数に基づく領域の設定は、微小変形部の平均最短距離が図示した例よりも長くその分布密度が図示した例よりも小さい、主面に対して特に有効と考えられる。
【0108】
表1の例8~10、12~13及び15、並びに表2の例19~35を参照すると、変動係数は、3~35%の範囲にあり、ややバラツキが大きくなっている。この程度に微小変形部の寸法にバラツキが認められても、スパークル抑制効果を始めとする効果は十分に得られた。また、この程度に大きい変動係数は反射ムラの抑制に有効であった。例5、11、14及び16には、寸法が明確に異なり、区分可能な微小変形部が存在し、微小変形部の種類ごとに見ると、その寸法のバラツキは小さくなっている。例5と同様、例11、14及び16についても、確認した範囲では、区分可能な種類ごとに見た微小変形部の寸法の変動係数は、23%以下となっていた。また、例32は、微小変形部の寸法のバラツキがごく微小に抑えられている。このようなガラス板においても、微小変形部の配置の規則性を緩和すれば(二値化処理AによるFT輝点数:1)、反射ムラはある程度改善される。
【0109】
一方、例17の微小変形部の平均寸法は40μmを超えており、スパークル抑制効果が得られなかった。例18は、微小変形部の平均寸法が2μm程度であった。例18は、例1~17及び19~35とは異なり、寸法0.5~3.0μmの微小変形部を多数有し、透過光は激しく白濁していた。なお、例18は、各微小変形部が実質的に平坦な領域で囲
まれておらず、主面のほぼすべてに微小変形部が形成されている点においても、そのような領域が存在し、微小変形部の面積比率が半分以下であるその他の例と相違していた(図6~25参照)。
【0110】
【表1】
【0111】
【表2】
【0112】
表1において、例1~16は寸法0.5μm~3.6μmの微小変形部A2の個数基準の比率が3%未満であった。例7~16は寸法0.5μm~4.0μmの微小変形部A3の個数基準の比率が3%未満であった。例10~16は寸法0.5μm~5.3μmの微小変形部A4の個数基準の比率が3%未満であった。例10~11、14~16は寸法0.5μm~6.5μmの微小変形部A5の個数基準の比率が3%未満であった。また、表2において、例19~35は寸法0.5μm~3.6μmの微小変形部A2の個数基準の比率が3%未満であった。例23~35は寸法0.5μm~4.0μmの微小変形部A3の個数基準の比率が3%未満であった。例28~35は寸法0.5μm~5.3μmの微小変形部A4の個数基準の比率が3%未満であった。例30~35は寸法0.5μm~6.5μmの微小変形部A5の個数基準の比率が3%未満であった。また、例1~10、12~13、15~16、18~35は、寸法が35.5μmを上回る微小変形部Bの個数基準の比率が15%未満であった。
【0113】
なお、本実施例に記載のようなフォトリソグラフィー-エッチングによれば、良好な性
能を示すガラスを再現性よく製造することができる。この製造方法は、製品間のバラツキや不良率を大幅に低下させることにも適している。
【産業上の利用可能性】
【0114】
本発明によるガラス板は、特に画像表示装置の画像表示側に配置する防眩機能を有するガラスとして利用価値が高い。
図1
図2A
図2B
図3
図4
図5A
図5B
図6
図7
図8
図9
図10
図11
図12
図13
図14
図15
図16
図17
図18
図19
図20
図21
図22
図23
図24
図25
図26