(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2023-10-25
(45)【発行日】2023-11-02
(54)【発明の名称】患者の眼での神経血管連関を検査するための方法及び装置
(51)【国際特許分類】
A61B 3/12 20060101AFI20231026BHJP
A61B 3/10 20060101ALI20231026BHJP
【FI】
A61B3/12 300
A61B3/10 100
(21)【出願番号】P 2020552761
(86)(22)【出願日】2019-03-29
(86)【国際出願番号】 DE2019100295
(87)【国際公開番号】W WO2019185096
(87)【国際公開日】2019-10-03
【審査請求日】2022-03-25
(31)【優先権主張番号】102018107623.1
(32)【優先日】2018-03-29
(33)【優先権主張国・地域又は機関】DE
(73)【特許権者】
【識別番号】518257068
【氏名又は名称】イメドース システムズ ゲーエムベーハー
(74)【代理人】
【識別番号】100154612
【氏名又は名称】今井 秀樹
(72)【発明者】
【氏名】ヴィルサー ヴァルトハルト
(72)【発明者】
【氏名】スコルゼッツ マルティーン
(72)【発明者】
【氏名】リーマー トーマス
【審査官】増渕 俊仁
(56)【参考文献】
【文献】特開2005-169098(JP,A)
【文献】国際公開第2005/084526(WO,A1)
【文献】特開2003-190096(JP,A)
【文献】特開2010-172614(JP,A)
【文献】特表2008-539905(JP,A)
【文献】国際公開第2019/185072(WO,A1)
【文献】Gerhard Garhofer, et al.,Use of the retinal vessel analyzer in ocular blood flow research,Acta Ophthalmologica,2010年,Vol. 88, No. 7,pp. 717-722
(58)【調査した分野】(Int.Cl.,DB名)
A61B 3/00-3/18
(57)【特許請求の範囲】
【請求項1】
患者の眼(A)での神経血管連関を検査するための方法において、
フリッカー光を用いて眼底が刺激されている間、画像化方法を用いて前記眼(A)の眼底の複数の画像の画像シーケンスが作成及び記録され、
前記眼底の少なくとも1つの毛細血管の血管領域(KGB)のための前記画像シーケンスの前記画像から、複数の信号が導出され、当該信号がフリッカー光を用いた刺激に対する、前記毛細血管の血管領域(KGB)の毛細血管
の血管応答、を表しており、また、当該信号の絶対的又は割合的な最大変化が算出され
、神経血管連関のための評価基準として用いられる、方法。
【請求項2】
請求項1に記載の、患者の眼(A)での神経血管連関を検査するための方法において、
前記眼底の動脈又は静脈の血管の少なくとも1つの血管部分(GA)のための前記画像シーケンスの前記画像から、複数の信号が導出され、当該信号が刺激に対する動脈又は静脈の血管応答を表しており、また、当該信号の絶対的又は割合的な最大変化が算出され、当該最大変化が内皮機能のための評価基準であること、
を特徴とする方法。
【請求項3】
請求項2に記載の、患者の眼(A)での神経血管連関を検査するための方法において、
前記毛細血管の血管応答の絶対的又は割合的な前記最大変化が、動脈及び/又は静脈の血管応答の絶対的又は割合的な最大変化のための参照値として用いられ、
神経血管連関の影響から独立した血管の内皮機能の評価のための評価基準である商が算出され
ること、
を特徴とする方法。
【請求項4】
請求項
2又は3に記載の、患者の眼(A)での神経血管連関を検査するための方法において、
毛細血管、動脈及び/又は静脈の前記血管応答を表す複数の信号が、毛細血
管又は大きな動脈又は静脈の血管の、強度、血管直径、血液体積
値、血流値、及び血液速度、であること、
を特徴とする方法。
【請求項5】
請求項1から4の何れか1項に記載の、患者の眼(A)での神経血管連関を検査するための方法において、
前記眼(A)の前記眼底の複数の前記画像の前記画像シーケンスが、ベースラインフェーズ(BP)、前記フリッカー光を用いて前記眼底が刺激される刺激フェーズ(SP)、及び、後フェーズ(NP)に渡って、記録されること、
を特徴とする方法。
【請求項6】
患者の眼(A)での神経血管連関を検査するための方法において、
画像化方法を用いて、前記眼(A)の眼底の複数の画像の画像シーケンスが、ベースラインフェーズ(BP)及びフリッカー光を用いて眼底が刺激される刺激フェーズ(SP)、後フェーズ(NP)に渡って、記録され、
前記眼底が2つの異なるスペクトル領域の測定光を用いて照らされ、
これにより画像は、それぞれスペクトル領域のうちの1つによって特定され、2つのカラーチャンネルに割り当てることができ、前記眼底の少なくとも1つの毛細血管の血管領域(KGB)のための前記画像シーケンスの前記画像の
前記2つのカラーチャンネルの強度値から、複数の商信号(Q(t,x,y))が導出され、当該
複数の商信号(Q(t,x,y))が刺激に対する前記少なくとも1つの毛細血管の血管領域(KGB)の血管の毛細血管の血管応答を表しており、また、前記
複数の商信号(Q(t,x,y))から、及び/又は、前記
複数の商信号(Q(t,x,y))から平均化された商信号(Q(t))から、絶対的な又は割合的な最大変化(Q
max)が、特定され、また、神経血管連関のための評価基準として用いられる、方法。
【請求項7】
請求項6に記載の、患者の眼(A)での神経血管連関を検査するための方法において、
前記眼底の動脈又は静脈の血管の少なくとも1つの血管部分(GA)のための画像シーケンスの複数の画像から、複数の直径信号(D(t,x,y))が導出され、それらは刺激に対する少なくとも1つの前記血管部分(GA)の動脈又は静脈の血管応答を表しており、また、複数の前記直径信号(D(t,x,y))から平均化された直径信号(D(t))が形成され、その絶対的又は割合的な最大変化(D
max)が特定され、当該最大変化(D
max)が内皮機能に対する評価基準であること、
を特徴とする方法。
【請求項8】
請求項7に記載の、患者の眼(A)での神経血管連関を検査するための方法において、
前記平均化された商信号(Q(t))の最大変化(Q
max)及び前記平均化された直径信号(Q(t))の最大変化(D
max)から商が形成され、当該商が、神経血管連関の影響から独立した、血管の内皮機能の評価のための評価基準であること、
を特徴とする方法。
【請求項9】
請求項6から8の何れか1項に記載の、患者の眼(A)での神経血管連関を検査するための方法において、
前記画像化方法が光コヒーレンストモグラフィに基づいて実施され、また、前記画像がOCT画像であること、
を特徴とする方法。
【請求項10】
請求項6から9の何れか1項に記載の、患者の眼(A)での神経血管連関を検査するための方法において、
前記フリッカー光が測定光とは異なるスペクトル領域を有しており、また、前記異なるスペクトル領域の前記測定光及び前記フリッカー光が互いに独立して調整され得ること、
を特徴とする方法。
【請求項11】
請求項8に記載の、患者の眼(A)での神経血管連関を検査するための方法において、
前記最大変化(Q
max)及び/又は(D
max)が、1つのマッピング画像内で色分けされて、前記少なくとも1つの毛細血管の血管領域(KGB)及び/又は前記少なくとも1つの血管部分(GA)に割り当てられて、示されること、
を特徴とする方法。
【請求項12】
患者の眼(A)での神経血管連関を検査するための装置において、
眼底を特徴づける構造の強度、毛細血管密度、血液速度、血流、又は、血管の血液体積を画像的に表す前記眼(A)の前記眼底の複数の画像の画像シーケンスを生成するために設計された画像化システム(1)にして、前記眼底の少なくとも1つの部分を刺激するフリッカー光を発生させるための照明ユニット(3)を備える画像化システム(1)、
前記画像シーケンスの複数の前記画像から、毛細血管の複数の血管領域(KGB)及び動脈及び静脈の血管の複数の血管部分(GA)を選択するために設計された、データ及び画像加工ユニット(5)、
選択された毛細血管の前記血管領域(KGB)及び選択された前記血管部分(GA)に割り当てられた
、信号を導出するためのユニット(11)、
信号分析ユニット(7)、及び、
結果及び提示ユニット(8
)
を含む、装置。
【請求項13】
患者の眼(A)での神経血管連関を検査するための装置において、
前記眼(A)の眼底の複数の画像の画像シーケンスを生成するための画像化システム(1)にして、照明のための少なくとも2つのスペクトル領域を有する測定光を発生させるために並びに前記眼底を刺激するためのフリッカー光を発生させるために設計された照明ユニット(3)を備える画像化システム(1)、
前記画像シーケンスの複数の前記画像内の、毛細血管の複数の血管領域(KGB)及び動脈及び静脈の血管の複数の血管部分(GA)を選択するために設計された、データ及び画像加工ユニット(5)
選択された毛細血管の前記血管領域(KGB)に割り当てられた
ユニット(10)にして、毛細血管の前記血管領域(KGB)のための前記画像シーケンスの前記画像の強度値から、商信号を導出するためのユニット(10)、
選択された前記血管部分(GA)に割り当てられた
、直径信号を導出するためのユニット(6)、
信号分析ユニット(7)、及び、
結果及び提示ユニット(8)を
含み、
前記照明ユニット(3)が、適応的に制御可能な複数のLEDを構造的に配置することによって、形状及び寸法に関して時間的に変更可能な照明構造として、少なくとも3つの異なるスペクトル領域を有して形成されており、それに伴い選択された毛細血管の前記血管領域(KGB)及び/又は選択された前記血管部分(GA)が適応的に照明及び刺激され得ること、
を特徴とする装置。
【請求項14】
請求項13に記載の装置において、
前記測定光は2つのスペクトル領域のLEDを制御することによって、また、前記フリッカー光は第3のスペクトル領域のLEDを制御することによって、互いに独立して発生可能であること、
を特徴とする装置。
【請求項15】
請求項13に記載の装置において、
前記画像化システム(1)が、デジタル画像センサ(2)を有する網膜カメラとして、実施されていること、
を特徴とする装置。
【請求項16】
請求項12に記載の装置において、
前記画像化システム(1)が、光干渉断層撮影装置(OCT)、又は、走査性画像化システム、又は、適応的光学系を有するシステム、であること、
を特徴とする装置。
【請求項17】
請求項14に記載の装置において、
前記測定光を発生させる前記LEDのスペクトル領域が緑及び赤であり、また、前記フリッカー光を発生させる前記LEDのスペクトル領域は青であること、
を特徴とする装置。
【請求項18】
請求項15に記載の装置において、
前記デジタル画像センサ(2)が単色の画像センサであり、前記測定光のスペクトル領域が前記デジタル画像センサ(2)のスペクトル感度内にあり、また、前記フリッカー光のスペクトル領域が前記デジタル画像センサ(2)のスペクトル感度外にあること、
を特徴とする装置。
【発明の詳細な説明】
【技術分野】
【0001】
本発明の適用分野は、例えば眼科学、神経学、心臓病学、腎臓病学、糖尿病学、高血圧学に関する、全ての血管医学に関するものである。
【背景技術】
【0002】
複数の研究から、微小血管の血管変化が往々にして全身性の性質であることが知られている、即ち、特には人間及び動物の身体の全ての臓器の微小循環の血管といった、複数の血管内で、同様に発生し得ること、及び、臓器によって、アテローム性動脈硬化、動脈硬化、心不全、腎不全のような血管疾患、例えば網膜症及び緑内障のような眼病、例えば血管性認知症のような脳血管疾患(脳血管障害)についての異なる特性を導き得ること、また最後には心臓発作及び心発症のような心臓血管の結果を誘発し得ること、或いは、予測因子であること、が知られている。微小循環に対する唯一の光学的な窓としての眼は、身体の他の臓器のアクセスできない領域における血管の鏡像として、網膜血管を検査することを、可能にする。本発明の適用分野は、人間の血管における血管内皮機能及び神経血管連関を検査することを見込んでいる。
【0003】
現在、眼科学では、臨床的の問題提起のために、とりわけ画像形成的な複数の方法及び装置であって、眼における、特には(網膜での)眼底の構造的、形態的な変化を検査する方法及び装置が用いられている。そのためには、通常の眼底カメラ、OCT(光干渉断層撮影装置、光コヒーレンストモグラフ)、レーザースキャナ、適応的な光学系を有するシステム、及び、例えばイメードス社(Imedos社)の血管マップを用いるような、静的な血管分析を用いるその他の血管検査が必要であり、微細血管のリスク層化(重症度分類)及び治療観察(治療監視)するために日々の臨床的実施へ浸透し始めている。
【0004】
網膜血管の機能的な検査は、これまでのところ主に、例えば計器ベースでの血管直径や血流速度(血液速度)の測定のための装置及び方法並びに動的な(ダイナミックな)血管分析のためのシステムのような、研究において使用されていた。ドップラーベース又はOCTベースでのシステムの使用領域は、以下のような情報を提供する、すなわち、血管状態或いは流れの状態を表し、また従って、眼科学外では血管診断のためにほとんど意味を得ずまた血管の調節の機能を検出するためには役には立たない情報を提供する。
【0005】
動的な血管分析は、時間に渡ってのそして微小循環の所謂大きな動脈及び静脈のための位置に沿っての血管直径の連続的な測定に基づく、異なる自己調節メカニズムの検査を可能とする。網膜血管は、血管記録の間に、刺激(興奮)又は誘発される、また、それに応じて、収縮又は拡張で応答する、それは、刺激の種類又は誘発の種類によってその都度呼び起こされる網膜の自動調節メカニズムやその機能能力の血管応答を表す。
【0006】
刺激又は誘発のためのその種の方法を用いて、微小循環の異なる自動調節メカニズムを検査することが出来る。自動調節メカニズムのうちの1つは流動誘起された自己調節である。
【0007】
従来技術を体現する、動的な血管分析のシステムは、イメードス社の動的血管解析装置(動的血管分析装置)(DVA)である(非特許文献1)。DVAにおける用いられる標準誘発は、12.5Hzの周波数領域で作動しまた光学的なシャッターを用いて緑色の測定光を20秒間の間、明滅的に中断するするフリッカー光である。この工程は3度繰り返され、また、血管応答はその後平均値を形成するために重ねられ、また、最大拡張及びその後の収縮に関して評価される。
【0008】
この測定は、DAVにおいては、60μmから300μmの間の微小循環の大きな血管に限定されている。
【0009】
評価のパラメータ(拡張最大)並びにその他の導出可能なパラメータは、微小血管の内皮機能の機能診断的な検査のための生体指標(バイオマーカー)として解釈される。若干の著者によって、血管応答のパラメータは、誤って神経血管連関のパラメータと称されまた解釈されることもある。しかしながら、神経血管連関は、起点刺激であり、また従って血管応答に影響を及ぼし、大きな血管の血管応答を表すがまた内皮機能の機能を表すことが判明している。
【0010】
更に、特許文献1では、小血管の血管直径を測光的に測定するための装置が記載されている。開示されている技術的な解決策は、眼底画像内の血管が血管として選択可能である限り、動脈及び静脈の領域での血管直径の測定を可能にする。そのためには、2つの異なるスペクトル領域及びカラーカメラが用いられる。それは網膜の光負荷を相当に増加させる。しかしながら、開示されている解決策の別の本質的な欠点は、共通の照明側の光線経路での、光モジュレータの照明側での固定的なデバイスにも存在している。それは同様に、時間的な変調のみ可変的に構成され、また、使用分野及び適応性を根本的に制限し、最後に、DVAの同じ欠点を有してはいるが、その他に毛細血管よりは明らかに大きい網膜小血管においても測定され得るという長所を有している。
【0011】
毛細血管の「灌流」を検知するための別の技術的な解決策は、Vilser等による2008年の文献である非特許文献2に記載されている。従来の網膜カメラの照明光線経路内のデュアルバンドパスフィルタを介して、白色の照明光の、赤及び緑のスペクトル領域内の2つのスペクトル領域が選択され、また、それらは3チップCCDカラーカメラの赤及び緑のカラーチャネルに以下のように割り当てられる、つまり、測定光の選択された照明側の両方のスペクトル領域が、それぞれ互いに別々に、CCDカメラの割り当てられた赤及び緑の両方のカラーチャネルによって、検出されるように、割り当てられる。それぞれ同一の眼底地点に割り当てられ得る両方の(赤及び緑の)カラーチャネルのピクセルによって検出される色強度からは、商(割合、比率)を形成され、また、眼底地点に再び割り当てられる。そのようにして作成された商画像(割合画像、比率画像)は、その後、視神経乳頭での毛細血管の灌流に関して評価される。
【0012】
この方式を用いると、灌流として毛細管血流が理解される場合、確かに視神経乳頭の灌流を表すことは出来ないが、血液体積の大きさまた従って毛細血管の血管直径の大きさ、及び、観察される組織体積の毛細血管化の程度を得る。この方式の欠点は、前述の研究で説明されたように、毛細血管の「灌流」の調整について機能的な情報を与えることは出来ないことである。
【0013】
従来技術の第1の本質的な欠点は、網膜での神経血管連関を検査するための可能性が存在しないことである。脳内での神経血管連関を検査するための方法は、単純に純粋に実験的であり、侵襲的であり、非常に高コストであり、そして、臨床的な使用には適していない。神経血管連関は、網膜及び脳の血液循環に対して、様々な疾患に対するのと同様に、重要な役割を担う。
【0014】
従来技術の更なる欠点は、血管の内皮機能に対する複数の検査結果が大きくばらついており、また従って、心臓血管的な危険要因(リスクファクター)、事象、及び疾患に対する内皮機能不全の関連が不明であることであり、その場合に、内皮機能を個別に評価するため及び内皮機能不全を診断するための臨床的な使用には、欠陥がありまたそれは不確かなものとなっている。
【先行技術文献】
【特許文献】
【0015】
【非特許文献】
【0016】
【文献】Garhofer, G., Bek, T., Boehm, A.G., Gherghel, D., Grunwald, J., Jeppesen, P., Kergoat, H., Kotliar, K., Lanzl, I., Lovasik, J.V., Nagel, E., Vilser, W., Orgul, S., Schmetterer, L. “Use of the retinal vessel analyzer in ocular blood flow research”. Acta Ophthalmologica 2010: 88: 717-722頁
【文献】Vilser, W., Nagel, E., Seifert, B.U., Riemer, T., Weisensee, J., Hammer, M: “Quantitative assessment of optic nerve head pallor”. Physiological Measurement 29 (2008), 451-457頁
【発明の概要】
【発明が解決しようとする課題】
【0017】
本発明の課題は、網膜におけるまた視神経乳頭上での神経血管連関を非侵襲的、非接触的且つ簡潔に検査することが可能な方法であり、また、臨床的な非接触的使用のために適した方法を明らかにすることである。
【0018】
本発明の課題は更に、上記の方法を実行するための装置を明らかにすることである。
【課題を解決するための手段】
【0019】
この課題は、患者の眼での神経血管連関を検査するための方法のために、以下のような第1の方法を用いて解決される、即ち、眼底がフリッカー光(点滅光、ちらつき光)によって刺激される間、画像形成的な方法を用いて眼の眼底の複数の画像の画像シーケンスが作成及び記録され、少なくとも眼底の毛細血管領域のために画像シーケンスの複数の画像から信号が導き出され、当該信号はフリッカー光を用いた刺激への毛細血管領域の毛細血管の毛細血管応答を表しており、また、当該信号の絶対的又は割合的な最大変化が検出されそして神経血管連関のための評価基準として用いられる方法を用いて、解決される。
【0020】
有利には更に、少なくとも眼底の動脈血管及び静脈血管の血管部分のためにも信号が導き出され、当該信号が刺激に対する動脈及び静脈の血管応答を表し、また、当該信号の絶対的又は割合的な最大変化が検出され、当該最大変化が内皮機能に対する評価基準を表している。
【0021】
その際、十分な時間的解像度の画像シーケンスが作成される限り、画像を形成する基本技術が通常の眼底カメラ、OCT(光干渉断層計)、適応的な光学技術又は走査技術、によって実現されているかどうかは重要ではない。更に、信号が毛細血管を含めた網膜血管の刺激に対する反応(血管応答)を表す限り、画像から導き出されるこの信号が、例えば血管直径、血液体積、血液速度、血流、毛細血管密度、又はその他のパラメータを反映するかは重要ではない。
【0022】
毛細血管の血管応答の絶対的又は割合的な最大変化が、動脈及び/又は静脈の血管応答の絶対的又は割合的な最大変化に対する参照値として用いられ、例えば商が算出されることによって、有利には、血管内皮機能の評価のための評価基準にして、神経血管連関に影響されない評価基準が獲得される。
【0023】
血管応答を表す信号は、強度、血管直径、血液体積値、異なるスペクトル領域からの商信号、血流値、血管密度、又は、毛細血管や大きな動脈血管や静脈血管の血流速度、であり得る。
【0024】
眼の眼底の複数の画像の画像シーケンスの記録は、有利には、ベースラインフェーズ、眼底がフリッカー光を用いて刺激される刺激フェーズ、及び、後フェーズ(NP)に渡って、行われる。
【0025】
有利には、本方法に、大きな網膜血管における内皮機能の検査が組み込まれ、その際、神経血管連関を表す血管応答が、内皮機能を表す血管応答の評価のための参照として用いられる。参照がどのように表されるかは重要ではない。1つの例は、大きな血管の割合的な最大の拡張及び神経血管連関の血管応答の割合的な最大の変化から商を形成することである。検査された血管の内皮機能を評価するためには、大部分では神経血管連関の強さに関する情報が十分である。それを用いて、血管の内皮機能の検査に対する神経血管連関の影響が除外され得て、それに伴い、内皮機能の判断の際のエラーが避けられ、また、診断上の安全性は著しく向上される。
【0026】
患者の眼での神経血管連関を検査するための方法に対する課題は、以下の第2の方法によっても解決される、即ち、画像形成的な方法を用いて眼の眼底の複数の画像の画像シーケンスがベースラインフェーズ、眼底がフリッカー光を用いて刺激される刺激フェーズ、及び、後フェーズ(NP)に渡って記録され、眼底が2つの異なるスペクトル領域の測定光を用いて照らされ、少なくとも眼底の毛細血管領域のために画像シーケンスの画像の強度から商信号が導き出され、当該商信号が、刺激に対する少なくとも毛細血管の血管領域の血管の毛細血管の血管応答を表し、また、複数の商信号から、及び/又は、複数の商信号から平均化された1つの商信号から、絶対的な又は割合的な最大の変化が特定され、そして神経血管連関のための評価基準として用いられる方法によっても解決される。
【0027】
有利には、第2の方法において眼底の動脈又は静脈の血管の少なくとも1つの血管部分のための画像シーケンスの複数の画像から、刺激に対する少なくとも1つの血管部分の動脈又は静脈の血管応答を表す直径信号が導出され、また、複数の直径信号から平均化された直径信号が形成され、その絶対的な又は割合的な最大変化が特定され、当該最大変化は内皮機能に対する評価基準を表す。
【0028】
平均化された商信号の最大変化及び平均化された直径信号の最大変化から商が形成されることによって、有利には神経血管連関の影響から独立した血管の内皮機能の評価のための評価基準がもたらされる。
【0029】
異なる2つのスペクトル領域の測定光を用いて眼底を照らすことによって、画像は、2つのカラーチャンネルに、スペクトル領域のうちのそれぞれ1つによって特定されて割り当てられ、また、信号として2つのカラーチャンネルの強度値から導出される商信号が形成され得る。
【0030】
画像形成方法が光コヒーレンストモグラフィに基づいて実施され、また、画像がOCT画像である場合が有利である。
【0031】
特に、フリッカー光は測定光とは異なるスペクトル領域を有しており、測定光及びフリッカー光が互いに独立して調整され得る。
【0032】
有利には、商信号及び/又は直径信号の最大変化が、1つのマッピング画像内で色分けされて示されており、当該マッピング画像には少なくとも1つの毛細血管の血管領域及び/又は少なくとも1つの血管部分に割り当てられている。
【0033】
患者の眼での神経血管連関を検査するための装置に対する課題は、以下の構成要素を含む第1の装置を用いて解決される、即ち、
-眼底を特徴づける構造の強度、毛細血管密度、血液速度、血流、又は、血管の血液体積を画像的に表す眼の眼底の複数の画像の、画像シーケンスを生成するための画像化システム(画層形成システム)であって、眼底の少なくとも一部を刺激するフリッカー光を発生させるための照明ユニットを備える、画像化システム、
-画像シーケンスの複数の画像内から、毛細血管の複数の血管領域及び動脈及び静脈の血管の複数の血管部分を選択するために設計された、データ及び画像加工ユニット、
-選択された毛細血管の血管領域及び選択された血管部分に割り当てられた、信号を導出するためのユニット、
-信号分析ユニット、及び
-結果及び提示ユニット、
を含む第1の装置を用いて、解決される。
【0034】
患者の眼での神経血管連関を検査するための装置に対する課題は、以下の構成要素を含む第2の装置を用いて解決される、即ち、
-眼の眼底の複数の画像の画像シーケンスを生成するための画像化システムにして、照明のための少なくとも2つのスペクトル領域を有する測定光を発生させるために並びに眼底を刺激するためのフリッカー光を発生させるために設計された照明ユニットを備える画像化システム、
-画像シーケンスの複数の画像内の、毛細血管の複数の血管領域及び動脈及び静脈の血管の複数の血管部分を選択するために設計されたデータ及び画像加工ユニット、
-選択された毛細血管の血管領域に割り当てられた、商信号を導出するためのユニット、
-選択された血管部分に割り当てられた、直径信号を導出するためのユニット、
-信号分析ユニット、及び、
-結果及び提示ユニット
を含み、照明ユニットが、適応的に制御可能な複数のLEDを構造的に配置することによって、形状及び寸法に関して時間的に変更可能な照明構造として、少なくとも3つの異なるスペクトル領域を有して形成されており、それに伴い選択された毛細血管の血管領域及び/又は選択された血管部分が適応的に照明及び刺激され得る、第2の装置を用いて解決される。
【0035】
画像化システム(イメージングシステム)は、有利には、デジタル画像センサを有する網膜カメラ、光干渉断層撮影装置(OCT)、走査性画像化システム、又は適応的光学系を有するシステム、として、実施される。
【0036】
有利には、2つのスペクトル領域の複数のLEDが測定光を発生させ、また、それとは独立して制御可能に第3のスペクトル領域の複数のLEDがフリッカー光を発生させる。
【0037】
更に、測定光を発生させる複数のLEDのスペクトル領域は好ましくは緑色及び赤色であり、また、フリッカー光を発生させる複数のLEDのスペクトル領域は青色である。
【0038】
デジタル画像センサは有利には少なくとも2つのカラーチャンネルを有するカラー画像センサである。
【0039】
代替的に、デジタル画像センサが単色の画像センサであり、測定光のスペクトル領域がデジタル画像センサのスペクトル感度内にあり、また、フリッカー光のスペクトル領域がデジタル画像センサのスペクトル感度外にある場合が、有利である。
【0040】
本発明は実施例及び図面を用いて以下により詳細に説明される。
【図面の簡単な説明】
【0041】
【
図1】商信号及び直径信号の方法の継続期間に渡る時間経過を示す。
【
図2】本方法を実行するために適した装置のブロック図を示す。
【
図3】眼底の画像を示しており、当該眼底には例示的に複数の毛細血管領域であってそのうちの1つは視神経乳頭上にある毛細血管領域、測定地点及び血管部分、が記載されている。
【
図4】本方法を実行するために適した別の装置のブロック図を示す。
【発明を実施するための形態】
【0042】
眼での神経血管連関を検査するための方法においては、画像化方法を用いて、眼Aの眼底の複数の画像の画像シーケンスが、好ましくはベースラインフェーズBP、眼底がフリッカー光によって刺激される刺激フェーズSP、及び後フェーズNPに渡って記録される。これについては
図1を参照されたい。
【0043】
画像シーケンスからは、少なくとも1つの毛細血管の血管領域KGBのために、以下のような信号が導出される、即ち、網膜への刺激に対する毛細血管の毛細血管応答(測定量の信号)でありまた刺激フェーズSPの間のその最大変化はNVKに対する評価基準(バイオマーカー)である信号が導出される。基本的に、そのような毛細血管の血管応答(血管信号)は、刺激フェーズSPの間での、毛細血管の血流の変化又は毛細血管の血液速度の変化、網膜又は視神経乳頭における毛細血管の血液体積の変化又は毛細血管の血管直径の変化、を表す。
【0044】
どの画像化方法を用いて少なくとも1つの画像シーケンスが形成されるか、又は、どの測定量に基づいてNVKが特定されるか、は重要ではない。
【0045】
画像の画像シーケンスは例えば、光干渉断層撮影装置OCTによって、走査方法を介して、又は、その他の光学的結像方法によって作成されてもよい。
【0046】
有利には、また、方法のための後述の実施例に関して説明すると、毛細血管の血液体積の変化、或いは、毛細血管の血管直径の変化は、結果として、網膜の毛細血管の血管領域KGB又は(乳頭での)乳頭状の毛細血管の血管直径KGBで反射される測定光の割合の変化をもたらし、それは正規化された強度信号(商信号Q(t,x,y))によって検知され、当該信号は毛細血管の血管応答としてNVKを検査するために利用される。
【0047】
有利には、本方法に、大きな動脈及び/又は静脈の網膜血管の内皮機能の検査が組み込まれる。
【0048】
ステップ0:
検査者に対して、本方法を開始するため、異なる医学的な課題(問題)と共に種々の検査のための検査プログラムメニューが提供される。検査パラメータの選択に伴い、測定光のパラメータ、及びフリッカー光(点滅光)のパラメータが調整される。
【0049】
検査者は、後述の方法ステップにおいて説明するように、以下のパラメータの調整、すなわち、
0-1:自由に選択されるパラメータ(自由なパラメータ選択)
0-2:比較パラメータ(比較モード)、及び
0-3:繰り返しパラメータ(繰り返しモード)、
の調整の間で選択を行うことが出来る。
【0050】
ステップ0-1:自由なパラメータ選択
研究の問題提起のためには往々にして自由なパラメータ選択が合理的である。検査者には、特には、自動的な予調整のための後述のパラメータが提供され、そして、選択後にはパラメータセットが、比較検査及び繰り返し検査のための新しいプログラムとして検査者によって与えられた名前で保存される。
【0051】
ステップ0-1-1:測定光(測定パラメータ)の調整
-画像シーケンスから正規化された強度信号(商信号Q(t,x,y))が導出される予定の場合、特には緑及び赤の、測定光の2つのスペクトル領域を確定する、また、画像シーケンスから正規化されていない強度信号が導出される予定の場合、例えば緑の、スペクトル領域を確定する。
-測定光の放射強度を確定する(手動又は自動で再調整可能、画像明度によって制御される)。
-刺激フェーズSPの間の時間応答を確定する。測定光及びフリッカー光が同じスペクトル領域(例えば緑)を有する場合に対しては、例えば25Hzの画像シーケンス周波数(フレームレート)では、測定光は刺激フェーズSPの間に、12.5Hzのフリッカー刺激周波数を実現するために、第2の画像(2枚めの画像)ごとに設定された変調度で作動停止される。有利には、測定光及びフリッカー光のために異なるスペクトル領域が確定される。例えば青も、好ましくは赤との関連での追加の測定光として、適している。
【0052】
ステップ0-1-2:フリッカー光(フリッカーパラメータ)の調整
-輝度フリッカー又は色フリッカーの調整
輝度フリッカーの場合、フリッカー光の確定されたスペクトル領域は他のフリッカーパラメータに応じてのみ変調される。色フリッカーの場合には、フリッカー光はスペクトル領域のみをフリッカー周波数で変更し、これは色的に異なる複数のLEDの交互的な切り替えを意味している。
-カラーLEDのスペクトル領域の調整が、フリッカー種類に応じて行なわれ、例えば色フリッカーの場合は、青色LEDから緑色LEDへのフリッカー光の交替が決定される。
-フリッカー光の変調の調整
本例では、検査者はフリッカー光の個々の半周期のための刺激形態を、以下のパラメータを用いて定めることが出来る、すなわち、
-最大強度
-最小強度
-変調深度
-強度増加
-強度減少
-最大強度の長さ
-波形状又は矩形状の変調
を用いて定めることが出来る。
緑及び赤のスペクトル領域が測定光として選択された実施例のためには、測定光のスペクトル領域には存在しない色、例えば青、がフリッカー光のために確定される。従って、フリッカー周波数は基本的に画像シーケンス周波数とは独立して確定され得る。
【0053】
ステップ0-1-3:検査フェーズ(フェーズパラメータ)の調整
検査フェーズ、すなわちベースラインフェーズBP、刺激フェーズSP及び後フェーズNPの長さが調整される。
【0054】
ステップ0-1-4
自由に選択された全てのパラメータは、1つのパラメータセットにまとめられ、そして、検査名と共に保存され、そして、検査プログラムを新たに選択する際に提供される。
【0055】
ステップ0-2:比較モード(比較モードは同一の医学的な診断のため異なる眼Aに対する同一の検査条件を確実にする)
検査メニューから、医学的な診断のための所望の検査プログラムが選び出され、また、選択された検査プログラムに対する関連するパラメータセットがロードされる。備えられている制御アルゴリズムを介して、装置の複数のLEDが、本方法を実行するために適宜制御され、それに伴い、測定光及びフリッカー光が可変的にまた適応的に選択された検査プロトコルに適合される。
【0056】
ステップ0-3:参照測定地点を用いての繰り返しモード(繰り返しモードは同じ眼Aのための追跡診断での同じ検査条件を確実にする)
患者に関連するデータベースを介して、既に1度検査された眼Aが探し出され、また、直近の検査によって保存された、実行された検査のパラメータセットがプリセットされる。
【0057】
眼Aに対して装置を調整する間に、運動補正が、診断と診断の間で、画像シーケンスの画像内で検知される眼底の領域の正確な一致を確実にする。
【0058】
全てのパラメータを調整した後、検査方法が開始される。
【0059】
ステップ1:
患者の頭部は、頭部及び顎の保持部を介して画像化システム1に対して固定される。画像化システム1は、分散光が僅かで無反射的な眼底Fの画像がもたらされるように、被検眼Aに対して調整される。
【0060】
ステップ2:
ベースラインフェーズBPの開始に伴い、画像化システム1が複数の画像からなる画像シーケンスの記録(撮影)と共に始動する。デジタル画像センサ2としてカラーセンサを用いる場合には、2つのスペクトル領域の測定光を用いて、例えば緑と赤の測定光を用いて、眼底を照らす際に、2つのカラーチャンネルに関する複数の画像が同時に作成される。それらは、以下においては、2つのカラーチャンネルが割り当てられている画像として、理解される。代替的に、単色の画像センサがデジタル画像センサとして用いられてもよい。例えば赤及び緑の測定光を用いて、時間的に交替する、画像シーケンスに対して同期した照明を利用して、同様に、疑似緑色のカラーチャンネル及び疑似赤色のカラーチャンネルに交互に割り当てられまた後にペアで2つのカラーチャンネルが割り当てられている画像として理解される画像が、作成される。測定光の交替に伴って望まれない刺激を避けるために、画像の交替及びスペクトル的な測定光の交替は、起こり得る刺激効果が無視可能である程の大きさの周波数で、実行される。フリッカー光はベースラインフェーズBPの間は、作動停止されたままである。
【0061】
ステップ3:
画像シーケンスの画像は、眼球運動に関して運動補正される。眼底の複数の画像内で、複数の毛細血管の血管領域KGBが選択され、好ましくは等時間間隔で、画像の記録と共に開始して、画像の赤及び緑のカラーチャンネルの強度値から複数の商信号Q(t,x,y)が形成され、また、複数の選択された毛細血管の血管領域KGBのうちの1つにそれぞれ割り当てられて保存される。
【0062】
ベースラインフェーズBPの期間に関する商信号Q(t,x,y)のパラメータの値は、複数のベースライン値を供与し、それらの値から平均のベースライン値が特定される。
【0063】
ステップ4
有利には、同時に、画像シーケンスの画像の緑のカラーチャンネルの強度値から、直径信号D(t,x,y)が導出される。このために、血管直径は、選択された血管部分GAに沿って、それぞれに測定地点M(x,y)が割り当てられるセグメントごとに、検出され、位置補正されて保存され、そして、同期化信号或いは画像シーケンスの個別の画像に割り当てられる。検出された直径からは、それぞれの血管セグメントのための直径信号D(t,x,y)が形成される。ベースラインフェーズBPの継続期間に渡る直径信号D(t,x,y)のパラメータの値は、複数のベースライン値を与え、それらからは平均化されたベースライン値が特定される。
【0064】
ステップ5:
ベースラインフェーズBPには、自動的に、刺激時間及びフリッカー光を用いる刺激のために提供されるパラメータセットを有する刺激フェーズSPが続く。上述の血管信号、即ち、商信号Q(t,x,y)及び直径信号D(t,x,y)は、刺激フェーズSPの間に、更に、画像シーケンスから導出される。デジタル画像センサ2として単色の画像センサが利用される場合、青のフリッカー光の明フェーズでは、両方のスペクトル領域の測定光は画像シーケンスに対して同期して消され(スイッチを切られ)、その一方で、フリッカー光の暗フェーズでは、測定光は点けられ(スイッチを入れられ)、そして、画像また従って血管信号が作成される。単色の画像センサが青の測定光に対しては敏感ではない場合、画像の撮影及び血管信号の導出は、フリッカー光の明フェーズ中でも行われ得る。商信号Q(t,x,y)及び直径信号D(t,x,y)のフリッカーに起因した変化は、それらのばらつき及び拡張に関して評価される。個別の商信号Q(t,x,y)のために、又は、平均化された商信号Q(t)のために、或いは、個別の直径信号D(t,x,y)のために、又は、動脈の血管部分GA及び静脈の血管部分GAのそれぞれのために、別々に平均化された直径信号D(t)が形成される。平均化された商信号Q(t)からはQmaxが、そして、平均化された複数の直径信号D(t)からはそれぞれDmaxが、信号の最大変化として特定される。
【0065】
ステップ6:
刺激フェーズSPの終了後、検査の後フェーズが開始し、フリッカー光は消され、そして、後フェーズNPが終了するまで連続的な測定が継続される。刺激フェーズSP及び後フェーズNPは、信号の平均値を形成するため、複数回、好ましくは3回、交互に繰り返され得る。
【0066】
ステップ7:
信号Q(t,x,y)及びD(t,x,y)は、選択されたKGB及びGAに関して平均化され、記録され、そして、測定プロトコルとして信号変化の導出された最大値とともに出力される。
【0067】
本方法を実行するために適した装置のための実施例が以下に説明される。
【0068】
その種の装置は、
図2においてブロック図で示されているように、この例では変調された網膜カメラであり、デジタル画像センサ2及び測定光及びフリッカー光を発生させるための照明ユニット3を有する画像化システム1、制御ユニット4、データ及び画像加工ユニット5、直径信号を導き出すためのユニット6、信号分析ユニット7、結果及び提示ユニット8、入出力ユニット9、商信号を導出するためのユニット10を含んでいる。
【0069】
照明ユニット3は、眼の瞳孔に対する共役面における網膜カメラの照明光線経路に配設されている、即ち、それは眼Aの瞳孔へ結像される。眼Aの眼底は、デジタル画像センサ2の検知面上に明瞭に結像される。
【0070】
照明ユニット3は特には、例えば3つの異なるスペクトル特性を有する、特には青、緑、そして赤のスペクトル領域を有する複数のLEDといった、複数の小型の光源からなる、適応的で、構造化されており、環形状の装置である。複数のLEDは、制御ユニット4を介して、色的に異なる複数のLEDのLED光の強度が、別々にそして互いに独立し調整されるように、制御される。LED光の変調は、測定光としての光の照射強度の調整を可能とすること、また同様に、高い照射強度及び低い照射強度の間での交替によるフリッカー光の調整であって、周波数の、変調度の、及び、(例えば波形状から矩形状までの対称の又は非対称の、明フェーズ及び暗フェーズの間での切り替えといった)交流光形状の、調整可能なパラメータを用いての、フリッカー光の調整を可能とすることが見込まれる。有利には、複数のアクティブな(光っている)LEDによって形成される照明構造は、その幾何学的形状及び寸法に関して、例えばアクティブに形成された照明リングの幅及び直径に関して、適応的に適合調整可能である。例えば時間的に交替する、細いリング又は幅広のリング、又は半リング、又は点としての、時間幾何学的にアクティブなLED構造の適応性を介して、リング形状のLED装置は、照明側の開口部絞りにおいて、(とりわけ血管への)反射光又は散乱光を避けるために使用され得る。それは、動的な血管分析を非散瞳性で静的な血管分析の手法(モード)へ迅速に切り替えること、また、その逆に切り替えること、をも可能にする。同時に、この適応性を介して、眼底Fのフォーカシング(合焦)を、シャイナーブラインド(scheiner’s disc)の原理を介して、行うことが出来る。検査の間での回転性の構成変化も、画像シーケンスを検出するために、異なる照明幾何学構成と共に使用され得る。
【0071】
デジタル画像センサ2はカラーセンサであってもよく、当該カラーセンサは、緑及び赤の測定光を用いた照明の場合に、同時に、緑及び赤のカラーチャンネルに割り当てられる画像を作成する。2つの同時の画像は、それぞれ1つの画像として理解され、それらの画像には2つのカラーチャンネルが割り当てられている。
【0072】
有利には、デジタル画像センサ2として、単色の画像センサが用いられ、当該画像センサは特には、測定光の両方のスペクトル領域に対してのみ敏感であるが、フリッカー光のスペクトル領域には敏感ではない。画像シーケンスに同期して画像ごとに交互に赤及び緑の測定光で眼底を照らす場合、画像は交互に、疑似緑或いは疑似赤のカラーチャンネルに割り当てられる。連続して撮影される2つの画像はそれぞれ、2つのカラーチャンネルが割り当てられている画像として理解される。画像シーケンス周波数は、測定光の色交替が刺激効果を導くことがない程度の大きさに調整される。
【0073】
有利には、単色の画像センサの両方の疑似カラーチャンネルはより高い感度を有しており、また、単色の画像センサはカラー画像センサとしてより高い解像度を有している。
【0074】
デジタル画像センサとしての、カラー画像センサの使用もまた同様に単色の画像センサの使用も、測定光及びフリッカー光のためのスペクトル領域の自由な選択を可能とし、それらの光は単に異なっていればよい。
【0075】
適応的な制御ユニット4は、データ及び画像加工ユニット5に接続されており、当該データ及び画像加工ユニット5は他方でデジタル画像センサ2に接続されている。制御ユニット4は、照明ユニット3の個々のLEDを互いに別々に、また、異なる放射強度で、少なくともそれらが測定光を発する場合に、画像シーケンスに同期して制御する。フリッカー光の周波数(明暗の間の交替)は、同期信号によって制御され、当該同期信号はデジタル画像センサ2によって作成され、また、制御ユニット4へ渡される。同期信号を用いて、方法ステップの間に形成される信号が、デジタル画像センサ2によって記録される画像シーケンスと同期される。同期信号がデジタル画像センサ2によって設定されるか、又は、画像シーケンスの画像の記録も制御するデータ及び画像加工ユニット5によって設定されるか、に違いはない。
【0076】
単色の画像センサとは異なり、カラー画像センサは特には25Hzの画像周波数で眼底の画層を記録し、それとともにフリッカー周波数として特には12.5Hzがもたらされる。本発明に従い、各々別の画像周波数も、フリッカー周波数に対して同期して、本装置及び本方法のために使用され得る。測定光とフリッカー光のスペクトル領域が重なっていない場合には、画像周波数及びフリッカー周波数は、互いに同期していなくてもよい。
【0077】
デジタル画像センサ2に接続されているデータ及び画像加工ユニット5は、画像シーケンスを受け取る。検査者は、データ及び画像加工ユニット5及び入出力ユニット9を介して、画像内にて、網膜又は視神経乳頭における毛細血管の複数の血管領域KGBを選択し、これに関しては
図3を参照されたい、そして、それらに対してそれぞれ1つの測定地点M(x,y)を割り当てる。測定地点M(x,y)は、1つの画像点又は画像領域によって、また従ってデジタル画像センサ2の1つのピクセル又はピクセルグループによって、定義され得る。測定地点M(x,y)は、KGBの面重心やKGB内の選択された別の点であり得る。更に、大きな静脈及び動脈の複数の血管部分GAが選択され、それらに対して、セグメントごとに、同様に測定地点M(x,y)が割り当てられる、また従って、画像点或いはこの場合は好ましくはそれぞれの血管セグメントの中心点を表す個別のピクセルが割り当てられる、又は画像範囲この場合は血管セグメント或いはデジタル画像センサ2のピクセルグループが割り当てられる。選択されたKGBは有利には選択された血管部分GAの間に存在する。
【0078】
複数のKGBに割り当てられた複数の測定地点M(x,y)の座標、及び、測定地点M(x,y)にて緑及び赤の測定光によって発生された緑及び赤の強度値は、商信号を導出するためのユニット10に受け渡される。
【0079】
直径信号を導き出すためのユニット6へ、血管セグメント或いは割り当てられた測定地点M(x,y)の座標、及び、緑に測定光によって発生された強度値が転送される。
【0080】
商信号を導出するためのユニット10は、オンラインで画像ごとにまた時間に応じて、複数のKGBの全ての測定地点M(x,y)に対して画像の緑及び赤の強度値から商を形成し、また、これらの値を商信号Q(t,x,y)として信号分析ユニット7へ転送する。
【0081】
直径信号を導出するためのユニット6は、本装置を用いて有利には神経血管連関の検査に加えて血管の内皮機能も検査されることが見込まれる場合にのみ、設けられていなければならない。直径信号を導出するためのユニット6は、オンラインで、緑の色信号の画像処理を介して、セグメントごとにまた画像ごとに、直径を特定し、時間及び位置に応じた複数の直径信号D(t,x,y)を形成し、また、それらを信号分析ユニット7へ転送する。そこでは血管セグメントの直径信号D(t,x,y)から、複数の血管セグメントを統合することによって、全ての血管部分GAに対する直径信号D(t,x,y)を形成する、又は、全ての動脈或いは静脈に渡り検出され平均化された直径信号D(t)が形成され、それらは検査者に対して、結果及び提示ユニット8を介して、グラフィックで表示及び出力される。信号分析ユニット7内では、通常、例えば刺激フェーズSPにおける最大拡張のような内皮機能を表す血管のパラメータも算出され、また、結果及び提示ユニット8及び入出力ユニット9を介して出力される。結果及び提示ユニット8は更に、マッピング画像を作成するために利用される。
【0082】
信号分析ユニット7は、信号のパラメータとして、最大拡張Dmaxと等しい血管直径の最大変化を血管セグメント或いは血管部分GAに対する直径信号D(t,x,y)から又は平均化された直径信号D(t)から特定し、また、最大変化Qmaxを毛細血管の血管領域KGBに対する商信号Q(t,x,y)から特定する。最大拡張Dmaxは内皮機能を表し、そして、最大変化QmaxはNKVを表す。パラメータは、結果及び提示ユニット8へ渡され、1つの結果画像(マッピング画像)内に位置的に正確に(運動補正されて)書き込まれ、そして、検査結果として出力される。
【0083】
NVK及び内皮機能に対する検査結果は、医学的に、別々に評価されてもよいが、有利には関連して評価され得る。
【0084】
複数の商信号Q(t,x,y)に基づくNVKの検査は、KGBの血液体積の検出がスペクトル正規化された強度値に基づいて行われるという長所を有している。これらの強度値は照明に依存するので、眼球運動の結果による測定地点M(t,x,y)の異なる照明レベルは、NVKを表すパラメータに対して有意な効果を有するものではない。
【0085】
簡略化して、商信号Q(t,x,y)の代わりに、第2のスペクトル領域の強度値から形成して、例えば緑のスペクトル領域の1つのスペクトル領域のみの強度信号が、NVKを検査するために形成されてもよい。ただしこの場合には、運動に依存する照明変化は受け入れられなければならない、又は、それを除外するためのその他の措置が取られなければならない。例えば、眼底での測定地点又は視神経乳頭での測定地点の強度信号の正規化を行うことが可能であり、測定地点はフリッカー刺激の作用領域にはない。
【0086】
本発明に従う方法及び本発明に従う装置のための別の実施例は、上述のような変調された網膜カメラの代わりに画像化システム1としてレーザースキャナが用いられる場合にもたらされ、それは、波長が測定光及びフリッカー光の上述のスペクトル領域へ調整されているレーザ光線を用いる。本方法及び本装置は、上記の説明と同様に実施される。
【0087】
画像化システム1としての又は画像化システム1の構成要素としての適応的な光学系の使用も、本発明に従う装置に含まれる。これらの場合も同様に、上記の説明のように、商信号Q(t,x,y)と同様に直径信号D(t,x,y)も形成され得る。
【0088】
別の実施例は、光干渉断層撮影装置(OCT)に基づく画像化システム1を使用することによって、もたらされる。その際は、複数の画像から、この場合OCT画像から、以下のような信号が導出される、つまり、大きな血管の局所的な血管直径、及び/又は、局所的な血管体積、又は、毛細血管の局所的な灌流を表す信号が、導出される。その種の信号は、局所的な血流、局所的な血液又は細胞速度、又は毛細血管密度、から導出され得て、また、同様に異なる視点からのフリッカー光に対する血管応答を表現する。光干渉断層撮影装置に基づく画像化システム1は例えば血管造影装置(OCT-A)であり、当該血管造影装置のOCT画像では、信号は、変動される血液細胞密度によって或いは血液細胞で灌流される毛細血管によって表される。
【0089】
基本的に、患者の眼Aの神経血管連関を検査するための装置は、
図4に図示されているように、眼Aの眼底の複数の画像の画像シーケンスを作成するための任意の画像化システム1を有している。画像化システム1は、眼底を特徴づける構造の強度、毛細血管密度、血液速度、血流、又は、血管の血液体積が画像的に表されている画像を作成するために、設計されていれさえすればよい。更に、フリッカー光を発生させるための照明ユニット3が設けられており、それを用いて少なくとも眼底の一部分を刺激することが出来る。更に、本装置は、画像シーケンスの画像から毛細血管の血管領域KGB及び動脈及び静脈の血管の血管部分GAを選択するために設計されたデータ及び画像加工ユニット5、選択された毛細血管の血管領域KGB及び選択された血管部分GAに割り当てられた信号を導出するためのユニット11、信号分析ユニット7、及び、結果及び提示ユニット8を有している。
【符号の説明】
【0090】
D(t、x、y) (時間及び位置x、yの関数としての)直径信号
D(t) 平均化された直径信号
Dmax 直径信号D(t、x、y)の最大変化
Q(t、x、y) (時間及び位置x、yの関数としての)商信号
Q(t) 平均化された商信号
Qmax 商信号Q(t、x、y)の最大変化
M(x,y) 測定地点
BP ベースラインフェーズ
SP 刺激フェーズ
NP 後フェーズ
GA 血管部分
KGB 毛細血管領域
A 眼(眼球)
1 画像化システム
2 デジタル画像センサ
3 照明ユニット
4 制御ユニット
5 データ及び画像加工ユニット
6 直径信号を導き出すためのユニット
7 信号分析ユニット(信号解析ユニット)
8 結果及び提示ユニット
9 入出力ユニット
10 商信号を導出するためのユニット
11 信号を導出するためのユニット