IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ ファオデーエム メタルズ インターナショナル ゲゼルシャフト ミット ベシュレンクテル ハフツングの特許一覧

<>
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2023-10-26
(45)【発行日】2023-11-06
(54)【発明の名称】ニッケル基合金の製造方法
(51)【国際特許分類】
   C22F 1/10 20060101AFI20231027BHJP
   C22C 19/05 20060101ALI20231027BHJP
   C22F 1/00 20060101ALN20231027BHJP
【FI】
C22F1/10 H
C22C19/05 Z
C22C19/05 L
C22F1/00 602
C22F1/00 691B
C22F1/00 691C
C22F1/00 692B
C22F1/00 692Z
C22F1/00 681
C22F1/00 682
C22F1/00 683
C22F1/00 685Z
C22F1/00 624
C22F1/00 622
C22F1/00 623
C22F1/00 625
【請求項の数】 14
【外国語出願】
(21)【出願番号】P 2021177629
(22)【出願日】2021-10-29
(62)【分割の表示】P 2020526387の分割
【原出願日】2018-12-03
(65)【公開番号】P2022023193
(43)【公開日】2022-02-07
【審査請求日】2021-12-01
(31)【優先権主張番号】102017128663.2
(32)【優先日】2017-12-04
(33)【優先権主張国・地域又は機関】DE
(31)【優先権主張番号】102018009375.2
(32)【優先日】2018-11-29
(33)【優先権主張国・地域又は機関】DE
(73)【特許権者】
【識別番号】516236078
【氏名又は名称】ファオデーエム メタルズ インターナショナル ゲゼルシャフト ミット ベシュレンクテル ハフツング
【氏名又は名称原語表記】VDM Metals International GmbH
【住所又は居所原語表記】Plettenberger Strasse 2, D-58791 Werdohl, Germany
(74)【代理人】
【識別番号】100114890
【弁理士】
【氏名又は名称】アインゼル・フェリックス=ラインハルト
(74)【代理人】
【識別番号】100098501
【弁理士】
【氏名又は名称】森田 拓
(74)【代理人】
【識別番号】100116403
【弁理士】
【氏名又は名称】前川 純一
(74)【代理人】
【識別番号】100134315
【弁理士】
【氏名又は名称】永島 秀郎
(74)【代理人】
【識別番号】100162880
【弁理士】
【氏名又は名称】上島 類
(72)【発明者】
【氏名】ボード ゲーアマン
(72)【発明者】
【氏名】ブアクハート エアペンベック
【審査官】川口 由紀子
(56)【参考文献】
【文献】特表2004-527377(JP,A)
【文献】特表2018-525518(JP,A)
【文献】特開2009-270159(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
C22F 1/10
C22C 19/05
C22F 1/00
(57)【特許請求の範囲】
【請求項1】
ニッケル基合金の製造方法であって、
VIMにより電極を製造し、
記電極が200℃よりも低温になる前に、前記電極を炉に収容し、
前記電極を、炉内で、応力低減および過時効を行うために、500~1250℃の温度範囲で10~336時間の熱処理に供し、
前記電極を、空気中または前記炉内で、室温ないし900℃未満の温度に冷却し、
前記電極の表面を、不具合の除去および、ブラッシング、研磨、酸洗、切断又は剥離による清浄化のために処理し、
前記冷却された電極を、次いで、3.0~10kg/分の再溶解速度でのESRによって再溶解させて、直径400~1500mmのESRインゴットを製造し、
前記ESRインゴットを、空気中または前記炉内で、室温ないし900℃未満の温度に冷却し、
前記冷却されたESRインゴットを、500~1250℃の温度範囲で10~336時間のさらなる熱処理に供し、
前記ESRインゴットを、空気中または前記炉内で、室温ないし870℃未満の温度に冷却し、
前記ESRインゴットを、3.0~10kg/分の再溶解速度で、15%未満の再溶解速度の変動幅で、VARにより新たに再溶解させて、直径400~1500mmのVARインゴットを製造し、
記VARインゴットが頂部領域で200℃よりも低温になる前に、前記VARインゴットを炉に収容し、
前記再溶解されたVARインゴットを、500~1250℃の温度範囲で10~336時間の熱処理に供し、
前記VARインゴットを、空気中または前記炉内で室温ないし900℃未満の温度に冷却するか、または850℃を超える高温で熱間成形プロセスに送り、
前記VARインゴットを、次いで、熱間および/または冷間成形によって、製品を得る、
ことによる、方法。
【請求項2】
前記ESRインゴットを、空気中または前記炉内で、室温ないし900℃未満の温度に冷却した後、前記ESRインゴットの表面を、不具合の除去およびブラッシング、研磨、酸洗、切断又は剥離による清浄化のために処理する、請求項1に記載の方法。
【請求項3】
前記VARインゴットを、さらなるVAR再溶解ステップで3.0~10kg/分の再溶解速度で再溶解させ、次いで、500~1300℃の温度範囲で10~336時間の熱処理に供することを特徴とする、請求項1又は2に記載の方法。
【請求項4】
前記VARインゴットを、前記熱処理の後に、空気中または前記炉内で室温ないし900℃未満の温度に冷却することを特徴とする、請求項3に記載の方法。
【請求項5】
前記VARインゴットを、前記熱処理の後に、高温で、800℃を超える温度での熱間成形に移行させることを特徴とする、請求項3に記載の方法。
【請求項6】
前記ニッケル基合金が、以下の組成(重量%):
C 最大0.25%
S 最大0.03%
Cr 17~32%
Ni 33~72%
Mn 最大1%
Si 最大1%
Mo 0~10%
Ti 3.25%以下
Nb 5.5%以下
Cu 0.5%以下
Fe 25%以下
P 最大0.03%
Al 3.15%以下
V 最大0.6%
Zr 最大0.1%
Co 35%以下
B 最大0.02%
および製造に起因する不純物
の合金であることを特徴とする、請求項1から5までのいずれか1項記載の方法。
【請求項7】
前記ニッケル基合金が、以下の組成(重量%):
C 最大0.08
S 最大0.015
Cr 17~21
Ni 50~55
Mn 最大0.35
Si 最大0.35
Mo 2.8~3.3
Ti 0.65~1.15
Nb 4.75~5.5
Cu 最大0.3
Fe 6~25
P 最大0.015
Al 0.2~0.8
Co 最大1
B 最大0.006
Pb 最大0.001
Se 最大0.0005
Bi 最大0.00005
Nb+Ta 4.75~5.5%
および製造に起因する不純物
の合金であることを特徴とする、請求項1から5までのいずれか1項記載の方法。
【請求項8】
前記ニッケル基合金が、以下の組成(重量%):
C 最大0.1
S 最大0.015
N 最大0.03
Cr 16~20
Ni 26~62
Mn 最大0.5
Si 最大0.3
Mo 2~4
Ti 0.1~1
Cu 最大0.5
Fe 最大10
P 最大0.03
Al 1~3
Mg 最大0.01
Ca 最大0.01
Zr 最大0.05
Co 15~28
B 最大0.02
O 最大0.02
Nb+Ta 4~6
および製造に起因する不純物
の合金であることを特徴とする、請求項1から5までのいずれか1項記載の方法。
【請求項9】
前記製造されたVARインゴットの直径が、450mm超である、請求項1から8までのいずれか1項記載の方法。
【請求項10】
前記製造されたVARインゴットの直径が、500mm超である、請求項1から9までのいずれか1項記載の方法。
【請求項11】
前記製造されたVARインゴットが、再溶解欠陥を含まない、請求項1から10までのいずれか1項記載の方法。
【請求項12】
前記VARインゴットの前記熱処理を、1000℃~1300℃の温度範囲で、少なくとも10時間、最大48時間行う、請求項3に記載の方法。
【請求項13】
前記成形が、鍛造、圧延または延伸である、請求項1に記載の方法。
【請求項14】
前記製品が、インゴット、バー、ワイヤ、シート、ストリップまたは箔である、請求項1に記載の方法。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、ニッケル基合金の製造方法に関する。
【0002】
欧州特許第1377690号明細書から、正偏析も負偏析も実質的に存在しないニッケル基超合金の製造方法であって、
合金を金型に鋳込むステップ、
前記合金を少なくとも649℃で少なくとも10時間加熱することにより、該合金のアニーリングおよび過時効を行うステップ、
少なくとも3.63kg/分の溶解速度で前記合金のエレクトロスラグ再溶解を行うステップ、
完全凝固後4時間以内に前記合金を加熱炉に導入するステップ、
前記合金を、前記加熱炉内で、第1の温度である316℃~982℃で少なくとも10時間保持するステップ、
前記炉の温度を前記第1の温度から第2の温度である少なくとも1163℃に高めて、前記合金内での熱応力を回避するステップ、
前記合金を、前記第2の温度で少なくとも10時間保持するステップ、
3.63~5kg/分の溶解速度で前記合金のVAR電極の真空アーク再溶解を行って、VARインゴットを製造するステップ
を含む方法を引用することができる。
【0003】
ニッケル基合金は、好ましくはAlloy 718またはAlloy 706である。
【0004】
より高い温度範囲(例えば、500~1250℃)での熱処理を用いることで、偏析を均質化し、かつ材料内の応力を低減できることが一般に知られている。
【0005】
本発明は、ニッケル基合金の、代替的でより費用効果の高い製造方法であって、最終再溶解ステップにおいて材料に導入される微細構造の改善および欠陥の低減を可能とすることで、将来的な顧客の要求を満たす方法を提示するという課題に基づく。欧州特許第1377690号明細書に開示されている方法に対して、第1の再溶解と第2の再溶解との間の煩雑な方法操作により生じるコストを回避することが望ましい。また、溶解および再溶解に起因する不具合を回避することにより、品質が大幅に改善される。
【0006】
本課題は、ニッケル基合金の製造方法であって、
VIM、VOFまたはVLFにより電極を製造し、
前記電極を、炉内で、応力低減および過時効を行うために、500~1300℃の温度範囲で10~336時間の熱処理に供し、その際、1000℃~1300℃の温度範囲で少なくとも10時間、最大48時間にわたって熱処理を行い、
前記電極を、空気中または前記炉内で、室温ないし900℃未満の温度に冷却し、
前記冷却された電極を、次いで、3.0~10kg/分の再溶解速度でのESRによって再溶解させて、ESRインゴットを製造し、
前記ESRインゴットを、空気中または前記炉内で、室温ないし900℃未満の温度に冷却し、
前記ESRインゴットを、3.0~10kg/分の再溶解速度で、15%未満、さらに良好にはその上10%未満、理想的には5%未満の再溶解速度の変動幅で、VARにより新たに再溶解させ、
前記再溶解されたVARインゴットを、500~1250℃の温度範囲で10~336時間の熱処理に供し、
前記VARインゴットを、次いで、熱間および/または冷間成形によって所望の製品形状および寸法にする
ことによる方法によって解決される。
【0007】
本発明による方法の有利なさらなる実施形態(例えば、さらなるVAR再溶解ステップ)は、従属請求項に見出すことができる。
【0008】
従来技術と比較して、ESR再溶解後の熱処理ステップが省略され、再溶解速度がより厳密に規定される。したがって、熱処理をベース電極でのみ行い、従来技術で説明されているように熱処理をESRインゴットで行う、ということはしない。そのようにして製造された材料は、再溶解に起因する不具合の発生がはるかに少なくなる。
【0009】
VIMインゴットを狙いどおりに熱処理することによって、内部応力が低減し、かつ偏析欠陥が解消される。このことは、後の再溶解ステップESRおよびVARに好影響を及ぼす。
【0010】
前記課題は、ニッケル基合金の製造方法であって、
VIMにより電極を製造し、
Ni基合金がガンマプライム相を形成する場合には、前記電極が200℃よりも低温になる前に、理想的には250℃よりも低温になる前に、前記電極を炉に収容し、
前記電極を、炉内で、応力低減および過時効を行うために、500~1250℃の温度範囲で10~336時間の熱処理に供し、
前記電極を、空気中または前記炉内で、室温ないし900℃未満の温度に冷却し、
前記電極の表面を、不具合の除去および(例えば、ブラッシング、研磨、酸洗、切断、剥離などによる)清浄化のために処理し、
前記冷却された電極を、次いで、3.0~10kg/分の再溶解速度でのESRによって再溶解させて、直径400~1500mmのESRインゴットを製造し、
前記ESRインゴットを、空気中または前記炉内で、室温ないし900℃未満の温度に冷却し、
必要に応じて、前記ESRインゴットの表面を、不具合の除去および(例えば、ブラッシング、研磨、酸洗、切断、剥離などによる)清浄化のために処理し、
前記冷却されたESRインゴットを、500~1250℃の温度範囲で10~336時間のさらなる熱処理に供し、
前記ESRインゴットを、空気中または前記炉内で、室温ないし870℃未満の温度に冷却し、
前記ESRインゴットを、3.0~10kg/分の再溶解速度で、15%未満、さらに良好にはその上10%未満、理想的には5%未満の再溶解速度の変動幅で、VARにより新たに再溶解させて、直径400~1500mmのVARインゴットを製造し、
前記Ni基合金がガンマプライム相を形成する場合には、前記VARインゴットが頂部領域で200℃よりも低温になる前に、理想的には250℃よりも低温になる前に、前記VARインゴットを炉に収容し、
前記再溶解されたVARインゴットを、500~1250℃の温度範囲で10~336時間の熱処理に供し、
前記VARインゴットを、空気中または前記炉内で室温ないし900℃未満の温度に冷却するか、または850℃を超える高温で熱間成形プロセスに送り、
前記VARインゴットを、次いで、熱間および/または冷間成形(例えば、鍛造、圧延、延伸)によって、所望の製品形状(例えば、インゴット、バー、ワイヤ、シート、ストリップ、箔)および寸法にする
ことによる方法によっても解決されることが好ましい。
【0011】
電極を初めて再溶解させる前に、電極を(例えば、ブラッシング、研磨、酸洗、切断、剥離などによる)表面処理に供した場合に、有利であり得る。この場合、さらなる再溶解により排除することができず、後の適用で損傷を与える可能性のある不具合を除去することができる。
【0012】
本発明のもう1つの構想によれば、ESRインゴットを、そのVAR再溶解の前に、(例えば、ブラッシング、研磨、酸洗、切断、剥離などによる)さらなる表面処理に供され、この場合にも、さらなる再溶解により排除することのできない不具合を除去することができる。
【0013】
本発明のもう1つの構想によれば、ESR再溶解に代えて、VAR再溶解が直接行われる。
【0014】
この方法は、任意のNi合金に適用でき、特に表1による合金に適用できる。
【0015】
以下に、本発明による方法パラメータを用いて製造できる合金組成物を示す。いずれのデータも、重量%で示す:
C 最大0.25
S 最大0.03
Cr 17~32
Ni 33~72
Mn 最大1
Si 最大1
Mo 0~10
Ti 最大3.25
Nb 最大5.5
Cu 最大0.5
Fe 最大25
Al 最大3.15
V 最大0.6
Zr 最大0.12
Co 最大35
および製造に起因する不純物。
ならびに、必要に応じて任意に以下のもの(データを、重量%で示す):
Nb+Ta 最大5.2
B 最大0.02
Se 最大0.0005
Bi 最大0.00005
Pb 最大0.002
P 最大0.03。
【0016】
以下の元素を、次のように有利に設定できる(データを、重量%で示す):
C 最大0.2
S 最大0.02
Cr 17~25
Ni 45~58
Mn 最大0.6
Si 最大0.4
Mo 0~6.1
Ti 0.1~2.7
Al 最大1.7
Co 最大13。
【0017】
以下に、Alloy 718ベースの合金の一例を示す(データを、重量%で示す):
C 最大0.08
S 最大0.015
Cr 17~21
Ni 50~55
Mn 最大0.35
Si 最大0.35
Mo 2.8~3.3
Ti 0.65~1.15
Nb 4.75~5.5
Cu 最大0.3
Fe 6~25
P 最大0.015
Al 0.2~0.8
Co 最大1
B 最大0.006
Ta 最大0.05
Pb 最大0.001
Se 最大0.0005
Bi 最大0.00005。
【0018】
あるいは、この合金が、より高いNi含有率を有することも可能である。
【0019】
C 最大0.1
S 最大0.03
Cr 17~32
Ni 58~79
Nb 最大0.6
Fe 最大18
C 最大0.1
S 最大0.02
Cr 17~30
Ni 58~72
Mn 最大1
Si 最大1
Mo 0~10
Ti 最大3.25
Nb 最大4.1
Cu 最大0.5
Fe 最大18
Al 最大3.15
V 最大0.6
Zr 最大0.1
Co 最大15
ならびに、必要に応じて任意に以下のもの(データを、重量%で示す):
B 最大0.008
Se 最大0.0005
Bi 最大0.00005
Pb 最大0.002
P 最大0.03。
【0020】
次のように、さらなる限定が考えられる(データを、重量%で示す):
C 0.01~0.04
Mn 最大0.5
Si 最大0.5
Cu 最大0.2
ならびに、必要に応じて任意に以下のもの(データを、重量%で示す):
Mo 8~10。
【0021】
以下に、Alloy780ベースの合金の一例を示す(データを、重量%で示す):
C 最大0.1
S 最大0.015
N 最大0.03
Cr 16~20
Ni 26~62
Mn 最大0.5
Si 最大0.3
Mo 2~4
Ti 0.1~1
Cu 最大0.5
Fe 最大10
P 最大0.03
Al 1~3
Mg 最大0.01
Ca 最大0.01
Zr 最大0.05
Co 15~28
B 最大0.02
O 最大0.02
Nb+Ta 4~6。
【0022】
この製造方法により製造された材料は、超音波試験において比較不具合サイズ0.8mmで、不具合が大幅に少なく(50%)なる。
【0023】
本発明による方法は、以下の合金に好ましく適用可能である:
Alloy 601
Alloy 602 CAおよびそのバリアントMCA
Alloy 617およびそのバリアント617 Bおよび617 OCC
Alloy 625
Alloy 690
Alloy 699XA
Alloy 718およびそのバリアント
Alloy 780
Alloy 788
Alloy 80A
Alloy 81
Alloy X-750
Alloy C-263
Alloy K-500
ワスパロイ(Waspalloy)
FM 625
FM 617、ならびに
FM 602。
【0024】
表1に、上記の合金の例示的な分析範囲を示す。
【0025】
400mm超(円形および矩形)のインゴット形態が得られる。
【0026】
VIM、ESR、VARインゴットを電極の寸法に鍛造して、合金およびインゴットの直径に応じて必要となり得るより良好な均質性を生じさせることも可能である。
【0027】
必要な製品形状および寸法への熱間成形を、通常の方法(鍛造、圧延など)により行うことができる。
【0028】
この方法で製造されたインゴットおよびバーを、通常の方法でさらに加工して、半製品形態(バー、シート、ストリップ、箔、ワイヤなど)を製造することができる。
【0029】
本発明による方法について、例示的に以下のように説明する。
【0030】
本発明による方法を用いて、いくつかの溶解物、例えばS3およびS4を製造した。
【0031】
VIMにより電極を製造し、
前記電極を、応力低減および偏析の補整のために、炉内で500~1300℃の温度範囲で10~72時間熱処理した。この場合、1000℃~1300℃の温度範囲で少なくとも10時間、最大48時間にわたって処理を行い、
前記電極を、空気中または前記炉内で、室温ないし900℃未満の温度に冷却し、
前記電極を、例えば研磨などの表面処理に供し、
前記電極を、次いで、3~6kg/分の再溶解速度でのESRによって再溶解させて、ESRインゴットを製造し、
前記ESRインゴットを、前記炉内で室温ないし900℃未満の温度に冷却し、
前記ESRインゴットを、3~6kg/分の再溶解速度でVARにより再溶解させ、
前記VARインゴットを、次いで、炉内で、500~1220℃の温度範囲で20~100時間熱処理し、
前記VARインゴットを、次いで、研磨するか、または加工せずに熱間もしくは冷間成形によってバーを製造した。
【0032】
本発明による方法を用いない比較溶解物S1およびS2の場合には、VIMにより製造された電極を、応力低減および偏析の補整のために、単に、炉内で500~1000℃の温度範囲で10~48時間熱処理するにとどめた。
【0033】
いずれの溶解物も(本発明による溶解物と、比較溶解物の双方ともに)、Alloy 718分析報告(表1参照)に従って製造した。
【0034】
製造時に生じた、選択された再溶解速度の差異を、図1~4から得ることができる。
【0035】
再溶解速度には、次の水準までの差異が生じた。
【表1】
【表2-1】
【表2-2】
【表2-3】
【表2-4】
【0036】
概念の説明
VIM 真空誘導溶解(Vaccum Induction Melting)
VOD 真空酸素脱炭(Vaccum Oxygen Decarburization)
VLF 真空取鍋炉(Vaccum Ladle Furnace)
ESR エレクトロスラグ再溶解
VAR 真空アーク再溶解(Vacuum Arc Remelting)