(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2023-10-27
(45)【発行日】2023-11-07
(54)【発明の名称】超低漏洩電流を伴うマイクロLED
(51)【国際特許分類】
H01L 33/44 20100101AFI20231030BHJP
H01L 33/14 20100101ALI20231030BHJP
H01L 33/32 20100101ALI20231030BHJP
【FI】
H01L33/44
H01L33/14
H01L33/32
(21)【出願番号】P 2021522089
(86)(22)【出願日】2019-10-31
(86)【国際出願番号】 US2019059163
(87)【国際公開番号】W WO2020096859
(87)【国際公開日】2020-05-14
【審査請求日】2021-04-22
(32)【優先日】2018-11-06
(33)【優先権主張国・地域又は機関】US
【前置審査】
(73)【特許権者】
【識別番号】506115514
【氏名又は名称】ザ リージェンツ オブ ザ ユニバーシティ オブ カリフォルニア
【氏名又は名称原語表記】The Regents of the University of California
(74)【代理人】
【識別番号】100078282
【氏名又は名称】山本 秀策
(74)【代理人】
【識別番号】100113413
【氏名又は名称】森下 夏樹
(72)【発明者】
【氏名】マーガリス, タル
(72)【発明者】
【氏名】ウォン, マシュー エス.
(72)【発明者】
【氏名】チャン, レスリー
(72)【発明者】
【氏名】デンバース, スティーブン ピー.
【審査官】大和田 有軌
(56)【参考文献】
【文献】特表2018-505567(JP,A)
【文献】国際公開第2017/112490(WO,A1)
【文献】特開2005-268725(JP,A)
【文献】特開2013-110374(JP,A)
【文献】特開2000-349067(JP,A)
【文献】中国特許出願公開第106505408(CN,A)
【文献】中国特許出願公開第103560186(CN,A)
【文献】Matthew S. Wong, et al.,“High efficiency of III-nitride micro-light-emitting diodes by sidewall passivation using atomic layer deposition”,Optics Express,2018年08月03日,Vol.26,No.16,p.21324-21331
【文献】Won Hyuck Choi, et al.,“Sidewall passivation for InGaN/GaN nanopillar light emitting diodes”,Journal of Applied Physics,2014年07月01日,Vol.116,No.1,013103
(58)【調査した分野】(Int.Cl.,DB名)
H01L 33/00 - 33/64
H01S 5/00 - 5/50
(57)【特許請求の範囲】
【請求項1】
方法であって、
1またはこれより多くのIII族窒化物半導体層を基材上に成長させる(800)工程;
デバイスの製作の間に前記III族窒化物半導体層のプラズマベースのドライエッチングを行
って(801)
メサを規定する工程であって、ここで前記プラズマベースのドライエッチングは、前記
メサの1またはこれより多くの側壁に欠陥および表面状態を導入し、前記欠陥および表面状態は、電荷キャリアトラップとして働き、前記欠陥および表面状態は、前記デバイスの漏洩電流および前記デバイスにおける非発光再結合の確率を増大させる工程;
1またはこれより多くの化学処理を行って(802)、前記
メサの側壁から、前記プラズマベースのドライエッチングから生じる損傷を除去する工程であって、ここで、前記化学処理が、
水酸化カリウム(KOH)を使用して前記メサの側壁を処理することを含む、工程;ならびに
原子層堆積(ALD)を使用して、二酸化ケイ素(SiO
2
)から構成される誘電体材料を前記
メサの側壁に蒸着させて(803)、前記
メサの側壁をパッシベーション処理し、前記プラズマベースのドライエッチングによって生成される前記デバイスの漏洩電流を低下させるために前記欠陥および表面状態を埋める工程、
を包含する方法。
【請求項2】
前記化学処理は、前記誘電体材料が蒸着される(803)前に行われる(802)、請求項1に記載の方法。
【請求項3】
他の製作プロセスが、前記化学処理を行う(802)工程と前記誘電体材料を蒸着する(803)工程との間に、前記デバイスに対して行われる、請求項2に記載の方法。
【請求項4】
誘電体材料が、前記化学処理が行われる(802)前に蒸着される、請求項1に記載の方法。
【請求項5】
他の製作プロセスは、前記化学処理を行う(802)工程の前に、前記デバイスに対して行われる、請求項4に記載の方法。
【請求項6】
前記化学処理は、水酸化カリウム(KOH)を使用するウェットエッチングを含む、請求項1に記載の方法。
【請求項7】
前記デバイスは、前記化学処理を行う(802)前に保護される、請求項1に記載の方法。
【請求項8】
前記デバイスの側壁のうちの1またはこれより多くのプロフィールは、前記化学処理によって変更される、請求項1に記載の方法。
【請求項9】
前記誘電体材料は、III族窒化物半導体層と比較して、より大きな電気抵抗を有する、請求項1に記載の方法。
【請求項10】
前記誘電体材料の蒸着(803)は、コンフォーマル側壁カバレッジを提供する蒸着法を使用して行われる、請求項1に記載の方法。
【請求項11】
前記デバイスの漏洩電流の低減は、前記デバイスの効率の増大を生じる、請求項1に記載の方法。
【発明の詳細な説明】
【技術分野】
【0001】
関連出願への相互参照
本出願は、米国特許法第119条(e)項の下で、以下の同時係属中でかつ同一出願人による出願の利益を主張する:
【0002】
Tal Margalith、Matthew S. Wong、Lesley Chan、およびSteven P. DenBaarsによる2018年11月6日出願の米国仮特許出願第62/756,252号(発明の名称「MICRO-LEDS WITH ULTRA-LOW LEAKAGE CURRENT」, 代理人整理番号 G&C 30794.0707USP1(UC 2019-393-1));この出願は、本明細書に参考として援用される。
連邦支援研究および開発に関する陳述
本発明は、米国陸軍研究所から授与された補助金番号W911NF-09-D-0001の下の政府支援によって行われた。政府は、本発明において一定の権利を有する。
【0003】
発明の背景
1.発明の分野
本発明は、超低漏洩電流を伴うマイクロサイズの発光ダイオード(マイクロLED)に関する。
【背景技術】
【0004】
2.関連技術の説明
(注:本出願は、括弧内の1またはこれより大きい参照番号、例えば、[x]によって本明細書全体を通じて示されるとおり、多くの異なる刊行物を参照する。これらの参照番号に従って整理されたこれらの異なる刊行物のリストは、以下の「参考文献」という標題の節において見出され得る。これら刊行物の各々は、本明細書に参考として援用される。)
【0005】
無機LEDに関して、III族窒化物またはIII~V族半導体材料は、種々の用途において使用されている。無機半導体材料の化学的な強さに起因して、プラズマベースのドライエッチングは、LEDのメサ構造を規定するために広く使用されている。
【0006】
プラズマエッチの攻撃的な性質は、LEDの側壁上に欠陥および表面状態の形成をもたらし、上記表面状態における非発光再結合に起因して、漏洩電流、および内部量子効率の低減を生じる。側壁損傷および表面再結合の影響は、より顕著である。なぜなら上記LEDの側壁周長(perimeter)/放出面積比が増大するからである。
【0007】
マイクロLED(μLEDともいわれる)およびナノサイズのLED(ナノLEDともいわれる)は、それぞれ、100×100μm2または1μm2未満の光放射面積を有するLEDである。これらのタイプのLEDは、高い周長/面積比を有し、側壁損傷および表面再結合の影響は、効率性能から観察され得る。LEDのサイズが縮小するにつれてピーク効率が低下することが、観察されてきた。
【0008】
従来は、コンフォーマル誘電体蒸着を使用する側壁パッシベーションは、漏洩電流を低減するために採用されている。しかし、単に誘電体蒸着を使用する側壁パッシベーションは、側壁損傷および表面再結合の影響をμLEDから除去するには不十分である。
【0009】
従って、LEDを製作するための改善された方法が、当該分野で必要である。本発明は、この必要性を満たす。
【発明の概要】
【課題を解決するための手段】
【0010】
発明の要旨
本発明は、超低漏洩電流を伴うマイクロLEDを開示する。具体的には、本発明は、側壁損傷および表面再結合を低減または排除する、化学処理、続いて、コンフォーマル誘電体蒸着を使用する、μLEDのための側壁パッシベーション法を記載し、上記パッシベーション処理したμLEDは、側壁処理なしのμLEDより高い効率を達成し得る。さらに、μLEDの側壁プロフィールは、化学処理の条件を変動させることによって変更され得る。
【0011】
ここで図面を参照する場合、類似の参照番号は、本明細書全体を通じて相当する部品を表す。
【図面の簡単な説明】
【0012】
【
図1】
図1は、漏洩電流密度 対 周長/面積比のグラフである。
【
図2】
図2は、処理なしおよび異なる化学処理ありのμLEDの側壁プロフィールの走査型電気化学顕微鏡法(SEM)画像(a)、(b)および(c)を含む。
【
図3】
図3は、1A/cm
2の電流密度における光放射の均一性に対する化学処理から生じる差異を図示する異なるサイズのIII族窒化物μLEDのエレクトロルミネッセンス(EL)画像を含む。化学処理なしの10×10μm
2 μLEDからの光強度は、カメラによる捕捉には暗すぎ、従って、EL画像は示されなかった。
【
図4】
図4は、μLEDの側壁プロフィールの走査型電気化学顕微鏡法(SEM)画像を含む。ここで画像(a)は、室温において40分間の水酸化カリウム(KOH)化学処理の前であり、画像(b)はその処理後である。画像(b)の挿入図は、80℃において40分間のKOH化学処理ありの側壁プロフィールである。
【
図5】
図5(a)および5(b)は、
図5(a)に示されるとおりの側壁処理なしのμLEDおよび
図5(b)に示されるとおりの側壁処理ありのμLEDに関する電流注入に対する外部量子効率(EQE)の依存性を示す、EQE(%) 対 電流密度(A/cm
2)のグラフである。
【
図6】
図6は、側壁処理ありおよびなしの6つに異なるデバイスサイズのピークEQE分布を示す、ピークEQE(%) 対 デバイス長(μm)のグラフである。
【
図7】
図7(a)は、側壁処理ありおよびなしの100×100μm
2デバイスおよび10×10μm
2デバイスの電流密度-電圧特性を図示する電流密度(A/cm
2) 対 電圧(V)のグラフであり、
図7(b)は、側壁処理ありおよびなしのμLEDの理想係数分布を図示する理想係数 対 デバイス長(μm)のグラフである。
【
図8】
図8は、本発明の1つの実施形態において使用されるプロセス工程のフローチャートである。
【発明を実施するための形態】
【0013】
発明の詳細な説明
好ましい実施形態の以下の説明において、参照は、本明細書の一部を形成しかつ本発明が実施され得る具体的実施形態の例証によって示される添付の図面に対してなされる。他の実施形態が利用され得、構造変化が、本発明の範囲から逸脱することなくなされ得ることは、理解されるべきである。
【0014】
概説
III族窒化物またはIII~V族のLEDは、固体素子の照明用途のために開発された。ここでIII族窒化物またはIII-Vとは、化学式 GawAlxInyBzN(ここで0≦w≦1、0≦x≦1、0≦y≦1、0≦z≦1、およびw+x+y+z=1)を有する(Ga、Al、In、B)N半導体の任意の合金組成物に言及する。
【0015】
近年、III族窒化物μLEDが化学的に強い、稼動寿命が長い、高効率、およびコントラスト比が高いことに起因して、種々のディスプレイ用途(例えば、ニアアイディスプレイおよびヘッドアップディスプレイ)のためのIII族窒化物μLEDの使用に対する研究上の注目が増大しつつある。
【0016】
III族窒化物が化学的に不活性であることから、プラズマベースのドライエッチングは、III族窒化物デバイス製作に一般に使用されている。結果として、ドライエッチングの攻撃的な特性に起因して、欠陥および表面状態がデバイスの側壁に導入される。さらに、欠陥および表面状態は、電荷キャリアトラップとして働き、漏洩電流および非発光再結合の確率を増大させ、これは、放射性再結合の確率および上記デバイスの効率の低減をもたらす。
【0017】
ドライエッチングによって生成される漏洩電流を低下させるために、些細な側壁周長/放射面積比を有するLEDに関しては、1つの方法は、誘電体材料(例えば、二酸化ケイ素(SiO2)、窒化ケイ素(SiNx)、サファイアまたは酸化アルミニウム(Al2O3)、窒化アルミニウム(AlN)、または他の絶縁性の酸化物および窒化物)を蒸着すること、上記側壁をパッシベーション処理すること、ならびに欠陥および表面状態を埋めることである。しかし、絶縁性の物質のみでの側壁パッシベーションは、μLEDに関して十分に漏洩電流を低減できない。
【0018】
高い周長/面積比に起因して、側壁損傷および表面再結合は、μLEDの性能に対して顕著な影響を有する。文献から、μLEDの最大効率は、μLEDデバイスサイズが縮小するにつれて減少し、効率の減少は、ドライエッチング、ダングリングボンド、および側壁における表面状態によって作り出される非発光再結合部位によって引き起こされることが示された。誘電体側壁パッシベーションを使用することによって、漏洩電流密度および光出力電力に関して、μLEDの性能は改善され得るが、漏洩電流密度は、上記デバイスサイズが縮小するにつれて増大する。
【0019】
本発明は、側壁損傷を除去する化学処理ならびに表面状態およびダングリングボンドをパッシベーション処理する誘電体側壁パッシベーションの両方を含む製作方法を記載する。上記化学処理は、コンフォーマル誘電体側壁パッシベーションの前に行われ得るが、その順序は、化学処理の前に行われるコンフォーマル誘電体側壁パッシベーションと逆にしてもよい。
【0020】
多数の化学処理が行われ得るか、または1より多くの化学物質が、材料系、デバイスデザイン、および製作の要件に応じて、各化学処理において使用され得る。上記化学処理の目的は、ドライエッチングに由来する側壁損傷を除去することである。
【0021】
本発明において使用される化学物質は、市販されるかまたは合成して製造される任意の化学物質であり得る。上記化学物質自体は、固体、液体、または気体であり得、デバイス性能に有益でありかつ製作に最適化される別の相へと変換するために、他の溶媒中に溶解され得る。
【0022】
側壁損傷および欠陥を伴う表面は、ダングリングボンドおよび欠陥に起因して、より高いエネルギーを有する。化学処理が使用される場合、高エネルギー損傷を有する表面は、エッチングで除去され、反応は、上記損傷および欠陥が除去されたときに終了される。
【0023】
エッチングの性質は、化学物質の選択に大きく依存する。いくつかの化学物質は、側壁プロフィールをドライエッチングから保存しながら、滑らかな側壁粗さを達成し得、いくつかは、ファセット形成および垂直側壁プロフィールを生じ得る。さらに、エッチングパラメーターおよび側壁プロフィールは、化学物質溶液の濃度、温度、処理時間、および/または他の物理的特性を変動させることによって調節され得る。
【0024】
化学処理の使用は、無機の半導体サンプルの他の構成要素に対して負の効果を有し得、上記デバイスの不十分な性能をもたらし得る。従って、上記構成要素は、上記サンプル上の他の部分の劣化を回避するために、処理前に上記化学物質に耐性である材料を使用して保護され得る。
【0025】
他方で、誘電体側壁パッシベーションは、漏洩電流を低減し、光取り出し効率を増大させることによって、LEDの効率を増大させるために有益である。しかし、μLEDにおける大きな周長/面積比に起因して、いくつかの誘電体蒸着法が、μLEDに対してより大きな損傷を導入し得、性能を小さくし得る。
【0026】
化学処理および誘電体側壁パッシベーションの両方を使用することによって、より多目的に使用できる誘電体蒸着技術は、低漏洩電流を達成するために使用され得、さらなる損傷を導入しない。
【0027】
【0028】
図1は、漏洩電流密度(A/cm
2) 対 周長/面積比(μm
-1)のグラフである。このグラフは、-4Vにおいて測定される、μLEDの異なるサイズを有する、異なる処理での漏洩電流密度を図示する。「参照」プロットの線は、いかなる処理もないμLEDに言及する。
【0029】
図2は、μLEDの側壁プロフィールのSEM画像を含む。ここで画像(a)は、処理なしの側壁であり、画像(b)および(c)は、異なる化学処理ありの側壁である。
【0030】
図3は、「デバイス長」として表示された列、ならびに10μm、20μm、40μm、60μm、80μm、および100μmと表示された行によって示された異なるサイズのIII族窒化物μLEDのEL画像を含む。異なるパッシベーション技術およびパッシベーションなしは、それぞれ、「化学処理」および「参照」として表示される列によって示される。画像は、電流密度 1A/cm
2での光放射の均一性に対する化学処理からの差異を示す。
【0031】
本発明は、以下でより詳細に記載される。
【0032】
技術説明
本発明において、サイズ非依存性ピークEQE挙動を伴うμLEDは、化学処理および原子層堆積(ALD)側壁パッシベーションの組み合わせを使用することによって、10×10μm2から100×100μm2までを示した。化学処理および側壁パッシベーションは、μLEDの理想係数を、3.4から2.5へと改善した。化学処理およびALD側壁パッシベーションの組み合わせからの結果は、サイズ依存性効率の問題が、ドライエッチング後の適切な側壁処理で解決され得ることを示唆する。
【0033】
上記で注記されるように、μLEDは、次世代ディスプレイ用途の最も有望な候補のうちの1つと考えられている。なぜならμLEDは、明るさ、発光効率、稼動寿命、および解像度において顕著な性能を提供するからである[1-7]。μLEDの汎用性は、ディスプレイに限定されない。なぜならそれらはまた、生体電子デバイスおよび可視光通信(VLC)用途において使用されているからである[8,9]。
【0034】
InGaN材料系は、GaAsベースの材料より低い表面再結合速度を有するので、III族窒化物μLEDは、ディスプレイおよび超低電力のモノのインターネット(IoT)用途に関して、GaAsベースのμLEDより非常に優れているはずである[10-12]。
【0035】
以前の報告は、ピークEQEが、μLED寸法が縮小するにつれて減少することを示した[13-15]。このピークEQE低下は、Shockley-Read-Hall(SRH)非発光再結合部位として作用する、ドライエッチングに由来する表面再結合および側壁損傷の結果として特定される[16-18]。この影響は、上記デバイスサイズが減少し、周長:面積比が増大するにつれて、有効性に対してますます有害になる。
【0036】
種々の技術が、側壁損傷の影響を低減するために使用されているが、これらの方法のいずれも、サイズ非依存性のピークEQEを示さなかった[15,19-21]。全ての方法の中で、ALDを使用する誘電体側壁パッシベーションは、漏洩電流および表面欠陥を抑制するために最も有効な技術である[19,21]。湿式化学品(例えば、KOHおよび硫化アンモニウム)は、電気的性能を改善し、従来のLEDにおいてドライエッチングに由来する側壁損傷を低減するために使用されている[22]。しかし、従来のLEDの有効性に対する化学処理の効果は、十分に研究されてこなかった。側壁損傷の影響は、従来のLEDにおいてよりμLEDにおいてより顕著であるので、化学処理は、μLEDの性能に有益であるはずであるが、μLEDに対する化学処理の影響は、明確には理解されていない。
【0037】
本発明において、μLEDの電気的特性および効率特性に対するALD側壁パッシベーションと合わせたKOH化学処理の効果を、調査した。さらに、本発明は、10×10~100×100μm2の持続したピークEQEを有するμLEDを示した。対照的に、側壁処理なしのμLEDは、デバイスサイズが減少するにつれて、特徴的なピークEQEが減少することを示した。10×10~100×100μm2 μLEDのサイズ非依存性ピークEQEの挙動を、先ず観察した。本発明は、μLEDのサイズ依存性効率が解決され得、側壁損傷の影響が適切な側壁処理によって最小化され得ることを明らかにした。
【0038】
μLED構造を、パターン化したサファイア基材上に成長させた市販のc面InGaNブルーLEDエピタキシャルウェハに対して製作した。産業用ウェハを使用して、成長条件における変動を最小限にし、ウェハにわたる均一性を担保した。6つの寸法を有するμLEDを製作した: 10×10、20×20、40×40、60×60、80×80、100×100μm2(具体的なデバイスデザインは、他の箇所で報告されている)[14,19,23]。全てのデバイスを、いかなる製作変動をも最小限にするために一緒に処理した。
【0039】
ウェハの最初の処理の前に、王水、緩衝化フッ化水素酸(BHF)、および溶媒洗浄を行って、潜在的な汚染物質を除去した。洗浄後、110nmの酸化インジウムスズ(ITO)を、透明なpコンタクトとして電子線蒸着を介して蒸着した。デバイスのメサを反応性イオンエッチング(RIE)によって規定して、メタン/水素/アルゴンを使用してITOをエッチングし、四塩化ケイ素を使用してn-GaN層までエッチングした。エッチング後、側壁処理ありのμLEDを、室温において40分間、KOHで処理した。430~450nmの間の波長範囲において95.5% 反射率を有する二酸化ケイ素(SiO2)および酸化タンタル(Ta2O5)の3対から構成される全方向性反射器(omnidirectional reflector)(ODR)を、金属分離誘電体層(metal isolation dielectric layer)としてイオンビーム蒸着によって蒸着した。酸化アルミニウム(Al2O3)を、金属接着層としてODRの上に蒸着させた。50nmのSiO2を、側壁パッシベーションのために300℃においてALDを使用して、側壁処理ありのμLED上に蒸着させた。ALD SiO2ブランケット蒸着後、SiO2の選択的領域を、金属接触ウインドウのためにBHFを使用して除去した。共通するpコンタクトおよびnコンタクトは、700/100/700nmのAl/Ni/Auから構成され、電子線蒸着を使用して蒸着した。
【0040】
電流電圧特性を、オンウェハ検査(on-wafer testing)によって分析した。EQEを決定するために、μLEDを、750×750μm2ダイへと単一化した。次いで、その切断した(diced)デバイスを、シルバーヘッダーに取り付け、ワイヤで接続し、屈折率1.54を有するDow Corning OE-6650TM樹脂を使用してカプセル化した。EQEデータを、積分球によって測定した。
【0041】
μLEDの光放射プロフィールに対するKOH化学処理の効果は、1A/cm
2においてμLEDのエレクトロルミネッセンス(EL)画像によって示され得る(
図3に示される)。側壁処理なしのμLED(「参照」と示される)は、大きなデバイスにおいて不均一な光放射を、小さなデバイスにおいて暗いが均一な光放射を生じた[13,14,19]。化学処理なしの10×10μm
2 μLEDからの光強度は、カメラによる捕捉には暗すぎた。他方で、KOH化学処理ありのμLEDは、全6つのサイズにわたって均一な光放射を生じた。さらに、調光挙動(dimming behavior)は、KOHで処理した小さい方のμLEDでは出現しなかった。これは、KOH化学処理が、低電流密度においてEL均一性を改善することを例証する。漏洩経路は、ドライエッチング後に側壁において生成された[22,24,25]ので、電流は、縁部の周りに殺到し、よって、不均一な光放射が大きなμLEDにおいて観察された。KOH化学処理を使用することによって、側壁における漏洩経路が除去され、電流は、デバイスへと均一に注入された。結果として、KOH化学処理ありのμLEDは、均質な光放射を生じた。
【0042】
KOHは以前、デバイス側壁上のプラズマで損傷した材料を除去することによって、代表的なGaNベースのデバイスの電気的性能を改善するために使用されてきた[22,24]。しかし、μLEDに対するKOHの影響は、広範囲に研究されてはいなかった。
図4は、KOH化学処理の前後のμLED側壁プロフィールのSEM画像((a)および(b)として表示される)を示す。KOH処理なしのデバイスに関しては、RIEの高出力物理的エッチングの性質は、粗い側壁表面を生じた。KOH処理を有した側壁に関しては、50~200nmの間のサイズでm面のファセット形成した外形が、形成された。デバイス側壁上のm面ファセットの形成は、KOHまたは水酸化テトラメチルアンモニウム(TMAH)を使用する以前の研究において報告されている[24-26]。m面ファセットの寸法は、KOH処理時間とともに増大した。KOH処理のこの特性は、これがμLEDの光取り出し効率を改善するために使用され得ることを示唆し、類似の効果が、TMAHを使用して示されている[27]。にもかかわらず、両方のサンプルにおいて類似の光取り出し効率を維持するために、ここで報告されたm面ファセット形成した外形は、Synopsys LightTools
TMソフトウェアを使用するモンテカルロレイトレーシングシミュレーションに基づいて、光取り出し効率の無視できる程度の増大(5%未満)を有する。処理時間の他に、温度もまた、デバイス側壁形態に顕著な影響を有した。
図4における画像(b)の中の挿入図は、80℃において40分間、KOHで処理したデバイスの側壁プロフィールを示し、m面ファセットの形成が、温度によって影響を与えられ得ることを明らかに示す。温度が異なれば、異なる側壁プロフィールが観察されたが、電気的性能に関して顕著な差異は存在しなかった。KOHを使用してデバイス側壁からプラズマで損傷した材料を除去することは、非常に表面的であり、全体の横方向のエッチング長は約500nmで、μLEDデバイス寸法を顕著には低減しなかった。
【0043】
KOH処理の効果を示した後に、KOHおよびALDパッシベーションの組み合わせの影響をここで考察する。
図5(a)および5(b)は、それぞれ、KOHおよびALD側壁処理の組み合わせなしおよびありの、10×10μm
2~100×100μm
2のμLEDのEQE曲線を示す。
図5(a)から、40×40μm
2~100×100μm
2のμLEDは、製作変動に起因する小さな差異とともに、22%~25%の間のピークEQEを生じた。しかし、μLED寸法が縮小するにつれて、20×20μm
2および10×10μm
2デバイスのピークEQEは、20%未満に低下した。100×100μm
2デバイスおよび10×10μm
2デバイスのピークEQE間の差異は、約30%であった。最大EQEにおけるこの減少は、側壁損傷および表面再結合によって引き起こされるSRH非発光再結合部位の影響によって説明され得る。ピークEQEにおける電流密度は、100×100μm
2 μLEDに関する5A/cm
2からto 10×10μm
2 μLEDに関する15A/cm
2へとシフトした。このシフトは、効果的なSRH非発光再結合の増大に起因する[13,14,17]。
【0044】
他方で、側壁処理ありの全μLEDのピークEQEは、22%~23%の間であり、ピークEQEにおいて無視できる程度の差異を示した。これらのデバイスは、側壁処理ありのμLEDにおいてサイズ非依存性EQEを示したが、ピークEQE位置のシフトは残った。SRH非発光再結合の影響は完全に排除されなかったので、SRH非発光再結合に対する化学処理の有効性を理解するには、さらなる研究が必要とされる。
【0045】
両方のサンプルセットに関して、60×60μm
2より小さなデバイスは、より大きなデバイスより顕著に少ない効率低下を示した。この効果は、他の報告から観察されており、そこではより小さなデバイスは、より均一な電流および熱拡散を生じた[13,14,16]。ピークEQEに対する側壁処理の一貫性は、
図6に示されるように、両方のサンプルにおいて各サイズの5つのデバイスを測定することによって決定した。側壁処理なしのμLEDは、ピークEQEが、40×40μm
2より小さいデバイスに関して徐々に減少するという傾向を示した。側壁処理ありのμLEDは、比較的小さな変動を伴って、22%~27%野間だのピークEQEの分布を有した。
【0046】
μLEDの電流電圧特性および理想係数に対するKOHおよびALD側壁処理の影響を、決定した。側壁処理ありおよびなしの100×100および10×10μm
2デバイスの電流密度電圧特性を、
図7(a)に示す。10×10μm
2デバイスは、同じ印加電圧で100×100μm
2デバイスより高い電流密度を達成した。これは以前の報告において観察されている[13,14]。この効果は、10×10μm
2 デバイスにおいてより良好な熱および電流拡散に寄与する[16]。側壁処理なしの両方のデバイスが、側壁処理ありのデバイスより数桁高い順方向漏洩電流密度を生じた。これは、側壁処理が、漏洩電流を抑制するために十分であったことを示す。理想係数を、以下の式1を使用して、5A/cm
2におけるμLEDの順方向電流電圧特性から計算した:
【数1】
ここでnは理想係数であり、qは電気素量であり、kはボルツマン定数であり、Tは温度(ケルビン単位)であり、Iは電流であり、Vは電圧である[29]。
図7(b)は、側壁処理ありおよびなしの6つの異なるサイズのμLEDの計算された理想係数を示す。側壁処理なしのデバイスの理想係数、約3.4は、側壁処理ありのμLEDのものより高く、側壁処理が、電気的性能に対して有利な効果を有することを明らかにした[30,31]。側壁処理ありのμLEDに関しては、理想係数は約2.5であった。これは、キャリア再結合が、おそらく、これらのデバイスにおいて起こっている支配的な機構であったことを示す[32]。その2つのサンプルにおける理想係数間の差異は、ドライエッチングに由来する側壁損傷によって説明され得る。プラズマ損傷は、電気的性能を劣化させ、理想係数を増大させることが報告されている[31,32]。よって、理想係数から、μLEDの電気的性能が、側壁処理で顕著に改善されることも確認された。さらに、理想係数は、側壁処理の有効性を決定するための代替の計量法(metric)として働き得る。焼き鈍しおよび誘電体側壁パッシベーションを含む種々の側壁処理は、側壁損傷からμLED性能を回復させることが示されているが、改善は、オンウェハまたはパッケージされたEQE測定によっても示される[15,19-21]。EQEの他に、理想係数は、ドライエッチングによって引き起こされる漏洩電流の低減に対する側壁処理の有効性に関してさらなる情報を提供する。
【0047】
結論として、本発明は、KOH化学処理、続いて、ALD側壁パッシベーションを使用して、10×10μm2~100×100μm2のμLEDのサイズ非依存性ピークEQEを示した。側壁処理なしのμLEDに関して、ピークEQEは、40×40μm2より小さいデバイスサイズにおいて減少し始め、100×100μm2から10×10μm2へとデバイス寸法を縮小することから、約30%低下した。理想係数は、側壁処理ありおよびなしのデバイスで、それぞれ2.5および3.4であった。これらの結果は、KOH化学処理とALD側壁パッシベーションとの組み合わせが、プラズマ損傷によって誘導されるSRH非発光再結合および表面再結合の低減にとって有効であることを示した。
【0048】
プロセス工程
図8は、本発明の1つの実施形態において使用されるプロセス工程のフローチャートである。
【0049】
ブロック800は、任意の成長技術を使用して、1またはこれより多くのIII族窒化物半導体層を基材上に成長させる工程を表す。
【0050】
ブロック801は、デバイスの製作の間にIII族窒化物半導体層のドライエッチングの工程を表す。ここでドライエッチングは、欠陥および表面状態を、上記デバイスの1またはこれより多くの側壁上に導入し、上記欠陥および表面状態は、電荷キャリアトラップとして働き、上記デバイスの漏洩電流および非発光再結合の確率を増大させる。1つの実施形態において、ドライエッチングは、プラズマベースのドライエッチングを含み、上記プラズマベースのドライエッチングは、行われている化学処理および/または蒸着されている誘電体材料からの効果を増強するように変更される。また、デバイスの製作に関して、上記デバイスは、好ましくは、60μm未満の長さを有する1もしくはこれより多くの縁部を有する、および/または上記デバイスは、40μm未満の直径を有する。
【0051】
ブロック802は、1またはこれより多くの化学処理を行って、上記デバイスの側壁から損傷を除去する工程を表す。好ましくは、上記化学処理は、KOHを使用するウェットエッチングを含み、上記デバイスは、化学処理が行われる前に保護される。さらに、上記デバイスの側壁のうちの1またはこれより多くのプロフィールは、化学処理によって変更され得る。
【0052】
ブロック803は、上記デバイスの側壁上に誘電体材料を蒸着して、上記ドライエッチングによって生成される上記デバイスの漏洩電流を低下させるために、上記デバイスの側壁をパッシベーション処理し、上記欠陥および表面状態を埋める工程を表す。この点において、上記デバイスの漏洩電流の低減は、上記デバイスの有効性において増大を生じる。
【0053】
好ましくは、上記誘電体材料は、上記デバイスのIII族窒化物半導体層と比較して、より大きな電気抵抗を有し、例えば、誘電体材料は、SiO2、SiNx、Al2O3、AlN、または別の絶縁性の酸化物もしくは窒化物を含み得る。誘電体材料の重要な要件は、塊の状態で密であること、および低不純物濃度で化学量論的比に近いことであり、ここでその不純物は、水素または炭素であり得る。
【0054】
さらに、誘電体材料の蒸着は、コンフォーマル側壁カバレッジを提供する蒸着法を使用して行われ得、例えば、誘電体材料の蒸着は、ALDを使用して行われ得る。他の誘電法(スパッタリングおよびイオンビーム蒸着を含む)はまた、同様に使用され得る。
【0055】
さらに、蒸着後処理は、誘電体フィルム品質を改善して、同じ結果を達成するために使用され得る。例えば、プラズマ支援化学気相蒸着法(PECVD)を使用して蒸着した誘電体材料の品質は、焼き鈍し後に増強される[34,35]。
【0056】
誘電体材料の品質は、化学組成および材料境界面における情報を提供するために、従来の材料および光学的特徴付け技術(例えば、X線光電子分光法(XPS)および屈折率変化)によるのみならず、電子顕微鏡法(例えば、走査型電子顕微鏡法および透過型電子顕微鏡法)によっても決定され得る。
【0057】
ブロック802の化学処理は、ブロック803の誘電体材料が蒸着される前に行われ得るが、その順序は、ブロック802の化学処理が行われる前にブロック803の誘電体材料が蒸着されて、逆になってもよいことに注意のこと。さらに、他の製作プロセスは、化学処理が行われる工程と誘電体材料が蒸着される工程との間に、または誘電体材料が蒸着される工程と上記化学処理が行われる工程との間に、上記デバイスに対して行われてもよい。
【0058】
ブロック804は、上記方法の最終結果、すなわち、
図8の方法を使用して製作したデバイスを表す。好ましくは、上記デバイスは、60μm未満の長さを有する1もしくはこれより多くの縁部を有するか、または上記デバイスは、40μm未満の直径を有する。1つの実施形態において、上記デバイスは、10×10μm
2~100×100μm
2の寸法ならびに22%および27%のサイズ非依存性ピークEQEを有する。
【0059】
参考文献
以下の刊行物は、本明細書に参考として援用される:
【化1】
【化2】
【化3】
【化4】
【0060】
利益および利点
μLEDは、超高解像度を有するディスプレイを生じ得、かつ現在のディスプレイ技術よりエネルギー効率的である、将来的なディスプレイ用途に関する最も有望な候補である。μLEDを有するディスプレイを形成するために、数千万から数億個のμLEDが必要とされ、各μLEDは、可能な限り効率的であるべきである。言い換えると、μLEDは、高い光出力および低い漏洩電流を有するべきである。本発明を使用することによって、各μLEDは、漏洩電流を低減し、かつ光出力を増大させることによって、より効率的であり得る。本発明において記載される処理ありのμLEDは、均一な光放射、高い光出力電力性能、および超低漏洩電流を伴う電流電圧特性を有する。本発明は、高エネルギー効率を有するディスプレイを提供するμLED性能に役立ち得る。
【0061】
結論
これは、本発明の好ましい実施形態の説明を締めくくる。本発明の1またはこれより多くの実施形態の前述の説明は、例証および説明の目的で提示されている。網羅的であることまたは本発明を開示される正確な形態に限定することは意図されない。多くの改変およびバリエーションが、上記の教示に鑑みて可能である。本発明の範囲は、この詳細な説明によって限定されるのではなく、むしろ本明細書に添付される特許請求の範囲によって限定されることが意図される。
本発明は、例えば以下の項目を提供する。
(項目1)
方法であって、
1またはこれより多くのIII族窒化物半導体層を基材上に成長させる工程;
デバイスの製作の間に前記III族窒化物半導体層をドライエッチングする工程であって、ここで前記ドライエッチングは、前記デバイスの1またはこれより多くの側壁に欠陥および表面状態を導入し、前記欠陥および表面状態は、電荷キャリアトラップとして働き、前記欠陥および表面状態は、前記デバイスの漏洩電流および前記デバイスにおける非発光再結合の確率を増大させる工程;
1またはこれより多くの化学処理を行って、前記デバイスの側壁から損傷を除去する工程;ならびに
1またはこれより多くの誘電体材料を前記デバイスの側壁に蒸着させて、前記デバイスの側壁をパッシベーション処理し、前記ドライエッチングによって生成される前記デバイスの漏洩電流を低下させるために前記欠陥および表面状態を埋める工程、
を包含する方法。
(項目2)
前記化学処理は、前記誘電体材料が蒸着される前に行われる、項目1に記載の方法。
(項目3)
他の製作プロセスが、前記化学処理を行う工程と前記誘電体材料を蒸着する工程との間に、前記デバイスに対して行われる、項目2に記載の方法。
(項目4)
前記誘電体材料が、前記化学処理が行われる前に蒸着される、項目1に記載の方法。
(項目5)
他の製作プロセスは、前記誘電体材料を蒸着する工程と前記化学処理を行う工程との間に、前記デバイスに対して行われる、項目4に記載の方法。
(項目6)
前記ドライエッチングは、プラズマベースのドライエッチングを含み、前記プラズマベースのドライエッチングは、前記化学処理を行う工程および/または前記誘電体材料を蒸着する工程からの効果を増強するように変更される、項目1に記載の方法。
(項目7)
前記化学処理は、水酸化カリウム(KOH)を使用するウェットエッチングを含む、項目1に記載の方法。
(項目8)
前記デバイスは、前記化学処理を行う前に保護される、項目1に記載の方法。
(項目9)
前記デバイスの側壁のうちの1またはこれより多くのプロフィールは、前記化学処理によって変更される、項目1に記載の方法。
(項目10)
前記誘電体材料は、III族窒化物半導体層と比較して、より大きな電気抵抗を有する、項目1に記載の方法。
(項目11)
前記誘電体材料は、SiO
2
、SiN
x
、Al
2
O
3
、AlN、または別の絶縁性の酸化物もしくは窒化物を含む、項目1に記載の方法。
(項目12)
前記誘電体材料の蒸着は、コンフォーマル側壁カバレッジを提供する蒸着法を使用して行われる、項目1に記載の方法。
(項目13)
前記誘電体材料の蒸着は、原子層堆積(ALD)を使用して行われる、項目12に記載の方法。
(項目14)
前記デバイスの漏洩電流の低減は、前記デバイスの効率の増大を生じる、項目1に記載の方法。
(項目15)
項目1に記載の方法を使用して製作されるデバイス。