IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ 清水建設株式会社の特許一覧

特許7374847切羽評価システム、切羽評価学習システム、切羽評価方法、切羽評価学習方法、コンピュータプログラム
<>
  • 特許-切羽評価システム、切羽評価学習システム、切羽評価方法、切羽評価学習方法、コンピュータプログラム 図1
  • 特許-切羽評価システム、切羽評価学習システム、切羽評価方法、切羽評価学習方法、コンピュータプログラム 図2
  • 特許-切羽評価システム、切羽評価学習システム、切羽評価方法、切羽評価学習方法、コンピュータプログラム 図3
  • 特許-切羽評価システム、切羽評価学習システム、切羽評価方法、切羽評価学習方法、コンピュータプログラム 図4
  • 特許-切羽評価システム、切羽評価学習システム、切羽評価方法、切羽評価学習方法、コンピュータプログラム 図5
  • 特許-切羽評価システム、切羽評価学習システム、切羽評価方法、切羽評価学習方法、コンピュータプログラム 図6
  • 特許-切羽評価システム、切羽評価学習システム、切羽評価方法、切羽評価学習方法、コンピュータプログラム 図7
  • 特許-切羽評価システム、切羽評価学習システム、切羽評価方法、切羽評価学習方法、コンピュータプログラム 図8
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2023-10-27
(45)【発行日】2023-11-07
(54)【発明の名称】切羽評価システム、切羽評価学習システム、切羽評価方法、切羽評価学習方法、コンピュータプログラム
(51)【国際特許分類】
   E21D 9/00 20060101AFI20231030BHJP
   G01C 11/00 20060101ALI20231030BHJP
   G01B 11/00 20060101ALI20231030BHJP
   G06N 20/00 20190101ALI20231030BHJP
   G06T 7/00 20170101ALI20231030BHJP
【FI】
E21D9/00 Z
G01C11/00
G01B11/00 H
G06N20/00 130
G06N20/00
G06T7/00 350C
【請求項の数】 12
(21)【出願番号】P 2020089126
(22)【出願日】2020-05-21
(65)【公開番号】P2021183774
(43)【公開日】2021-12-02
【審査請求日】2023-03-09
(73)【特許権者】
【識別番号】000002299
【氏名又は名称】清水建設株式会社
(74)【代理人】
【識別番号】100149548
【弁理士】
【氏名又は名称】松沼 泰史
(74)【代理人】
【識別番号】100161506
【弁理士】
【氏名又は名称】川渕 健一
(74)【代理人】
【識別番号】100161207
【弁理士】
【氏名又は名称】西澤 和純
(72)【発明者】
【氏名】邊見 涼
(72)【発明者】
【氏名】長谷川 裕員
(72)【発明者】
【氏名】淡路 動太
(72)【発明者】
【氏名】谷村 浩輔
(72)【発明者】
【氏名】鳥居 敏
【審査官】石川 信也
(56)【参考文献】
【文献】特開2019-023392(JP,A)
【文献】特開2019-184541(JP,A)
【文献】特開2021-107650(JP,A)
【文献】特開2018-207194(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
E21D 9/00
G01C 11/00
G01B 11/00
G06N 20/00
G06T 7/00
(57)【特許請求の範囲】
【請求項1】
切羽を撮像した切羽画像データを取得する切羽画像データ取得部と、
切羽画像データを所定の数の領域に分割した分割切羽画像データと、切羽画像データに基づく切羽の特徴を示す数値化データとの関係を学習した第1学習済みモデルに対して、判定対象である切羽画像データが前記所定の数に分割された分割切羽画像データをそれぞれ入力することで、分割切羽画像データ毎に、数値化データを求める数値化データ算出部と、
切羽を穿孔する施工機械の前記切羽を穿孔する際の施工状況を表す計測データを取得する計測データ取得部と、
前記数値化データと前記計測データとの組み合わせと、前記切羽を評価する評価者によって評価された結果である評価データとの関係を学習した第2学習済みモデルに対して、前記数値化データ算出部によって算出された数値化データと前記計測データ取得部によって得られた計測データとを入力することで、前記判定対象である切羽画像データに対する評価データを求める評価データ算出部と、
を有する切羽評価システム。
【請求項2】
前記数値化データ算出部が用いる学習済みモデルは、ディープラーニングによって学習された学習済みモデルであり、
前記評価データ算出部が用いる学習済みモデルは、機械学習によって学習された学習済みモデルである
請求項1記載の切羽評価システム。
【請求項3】
前記分割切羽画像データ毎の数値化データは、前記分割切羽画像データが配列された順序に従って、配列される
請求項1または請求項2に記載の切羽評価システム。
【請求項4】
複数のカメラから得られる前記切羽画像データから生成される三次元切羽モデルを取得する三次元切羽モデル取得部を有し、
前記第1学習済みモデルは、
前記分割切羽画像データと、切羽の風化度合いに応じて数値化した風化度合いデータとの関係を学習した第3学習済みモデルと、
前記三次元切羽モデルを前記所定の数に分割された分割三次元切羽モデルと、切羽の割れ目の状態に応じて数値化した割れ目状態データとの関係を学習した第4学習済みモデルと、を含み、
前記第2学習済みモデルは、
前記風化度合いデータと前記割れ目状態データと前記計測データとの組み合わせと、前記評価データとの関係を学習した学習済みモデルであり、
前記数値化データ算出部は、前記第3学習済みモデルに対して、前記分割切羽画像データをそれぞれ入力することで、分割切羽画像データ毎に、風化度合いデータを求めるとともに、前記第4学習済みモデルに対して、前記分割三次元切羽モデルをそれぞれ入力することで、分割三次元切羽モデル毎に、割れ目状態データを求め、
前記評価データ算出部は、前記第2学習済みモデルに対して、前記数値化データ算出部によって得られた風化度合いデータと割れ目状態データとを入力することで、評価データを求める
請求項1から請求項3のうちいずれか1項に記載の切羽評価システム。
【請求項5】
前記計測データは切羽の岩盤の圧縮強度である
請求項1から請求項4のうちいずれか1項に記載の切羽評価システム。
【請求項6】
複数のカメラによって切羽を異なる撮像アングルから撮像した切羽画像データを取得する切羽画像データ取得部と、
前記切羽を評価する評価者によって切羽の外観に基づく切羽の状態が評価された結果である評価結果を取得する評価結果取得部と、
切羽画像データを所定の数の領域に分割した分割切羽画像データと、前記評価結果とを用いて、分割切羽画像データと評価結果との関係を学習することで学習済みモデルを生成する学習部と、
を有する切羽評価学習システム。
【請求項7】
切羽を撮像した切羽画像データを所定の数の領域に分割した分割切羽画像データのそれぞれに対して求められた、切羽画像データに基づく切羽の特徴を示す数値化データを取得する数値化データ取得部と、
切羽を穿孔する施工機械の前記切羽を穿孔する際の施工状況を表す計測データを取得する計測データ取得部と、
前記数値化データと前記計測データとの組み合わせと、前記切羽を評価する評価者によって評価された結果である評価データとを用いて、前記数値化データと前記計測データとの組み合わせと、前記評価データとの関係を学習することで学習済みモデルを生成する学習部と、
を有する切羽評価学習システム。
【請求項8】
切羽画像データ取得部が、切羽を撮像した切羽画像データを取得し、
数値化データ算出部が、切羽画像データを所定の数の領域に分割した分割切羽画像データと、切羽画像データに基づく切羽の特徴を示す数値化データとの関係を学習した第1学習済みモデルに対して、判定対象である切羽画像データが前記所定の数に分割された分割切羽画像データをそれぞれ入力することで、分割切羽画像データ毎に、数値化データを求め、
計測データ取得部が、切羽を穿孔する施工機械の前記切羽を穿孔する際の施工状況を表す計測データを取得し、
評価データ算出部が、前記数値化データと前記計測データとの組み合わせと、前記切羽を評価する評価者によって評価された結果である評価データとの関係を学習した第2学習済みモデルに対して、前記数値化データ算出部によって算出された数値化データと前記計測データ取得部によって得られた計測データとを入力することで、前記判定対象である切羽画像データに対する評価データを求める
切羽評価方法。
【請求項9】
切羽画像データ取得部が、複数のカメラによって切羽を異なる撮像アングルから撮像した切羽画像データを取得し、
評価結果取得部が、前記切羽を評価する評価者によって切羽の外観に基づく切羽の状態が評価された結果である評価結果を取得し、
学習部が、切羽画像データを所定の数の領域に分割した分割切羽画像データと、前記評価結果とを用いて、分割切羽画像データと評価結果との関係を学習することで学習済みモデルを生成する
切羽評価学習方法。
【請求項10】
数値化データ取得部が、切羽を撮像した切羽画像データを所定の数の領域に分割した分割切羽画像データのそれぞれに対して求められた、切羽画像データに基づく切羽の特徴を示す数値化データを取得し、
計測データ取得部が、切羽を穿孔する施工機械の前記切羽を穿孔する際の施工状況を表す計測データを取得し、
学習部が、前記数値化データと前記計測データとの組み合わせと、前記切羽を評価する評価者によって評価された結果である評価データとを用いて、前記数値化データと前記計測データとの組み合わせと、前記評価データとの関係を学習することで学習済みモデルを生成する
切羽評価学習方法。
【請求項11】
請求項1に記載された切羽評価システムとしてコンピュータを機能させるためのコンピュータプログラム。
【請求項12】
請求項6または請求項7に記載された切羽評価学習システムとしてコンピュータを機能させるためのコンピュータプログラム。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、切羽評価システム、切羽評価学習システム、切羽評価方法、切羽評価学習方法、コンピュータプログラムに関する。
【背景技術】
【0002】
技術者の人手不足や高齢化を背景に、山岳トンネル工事では、習熟技術者の知識を学習したAI(人工知能;artificial intelligence)によって、通常においてトンネル技術者が行っている地山評価(切羽観察)を代替させるという試みが長年にわたり実施されてきた。
特に、近年の深層学習手法(ディープラーニング)の台頭によりAIによる画像分類技術の精度が飛躍的に向上したことで、切羽写真や三次元データなどのデジタル地質データを活用し、多くの企業や団体が積極的に地山評価AIの開発を進めている。
AIを切羽の監視に用いる技術として、例えば、特許文献1では、カメラで撮像された画像から得られる特徴点に基づいて計測領域を定め、変状点を得ることで監視し、切羽における崩落や肌落ちについての評価することができる。
【先行技術文献】
【特許文献】
【0003】
【文献】特開2018-207194号公報
【発明の概要】
【発明が解決しようとする課題】
【0004】
しかしながら、AIは、定義が明確でないものに対して分類することは難しいため、画像の分類だけで、予測した点数での地山評価をしたとしても、精度は低い。切羽全体の状況や局所的な特徴、観察時の切羽の様子や前後の切羽での変化などを総合的に見て地山評価を行うことが多く、一様に評価しきれないことが理由である。
そのため、地山評価をAIで行うためには、部分的な特徴を反映しつつ切羽全体を評価できるとともに、複数の評価項目(例えば岩盤強度と切羽の外観に基づく切羽の質(風化変質等))の評価できることが望ましい。
【0005】
本発明は、このような事情に鑑みてなされたもので、その目的は、部分的な特徴を反映しつつ切羽全体を評価することができるとともに、複数の評価項目の評価をすることができる切羽評価システム、切羽評価学習システム、切羽評価方法、切羽評価学習方法、コンピュータプログラムを提供することにある。
【課題を解決するための手段】
【0006】
上述した課題を解決するために、本発明の一態様は、切羽を撮像した切羽画像データを取得する切羽画像データ取得部と、切羽画像データを所定の数の領域に分割した分割切羽画像データと、切羽画像データに基づく切羽の特徴を示す数値化データとの関係を学習した第1学習済みモデルに対して、判定対象である切羽画像データが前記所定の数に分割された分割切羽画像データをそれぞれ入力することで、分割切羽画像データ毎に、数値化データを求める数値化データ算出部と、切羽を穿孔する施工機械の前記切羽を穿孔する際の施工状況を表す計測データを取得する計測データ取得部と、前記数値化データと前記計測データとの組み合わせと、前記切羽を評価する評価者によって評価された結果である評価データとの関係を学習した第2学習済みモデルに対して、前記数値化データ算出部によって算出された数値化データと前記計測データ取得部によって得られた計測データとを入力することで、前記判定対象である切羽画像データに対する評価データを求める評価データ算出部と、を有する。
【発明の効果】
【0007】
以上説明したように、この発明によれば、部分的な特徴を反映しつつ切羽全体を評価することができるとともに、複数の評価項目の評価をすることができる。
【図面の簡単な説明】
【0008】
図1】本実施形態における切羽評価システムにおいて用いるデータを収集する流れについて説明する図である。
図2】この発明の一実施形態による切羽評価システム1の構成を示す概略ブロック図である。
図3】切羽評価システム1の動作について説明する流れ図である。
図4】切羽観察表において定められた項目の一例を示す図である。
図5】切羽の領域を分割した例を示す図である。
図6】項目「風化」において、数値化データ(風化状態データ)を得た場合の一例を示す図である。
図7】評価項目「割れ目の状態」において、数値化データ(割れ目状態データ)を得た場合の一例を示す図である。
図8】切羽特徴量データベースを画面上に表示した一例を示す図である。
【発明を実施するための形態】
【0009】
以下、本発明の一実施形態による切羽評価システムについて図面を参照して説明する。
まず、本実施形態における切羽評価システムにおいて用いるデータを収集する流れについて図1を用いて説明する。
【0010】
切羽100は、トンネル工事における切羽である。この切羽100は、評価対象となる切羽である。
撮像装置群110は、例えば撮像装置110a、撮像装置110b、撮像装置110cの3台の撮像装置が含まれる。これら撮像装置110a、110b、110cは、同じ切羽100をそれぞれ撮像するが、撮像アングルが異なる。撮像アングルは、異なる位置、異なる撮像方向等の少なくともいずれかを条件として撮像されればよい。これら撮像装置群110は、それぞれ、施工機械に取り付けられていてもよいし、三脚等に固定された状態で撮像する箇所に設置されていてもよいし、作業員が安全な場所から撮像するようにしてもよい。撮像装置は、例えば、カメラである。
【0011】
撮像装置110a、撮像装置110b、撮像装置110cは、撮像されたデータを出力する。ここでは、同じタイミングあるいは予め決められた時間内(例えば数分以内)に各撮像装置によって撮像されたそれぞれの画像データが1組の切羽画像データ120として得られる。例えば、撮像装置110aから得られる1枚分の切羽画像データ120a、撮像装置110bから得られる1枚分の画像データ120b、撮像装置110cから得られる1枚分の切羽画像データ120cが1組の切羽画像データ120として得られる。このような切羽画像データ120は、切羽の施工の進捗状況に応じて(数時間毎、1日毎、休憩が到来する毎、所定量を穿孔する毎等)撮像されて得られるようにしてもよいし、所定時間毎に得られるようにしてもよい。
また、撮像装置群110は、3台である場合について説明したが、少なくとも2台以上であればよい。少なくとも2台の撮像装置で撮像することができれば、奥行き情報を得ることが可能である。
【0012】
切羽画像データ120が得られると、切羽評価システムは、切羽画像データ120に対して各種処理を行うことで、三次元切羽モデル130を生成する。三次元切羽モデルは、切羽の凹凸形状を把握することが可能なデータである。この三次元切羽モデル130は、切羽画像データ120に基づいて生成される三次元写真画像130aや、三次元写真画像130aの表示態様を加工した数値標高モデル130bがある。
【0013】
施工機械150は、切羽100に対する施工を行う。施工機械150は、例えばドリルジャンボである。
測定機器群155は、施工機械150によって切羽100に対する施工が行われる施工時における施工状況を計測し、計測データ160を得る。
測定機器群155は、例えば、各種センサや、湧水量測定機器等である。測定機器群155は、各種センサや湧水量測定機器からそれぞれ計測データ160を得る。
【0014】
各種センサは、ドリルジャンボによって切羽を穿孔する際の穿孔エネルギー値を求めるために必要なデータを計測する。このセンサは、ドリルジャンボに搭載されているセンサ(ブームの回転角度センサや傾斜センサ、油圧センサ、モータの駆動電流を検出する電流センサ)であってもよい。
【0015】
各種センサは、穿孔エネルギー値を求めるために必要なデータを計測する機能だけでなく、この計測されたデータに基づいて、穿孔エネルギー値を求める機能を有していてもよい。穿孔エネルギー値は、例えば、ドリルジャンボに取り付けられた各種センサによって、削岩機の作動油圧、削孔距離、孔口位置、削孔角度等を検出し、この検出された結果に基づいて求めることができる。穿孔エネルギー値は、例えば一般的に知られている式に従い、打撃エネルギー、打撃数、穿孔速度、孔断面積に基づいて求めることができる。打撃エネルギーは、ドリルジャンボの削岩機能の特性や穿孔時の負荷に基づいて求めることができ、穿孔面積、1打撃エネルギー、穿孔速度、打撃数に基づいて求めることができる。
【0016】
湧水量測定機器は、切羽100の前方方向(掘削する方向)に対してボーリングによって探査された湧水状況に基づいて湧水量を測定する。
【0017】
計測データ160が得られると、切羽評価システムは、計測データ160に対して前処理をすることで分布データ170を生成する。分布データ170は、切羽の圧縮強度分布データや湧水分布データである。
【0018】
切羽データDB290は、施工機械150によって施工が行われたタイミングにおいて計測された計測データ160に基づく分布データ170と、当該施工が行われたタイミングに応じて撮像された切羽画像データ120から得られる三次元切羽モデル130とを対応付けて、施工状況データ180として記憶する。施工の進捗がある毎にこのような施工状況データ180が記憶される。
切羽データDB290は、記憶媒体、例えば、HDD(Hard Disk Drive)、フラッシュメモリ、EEPROM(Electrically Erasable Programmable Read Only Memory)、RAM(Random Access read/write Memory)、ROM(Read Only Memory)、またはこれらの記憶媒体の任意の組み合わせによって構成される。
この切羽データDB290は、例えば、不揮発性メモリを用いることができる。
【0019】
次に、図2は、この発明の一実施形態による切羽評価システム1の構成を示す概略ブロック図である。
切羽評価システム1は、撮像装置群110と、測定機器群155と、入力装置156と、切羽評価装置200とを含む。
切羽評価装置200は、切羽画像データ取得部210と、三次元切羽モデル生成部220と、計測データ取得部230と、評価データ取得部240と、データ前処理部250と、数値化データ算出部260と、評価データ算出部270と、学習部280と、切羽データDB290と、出力部295とを含む。
【0020】
切羽画像データ取得部210は、撮像装置群110である複数の撮像装置によって切羽を異なる撮像アングルから撮像した切羽画像データ120を取得する。
【0021】
三次元切羽モデル生成部220は、切羽100を測量した結果に基づいて、切羽100の三次元形状を表す三次元切羽モデルを生成する。この測量は、写真測量技術を適用することができる。写真測量技術は、複数アングルから撮影した写真のみで測量可能、すなわち、撮像装置群110から得られる画像データから測量することが可能であり、切羽の施工への影響が非常に小さく、また、切羽周辺における作業を低減することができるというメリットがある。
【0022】
このような切羽100の三次元切羽モデルを得る場合、三次元切羽モデル生成部220の機能は、ソフトウェアにて実現することができ、例えば、写真測量用ソフトウェア(例えばAgisoft Metashape(Agisoft社製)を用いることができる。写真測量用ソフトウェアを用いることで、異なる複数の撮像アングルから撮影された画像データから、三次元切羽モデルを得ることができる。三次元切羽モデルは、切羽の凹凸形状を把握することが可能なデータである。この三次元切羽モデルとしては、三次元写真画像130aや、数値標高モデル130bを用いることができる。
【0023】
この実施形態において、三次元切羽モデル生成部220は、切羽画像データ120から三次元切羽モデル130を生成する。具体的に、三次元切羽モデル生成部220は、撮像装置群110からそれぞれ切羽画像データ120を取得し、切羽100を異なる複数の撮像アングルから撮像した画像データを元にSfM(Structure from Motion)処理をすることで、三次元切羽モデル130を生成する。SfM処理は、計測対象を異なる位置や角度から撮影した画像を複数枚準備し、写真同士の対応関係を解析することで、計測対象の三次元点群データを生成する処理である。このSfM処理を行って三次元切羽モデル130を得ることで、この三次元切羽モデル130を元に、切羽の三次元形状を把握することが可能となる。また、三次元切羽モデル生成部220は、この三次元切羽モデルに対して加工処理をすることで、数値標高モデル130bを得ることができる。
【0024】
数値標高モデルは、切羽面のクラックの状態をより明瞭にするために、切羽面に対して正対する鉛直面を基準面とし、そこからの傾斜量を色で表現することができる。例えば、切羽の奥行き量を標高として表し、この標高差が大きな箇所は、クラックとして捉えることができる。また、切羽100の表面に開口していて規模が大きい(所定以上の標高である部位)については、クラックである見なし、切羽において周囲よりも濃い色を割り当てることで、強調して表現することができる。
これにより、クラックの状態をより明確に示すことができる。後述するように、切羽評価装置200は、この数値標高モデルを用いて教師データを生成し学習済みモデルを生成することで、数値標高モデルを切羽AIに適用することができる。また、三次元切羽モデルは、画像データとして取り扱うことができるため、学習するための教師データとして用いる場合であっても、適用しやすいというメリットがある。
【0025】
計測データ取得部230は、切羽を穿孔する施工機械が切羽を穿孔する際の施工状況を表す計測データを測定機器群155から取得する。ここでは、測定機器群155から穿孔エネルギー値、圧縮強度、湧水量計測値の少なくともいずれか1つを直接得るようにしてもよいし、測定機器群155から得られた計測データに基づいて、切羽評価装置200において穿孔エネルギー値や圧縮強度を求めるようにしてもよい。
【0026】
評価データ取得部240は、切羽を評価する評価者(例えば、トンネル技術者)によって切羽観察項目に基づいて評価された結果である評価データを取得する。評価された結果としては、切羽を評価する評価者によって切羽の外観に基づく切羽の状態(風化、割れ目)が評価された結果、切羽の軟硬に基づく切羽の状態(軟硬)が評価された結果、等がある。
評価データは、例えば、切羽観察項目に基づいて評価された結果が入力装置156から入力される。この評価者は、切羽を評価する習熟技術者であることが好ましい。そしてこの習熟技術者よって判断や評価された結果を評価データ取得部240から取得することで、切羽評価システム1において学習データの一部として用いることができる。このような習熟技術者の評価結果を取り込んで切羽評価システムにおいて生成される学習済みモデルを用いることで、切羽に関する各種データを入力することができれば、習熟技術者自身が評価を行わなくても、切羽評価システムから、習熟技術者の評価結果を反映させた評価結果を出力することができる。
【0027】
また、切羽観察項目における評価項目は、例えば、切羽の状態、素掘面の状態、風化変質、割目の頻度、割目の状態、割目の形態、湧水、水による劣化、割目の方向性等の項目のうち少なくとも1つの項目を含むようにすることができる。
【0028】
切羽の状態は、肌落ちするか否かの状態や湧水状態等を考慮して切羽を観察した結果を表す。素掘面の状態は、素掘り面において肌落ちするか否か等を表す。風化変質は、時間の経過に応じて切羽の質(色や強度など)の変化が変化する状態を表す。割目の頻度は、単位面積あたりに存在する割目の間隔や数に基づく頻度を表し、割れ目が密に存在するか、疎に存在するか等の度合いを表す。割目の状態は、割目の開口の度合い、割目の挟在物等を表す。割目の形態は、割目の走向方向の傾向や、割目が層状であるか否か等を表す。
湧水は、湧水が切羽の特定部位から集中して生じているか全面的に生じているか否か、湧水の量等を表す。水による劣化は、水によって切羽が軟弱化している度合いを表す。割目の方向性は、生じている割目の方向を表す。
【0029】
データ前処理部250は、学習済みモデルを生成するために必要なデータに対して各種前処理を行うことで、分布データを生成する。分布データは、切羽における位置や領域毎に、所定の評価項目に基づく評価結果が示す度合いに応じてことなる色で位置(あるいは領域)毎にその分布を表す画像データである。
例えばデータ前処理部250は、計測データ160に含まれる(または計測データ160に基づいて求まる)穿孔エネルギー値と湧水量計測値との少なくともいずれか一方に基づいて穿孔エネルギー値に応じて求まる切羽における圧縮強度の分布を示す圧縮強度分布データ、または、計測データに基づいて湧水量計測値に応じて求まる切羽における湧水の分布を示す湧水分布データを求める。
圧縮強度分布データは、切羽の垂直面方向における圧縮強度分布を示す画像データである。圧縮強度は、計測データに基づいて生成される値であり、切羽における岩盤の圧縮強度を示す。例えば、削孔エネルギー値が高いほど、圧縮強度が高く、削孔エネルギー値が低いほど圧縮強度が低い関係にある。例えば、圧縮強度分布データでは、切羽における位置(あるいは領域)毎に、その位置(領域)における圧縮強度に応じて異なる色で表現した画像データである。例えば、圧縮強度が高いほど赤に近い色で表し、圧縮強度が低いほど緑に近い色で表し、圧縮強度が中間よりであるほど黄に近い色で表すようにしてもよい。
【0030】
湧水分布データは、切羽の垂直面方向における湧水状況を示す画像データである。湧水状況は、湧水量測定機器等で測定された結果に基づく値であり、湧水量を表す。例えば、湧水分布データでは、切羽における位置(あるいは領域)毎に、その位置(領域)における湧水量に応じて異なる色で表現した画像データである。例えば、湧水量が高いほど赤に近い色で表し、湧水量が少ないほど緑に近い色で表し、湧水量が中間よりであるほど黄に近い色で表すようにしてもよい。
このような分布データは、画像として表現されるため、画像データとして取り扱うことができる。なお、データ前処理部250は、計測データとして圧縮強度分布データと湧水分布データとのうち、圧縮強度分布データのみを計測データとして用いるようにしてもよい。
【0031】
また、データ前処理部250は、三次元切羽モデル、圧縮強度分布データ、湧水分布データに対して教師データとなる評価データを対応付けし、学習部280に入力する。
【0032】
数値化データ算出部260は、切羽画像データを所定の数の領域に分割した分割切羽画像データと、切羽画像データに基づく切羽の特徴を示す数値化データとの関係を学習した学習済みモデル(第1学習済みモデル)に対して、判定対象である切羽画像データが所定の数に分割された分割切羽画像データをそれぞれ入力することで、分割切羽画像データ毎に、数値化データを求める。
ここで、数値化データ算出部260が用いる学習済みモデルには、2種類の学習済みモデルがあり、数値化データ算出部260はその両方を用いることができる。
2種類の学習済みモデルのうち、1つの学習済みモデルは、分割切羽画像データと、切羽の風化度合いに応じて数値化した風化度合いデータとの関係を学習した学習済みモデル(第3学習済みモデル)である。
また、2種類の学習済みモデルのうち、もう1つの学習済みモデルは、三次元切羽モデルを所定の数に分割された分割三次元切羽モデルと、切羽の割れ目の状態に応じて数値化した割れ目状態データとの関係を学習した学習済みモデル(第4学習済みモデル)である。
【0033】
数値化データ算出部260は、この2種類の学習済みモデルを用い、学習済みモデル(第3学習済みモデル)に対して、分割切羽画像データをそれぞれ入力することで、分割切羽画像データ毎に、風化度合いデータを求めるとともに、学習済みモデル(第4学習済みモデル)に対して、分割三次元切羽モデルをそれぞれ入力することで、分割三次元切羽モデル毎に、割れ目状態データを求める。
【0034】
数値化データ算出部260は、割れ目状態データを求めるにあたり、複数のカメラから得られる切羽画像データから生成される三次元切羽モデルを、三次元切羽モデル生成部220から取得する。
数値化データ算出部260が用いる学習済みモデルは、例えば、ディープラーニングによって学習された学習済みモデルを用いることができる。
【0035】
評価データ算出部270は、数値化データと計測データとの組み合わせと、切羽を評価する評価者によって評価された結果である評価データとの関係を学習した学習済みモデル(第2学習済みモデル)に対して、数値化データ算出部260によって算出された数値化データと計測データ取得部230によって得られた計測データとを入力することで、判定対象である切羽画像データに対する評価データを求める。
ここで、評価データ算出部207が用いる学習済みモデルの一例は、風化度合いデータと割れ目状態データと計測データとの組み合わせと、評価データとの関係を学習した学習済みモデルである。
評価データ算出部207は、学習済みモデル(第2学習済みモデル)に対して、数値化データ算出部によって得られた風化度合いデータと割れ目状態データとを入力することで、評価データを求める。
この評価データ算出部270が用いる学習済みモデルは、機械学習によって学習された学習済みモデルを用いることができる。
【0036】
学習部280は、切羽画像データを所定の数の領域に分割した分割切羽画像データと、前記評価結果とを用いて、分割切羽画像データと評価結果との関係を学習することで学習済みモデルを生成する。
【0037】
学習部280は、切羽を撮像した切羽画像データを所定の数の領域に分割した分割切羽画像データのそれぞれに対して求められた、切羽画像データに基づく切羽の特徴を示す数値化データを取得し、この数値化データを学習の際に用いる。
学習部280は、切羽を穿孔する施工機械の切羽を穿孔する際の施工状況を表す計測データを取得し、この計測データを学習の際に用いる。
これらのデータを用いることで、学習部280は、数値化データと計測データとの組み合わせと、切羽を評価する評価者によって評価された結果である評価データとを用いて、数値化データと計測データとの組み合わせと、評価データとの関係を学習することで学習済みモデルを生成する。
【0038】
切羽データDB290は、分布データ170や三次元切羽モデル130等の各種データを記憶する。
【0039】
出力部295は、評価データ算出部270によって算出された評価データを出力する。出力部295による出力は、液晶表示装置等の表示装置の表示画面に評価結果を表示することであってもよいし、外部の機器(例えば、ネットワークを介して接続される他のコンピュータ端末)へ評価結果を送信することであってもよい。
【0040】
上述した切羽評価装置200は、コンピュータによって実現するようにしてもよい。例えば、切羽評価装置200の各機能をコンピュータプログラムによって構築し、コンピュータが実行することで、切羽評価装置200として機能するようにしてもよい。
【0041】
学習部280は、三次元切羽モデル130と計測データ160と評価データに基づく教師データを用い、三次元切羽モデル130と計測データ160との組み合わせと、評価データとの関係を学習することで学習済みモデル(第2学習済みモデル)を生成する。
ここで、学習済みモデルを生成するにあたり、教師データに用いられる三次元切羽モデル130は、三次元写真画像130aと数値標高モデル130bの両方であってもよいし、いずれか一方であってもよい。この実施形態では、両方を用いる場合について説明する。
また、学習済みモデルを生成するにあたり、教師データに用いられる計測データは、データ前処理部250によって求められた圧縮強度分布データまたは湧水分布データを用いることができる。ここでは、計測データが画像データとして得られるのであれば、計測データをそのまま教師データとして用いるようにしてもよいし、計測データが画像データとして得られていない場合には、データ前処理部250によって前処理をすることで画像データを得るようにしてもよい。
ここでは、圧縮強度分布データまたは湧水分布データは、いずれも画像データであるため、教師データとして用いて学習済みモデルを生成するにあたり、学習データとして適用し易い。
【0042】
上述した切羽評価装置200では、ディープラーニング(数値化データ算出部260において用いられるアルゴリズム)と機械学習(評価データ算出部270において用いられるアルゴリズム)の2段階のAIアルゴリズムを用いた新たな地山評価手法を提供することができる。そしてこの実施形態では、ディープラーニングにより切羽の特徴量を数値化し、機械学習により数値化した切羽を地山評価の点数に応じて分類する。機械学習では、岩盤強度や風化変質の程度を同時に解析することができるため、より評価項目に沿った判定が可能となる。また、前後の切羽の情報も同時に解析可能である。
【0043】
次に、切羽評価システム1の動作について説明する。
図3は、切羽評価システム1の動作について説明する流れ図である。
切羽評価システム1の動作においては、トンネル切羽判定(ステップS100)、切羽AI学習フェーズ(ステップS200)、切羽AI実行フェーズ(ステップS300)が順に行われる。
《トンネル切羽判定(ステップS100)》
トンネル切羽判定において、トンネル技術者は、評価対象の切羽を所定の評価項目に従い、目視による観察を行った評価結果に応じたクラスに分類する。所定の項目は、例えば、切羽観察表等において定められた項目を用いることができる。切羽観察表において定められた項目の一例を、図4に示す。切羽観察表における項目には、例えば、「切羽の状態」、「風化変質」、「割れ目の状態」、「湧水」等がある。これら評価項目毎に、クラスが付与される。クラスは、例えば、数値で表される。また、トンネル技術者は、硬さ、風化、割れ目等に関する評価項目に従い、チェックを行った評価結果に応じたクラスに分類する(ステップS101)。トンネル技術者は、これら分類した結果を所定の帳票に書き込む。このトンネル技術者は、習熟技術者であることが好ましい。
トンネル技術者は、所定の計算手法に基づいて切羽の評価点を求め、評価点を基に切羽の判定を行い(ステップS102)、判定結果を所定の帳票に書き込む。切羽の判定は、例えば、図5に示すように切羽を天端、左肩、右肩の3つの領域に分割し、それぞれ領域において図4に示すNo1からNo9までの9項目について評価を行い、下記の式(1)に基づいて、各領域における9項目におけるクラスを集計することで切羽評価点を算出する。このような切羽観察表に基づいて切羽評価点を求める手法は、既存の方法を用いてもよい。
【数1】
【0044】
《切羽AI学習フェーズ(ステップS200)》
切羽AI学習フェーズにおいて、学習部280は、切羽を撮影した切羽画像と、切羽画像から得られる三次元切羽モデルとを取得する(ステップS201)。また、切羽評価装置200は、測定機器群155によって得られた計測データに基づく分布データを取得する(ステップS202)。
学習部280は、切羽画像データ及び三次元切羽モデルと、ステップS101においてトンネル技術者によって評価結果との関係を学習する(ステップS203)。ここでの学習は、ディープラーニングによって行われる。また、データ前処理部250は、計測データに基づいて分布データ(例えば、穿孔エネルギー値に基づく圧縮強度分布データ)を生成する(ステップS204)。
次に、学習部280は、切羽画像や三次元切羽モデルに対して評価されることで得られるクラス(画像に応じた数値化されたデータ)と分布データとの組み合わせと、トンネル技術者によって評価された評価結果(例えばクラス)(符号101a)との関係を学習することで学習済みモデルを生成する(ステップS205)。ここでの学習は機械学習によって行われる。
また、ステップS205において用いられる数値化データは、ステップS203の学習によって学習済みモデルを用いて算出してもよいし、トンネル技術者の評価結果を用いるようにしてもよい。
ここでは、学習結果を評価検証し、その結果をフィードバックすることで(ステップS206)、繰り返し学習をし、学習済みモデルの精度を上げることもできる。
【0045】
《切羽AI実行フェーズ(ステップS300)》
切羽AI実行フェーズにおいて、
数値化データ算出部260は、今回評価したい対象である切羽を対象として、切羽画像、三次元切羽モデル、計測データが得られると(ステップS301)、切羽画像データ、三次元切羽モデルを、ディープラーニングによって得られた学習済みモデルに入力することで、数値化データを求める(ステップS302)。ここでは、切羽画像データを分割することで得られる複数の分割切羽画像データを、それぞれ学習済みモデルに入力することで、それぞれの分割切羽画像データ毎に、数値化データを得ることができる。また、三次元切羽モデルを分割することで得られる複数の分割三次元切羽モデルを、それぞれ学習済みモデルに入力することで、それぞれの分割三次元切羽モデル毎に、数値化データを得ることができる。なお、三次元切羽モデルの代わりに、数値標高モデルを用いて予め学習した場合には、分割数値標高モデルをその学習済みモデルに入力することで、分割数値標高モデルに応じた数値化データを得ることもできる。
このようにして、画像の内容に応じて数値化することができる。
例えば、このディープラーニングが用いられる学習済みモデルを用いてAIによる処理を実行することで、切羽がもつ特徴量を数値化することができる。ここでは、切羽画像をメッシュ状に所定の数となるように分割されたデジタル地質データ(切羽写真データや三次元切羽モデル)を用いて、視覚的に判別しやすい特徴を程度に応じてn段階(例えば3段階)にクラス分けする。
【0046】
本実施形態において、学習部280がステップS203において学習する切羽画像データに基づく評価結果を用いるが、この評価は、例えば「風化」と「割れ目」の2つを用いる。なお、「風化」のみ用いる場合には、撮像装置群110は1つの撮像装置のみであってもよい。
《風化》
例えば、評価項目が「風化」の場合、切羽が風化している場合には岩石が酸化し茶色に変色する性質がある。この性質を利用し、分割された画像内において全体に茶色を呈する画像は風化のクラスを3、部分的に茶色の画像は風化のクラスを2、茶色が全くない画像は風化のクラスを1として付与する。
このような評価項目のそれぞれにおいて、AIモデルの学習と性能評価(評価検証)を行い、未知のデータ(これから評価を行う切羽の画像)をこの学習済みモデルに入力することで、特徴量ごとに切羽を数値で表現することが可能となる。
【0047】
ここで、さらに説明すると、「風化」と「割れ目」とについて、異なる学習済みモデルを学習部280が生成し、数値化データ算出部260が、この項目に応じた学習済みモデルに分割切羽画像データ等を入力することで、その評価項目に応じた数値化データを得るようにしてもよい。
例えば、「風化」については、切羽状態と風化変質を示すクラスとの関係を深層学習させた「風化分類モデル」を用いて、切羽画像データを分割した各ブロックの風化の状態を複数の段階(風化クラス,ここでは一例として3段階)に分類することで、風化状態を数値化データにて表した風化状態データを得ることができる。
また、「割れ目」については、切羽状態と割れ目の状態を示すクラスとの関係を深層学習させた「割目分類モデル」を用いて、切羽画像データを分割した各ブロックの割目の状態を複数の段階(割目クラス,ここでは一例として3段階)に分類することで、割れ目の状態を数値化データにて表した割目状態データを得ることができる。
【0048】
図6は、項目「風化」において、数値化データ(風化状態データ)を得た場合の一例を示す図である。風化状態データは、撮像装置110a、撮像装置110b、撮像装置110cのうちいずれかの撮像装置によって撮像された画像データが複数の領域に分割され、その分割された領域毎に、風化の状態がいずれの段階であるかを示すクラスが割り当てられたデータである。
この図において、切羽画像データは、横方向に12行、縦方向に6列となるように分割された場合が図示されており、分割されたそれぞれの分割画像の下方に、分類されたクラスが示されている。風化の状態の段階(風化クラス)は、例えば、「風化なし」を示す風化クラス1、「風化少し有り」を示す風化クラス2、「風化有り」を示すクラス3、の3段階がある。
例えば、横方向に7行目、縦方向2列目にある分割切羽画像データにおいては、その分割切羽画像データの領域内において茶色の画素の数が多数あることから、風化のクラスが3として分類されている。一方、横方向に4行目、縦方向6列目にある分割切羽画像データにおいては、その分割切羽画像データの領域内において茶色の画素の数が非常に少なく、白色の画素が多めに存在することから、風化のクラスが2として分類されている。このような分類は、習熟したトンネル技術者が行うことで切羽の評価結果としての精度が高い。しかし、ここでは、習熟したトンネル技術者の評価結果を用いて学習しておき、その学習済みモデルを利用することで、習熟したトンネル技術者の知識や経験を反映させた上で、画像の内容に応じて数値化することができる。
【0049】
《風化分類モデル》
風化分類モデルは、切羽画像データと、当該切羽画像データの画像領域を複数領域に分割したそれぞれの分割領域に割り当てられた風化のクラスとの関係を学習した学習済モデルである。風化分類モデルは、切羽画像データが入力されることに応じて風化状態データを得ることができるモデルである。
【0050】
この風化分類モデルを作成するために、トンネル坑口からある地点(例えば、50切羽(50メートル))までの範囲で得られる切羽画像データを用いて学習を行う。学習は、深層学習(転移学習)を用いるが、他の学習方法であってもよい。
学習に用いられる切羽画像データは、RGB(赤、緑、青)データであり、縦方向及び横方向に所定の分割数で分割される。この分割画像から特徴的な画像を選択し、選択された分割画像に対して、風化クラス1~3のいずれかを示すラベルが付与される。この風化クラスがラベルとして付与された切羽画像データを風化教師データとし、学習部280が学習する。
このラベルの付与は、例えば上述のステップS100においてトンネル技術者によって評価された結果が、入力デバイスを介して入力される。
【0051】
《割れ目》
図7は、評価項目「割れ目の状態」において、数値化データ(割れ目状態データ)を得た場合の一例を示す図である。割れ目状態データは、撮像装置110a、撮像装置110b、撮像装置110cによって撮像された画像データを基に得られる三次元切羽モデルが複数の領域に分割され、その分割された領域毎に、割れ目の状態がいずれの段階であるかを示す割目のクラスが割り当てられたデータである。
この図において、切羽画像データは、上述の「風化」の場合と同様に横方向に12行、縦方向に6列となるように分割されており、分割されたそれぞれの分割画像の下方に、分類されたクラスが示されている。割目の状態の段階(割目クラス)は、例えば、「割目なし」を示す割目クラス1、「大きい割目」を示す割目クラス2、「複雑な割目」を示す割目クラス3、の3段階がある。
ここでは、三次元切羽モデルでは、切羽における凹凸を色の濃淡で表現することができ、この濃淡の度合いに基づいて、割れ目を把握することができる。この濃淡の度合いは、任意の段階であってもよいが、凹凸の特徴量をより強調するために、割れ目の深さ(奥行き方向)が所定値以上の場合に黒、所定値未満である場合に白、を割り当てるような二値化などの前処理をデータ前処理部250が行っておくようにしてもよい。
例えば、横方向に7行目、縦方向6列目にある分割三次元切羽モデルにおいては、その分割三次元切羽モデルの領域内において、黒を示す画素と、白を示す画素が複雑な配置になっていることから、割れ目が複雑な状態であるものとし、割れ目のクラスが3として分類されている。横方向に5行目、縦方向6列目にある分割三次元切羽モデルにおいては、その分割三次元切羽モデルの領域内において白色の画素が非常に多く、黒色の画素が非常に少ないことから、割れ目のクラスが1として分類されている。横方向に9行目、縦方向5列目にある分割三次元切羽モデルにおいては、その分割三次元切羽モデルの領域内において、黒色の画素と白色の画素が離散的に存在しているのではなく、黒色の画素が隣接している領域と、白色の画素が隣接している領域との2つに分けることも可能であることから、ある程度大きな割れ目であるといえることから、割れ目のクラスが2として分類されている。
このような分類は、習熟したトンネル技術者が行うことで切羽の評価結果としての精度が高い。しかし、ここでは、習熟したトンネル技術者の評価結果を用いて学習しておき、その学習済みモデルを利用することで、習熟したトンネル技術者の知識や経験を反映させた上で、画像の内容に応じて数値化することができる。
【0052】
《割目分類モデル》
割目分類モデルは、切羽画像データと、当該切羽画像データの画像領域を複数領域に分割したそれぞれの分割領域に割り当てられた割目のクラスとの関係を学習した学習済モデルである。割目分類モデルは、切羽画像データが入力されることに応じて割目状態データを得ることができるモデルである。
【0053】
割目分類モデルは、切羽画像データを前処理することで生成される数値標高モデル(三次元切羽モデル)に対して、3クラスにグループ分けされた割目クラスをラベルとして付与し、学習することで得られる。学習は、深層学習(転移学習)を用いるが、他の学習方法であってもよい。
学習に用いられる数値標高モデルは、上述した三次元切羽モデル生成部220によってされる数値標高モデルを用いることができる。
数値標高モデルは、複数アングルの切羽画像データからSfM技術を用いて切羽の三次元点群化したデータである。
この割目分類モデルを作成するために、トンネル坑口側からある地点(例えば、50切羽(50メートル))までの範囲で得られる切羽画像データから、数値標高モデルを生成する。数値標高モデルを用いることで、切羽における凹凸形状に応じて色の濃淡で表現される画像データであり、この色の濃淡を元に、所定以上の標高である部位については、クラックであるとみなすことができる。
数値標高モデルの特徴量をより強調する場合には、色の濃淡で表現するのではなく、2値化処理することで、クラックがあるか否かを表すようにしてもよい。
学習に用いられる数値標高モデルは、縦方向及び横方向に所定の分割数で分割される。この分割画像から特徴的な画像を選択し、選択された分割画像に対して、割目クラス1~3のいずれかをラベルが付与され、学習部280が学習する。
このラベルの付与は、例えば地山評価をする技術が習熟した技術者によって判断された結果を、入力デバイスを介して入力される。
【0054】
次に、数値化データが求まると、評価データ算出部270は、数値化データと計測データとを、機械学習によって得られた学習済みモデルに入力することで切羽を評価した評価データを得る(ステップS303)。ここでは、計測データとしては分布データ170を用いることができ、この分布データについても、分割した上で、分割分布データ毎に、学習済みモデルに入力する。
この機械学習によって学習済みモデルは、切羽画像データの画像の特徴量を数値化した数値化データを用いて、数値列と各切羽観察項目の点数との相関を学習した学習済みモデルである。この機械学習については、機械学習の一手法である決定木を応用した勾配ブースティング決定木という手法を採用した。決定木は、分類に至る過程が比較的容易に解釈できるというメリットがある。
【0055】
ここで、図8は、切羽特徴量データベースを画面上に表示した一例を示す図である。
切羽画像データに基づいて、「風化」について得られた数値化データ(符号801)、三次元切羽モデルに基づいて、「割れ目」について得られた数値化データ(符号802)、圧縮強度分布データに基づく切羽の「軟硬」について得られた数値化データ(符号803)は、それぞれの分割切羽画像データが配列された順に従い、各分割切羽画像データに対応する数値化データが配列されることで、特徴量データとして数列化される。
例えば、「風化」について得られた数値化データ(符号801)は、1つの切羽画像データにおいて、横方向12分割、縦方向6分割である場合には、72個の分割切羽画像データを含むため、各分割切羽画像データについてそれぞれ得られた数値化データが配列され、72変数の数値化データが得られる。
「割れ目」について得られた数値化データ(符号801)についても同様に、1つの切羽画像データにおいて、横方向12分割、縦方向6分割である場合には、72個の分割切羽画像データを含むため、各分割切羽画像データについてそれぞれ得られた数値化データが配列され、72変数の数値化データが得られる。
圧縮強度分布データに基づく切羽の「軟硬」について得られた数値化データ(符号803)は、1つの切羽において10箇所において計測されるが、センター部分の計測データは天端、右肩(または左肩)において重複して用いるようにし、4変数×3(天端、右肩、左肩)であり、合計12変数の数値化データが得られる。
ここでは、切羽画像データと三次元切羽モデルと圧縮強度分布データについては、縦方向及び横方向における分割数は互いに同じであり、数値化データを配列する順序も同じである。
【0056】
このような切羽画像データに基づいて得られた各数値化データの配列は、切羽観察表に則り、天端・左肩・右肩のエリア毎に分割される。例えば、分割切羽画像データが天端のエリアに属する場合には、その分割切羽画像データに対応する数値化データは、「天端」のグループに分類され、左肩のエリアに属する分割切羽画像データの数値化データは、「左肩」のグループに分類され、右肩のエリアに属する分割切羽画像データの数値化データは、「右肩」のグループに分類される(符号804)。
数値化データは、特徴量データとして数列化され、切羽観察項目にそって特徴量を選択することで複数の変数を同時に評価することができる。いずれの特徴量を用いるか否かについては、選択メニュー画面(符号820)において、指定できるようになっている。例えば、この図では、切羽観察項目のうち「切羽の状態」について、「風化」の数値化データと、「割れ目」の数値化データと、「軟硬」の数値化データの全てを用いることが選択されている。また、切羽の観察項目「風化の変質」については、「風化」の数値化データのみ選択されている。
例えば、切羽観察項目「切羽の状態」を評価する際に、風化・割れ目・岩盤強度から総合的に判断するとした場合、「風化」の数値化データ、「割れ目」の数値化データ、「軟硬」の数値化データ、の全てが選択され、右肩または左肩においては、風化(18変数)、割れ目(18変数)、岩盤強度(4変数)を合わせた40変数を特徴量データとした数値列が得られる。天端においては、風化(36変数)、割れ目(36変数)、岩盤強度(4変数)を合わせた76変数を特徴量データとした数値列が得られる。
また、特徴量データは、切羽画像データが分割された際の各分割切羽画像データの配置関係に従い、切羽の左上から右下に向かって順に配列されるため、切羽全体における分割切羽画像データの位置も加味することができる。
学習部280は、作成した特徴量データの数値列パターンとトンネル技術者(地質専門技術者)が実際に評価した各項目の評価点との関連を学習することで学習済みモデルを得る。このようにして得られた学習済みモデルを用いることで、未知(これから評価する切羽)の特徴量データに対してその配列パターンの傾向から適切な地山評価を行うことが可能となる。
【0057】
以上説明した本実施形態によれば、特徴量抽出(数値化データ算出部260の機能)と地山評価モデル(評価データ算出部の機能)の2段階のAIモデルを組み合わせるようにしたので、一段階目で作成したAIモデルが適切か否か見直すことができ、AIが結果を判断する過程をより鮮明に示すことができる。
また、本実施形態によれば、2種類以上の特徴を同時に評価することができることから、より切羽観察項目に沿った地山評価が可能となる。
また、切羽を所定の分割数となるように細かく分割することで、切羽に良好な部分と劣悪な部分が混在する場合でも、適切な評価が可能となる。
【0058】
なお、上述した切羽評価装置200では、評価データ算出部270と学習部280の両方の機能を含む場合について説明したが、学習部280を含み上述した学習フェーズの機能を実現する機能を有するコンピュータ(学習装置)と、評価データ算出部270を含み上述した実行フェーズを実現する機能を有するコンピュータ(評価装置)と、に分けるようにしてもよい。
【0059】
上述した実施形態における切羽評価装置200をコンピュータで実現するようにしてもよい。その場合、この機能を実現するためのプログラムをコンピュータ読み取り可能な記録媒体に記録して、この記録媒体に記録されたプログラムをコンピュータシステムに読み込ませ、実行することによって実現してもよい。なお、ここでいう「コンピュータシステム」とは、OSや周辺機器等のハードウェアを含むものとする。また、「コンピュータ読み取り可能な記録媒体」とは、フレキシブルディスク、光磁気ディスク、ROM、CD-ROM等の可搬媒体、コンピュータシステムに内蔵されるハードディスク等の記憶装置のことをいう。さらに「コンピュータ読み取り可能な記録媒体」とは、インターネット等のネットワークや電話回線等の通信回線を介してプログラムを送信する場合の通信線のように、短時間の間、動的にプログラムを保持するもの、その場合のサーバやクライアントとなるコンピュータシステム内部の揮発性メモリのように、一定時間プログラムを保持しているものも含んでもよい。また上記プログラムは、前述した機能の一部を実現するためのものであってもよく、さらに前述した機能をコンピュータシステムにすでに記録されているプログラムとの組み合わせで実現できるものであってもよく、FPGA(Field Programmable Gate Array)等のプログラマブルロジックデバイスを用いて実現されるものであってもよい。
【0060】
以上、この発明の実施形態について図面を参照して詳述してきたが、具体的な構成はこの実施形態に限られるものではなく、この発明の要旨を逸脱しない範囲の設計等も含まれる。
【符号の説明】
【0061】
1…切羽評価システム、100…切羽、110…撮像装置群、110a…撮像装置、110b…撮像装置、110c…撮像装置、150…施工機械、155…測定機器群、156…入力装置、160…計測データ、200…切羽評価装置、207…評価データ算出部、210…切羽画像データ取得部、220…三次元切羽モデル生成部、230…計測データ取得部、240…評価データ取得部、250…データ前処理部、260…数値化データ算出部、270…評価データ算出部、280…学習部、295…出力部
図1
図2
図3
図4
図5
図6
図7
図8