(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2023-10-27
(45)【発行日】2023-11-07
(54)【発明の名称】制振建物
(51)【国際特許分類】
E04H 9/02 20060101AFI20231030BHJP
F16F 15/02 20060101ALI20231030BHJP
【FI】
E04H9/02 341F
F16F15/02 C
(21)【出願番号】P 2020169037
(22)【出願日】2020-10-06
【審査請求日】2022-11-22
(73)【特許権者】
【識別番号】000206211
【氏名又は名称】大成建設株式会社
(74)【代理人】
【識別番号】110002077
【氏名又は名称】園田・小林弁理士法人
(72)【発明者】
【氏名】谷 翼
(72)【発明者】
【氏名】欄木 龍大
【審査官】須永 聡
(56)【参考文献】
【文献】特開2005-290929(JP,A)
【文献】特開平11-159192(JP,A)
【文献】特開2016-023766(JP,A)
【文献】特開2010-189998(JP,A)
【文献】特開2018-009399(JP,A)
【文献】特開2001-295499(JP,A)
【文献】特開2014-218992(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
E04H 9/02
F16F 15/02
(57)【特許請求の範囲】
【請求項1】
上層に質量ダンパーが設けられた制振建物であって、
前記質量ダンパーは、
放水可能な複数の貯水タンクを備える水槽と、
前記水槽を支える滑り支承部と、
前記水槽の振動を減衰させる減衰装置と、を備え、
前記滑り支承部は、第1の球面滑り支承と、前記第1の球面滑り支承より大きな摩擦係数を有する第2の球面滑り支承を備え、
前記水槽から放水する際には、前記第2の球面滑り支承の上方に設置される前記貯水タンクを、前記第1の球面滑り支承の上方に設置される前記貯水タンクよりも先に放水することにより、前記水槽の質量の変化に応じて応答変位が調整されることを特徴とする制振建物。
【請求項2】
前記第1の球面滑り支承、及び前記第2の球面滑り支承は、それぞれ、上下に互いに対向して設けられる、各々が球面状の凹部として形成された一対の滑り面と、前記一対の滑り面の間に設けられてこれらに対して摺動する滑り体を備え、
前記第1の球面滑り支承及び前記第2の球面滑り支承の一方は、前記水槽の重心に近い側に配置され、前記第1の球面滑り支承及び前記第2の球面滑り支承の他方は、前記水槽の重心から遠い側に配置されることを特徴とする請求項1に記載の制振建物。
【請求項3】
前記貯水タンクには放水口が設けられ、前記放水口には下層階に向かう放水管が設置され、前記放水管には、内部を流れる水により発電する発電装置が設けられ、前記発電装置を通過した少なくとも一部の水が生活用水として供給されることを特徴とする請求項1または2に記載の制振建物。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、上層に質量ダンパーが設けられた制振建物に関する。
【背景技術】
【0002】
高層ビルディング等をはじめとする建築構造物において、地震や風等に起因する長周期の振動を低減する手段の一つとして、質量ダンパーやスロッシングダンパ等のダイナミックダンパーが用いられている。このようなダイナミックダンパーは、その振動低減効果を高めるために、様々な工夫が成されている。
例えば特許文献1には、内部に液体を収容し構造物に設置されたタンクと、タンクの両側壁に接続されタンク内に連通する配管と、配管に設けられたポンプと、構造物の振動と配管を流れる液体の流量に基づいてポンプを制御する制御装置と、を備えるスロッシングダンパが開示されている。
また、特許文献2には、スロッシング槽内に、水よりも粘性の高い泥水を満たしてなるスロッシングダンパが開示されている。
また、特許文献3には、液体を収納した筒状の水槽と、水槽内を分割して複数のスロッシング溝を形成する分割整流板と、水槽の中心縦軸の回りに水槽を回転させる回転機構とを備え、液体が水槽内でスロッシング溝の長手方向に揺れるようにしたスロッシングダンパが開示されている。
【0003】
ところで、特許文献1~3に開示されたような構成をはじめ、各種の耐震構造、免震構造、制振構造は、建築基準法に示される耐震基準に基づいて設計される。建築基準法に示される耐震基準は、極めてまれに起こる地震に対して人命を保護することを目的としている。そのため建物自体は、地震による損壊を逃れたとしても、その後、利用者が建物を継続して使用することが難しい場合がある。
現代の快適な生活は安定した水や電気等の供給により実現されている。これまでも、地震時等に、建物が損壊しなくとも、水道や電気といったライフラインが停止することで、建物内で生活を継続することができず、避難所等に避難せざるを得ない場合も生じている。例えば、高層マンション等で、停電によりエレベータが停止すれば、居住者が建物内の居住スペースから建物外に出入りすることすら困難となる。また、水等は、非常時に備えて備蓄することもできるが、備蓄するためのスペース等との関係もあり、生活に十分な量の備蓄を行うのは難しいケースも生じる。更に、特に高層マンション等においては、地震等に伴って火災が発生した場合に備えての消火用水の確保も重要となる。
【0004】
これらの課題に対し、非常時に備えた水の備蓄に、特許文献1~3に開示されたようなスロッシングダンパのタンクを用いることも考えられる。あるいは、質量ダンパーの質量を水により実現することも考えられる。しかしながら、スロッシングダンパや質量ダンパーに蓄えた水を非常時に利用すると、タンク内の水が減少し、水を蓄えたタンクの質量が減少してしまう。すると、その後に余震等が発生した場合、十分な耐振性能が得られなくなってしまう可能性がある。
【先行技術文献】
【特許文献】
【0005】
【文献】特開平8-334147号公報
【文献】特開平11-350788号公報
【文献】特開2017-26063号公報
【発明の概要】
【発明が解決しようとする課題】
【0006】
本発明の目的は、水を備蓄可能であり、水の使用に起因する耐震性能の低下が抑制可能な質量ダンパーを備えた制振建物を提供することである。
【課題を解決するための手段】
【0007】
本発明者らは、建物の頂部付近の階に設けた水槽を利用した質量ダンパーとして、放水可能な複数の貯水タンクを備える水槽を複数の摩擦係数の異なる球面滑り支承で支持させ、かつ貯水タンクからの放水順番を調整することにより、質量変動に関わらず、復元力と減衰性能を調整して常に質量ダンパーを適切な周期帯に確保出来ることで、建物の応答変位を低減できる点に着眼して、本発明に至った。
本発明は、上記課題を解決するため、以下の手段を採用する。
すなわち、本発明の制振建物は、上層に質量ダンパーが設けられた制振建物であって、前記質量ダンパーは、放水可能な複数の貯水タンクを備える水槽と、前記水槽を支える滑り支承部と、前記水槽の振動を減衰させる減衰装置と、を備え、前記滑り支承部は、第1の球面滑り支承と、前記第1の球面滑り支承より大きな摩擦係数を有する第2の球面滑り支承を備え、前記水槽から放水する際には、前記第2の球面滑り支承の上方に設置される前記貯水タンクを、前記第1の球面滑り支承の上方に設置される前記貯水タンクよりも先に放水することにより、前記水槽の質量の変化に応じて応答変位が調整される。
このような構成によれば、複数の貯水タンクに貯えた水の質量を利用した質量ダンパーを上層に備えている。この制振建物では、水を蓄えた複数の貯水タンクを備える水槽が、滑り支承部によって建物に生じた振動にともなって変位しつつ、その変位が、滑り支承部の摩擦による減衰力と、減衰装置の減衰力とによって減衰される。貯水タンクに蓄えた水を放水する場合、第2の球面滑り支承の上方に設置される貯水タンクから先に放水することで、第2の球面滑り支承の上方に位置する質量が優先的に減少し、第2の球面滑り支承の摩擦係数が、質量ダンパー全体の摩擦係数に対する影響が低下する。ここで、第2の球面滑り支承は第1の球面滑り支承より大きな摩擦係数を有する。したがって、質量ダンパー全体の摩擦係数は低下する。このように、水槽の質量の減少に応じて質量ダンパー全体の摩擦係数が低下し、これにより建物の応答変位が調整される。したがって、質量ダンパーにおける、水の使用に起因する耐震性能の低下が抑制可能となる。
また、質量ダンパーの質量として、固形体や巨大な貯水量ではなく、複数の貯水タンクに蓄えた水の質量を利用する。このため、建物上層における水槽の設置面積や設置面形状などの制約を受けることが抑えられ、設計自由度の高い質量ダンパーを設置できる。
【0008】
本発明の一態様においては、本発明の制振建物は、前記第1の球面滑り支承、及び前記第2の球面滑り支承は、それぞれ、上下に互いに対向して設けられる、各々が球面状の凹部として形成された一対の滑り面と、前記一対の滑り面の間に設けられてこれらに対して摺動する滑り体を備え、前記第1の球面滑り支承及び前記第2の球面滑り支承の一方は、前記水槽の重心に近い側に配置され、前記第1の球面滑り支承及び前記第2の球面滑り支承の他方は、前記水槽の重心から遠い側に配置される。
このような構成によれば、第1の球面滑り支承、及び第2の球面滑り支承を、上下に互いに対向して設けられる球面状の凹部からなる一対の滑り面と、一対の滑り面の間に設けられた滑り体と、を備える、いわゆる二面摺動タイプとしている。このような球面滑り支承においては、一対の滑り面の球面の曲率半径によって周期が決まるため、質量ダンパーの質量が変動しても周期は変動しない。このため、質量ダンパーを、常に適切な周期にしておくことができる。また、建物重心に対して重心に近い側と遠い側に設置した第1の球面滑り支承、及び第2の球面滑り支承で、貯水タンクを支持することによって、様々な多方向から作用する地震荷重に対応可能な質量ダンパーが実現される。
【0009】
本発明の一態様においては、本発明の制振建物は、前記貯水タンクには放水口が設けられ、前記放水口には下層階に向かう放水管が設置され、前記放水管には、内部を流れる水により発電する発電装置が設けられ、前記発電装置を通過した少なくとも一部の水が生活用水として供給される。
このような構成によれば、貯水タンクに蓄えた水を、放水管を通して放水することで、発電装置で発電を行うとともに、発電装置を通過した少なくとも一部の水を、生活用水として利用可能となる。
【発明の効果】
【0010】
本発明によれば、水を備蓄可能であり、水の使用に起因する耐震性能の低下が抑制可能な質量ダンパーを備えた制振建物を提供することができる。
【図面の簡単な説明】
【0011】
【
図1】本発明の実施形態に係る制振建物の上層階の構成を示す断面図である。
【
図2】
図1の制振建物に備えられた質量ダンパーを示す平面図である。
【
図3】質量ダンパーを構成する滑り支承の構成を示す断面図である。
【
図4】制振建物についてケーススタディモデルを用いたシミュレーションを行う際に想定した、超高層マンションの平面規模と屋上階に設置する水槽の配置を示す平面図である。
【
図5】質量ダンパーを設置しない状態での建物本体の最大層間変形角の解析結果を示す図である。
【
図6】水槽が満水時の質量を2500tとし、500t刻みで変化させた場合の告示波4波に対する最大層間変形角を示す図である。
【
図7】シミュレーションの際に設定した解析諸元を示す図である。
【
図8】シミュレーションにおける比較例として、滑り支承の摩擦係数が一定であった場合における告示波4波に対する質量ダンパーの最大応答変位を示す図である。
【
図9】シミュレーションにおける比較例として、滑り支承の摩擦係数が一定であった場合における告示波4波に対する最大層間変形角の基本モデルに対する比率を示す図である。
【
図10】シミュレーションで設定した摩擦を滑り支承で実現するための水槽内の水量の分布と各滑り支承の摩擦係数の一検討例を示す図である。
【
図11】シミュレーションで設定した摩擦を滑り支承で実現するための水槽内の水量の分布と各滑り支承の摩擦係数の他の検討例を示す図である。
【発明を実施するための形態】
【0012】
本発明は、建物の頂部付近の階に設けた貯水タンクの水量を放水することで、貯水タンクの質量が変化した場合であっても、建物の応答変位が調整可能な質量ダンパーが設けられた制振建物である。質量ダンパーは、複数の貯水タンクを有する水槽と、各貯水タンクを支える球面滑り支承と、水槽の振動を減衰させる減衰装置とで構成される。
以下、添付図面を参照して、本発明による制振建物を実施するための形態について、図面に基づいて説明する。
本発明の実施形態に係る制振建物の上層階の構成を示す断面図を
図1に示す。
図2は、
図1の制振建物に備えられた質量ダンパーを示す平面図である。
図1、
図2に示されるように、制振建物1は、建物本体2と、質量ダンパー10と、を備えている。
建物本体2は、例えば高層マンション等として用いられる。本実施形態において、建物本体2は、平面視矩形で、中央部に上下方向に連続する吹き抜け部3が形成された構成をなしている。建物本体2は、吹き抜け部3の外周部に、上下方向に複数の階層4を有している。建物本体2は、各階層4に、住居等の複数の専有区画Sを有している。なお、ここで示した建物本体2の用途や形状は一例に過ぎず、他の用途、他の形状であってもよい。
【0013】
質量ダンパー10は、建物本体2の上層に設けられている。本実施形態において、質量ダンパー10は、建物本体2の最上層である屋上に設置されている。質量ダンパー10は、水槽20と、滑り支承部30と、減衰装置40と、を備えている。
水槽20は、建物本体2において、吹き抜け部3を上方から塞ぐように配置されている。水槽20は、平面視矩形で、屋上面2rに沿って配置された底板20aと、底板20aの上方に間隔をあけて配置された天板20bと、水槽20の外周部で底板20aと天板20bとの間を塞ぐ外壁板20cと、を有した中空箱状をなしている。水槽20内には、複数の隔壁22が格子状に設置されている。これら複数の隔壁22によって水槽20内が複数に区画されることで、複数の貯水タンク21が形成されている。各貯水タンク21内には、不図示の給水部により、水Wが蓄えられている。
【0014】
図3は、質量ダンパーを構成する滑り支承の構成を示す断面図である。
滑り支承部30は、建物本体2の屋上面2rにおいて、水槽20の下側に設置されている。滑り支承部30は、建物本体2の屋上で、水槽20を下方から支える。滑り支承部30は、第1の球面滑り支承31と、第2の球面滑り支承32と、を備えている。
図3に示されるように、第1の球面滑り支承31、及び第2の球面滑り支承32は、それぞれ、上部部材33と、下部部材34と、滑り体35と、を備えている。
上部部材33は、水槽20の底板20aの下面に固定されている。上部部材33の下面には、下方を向く滑り面33fが形成されている。下部部材34は、上部部材33に対して上下方向で対向する位置に配置されている。下部部材34は、建物本体2の屋上面2rに固定されている。下部部材34の上面には、上方を向く滑り面34fが形成されている。これにより、一対の滑り面33f、34fは、上下に互いに対向して設けられている。一対の滑り面33f、34fは、各々、平面視円形状を成している。一対の滑り面33f、34fは、各々が球面状の凹部として形成されている。上方に配置された滑り面33fを形成する凹部は、外周部から中心部に向かって上方に窪むように湾曲している。下方に配置された滑り面34fを形成する凹部は、外周部から中心部に向かって下方に窪むように湾曲している。
滑り体35は、一対の滑り面33f、34fの間に挟み込まれることで、上部部材33と下部部材34との間で鉛直荷重を伝達する。滑り体35の上面35f及び下面35gは、球面状の凸部によって形成されている。滑り体35の上面35fは、外周部から中心部に向かって上方に突出するように湾曲している。滑り体35の下面35gは、外周部から中心部に向かって下方に突出するように湾曲している。滑り体35は、上面35f、及び下面35gが、一対の滑り面33f、34fに沿って摺動することで、上部部材33と下部部材34との水平方向の相対移動を許容している。
【0015】
第1の球面滑り支承31と、第2の球面滑り支承32とは、一対の滑り面33f、34fと、滑り体35との間の摩擦係数が異なる。第2の球面滑り支承32は、第1の球面滑り支承31より大きな摩擦係数を有している。
図2に示すように、滑り支承部30を構成する第1の球面滑り支承31と、第2の球面滑り支承32とは、摩擦係数に応じて水槽20の重心20gからの距離が決定されている。本実施形態では、第1の球面滑り支承31は、水槽20の重心20gに近い側(中央部側)に配置されている。第2の球面滑り支承32は、重心20gから離れた側(外周部側)に配置されている。
【0016】
減衰装置40は、水槽20の振動を減衰させる。
図1に示すように、減衰装置40は、例えばオイルダンパーからなる。減衰装置40は、水槽20の下面に設けられた水槽側ブラケット42と、建物本体2側に設けられた建物側ブラケット43との間に配置されている。減衰装置40は、水槽側ブラケット42と建物側ブラケット43との間で水平方向に延びている。減衰装置40は、水槽20と一体に変位する水槽側ブラケット42と、建物本体2側の建物側ブラケット43との間で生じる水平方向の相対変位を減衰する。
【0017】
また、制振建物1は、水槽20に蓄えた水Wを建物本体2の下層階に向けて放水する放水管50を備えている。放水管50は、屋上から建物本体2の下層階に向けて上下方向に延びている。本実施形態において、放水管50は、吹き抜け部3の内側に配置されている。放水管50の上端は、水槽20の各貯水タンク21にそれぞれ設けられた放水口21hに接続されている。各放水口21hには、貯水タンク21と放水管50とを断続する弁(図示無し)が設けられている。この弁を開くことで、貯水タンク21内に蓄えられた水Wを、放水管50を通して下層階に放水できるようになっている。水槽20に設けられた複数の貯水タンク21内の水Wは、各貯水タンク21の放水口21hに設けられた弁(図示無し)を個別に開閉することで、複数の貯水タンク21間で、放水管50に放水する順序を適宜設定できるようになっている。
【0018】
放水管50には、内部を流れる水Wにより発電する発電装置51が設けられている。発電装置51は、放水管50内に設けられた螺旋状の水車51rを備えている。発電装置51は、放水管50内に放水された水Wによって水車51rが回転することで、発電装置51の発電部(図示無し)が駆動され、電力が発生される。発電装置51で発生した電力は、建物本体2の各階層4に、不図示の電線を介して供給される。
また、放水管50には、建物本体2の各階層4に水Wを供給する供給管52が接続されている。供給管52は、建物本体2内の水道管に接続され、建物本体2の各階層4の専有区画Sに、放水管50内の水Wを生活用水として供給する。
【0019】
このような質量ダンパー10を備えた制振建物1では、地震や強風等によって建物本体2が振動した場合に、各貯水タンク21に水Wを蓄えた水槽20は、建物本体2の振動による変位の方向と反対向きに相対変位し、水槽20の質量によって、建物本体2に対して建物本体2の振動方向と反対向きの力を付与する。このようにして、質量ダンパー10を構成する水槽20によって、建物本体2の振動を打ち消すような減衰力が発揮される。
また、水槽20は、滑り支承部30によって支持されている。水槽20と建物本体2との間に水平方向の相対変位が生じた場合、第1の球面滑り支承31、第2の球面滑り支承32において、一対の滑り面33f、34fと、滑り体35との間で生じる摩擦力によって、水槽20と建物本体2との間の水平方向の相対変位エネルギーが減衰される。
更に、水槽20と建物本体2との間の水平方向の相対変位エネルギーは、減衰装置40によっても減衰される。
制振建物1では、停電や断水が生じた場合、水槽20の複数の貯水タンク21に蓄えた水Wを、放水管50に放水することで、建物本体2内に、発電装置51による電力供給と、給水を行う。これにより、制振建物1内におけるライフラインが確保される。
【0020】
上記のように、水槽20からの放水を行うと、質量ダンパー10の質量が減少することになる。質量ダンパー10が有効に作用するには、質量ダンパー10の周期と減衰が適切に設定されている必要がある。通常の質量ダンパーであれば質量は変動しないため、その質量に応じて周期と減衰を適切に設定しておけばよい。しかし、本実施形態における制振建物1の質量ダンパー10は、質量として有する水Wを放水するために、質量が減少していく。質量の減少に合わせてバネや減衰の値が変化しなければ、放水する前において、質量ダンパー10が最初の大きな揺れには有効に作用し得たとしても、放水した後に、続く本震や余震に対して有効に作用し得ない可能性が有る。
例えば、質量ダンパー10の周期が建物本体2より短い場合、質量ダンパー10があることにより、かえって建物応答が大きくなってしまう場合がある。質量ダンパー10の質量が最大のときに合わせて復元力を設定すると、質量ダンパー10の質量の減少に伴い、建物本体の応答性状が悪化することがある。逆に、質量ダンパー10の質量が最小のときに合わせて復元力を設定すると、満水時の質量ダンパー10の質量が大きい時点では、質量ダンパー10の変形が過大となってしまうことがある。
このため、本実施形態の制振建物1においては、放水によって質量ダンパー10の質量が減少しても、質量の変化に応じて適切な復元力と減衰が設定された状態となって、所要の制震性能を確保する必要がある。
そこで、本実施形態においては、質量ダンパー10の復元力を、上記のような滑り支承部30で与えている。球面滑り支承31、32においては、一対の滑り面33f、34fの球面の曲率半径によって周期が決まるため、質量ダンパー10の質量が変動しても周期は変動しない。このため、質量ダンパー10を、常に適切な周期にしておくことができる。
【0021】
また、質量ダンパー10による応答低減効果は、質量ダンパー10の応答変位が大きいほど大きくなる。そのため、質量ダンパー10の可動範囲の中で、できるだけ質量ダンパー10の応答変位が大きくなるように、減衰を設定する必要がある。例えば、減衰を、上記のような球面滑り支承31、32との摩擦のみにより与えた場合においては、減衰を、質量の変動にあわせて適切な値としておくことは可能ではある。しかし、球面滑り支承31、32の摩擦による減衰だけでは、中小地震や風揺れ、あるいは地震の後揺れ等による、小さな揺れに対して、制振効果を適切に発揮することができない。
一方、オイルダンパー等のように速度に応じて減衰力を発揮する、上記のような減衰装置40のみを用いた場合においては、微小な揺れに対してもエネルギー吸収を行うことができる。しかし、オイルダンパーによる減衰は質量に依らず一定であり、質量の減少に伴い減衰力が過大となってしまう。
そこで、本実施形態においては、上記のように、球面滑り支承31、32と減衰装置40の組み合わせにより減衰が与えられる構成としている。
ただし、減衰装置40による減衰力は、上記のように、質量ダンパー10の質量の変動に関わらず一定である。質量ダンパー10の質量変動に伴って変化するのは、滑り支承部30における摩擦による減衰力のみである。滑り支承部30における摩擦による減衰力、及び減衰装置40による減衰力の、質量ダンパー10の質量に対する割合を、質量ダンパー10の質量変動に関わらず、なるべく一定に保つには、質量ダンパー10の質量変動に対し、滑り支承部30における摩擦による減衰力の変動割合を大きくする必要がある。
【0022】
このため、本実施形態の制振建物1では、水槽20を複数の貯水タンク21に区画し、摩擦係数が異なる第1の球面滑り支承31と第2の球面滑り支承32との配置に応じて、複数の貯水タンク21からの放水順序を調整する。
ここで、摩擦係数が小さい第1の球面滑り支承31に支持された貯水タンク21から放水し、第1の球面滑り支承31に支持された質量が減少しても、質量ダンパー10の全体としての摩擦係数はあまり低下せず、したがって減衰力はほとんど変化しない。逆に、摩擦係数が大きい第2の球面滑り支承32に支持された貯水タンク21から放水し、第2の球面滑り支承32に支持された質量が減少すれば、質量ダンパー10の全体としての摩擦係数の低下量は大きくなり、したがって、減衰力は質量の減少割合以上に低下する。
このため、本実施形態では、摩擦係数が大きい第2の球面滑り支承32によって支持された、水槽20の外周側の貯水タンク21の水Wを、摩擦係数が小さい第1の球面滑り支承31によって支持された、水槽20の中央部側の貯水タンク21よりも先に放水する。
このように、水槽20の複数の貯水タンク21から放水する順序を、第1の球面滑り支承31と第2の球面滑り支承32との配置に応じて適切に調整することで、滑り支承部30における摩擦による減衰力、及び減衰装置40による減衰力の、質量ダンパー10の質量に対する割合が、質量ダンパー10の質量変動に関わらず、なるべく一定に保たれるようにされている。これにより、質量と減衰力のバランスを取ることができる。
【0023】
上記したような構成の制振建物について、ケーススタディモデルを設定し、シミュレーションを行ったので、その結果を以下に示す。
制振建物1としては、一般的な超高層マンションを想定して検討を行った。想定した超高層マンションの平面規模と屋上階に設置する水槽の配置を
図4に示す。超高層マンションは、40階建て、全層同じ平面形状・階高(面積:1、188m
2、階高:3.5m、建物高さ:140m)とした。
解析には多質点の非線形せん断質点系モデルを用いることとし、諸元は、平均的な超高層マンションの値となるよう設定した。ただし応答性状の調整のため、1次固有周期(s)は建物高さ(m)に0.02ではなく0.021を乗じた2.94sとした。減衰は、瞬間剛性比例型とし、1次固有周期に対し3%とした。入力地震動は告示スペクトルに適合する告示波4波(位相特性:El centro、Taft、Hachinohe、Kobe、レベル2)(以下、これらを告示波EL、TF、HA、KB)を用いている。
質量ダンパーを設置しない状態(以下、基本モデル)での建物本体の最大層間変形角の解析結果を、
図5に示す。この
図5に示すように、最大層間変形角は1/100以下に納まっており、一般的な建物と同程度の耐震性を有していると言えるが、10階から30階付近では降伏変位を上回っている。
【0024】
質量ダンパーは、球面状の滑り支承の許容最大変位を1000mm、滑り出し以後の接線周期を6.0s、摩擦係数は0.01から0.12まで自由に選択できるものとした。許容最大変位の設定はやや大きいものの、設定値は既製品から大きく外れるものではない。水槽が満水時の質量を2500tとし、500t刻みで変化させた場合の告示波4波に対する最大層間変形角を
図6に、解析諸元を
図7に示す。
満水時の建物質量に対する質量ダンパーの割合は3.6%、減衰装置を構成するオイルダンパーによる質量ダンパーの付加減衰定数は20%である。滑り出し前の質量ダンパーの周期は質量によらず0.1sとした。
図6に示すように、質量ダンパーの質量が変動しても応答低減効果を有しており、質量が2000t以上であれば全層で応答変位を降伏変位以下とすることができる。
図8に、告示波4波に対する質量ダンパーの最大応答変位を示す。
図8においては、滑り支承の摩擦係数が0.01の場合が線L1として、及び滑り支承の摩擦係数が0.035の場合が線L2として、それぞれ示されている。
図9に、告示波4波に対する最大層間変形角の基本モデルに対する比率(応答低減率)を示す。
図9においては、滑り支承の摩擦係数が0.01の場合が線L5として、及び滑り支承の摩擦係数が0.035の場合が線L6として、それぞれ示されている。
図8に示すように、摩擦係数を0.01で一定とした場合、質量ダンパーの質量が大きいときに、線L3として示される許容変位を超える。また、
図9に示すように、摩擦係数を0.035で一定とした場合、質量ダンパーの質量が小さいときに応答低減率が1.0近くとなり、応答低減効果が低下する。
図8、
図9において摩擦係数調整として、線L4、L7として示されているように、摩擦係数を、質量ダンパーの質量に応じて0.01から0.035の間で自由に設定することで、質量ダンパーの応答変位を許容値に収めながら、応答低減効果を大きくすることができる。
【0025】
次に、設定した摩擦を滑り支承で実現するための水槽内の水量の分布と各滑り支承の摩擦係数を
図10に示す。水槽自身の重量は100tとし、その大部分が摩擦係数0.01の支承に支持されているものとして算出している。水槽は、8個の貯水タンクを備えるものとした。
まず、
図10に示すように、8個の貯水タンクを、5個の滑り支承で支持する場合について検討した。最も外側(両端)に配置された2個の滑り支承(第2の球面滑り支承32に相当)の摩擦係数を0.114とし、内側に配置された3個の滑り支承(第1の球面滑り支承31に相当)の摩擦係数を0.01とした。
摩擦係数が高い球面滑り支承の上方の、最も外側に位置する貯水タンクと、最も外側から2番目の貯水タンクとから、2:3の割合の流量で放水し、最も外側の貯水タンクが空になった後に、摩擦係数が低い球面滑り支承の上方の、中央の貯水タンクから放水すれば、質量ダンパー全体としての摩擦係数が0.035から0.01へと順次低下し、ほぼ
図7で設定した値と同じ値を実現できる。
次に、
図11に示すように、6個の貯水タンクを、4個の滑り支承で支持する場合について検討した。最も外側(両端)に配置された2個の滑り支承(第2の球面滑り支承32に相当)の摩擦係数を0.088とし、内側に配置された2個の滑り支承(第1の球面滑り支承31に相当)の摩擦係数を0.01とした。
摩擦係数が高い球面滑り支承の上方の、最も外側に位置する貯水タンクと、最も外側から2番目の貯水タンクから、3:1の割合の流量で放水し、最も外側から2番目の貯水タンクが空になった後に、摩擦係数が低い球面滑り支承の上方の、中央の貯水タンクから放水すれば、質量ダンパー全体としての摩擦係数が0.035から1.00へと順次低下し、概ね
図7で設定した値と同じ値を実現できる。
【0026】
次に、制振建物における電気及び水の供給能力を検証した。
水槽内に蓄えられた水の位置エネルギーを利用し、重力による発電を行うように建物の吹抜けに放水管を配し、管内部に螺旋状の水車を設けた。放水管に水を流し、水車を回すことでゆっくりと水を落下させた。水力発電のエネルギー変換効率は80%程とされており、高さ140mに位置する2400tの水により、732kWhの発電が可能である。また、一般的な蓄電池と違い、自己放電による損失もない。
電気の復旧に一週間かかると想定し、それまでの期間を賄うものとすると、一日に消費できる電力は、約105kWhとなる。全住戸(10戸/階、40階)で均等に電力を分配すると0.26kWh/戸となるが、これは一般家庭の一日の電力使用量と比べ非常に小さい。各住戸で消費するには十分な備蓄量とは言えない。しかし、エレベータの消費電力は5kW程度であり、732kWhの発電により、21時間のエレベータの稼働が可能となる。例えば、深夜や早朝の運行を制限すれば、共用部の照明を確保しながらエレベータを一台運行させることができる。専有部への電力供給は難しいが、住み慣れた自宅に留まることが可能となる。
【0027】
家庭で一人が一日に使う水の量は平均219Lである。例えば、当該マンションの住人数を932人(400戸、2.33名/戸)とすれば、マンション全体での一日の水の使用量は約204m3である。しかし、その大半は入浴や炊事、洗濯に費やされる。水の復旧までに水の使用を不可欠な用途に限定すると、トイレの洗浄が大部分を占め、その量は50L程と考えられる。その場合、マンション全体での一日の水の使用量は約47m3となる。
屋上の水槽からは発電用に一日に約343m3の水を放水する。マンション全体での水の使用料は、放水量に比べ小さく、発電への影響は小さい。螺旋状の水車により水の落下速度は弱められているので、どの階からでも共用廊下の蛇口をひねることで取水が可能である。水の復旧には最大で二週間から三週間を要することがあるが、屋上の水槽には十分な量の水が蓄えられている。一週間後には全ての水が発電のため下階に落ちることとなるが、その頃には電気が復旧していると考えられる。排出した水の一部を下水に流さず下階に蓄えておくことで、電気復旧後は水を再度上方へ送って水槽に蓄えることが可能である。ただし飲料水は各自で備蓄しておく必要がある。
電気、及び水の復旧が完了した後は、屋上階に設けた蛇口から簡単に水槽の水を再度満たすことができる。
【0028】
上述したような制振建物1によれば、質量ダンパー10は、放水可能な複数の貯水タンク21を備える水槽20と、水槽20を支える滑り支承部30と、水槽20の振動を減衰させる減衰装置40と、を備える。滑り支承部30は、第1の球面滑り支承31と、第1の球面滑り支承31より大きな摩擦係数を有する第2の球面滑り支承32を備え、水槽20から放水する際には、第2の球面滑り支承32の上方に設置される貯水タンク21を、第1の球面滑り支承31の上方に設置される貯水タンク21よりも先に放水することにより、水槽20の質量の変化に応じて応答変位が調整される。
このような構成によれば、複数の貯水タンク21に貯えた水Wの質量を利用した質量ダンパー10を上層に備えている。この制振建物1では、水Wを蓄えた複数の貯水タンク21を備える水槽20が、滑り支承部30によって建物本体2に生じた振動にともなって変位しつつ、その変位が、滑り支承部30の摩擦による減衰力と、減衰装置40によって減衰される。貯水タンク21に蓄えた水Wを放水する場合、大きな摩擦係数を有する第2の球面滑り支承32の上方に設置される貯水タンク21から先に放水することで、第2の球面滑り支承32の上方に位置する質量が優先的に減少し、第2の球面滑り支承32の摩擦係数が、質量ダンパー10全体の摩擦係数に対する影響が低下する。ここで、第2の球面滑り支承32は第1の球面滑り支承31より大きな摩擦係数を有する。したがって、質量ダンパー10全体の摩擦係数は低下する。このように、水槽20の質量の減少に応じて質量ダンパー10全体の摩擦係数が低下し、これにより建物本体2の応答変位が調整される。したがって、質量ダンパー10における、水Wの使用に起因する耐震性能の低下が抑制可能となる。
また、質量ダンパー10の質量として、固形体や巨大な貯水量ではなく、複数の貯水タンク21に蓄えた水Wの質量を利用する。このため、建物本体2上層における水槽20の設置面積や設置面形状などの制約を受けることが抑えられ、設計自由度の高い質量ダンパー10を設置できる。
【0029】
特に、本実施形態においては、滑り支承部30は、異なる摩擦係数を有する複数の球面滑り支承31、32を備え、水槽20の中央部側に設置される第1の球面滑り支承31に比べて、外周部側に設置される第2の球面滑り支承32が大きな摩擦係数を有し、水槽20から放水する際には、水槽20の外周部側に設置される貯水タンク21から、中央部側に設置される貯水タンク21の順序で放水することにより、水槽20の質量の変化に応じて応答変位が調整される。
このような構成によれば、制振建物1を適切に実現可能である。
【0030】
また、第1の球面滑り支承31、及び第2の球面滑り支承32は、それぞれ、上下に互いに対向して設けられる、各々が球面状の凹部として形成された一対の滑り面33f、34fと、一対の滑り面33f、34fの間に設けられてこれらに対して摺動する滑り体35を備える。第1の球面滑り支承31は、水槽20の重心20gに近い側に配置され、第2の球面滑り支承32は、水槽20の重心20gから遠い側に配置される。
このような構成によれば、第1の球面滑り支承31、及び第2の球面滑り支承32を、上下に互いに対向して設けられる球面状の凹部からなる一対の滑り面33f、34fと、一対の滑り面33f、34fの間に設けられた滑り体35と、を備える、いわゆる二面摺動タイプとしている。このような球面滑り支承31、32においては、一対の滑り面33f、34fの球面の曲率半径によって周期が決まるため、質量ダンパー10の質量が変動しても周期は変動しない。このため、質量ダンパー10を、常に適切な周期にしておくことができる。また、第1の球面滑り支承31が水槽20の重心20gに近い側に配置され、第2の球面滑り支承32が水槽20の重心20gから離れた側に配置されている。これにより、様々な多方向から作用する地震荷重に対応可能な質量ダンパー10が実現される。
【0031】
また、上記制振建物1は、貯水タンク21には放水口が設けられ、放水口21hには下層階に向かう放水管50が設置され、放水管50には、内部を流れる水Wにより発電する発電装置51が設けられ、発電装置51を通過した少なくとも一部の水Wが生活用水として供給される。
このような構成によれば、貯水タンク21に蓄えた水Wを、放水管50を通して放水することで、発電装置51で発電を行うとともに、発電装置51を通過した少なくとも一部の水Wを、生活用水として利用可能となる。
【0032】
なお、上記実施形態では、第1の球面滑り支承31が水槽20の重心20gに近い側に配置され、摩擦係数が高い第2の球面滑り支承32が水槽20の重心20gから離れた側に配置されているようにしたが、これに限られない。第1の球面滑り支承31を水槽20の重心20gから離れた側に配置し、摩擦係数が高い第2の球面滑り支承32を水槽20の重心20gに近い側に配置してもよい。この場合、水槽20から放水するときには、第2の球面滑り支承32の上方に設置される、水槽20の中央部の貯水タンク21を、第1の球面滑り支承31の上方に設置される、水槽20の外周部側の貯水タンク21よりも先に放水する。
すなわち、水槽20の外周部側と中央部側のいずれか一方に設けられる球面滑り支承を、他方に設けられる球面滑り支承に比べて、大きな摩擦係数を有するようにし、水槽20から放水する際には、水槽20の一方側に設置される貯水タンク21から、他方側に設置される貯水タンク21の順序で放水することにより、水槽20の質量の変化に応じて応答変位が調整されるようにしてもよい。
【0033】
あるいは、例えば水槽を平面視して円形に構築し、球面滑り支承を、摩擦係数に応じて水槽の重心からの距離が決定されて、重心を中心として同心円状に設置されるようにしてもい。
第1の球面滑り支承31と第2の球面滑り支承32は、上記に限られず、どのように配置されていても、水槽20から放水する際に、第2の球面滑り支承32の上方に設置される貯水タンク21を、第1の球面滑り支承31の上方に設置される貯水タンク21よりも先に放水するようにされていればよい。
【0034】
また、上記実施形態においては、水槽20は隔壁22によって区画されて貯水タンク21が形成されるように説明したが、これに限られない。例えば、各貯水タンク21を独立した器により個別に形成して、この器を敷き詰めることによって水槽20を実現してもよい。
この場合においては、各貯水タンク21の下に対応して球面滑り支承を配したうえで、隣接する貯水タンク21どうしを互いに接合せず、各貯水タンク21の荷重が直下の対応する球面滑り支承にのみ支持されるようにすることで、より緻密かつ正確に、質量ダンパー全体としての摩擦係数を管理することができる。
【符号の説明】
【0035】
1 制振建物 32 第2の球面滑り支承
10 質量ダンパー 33f、34f 滑り面
20 水槽 35 滑り体
20g 重心 40 減衰装置
21 貯水タンク 50 放水管
21h 放水口 51 発電装置
30 滑り支承部 W 水
31 第1の球面滑り支承