(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2023-10-27
(45)【発行日】2023-11-07
(54)【発明の名称】サンプル領域を画像化するための顕微鏡システムおよび相応する方法
(51)【国際特許分類】
G02B 21/36 20060101AFI20231030BHJP
G02B 7/28 20210101ALI20231030BHJP
【FI】
G02B21/36
G02B7/28 J
(21)【出願番号】P 2021523368
(86)(22)【出願日】2019-10-29
(86)【国際出願番号】 EP2019079523
(87)【国際公開番号】W WO2020089223
(87)【国際公開日】2020-05-07
【審査請求日】2022-07-11
(31)【優先権主張番号】102018127076.3
(32)【優先日】2018-10-30
(33)【優先権主張国・地域又は機関】DE
(73)【特許権者】
【識別番号】511079735
【氏名又は名称】ライカ マイクロシステムズ シーエムエス ゲゼルシャフト ミット ベシュレンクテル ハフツング
【氏名又は名称原語表記】Leica Microsystems CMS GmbH
【住所又は居所原語表記】Ernst-Leitz-Strasse 17-37, D-35578 Wetzlar, Germany
(73)【特許権者】
【識別番号】516114695
【氏名又は名称】ライカ インストゥルメンツ (シンガポール) プライヴェット リミテッド
【氏名又は名称原語表記】Leica Instruments (Singapore) Pte. Ltd.
【住所又は居所原語表記】12 Teban Gardens Crescent, Singapore 608924, Singapore
(74)【代理人】
【識別番号】100114890
【氏名又は名称】アインゼル・フェリックス=ラインハルト
(74)【代理人】
【識別番号】100098501
【氏名又は名称】森田 拓
(74)【代理人】
【識別番号】100116403
【氏名又は名称】前川 純一
(74)【代理人】
【識別番号】100134315
【氏名又は名称】永島 秀郎
(74)【代理人】
【識別番号】100135633
【氏名又は名称】二宮 浩康
(74)【代理人】
【識別番号】100162880
【氏名又は名称】上島 類
(72)【発明者】
【氏名】シュテファン ファブリス
(72)【発明者】
【氏名】ヨージェフ アッティラ ゲンベシュ
【審査官】堀井 康司
(56)【参考文献】
【文献】米国特許出願公開第2004/0109169(US,A1)
【文献】特開平07-333522(JP,A)
【文献】特開2006-003805(JP,A)
【文献】米国特許出願公開第2016/0027182(US,A1)
【文献】特開2006-023476(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
G02B 19/00-21/00
G02B 21/06-21/36
(57)【特許請求の範囲】
【請求項1】
サンプルの少なくとも1つの領域を画像化するための顕微鏡システム(100)であって、前記顕微鏡システム(100)は、
観察ビーム路(118)において検出される、画像化されるべきサンプル領域の部分領域の顕微鏡画像化のための画像生成装置(110)と、
画像化されるべき前記部分領域を前記画像生成装置(110)の前記観察ビーム路(118)へ動かすように構成されている移動装置(120)と、
前記画像化されるべきサンプル領域に相応する移動領域(133)を少なくとも1つのユーザ入力によって定めるための、ディスプレイ(131)上に表示されるグラフィカルユーザインタフェース(130)と、
を有しており、
前記グラフィカルユーザインタフェースは、座標系(132)を表示し、表示されている前記座標系(132)への少なくとも1つの点(A,B,C,D)の入力後に、前記移動領域(133)が移動ボリュームの形態で定められているように構成されており、
前記顕微鏡システム(100)は、さらに、制御装置(140)を有しており、前記制御装置(140)は、規定された前記移動ボリューム(133)に関連して、前記移動装置(120)が前記規定された移動ボリュームに相応する量の部分領域を前記観察ビーム路(118)へ順々に移動させ、前記部分領域がそれぞれ前記画像生成装置(110)によって画像化されるように、前記移動装置(120)を駆動制御し、
入力されるべき前記少なくとも1つの点(A,B,C,D)のうちの少なくとも1つの点は、前記移動ボリュームのエッジ点を形成しており、
前記ユーザ入力は、表示されている前記座標系(132)にて前記ディスプレイ(131)上で直接的に行われる、
顕微鏡システム(100)。
【請求項2】
入力されるべき前記少なくとも1つの点(A,B,C,D)は、前記画像化されるべきサンプル領域上または前記画像化されるべきサンプル領域内に位置する、
請求項1記載の顕微鏡システム。
【請求項3】
前記グラフィカルユーザインタフェース(130)は、少なくとも3つの点(A,B,C)を入力することによって、前記移動ボリューム(133)が規定されるように構成されており、前記3つの点(A,B,C)は、前記移動ボリュームのエッジ点を形成している、
請求項1または2記載の顕微鏡システム。
【請求項4】
前記グラフィカルユーザインタフェース(130)は、表示される前記座標系(132)がデカルトx-y-z座標系であるように構成されている、
請求項1から3までのいずれか1項記載の顕微鏡システム。
【請求項5】
前記グラフィカルユーザインタフェース(130)は、
はじめに、前記グラフィカルユーザインタフェース(130)に表示されている前記座標系(132)において、第1の点および第2の点(A,B)が共通面に入力されると、矩形の移動領域(134)が移動領域として規定され、
次に、前記グラフィカルユーザインタフェース(130)に表示されている同じ前記座標系(132)において、前記第1の点および前記第2の点(A,B)を通る面の外側の第3の点(C)が入力されると、直方体形状の移動ボリューム(133)が移動領域として規定される、
ように構成されている、
請求項1から4までのいずれか1項記載の顕微鏡システム。
【請求項6】
前記グラフィカルユーザインタフェース(130)は、入力された前記第1の点、前記第2の点および/または前記第3の点(A,B,C)が前記直方体形状の移動ボリューム(133)のエッジ点を形成するように構成されている、
請求項5記載の顕微鏡システム。
【請求項7】
前記グラフィカルユーザインタフェース(130)は、前記グラフィカルユーザインタフェース(130)に表示されている前記座標系(132)において、第1の点および第2の点(A,C)が入力されると、直方体形状の移動ボリューム(133’’)が移動領域として規定されるように構成されており、
前記第1の点および/または前記第2の点が前記直方体形状の移動ボリュームの空間対角線の始点および終点を形成することによって、前記第1の点および/または前記第2の点が前記直方体形状の移動ボリュームのエッジ点を形成するように、前記直方体形状の移動ボリュームが規定される、
請求項1から4までのいずれか1項記載の顕微鏡システム。
【請求項8】
前記グラフィカルユーザインタフェース(130)は、前記規定された移動ボリューム(133)が前記座標系に表示されるように構成されている、
請求項1から7までのいずれか1項記載の顕微鏡システム。
【請求項9】
前記グラフィカルユーザインタフェース(130)は、前記画像化されるべき部分領域に相応するアプローチ点によって構成される面格子または空間格子(136)が、前記移動ボリューム(133’’’)が含まれている前記座標系に表示されるように構成されている、
請求項8記載の顕微鏡システム。
【請求項10】
前記グラフィカルユーザインタフェース(130)は、可能な最大移動領域(135)が前記座標系に表示されるように構成されている、
請求項1から9までのいずれか1項記載の顕微鏡システム。
【請求項11】
前記グラフィカルユーザインタフェース(130)は、既に画像化されているサンプル領域または部分領域が、前記移動ボリュームの前記規定の前または前記規定の間に表示されるように構成されている、
請求項1から10までのいずれか1項記載の顕微鏡システム。
【請求項12】
前記グラフィカルユーザインタフェース(130)は、移動ボリューム(133)の事前に行われた規定後に、少なくとも1つのさらなる点(D)を入力することによって、変更された移動ボリューム(133’)が新たに規定されるように構成されている、
請求項1から11までのいずれか1項記載の顕微鏡システム。
【請求項13】
前記グラフィカルユーザインタフェース(130)は、入力された、前記少なくとも1つのさらなる点(D)が、変更された前記移動ボリューム(133’)の新たなエッジ点を形成するように構成されている、
請求項12記載の顕微鏡システム。
【請求項14】
前記観察ビーム路(118)へ動かされた前記部分領域はそれぞれ、前記画像生成装置(110)の焦点に配置されている、
請求項1から13までのいずれか1項記載の顕微鏡システム。
【請求項15】
顕微鏡システム(100)によってサンプルの少なくとも1つの領域を画像化するための方法であって、
前記顕微鏡システムの画像生成装置(110)の観察ビーム路(118)に位置する、画像化されるべきサンプル領域の部分領域を前記画像生成装置によって画像化し、
画像化されるべき前記部分領域を、前記顕微鏡システムの移動装置(120)によって前記画像生成装置の前記観察ビーム路へ動かし、
前記画像化されるべきサンプル領域に相応する移動領域(133)を、前記顕微鏡システムのディスプレイ(131)上に表示されるグラフィカルユーザインタフェース(130)での少なくとも1つのユーザ入力によって定め、
前記グラフィカルユーザインタフェースは、座標系(132)を表示し、前記座標系に少なくとも1つの点(A,B,C,D)を入力することによって、前記移動領域を移動ボリュームの形態で規定し、
規定された前記移動ボリューム内に所定量の部分領域が運び込まれ、前記画像生成装置によって画像化されるように、前記顕微鏡システムの制御装置(140)によって、前記規定された移動ボリュームに関連して、前記移動装置を駆動制御し、
入力されるべき前記少なくとも1つの点(A,B,C,D)のうちの少なくとも1つの点は、前記移動ボリュームのエッジ点を形成しており、
前記ユーザ入力は、表示されている前記座標系(132)にて前記ディスプレイ(131)上で直接的に行われる、
方法。
【請求項16】
入力されるべき少なくとも1つの点(A,B,C,D)を、前記点が前記画像化されるべきサンプル領域上または前記画像化されるべきサンプル領域内に位置するように選択する、
請求項15記載の方法。
【請求項17】
少なくとも3つの点(A,B,C)を入力することによって、前記グラフィカルユーザインタフェースによって前記移動ボリュームを規定し、前記3つの点(A,B,C)を、前記移動ボリュームのエッジ点として適用する、
請求項15または16記載の方法。
【請求項18】
デカルトx-y-z座標系を、表示される前記座標系として使用する、
請求項15から17までのいずれか1項記載の方法。
【請求項19】
はじめに、前記グラフィカルユーザインタフェースによって表示されている前記座標系において、第1の点および第2の点(A,B)が共通面に入力されると、前記グラフィカルユーザインタフェースによって、矩形の移動領域を移動領域として規定し、
次に、前記グラフィカルユーザインタフェースにおいて表示されている同じ座標系において、前記第1の点および前記第2の点(A,B)を通る面の外側の第3の点(C)が入力されると、移動領域として直方体形状の移動ボリュームを規定する、
請求項15から18までのいずれか1項記載の方法。
【請求項20】
前記グラフィカルユーザインタフェースによって、入力された前記第1の点、前記第2の点および/または前記第3の点(A,B,C)を、前記直方体形状の移動ボリュームのエッジ点として割り当てる、
請求項19記載の方法。
【請求項21】
表示されている前記座標系(132)において、第1の点および第2の点(A,C)が入力されると、前記グラフィカルユーザインタフェースによって、直方体形状の移動ボリュームを移動領域として規定し
、前記第1の点および/または前記第2の点が前記直方体形状の移動ボリュームの空間対角線の始点および終点を形成することによって、前記第1の点および/または前記第2の点を前記直方体形状の移動ボリュームのエッジ点として使用する、
請求項15から18までのいずれか1項記載の方法。
【請求項22】
前記グラフィカルユーザインタフェースによって、前記規定された移動ボリュームを前記座標系に表示する、
請求項15から21までのいずれか1項記載の方法。
【請求項23】
前記グラフィカルユーザインタフェースによって、前記画像化されるべき部分領域に相応するアプローチ点によって構成される面格子または空間格子を、前記移動ボリューム(133’’’)が含まれている前記座標系に表示する、
請求項22記載の方法。
【請求項24】
前記グラフィカルユーザインタフェースによって、可能な最大移動ボリュームを前記座標系に表示する、
請求項15から23までのいずれか1項記載の方法。
【請求項25】
前記グラフィカルユーザインタフェースによって、既に画像化されているサンプル領域を、前記移動ボリュームの前記規定の前または前記規定の間に表示する、
請求項15から24までのいずれか1項記載の方法。
【請求項26】
前記グラフィカルユーザインタフェースによって、第1の移動ボリューム(133)の規定後に、少なくとも1つのさらなる点(D)を入力することによって、変更された移動ボリューム(133’)を新たに規定する、
請求項15から25までのいずれか1項記載の方法。
【請求項27】
前記グラフィカルユーザインタフェースによって、入力された、前記少なくとも1つのさらなる点(D)を、前記変更された移動ボリューム(133’)の新たなエッジ点として検出する、
請求項26記載の方法。
【請求項28】
前記観察ビーム路(118)へ動かされた前記部分領域をそれぞれ、前記画像生成装置(110)の焦点に配置する、
請求項15から27までのいずれか1項記載の方法。
【請求項29】
プログラムコードを備えたコンピュータプログラムであって、
前記コンピュータプログラムの実行時に、請求項1から14までのいずれか1項記載の顕微鏡システム(100)の計算ユニット上で、請求項15から28までのいずれか1項記載の方法が実施される、
コンピュータプログラム。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、サンプルの少なくとも1つの領域を画像化するための顕微鏡システムに関する。この顕微鏡システムは、画像化されるべきサンプル領域の、観察ビーム路の焦点に位置する部分領域の顕微鏡画像化のための画像生成装置と、画像化されるべき部分領域を、画像生成装置の観察ビーム路の焦点に動かすように構成されている移動装置もしくはスキャン装置と、制御装置と、を有しており、制御装置は、規定されるべき移動領域(スキャン領域)に関連して、所定量の部分領域が、規定された移動領域内に運び込まれ、画像生成装置によって画像化されるように移動装置を駆動制御する。
【背景技術】
【0002】
このような顕微鏡システムは全般的に、先行技術から知られている。このような顕微鏡システムは例えば、サンプルもしくは画像化されるべきサンプル領域が、顕微鏡画像化がイメージング光学系の視野(英語で「field of view」)において検出することができる寸法を超えている場合に使用される。サンプルの一部の概観画像は、多くの場合、低い倍率で生成され得る。ここでユーザは、例えば、関心対象のサンプル領域を選択し、次にこのサンプル領域が、定められたパターンに従って運び出される、もしくはスキャンされる。ここでは、所定のスキャンパターンに従って、所定量の部分領域が運び込まれ、画像化されることによって、画像化されるべきサンプル領域が画像化される。次に、生成された画像が、適切な画像処理プログラムによって重ね合わされ、サンプル領域の全体的な画像(モザイク画像)を形成するためにまとめられる。通常、画像化されるべきサンプル領域は、x方向、y方向およびz方向に拡張するサンプルボリュームである。多くの場合、サンプル領域は、異なるz座標のもとで、複数のx-y面においてスキャンされる。このために、顕微鏡システムは、通常、x方向およびy方向に移動可能な顕微鏡ステージと、顕微鏡システムの観察ビーム路の焦点をz方向において変える、もしくは固定することができる焦点合わせ装置と、を有している。焦点を合わせるために、顕微鏡システムの対物レンズおよび/または上述の顕微鏡ステージはz方向に移動可能である。
【0003】
このような既知の顕微鏡システムにおいては、画像化されるべきサンプル領域もしくは割り当てられる移動領域(スキャン領域)の確定がしばしば困難であり、使い勝手がよくないことが判明している。これまで、例えば、スキャン領域は、それによってx方向、y方向およびz方向においてスキャン領域を規定することができるスライダによって定められてきた。スキャン領域が過度に大きく選択される場合、サンプルが存在していない領域、または関心対象のサンプル領域が位置していない領域が画像化によって包含される。これらは両方とも、画像検出の労力および持続時間を増加させてしまう。スキャン領域が過度に小さく選択される場合、関心対象のサンプルボリュームが完全には画像化されない恐れが生じる。
【発明の概要】
【発明が解決しようとする課題】
【0004】
本発明の課題は、画像化されるべきサンプル領域に相応する移動領域もしくはスキャン領域をより正確に、かつより使い勝手よく定めることを可能にすることである。
【課題を解決するための手段】
【0005】
上述の課題は、独立請求項の主題によって解決される。有利な構成は、各従属請求項および以降の説明から明らかになる。
【0006】
本発明による顕微鏡システムは、冒頭で述べた様式の顕微鏡システムである。サンプルの少なくとも1つの領域を画像化するために、顕微鏡システムは、画像化されるべきサンプル領域の、観察ビーム路の焦点に位置する部分領域の顕微鏡画像化のための画像生成装置を有している。このような画像生成装置は、例えば、少なくとも1つの顕微鏡対物レンズ、倍率チェンジャおよび/またはズームシステム、ならびに通常、後続に接続されているカメラを備えたチューブを含んでいる。チューブレス顕微鏡も知られている。例えば、顕微鏡画像がイメージセンサ上で直接的に画像化されていてよい。このようにして、観察ビーム路に位置する部分領域を既知の様式で、顕微鏡画像化することができる。さらに、顕微鏡システムは、画像化されるべき各部分領域を、上述の画像生成装置の観察ビーム路へ動かすように構成されている移動装置もしくはスキャン装置を有している。このために、サンプルを担う顕微鏡ステージが動かされる、かつ/または顕微鏡システムの焦点合わせ装置が相応に調節される。焦点を合わせるために、対物レンズおよび/または顕微鏡ステージは、焦点方向において移動可能である。このようにして、画像化されるべき部分領域を、すべての3つの空間方向に運び込むことができ、画像生成装置によって画像化することができる。有利には、観察ビーム路へ移動させられた部分領域は、画像生成装置の焦点に配置されている。
【0007】
本発明による顕微鏡システムはさらに、グラフィカルユーザインタフェースを有している。グラフィカルユーザインタフェースは、ディスプレイ上に示されており、画像化されるべきサンプル領域に相応する移動領域またはスキャン領域を、少なくとも1つのユーザ入力によって定めるために用いられる。
【0008】
「グラフィカルユーザインタフェース」は、ここでは、プログラムによって生成されたグラフィック表示として理解され得る。この上でユーザは、顕微鏡システムに指示を入力することができる。指示は顕微鏡システムの動作に変換される。ユーザによる入力は、例えばマウスポインタ(英語で「Cursor」)を移動させ、所望の位置をクリックまたは選択することによって、表示内で直接的に行われる。ディスプレイがタッチセンシティブスクリーンまたは静電容量式スクリーン(英語で「Touchscreen」)の場合、入力を、指で、またはスクリーンに適した入力ペンで行うことができる。
【0009】
グラフィカルユーザインタフェースは、座標系を表示し、座標系に少なくとも1つの点を入力することによって、移動領域が移動ボリュームの形態で規定されるように構成されている。この規定された移動ボリュームに関連して、顕微鏡システムの制御装置は、規定された移動ボリューム内に所定量の部分領域が運び込まれ、画像生成装置によって画像化されるように、移動装置を駆動制御する。換言すれば、移動ボリュームに相応する量の部分領域が観察ビーム路へ順々に移動させられ、これらの部分領域がそれぞれ画像化される。このようにして生成された、部分領域の画像は、画像化されるべきサンプル領域の画像化を実現するために、既知の様式で重ね合わされ、まとめられる。このボリューム内の部分領域の数および位置は、このような画像化の要求されている画質によって異なる。
【0010】
グラフィカルユーザインタフェースは、少なくとも、ユーザが所望のサンプル領域の画像化に相応する移動領域を定める、もしくは規定することができるように構成されている。このために、座標系がグラフィカルユーザインタフェース上に表示され、ユーザはその中で、1つまたは複数の点を入力することによって、移動ボリュームもしくはスキャンボリュームを規定することができる。このように規定された移動領域は、例えばアウトラインが定められた移動ボリュームの形態で、ユーザインタフェースによって表示される。規定された移動ボリュームの確認後に、例えば、各画像生成を伴うスキャンが実行される。このために、例えば、グラフィカルユーザインタフェースは計算ユニットと接続されていてよい。計算ユニットは、制御装置に与えられる信号を生成するように構成されている。しかし、そのような計算ユニットが、別個に、例えばディスプレイ内に、またはグラフィックカード上に設けられていてもよい。
【0011】
ここで、少なくとも1つの点、しかし、特にユーザによって入力されるべき各点が、画像化されるべきサンプル領域上または画像化されるべきサンプル領域内に位置するのは特に有利である。ここで、ユーザが、画像化されるべきサンプル領域のエッジ点を表す3つの点を順々に規定するのは特に合理的である。空間内のそのような点を少なくとも3つ選択することによって、相応するサンプルボリュームを選択することができ、相応する移動領域を移動ボリュームとして規定して、グラフィカルユーザインタフェースによって表示することができる。次に、スキャンが、各画像生成を伴い、規定された移動ボリューム内で実行される。
【0012】
一般性を制限することなく、以降では、表示される座標系がx方向、y方向およびz方向のデカルト座標系であると仮定されるべきである。このような座標系において少なくとも3つの点を選択することによって(これらの点のうちの少なくとも1つの点が他の点と同じ面に位置していない場合)、3次元の移動ボリュームを規定することができる。同様に、一般性を制限することなく、移動ボリュームが直方体形状であると仮定されるべきである。当然、デカルト座標系において、少なくとも3つの点を定めることによって、別の移動ボリュームも規定される。さらに別の座標系、例えば球座標系または円筒座標系も基礎として使用できる。以降でx座標、y座標、z座標に言及する場合、全般的な本発明の概念が制限されるべきではない。同じことが、規定された移動ボリュームの形状に当てはまる。
【0013】
直方体形状の移動領域を規定する第1の有利な手法を以降で説明する。
【0014】
グラフィカルユーザインタフェースによって、表示されている座標系において、はじめに、共通のx-y面に第1の点Aと第2の点Bとが入力される。点Aは、有利には、目下の焦点位置であり、点Aは、規定された移動領域のエッジ点もしくは境界値を形成している。次に、顕微鏡ステージを移動させることによってサンプルがx-y面内でさらに第2の境界値Bまで動かされる。ユーザは、例えばボタンを介したまたはマウスクリックによる適切な入力によってこれを確認する。グラフィカルユーザインタフェースは、事前に規定されている矩形の移動領域が規定されるように構成されており、ここで点Aと点Bとがこのような移動領域のエッジ点もしくは境界値を形成している。点Aと点Bとが相互に対向する、矩形の移動領域のコーナ点を形成するのは特に合理的である。矩形の移動領域の規定に基づいて、基本的には既に画像スキャンを実行することができるが、これは選択したx-y面に限定されている。移動ボリュームを規定するために、ユーザは、同じ、表示されている座標系内に第3の点Cを入力する。この点は、点Aおよび点Bを通るx-y面の外側に位置する。有利には、グラフィカルユーザインタフェースは、入力された第3の点Cが、特に直方体形状の移動領域のエッジ点を形成するように構成されている。点Cは、例えば、点Aおよび点Bにまたがる面の反対側にあり、かつこれに平行に延在する面に位置する。点Cは、有利には、画像化されるべきサンプル領域上または画像化されるべきサンプル領域内にある。この場合にも、点Cが直方体形状の移動領域のコーナに位置するのは合理的であり得る。例えば、ユーザは、点Aまたは点Bのいずれかから開始して、サンプル領域をz方向に動かすことができ、これによって、点Cとして定める点に達することができる。定められた3つの点A、BおよびCに基づいて、グラフィカルユーザインタフェースは直方体形状の移動ボリュームを規定する。
【0015】
直方体形状の移動ボリュームの規定後に、顕微鏡システムの制御装置は、所定の様式で移動装置を駆動制御し、これによって規定されたサンプル領域がスキャンされる。例えば、はじめに、部分領域の画像がx-y面において記録され、その後、このx-y面に平行な面において記録され、迅速に、スキャンボリューム全体までスキャンされる。各スキャン位置で画像が生成され、さまざまなスキャン位置で記録された画像が重ね合わされて、サンプル領域の全体的な画像を形成するためにまとめられる。
【0016】
当業者には、座標系の空間に3つの点を入力することによって、別の所定の移動ボリュームも規定できることが明らかである。基本的に、このようなボディの3つのエッジ点を規定することによって、ほぼ任意の幾何学的ボディを設定することができる。x-y方向に移動可能な顕微鏡ステージと、z方向に移動可能な焦点合わせ装置と、を備えた顕微鏡システムの実践では、直方体形状の移動ボリュームが通常は最も合理的である。
【0017】
さらに、指定された3つの点A、BおよびCすべてが、画像化されるべきサンプル領域内または画像化されるべきサンプル領域上に位置することは必ずしも必要ではない。
【0018】
例えば、直方体形状の移動領域の規定の上述の例において、点Cは、画像化されるべきサンプル領域のすべてのz座標が確実に検出される高さ(z座標)にセットされてよい。このために、点Cは、サンプルが実際に延在しているのよりもわずかに高くセットされてよい。同じ考察が、完全に同様に点Aおよび点Bに当てはまる。
【0019】
直方体形状の移動領域を規定する別の有利な手法を以降で説明する。
【0020】
このようなさらなる手法では、グラフィカルユーザインタフェースによって表示されている座標系に2つの点Aおよび点Cのみを入力するだけでよい。このために、グラフィカルユーザインタフェースは、入力された2つの点を、直方体形状の移動領域のエッジ点と見なすように構成されている。有利には、2つの点Aおよび点Cは、直方体形状の移動ボリュームの相互に反対側のコーナ点を規定し、より詳細には、これらは、直方体形状の移動ボリュームの空間対角線の始点と終点とを形成している。このような構成に対しても、より詳細な説明は、説明の最後の実施例に記載されている。
【0021】
最後に、直方体形状の移動領域、またはより全般的には、事前に規定されている任意の移動ボリュームを規定する、さらなる有利な手法を示す。このために、グラフィカルユーザインタフェースは、表示されている座標系に入力された点Aから開始して、事前に規定されているボリュームアウトラインが座標系に表示され、これによって移動ボリュームが規定されるように、もしくはこれが移動ボリュームを規定するように構成されていてよい。例えば、直方体形状のボリュームアウトラインが座標系において表示されてよく、その1つのコーナには、例えば、入力された点Aが位置付けされている。このような構成は、例えば、同じまたは類似の寸法のサンプル領域が時間的に連続して調べられるべきであり、移動ボリュームがほとんど変化しない場合に有意義である。このような場合には、このような移動ボリュームの唯一のコーナ点またはエッジ点(点A)の設定が、その規定にとって十分であり得る。
【0022】
さらに、画像化されるべき部分領域に相応するアプローチ点によって構成される面格子または空間格子が、移動ボリュームが含まれている座標系に表示されるように、グラフィカルユーザインタフェースが構成されていてよい。例えば、直方体形状の空間格子が座標系に表示されてよく、座標系の1つのコーナには、例えば点Aが位置付けされている。部分領域に相応するアプローチ点は、空間格子内にマークされている。
【0023】
全般的に、規定された移動ボリュームが座標系において、例えば、移動領域の境界を示すボリュームアウトラインまたは空間格子の形態で表示されるのは有利である。可能な最大移動ボリュームまたは最大移動領域が座標系に表示されるのも有意義であり得る。可能な最大移動ボリュームは、顕微鏡ステージおよび焦点合わせ装置のシステムパラメータによって、すなわち、x方向、y方向およびz方向における各最長移動経路によって定められている。このような構成では、ユーザは、可能な最大移動ボリュームの境界からユーザがどれだけ離れているかを見ることができる。
【0024】
しばしば、画像化されるべき、関心対象のサンプル領域を見つけるために、サンプルの部分領域の記録が既に行われる。この記録は、移動ボリュームの規定前に既に行われていても、移動ボリュームの規定中に行われていてもよい。そのような画像化またはz方向における、記録された画像シーケンスも、例えば、ユーザの移動ボリュームの規定を容易にするために、別個の表示領域に、または例えば半透明に、座標系にグラフィカルユーザインタフェースによって表示されてよい。
【0025】
有利な構成では、グラフィカルユーザインタフェースは、移動ボリュームの規定後に、少なくとも1つのさらなる点を入力することによって、移動ボリュームを修正もしくは新たに規定することができるように構成されている。例えば、規定された移動ボリュームの外側に位置する、さらなる点Dを選択および入力することによって、移動ボリュームを拡大することができ、他方で、規定された移動ボリューム内に位置する、さらなる点Dを入力することによって、このような移動ボリュームを縮小することができる。ここで、入力されたさらなる点Dが、新たに規定された、特に拡大されたもしくは縮小された移動ボリュームの新たなエッジ点を形成しているのは、特に合理的である。このような新たなエッジ点はここでは、特に、例えば直方体形状の移動領域の新たな縁の点またはコーナ点であってよい。このような構成では、表示されている、規定された移動ボリュームのエッジ点を選択もしくはクリックすることによって、移動ボリュームが、規定の様式で、特に直方体形状を維持しつつ、拡大または縮小され得るようにグラフィカルユーザインタフェースが構成されているのも合理的であり得る。移動ボリュームが要望に応じて修正されるとすぐに、ユーザは新たな点Dでの入力(例えば、クリックされたエッジ点の解放)によってこれを確認する。
【0026】
本発明はさらに、顕微鏡システムによってサンプルの少なくとも1つの領域を画像化するための方法に関し、顕微鏡システムの画像生成装置の観察ビーム路に位置する、画像化されるべきサンプル領域の部分領域は画像生成装置によって画像化され、画像化されるべき部分領域は、顕微鏡システムの移動装置によって画像生成装置の観察ビーム路へ動かされ、画像化されるべきサンプル領域に相応する移動領域は、顕微鏡システムのグラフィカルユーザインタフェースでの少なくとも1つのユーザ入力によって定められ、ユーザインタフェースは座標系を表示し、座標系に少なくとも1つの点(A,B,C,D)を入力することによって、移動領域が移動ボリュームの形態で規定され、規定された移動領域内に所定量の部分領域が運び込まれ、画像生成装置によって画像化されるように、顕微鏡システムの制御装置によって、規定された移動領域に関連して、移動装置が駆動制御される。
【0027】
本発明による方法、その構成および利点に関して、本発明による顕微鏡システムに関する説明を明示的に参照する。
【0028】
有利な実施形態によれば、入力されるべき少なくとも1つの点(A,B,C,D)のうちの少なくとも1つの点は、このような点が、画像化されるべきサンプル領域上または画像化されるべきサンプル領域内に位置するように選択される。
【0029】
有利な実施形態によれば、少なくとも3つの点(A,B,C)を入力することによって、グラフィカルユーザインタフェースによって移動ボリュームが規定され、ここでこれら3つの点(A,B,C)は、移動ボリュームのエッジ点として使用される。
【0030】
さらなる有利な実施形態によれば、デカルトx-y-z座標系が、表示される座標系として使用される。
【0031】
さらなる有利な実施形態では、グラフィカルユーザインタフェースによって表示されている座標系において、第1の点および第2の点(A,B)が共通面に入力されると、はじめに、グラフィカルユーザインタフェースによって、矩形の移動領域が移動領域として規定され、次に、第1の点および第2の点(A,B)を通る面の外側の第3の点(C)が、同じ、表示されている座標系に入力されると、移動領域として直方体形状の移動ボリュームが規定される。最初に選択された面はここで、顕微鏡ステージのステージ表面に対して平行に位置するx-y面であってよい。しかし、例えば、xz面またはyz面が開始面として選択されてもよい。これらの面は、それぞれ顕微鏡ステージのステージ表面に垂直である。次に、第3の空間方向が第3の点(C)によって選択される。
【0032】
さらなる有利な択一的な実施形態では、入力された第1の点、第2の点および/または第3の点(A,B,C)が、直方体形状の移動ボリュームのエッジ点としてグラフィカルユーザインタフェースによって使用される。さらなる有利な実施形態では、グラフィカルユーザインタフェースによって、直方体形状の移動ボリュームが移動領域として規定される。これは、表示されている座標系に第1の点および第2の点(A,C)を入力することによって行われる。ここでこの第1の点および/または第2の点は、直方体形状の移動ボリュームのエッジ点として、特に、このような直方体ボリュームの空間対角線の始点および終点として使用される。
【0033】
さらなる有利な択一的な実施形態では、グラフィカルユーザインタフェースによって、面格子または空間格子が、画像化されるべき部分領域に相応するアプローチ点から、移動ボリュームが含まれている座標系に表示される。
【0034】
全般的に、グラフィカルユーザインタフェースによって、規定された移動ボリュームが座標系に表示されるのは合理的である。
【0035】
さらなる有利な実施形態では、グラフィカルユーザインタフェースによって、可能な最大移動ボリュームが座標系に表示される。
【0036】
さらなる有利な実施形態では、グラフィカルユーザインタフェースによって、既に画像化されているサンプル領域が表示される。このような既に画像化されているサンプル領域は、所望の移動ボリュームに対する選択点を入力する際に、ユーザによって参照点として用いられてよい。例えば、既に画像化されているサンプル領域が、半透明の面またはボリュームとして、座標系に示されてよい。
【0037】
さらなる有利な実施形態では、グラフィカルユーザインタフェースにおいて、第1の移動ボリュームの規定後に、少なくとも1つのさらなる点(D)を入力することによって、変更された移動ボリュームが新たに規定される、もしくは修正される。
【0038】
さらなる有利な実施形態では、グラフィカルユーザインタフェースによって、少なくとも1つのさらなる、入力された点(D)が、新たに規定された移動ボリュームの新たなエッジ点として使用される。
【0039】
最後に、本発明は、プログラムコードを備えたコンピュータプログラムに関し、コンピュータプログラムの実行時に、本発明による方法が、本発明による顕微鏡システムの計算ユニット上で実施される。さらに、本発明は、プログラムコードを備えたコンピュータプログラムが格納されている相応するコンピュータプログラム製品に関し、コンピュータプログラムの実行時に、本発明による方法が、本発明による顕微鏡システムの計算ユニット上で実施される。コンピュータプログラム自体が、ダウンロードまたはアップロードされてよい、またはコンピュータプログラム製品に保存または一時的に保存されていてよい。コンピュータプログラム製品として、既知のタイプのUSBスティック、RAMメモリまたはROMメモリ等の揮発性または不揮発性の記憶媒体が考えられる。本発明による顕微鏡システムの上述の計算ユニットはここで、顕微鏡システムの制御装置またはこのような制御装置の一部であってよい。
【0040】
本発明のさらなる利点および構成は、説明および添付の図面から明らかになる。
【0041】
言うまでもなく、本発明の範囲を逸脱することなく、上記の特徴および以降でさらに説明されるべき特徴は、指定された各組み合わせだけでなく、他の組み合わせまたは単独で使用することも可能である。
【0042】
本発明を、実施例に基づいて図面に概略的に示し、図面を参照して以降で説明する。
【図面の簡単な説明】
【0043】
【
図1】第1の図において、本発明による顕微鏡システムのグラフィカルユーザインタフェースの少なくとも一部を概略的に示している。
【
図2】さらなる図において、本発明による顕微鏡システムのグラフィカルユーザインタフェースの少なくとも一部を概略的に示している。
【
図3】さらなる図において、本発明による顕微鏡システムのグラフィカルユーザインタフェースの少なくとも一部を概略的に示している。
【
図4】さらなる図において、本発明による顕微鏡システムのグラフィカルユーザインタフェースの少なくとも一部を概略的に示している。
【
図5】さらなる図において、本発明による顕微鏡システムのグラフィカルユーザインタフェースの少なくとも一部を概略的に示している。
【
図6】択一的な実施形態における本発明による顕微鏡システムのグラフィカルユーザインタフェースの少なくとも一部を概略的に示している。
【
図7】同様に択一的な実施形態における本発明による顕微鏡システムのグラフィカルユーザインタフェースの少なくとも一部を概略的に示している。
【
図8】本発明による顕微鏡システムの実施形態を概略的に示している。
【
図9】本発明による顕微鏡システムのさらなる実施形態を概略的に示している。
【発明を実施するための形態】
【0044】
図面は包括的に記載されており、同じ参照記号は同じ要素を示している。はじめに、説明されるべきユーザ入力によって、画像化されるべきサンプル領域に相応する移動領域もしくはスキャン領域を定めるためのグラフィカルユーザインタフェース130の実施形態を、
図1~
図5に基づいて記載する。グラフィカルユーザインタフェース130は、ディスプレイ131もしくはモニタもしくは表示システム上に示されており、座標系132は、グラフィカルユーザインタフェース130内のディスプレイ131上に表示される。この実施例では、これは、x軸、y軸およびz軸を有するデカルト座標系である。135は、顕微鏡システムのx-y顕微鏡ステージの最大位置と最小位置とによって設定されている、可能な最大移動領域を示している。これは、x方向およびy方向においてシフト可能である。
【0045】
図2は、点Aがユーザによって入力された後のグラフィカルユーザインタフェース130を示している。このような点Aは目下の焦点位置であり、点Aに割り当てられた、サンプルの部分領域の相応する画像は、例えば、グラフィカルユーザインタフェース130の別の(図示されていない)領域内に、または別の(図示されていない)、ディスプレイ131のディスプレイ領域上に、または別の(図示されていない)ディスプレイ上に示される。
【0046】
図3に示された、さらなるステップにおいて、ユーザは、同じx-y面に第2の点Bを入力する。有利には(しかし強制的ではない)、点Bに相応する、サンプルの部分領域が、顕微鏡システムの画像生成装置の観察ビーム路の焦点に動かされ、相応する画像が生成される。このようにして、ユーザは、点Bが依然として、関心対象のサンプル領域にあるか、もしくは依然として、サンプル内にあるかをチェックすることができる。点Aおよび点Bの座標は、次のように記述可能である:A=(x
A,y
A,z
1);B=(x
B,y
B,z
1)。ユーザによる確認後、はじめに、矩形の移動領域134がグラフィカルユーザインタフェース130において規定される。ここで、このような実施例における点Aおよび点Bは、矩形の移動領域134の相互に反対側のコーナ点を形成している。矩形の移動領域134は、x方向において、座標x
Aとx
Bとの間に延在し、y方向において、座標y
Bとy
Aとの間に延在する。
【0047】
図4に示された、次のステップにおいて、同じ、示されている座標系132にさらなる点Cを入力することによって、スキャン領域が移動ボリューム133の形態で規定される。このために、点Aおよび点Bを通るx-y面の外側に位置する点Cだけが入力されるべきである。このような点Cを、自身の座標によって、C=(x
C,y
C,z
C)として表すことができる。矩形の移動領域134に対して平行に、x-y面が座標z
Cの高さにおいてまたがり、そこから、直方体形状の移動ボリューム133がスキャンボリュームとして規定されるようにグラフィカルユーザインタフェース130は構成されている。
図4に示された実施例では、点Cは、このような直方体形状の移動ボリューム133の縁に位置している。
【0048】
図5は、最後に、移動ボリューム133を修正する手法を示している。ここでは、
図4に従ってはじめに規定された移動ボリューム133の外側に位置するさらなる点Dを入力することによって、新たな、変更された移動ボリューム133’が規定される。点Dは、座標(x
D,y
D,z
D)によって表される。結果として生じる、拡張された移動ボリューム133’は、次のように、グラフィカルユーザインタフェース130において規定される。すなわち、移動ボリュームが、入力された点の最小のx値から入力された点の最大のx値へ、入力された点の最小のy値から入力された点の最大のy値へ、最後に、入力された点の最小のz値から、入力された点の最大のz値へ延在するように規定される。
図5の実施例では、移動ボリューム133’は、x方向において、x
Dからx
Bまで延在し、y方向において、y
Bからy
Dまで延在し、z方向において、z
1からz
Dまで延在する。
【0049】
点Cおよび/または点Dを選択するときに、合理的には、サンプルの相応する各部分領域は、部分領域の相応する画像をユーザに表示するために、顕微鏡システムの画像生成装置の観察ビーム路の焦点へ動かされる。このようにして、例えば、点Dが依然として、関心対象の、画像化されるべきサンプル領域内の点に相応するか、もしくはサンプル内の点に相応するかを容易にチェックすることができる。
【0050】
グラフィカルユーザインタフェース130を介して移動ボリューム133もしくは133’を規定した後、サンプルスキャンが、例えば座標z1で開始される。次に、相応するx-y矩形面がスキャンされる。これは、例えば列で、またはメアンダ状に行われる。この際に、サンプルの相応する部分領域の画像が、事前に定められている座標で記録される。続いて、平行するスキャン面において、別のz座標のもとで、同じ様式でスキャンが行われ、この際に画像が記録され、迅速に、座標zDのもとで最後の矩形のスキャン領域まで達する。このような最後のスキャン面がスキャンされた後、記録された画像が処理されてよい。通常、x-y面の画像がまとめられてモザイク画像が形成され、したがって、関連する面において相応するサンプル面の画像が得られる。全体的に、このようにして、zスタック、すなわち、それ自体、相応するサンプルボリュームの3次元画像へ処理され得る画像の画像スタックが得られる。
【0051】
図6は、ユーザが、グラフィカルユーザインタフェース130に表示されている座標系132に第1の点Aおよび第2の点Cを入力したときに、直方体形状の移動ボリュームを規定するためのさらなる選択肢を示している。ここで、点Aおよび点Cは、直方体形状の移動ボリュームのエッジ点を形成しており、ここでは、基本原理をよりよく理解するために、直方体形状の移動ボリューム133’’の2つの、相互に反対側のコーナ点を形成している。したがって、点Aおよび点Cは、移動ボリューム133’’を定める直方体の空間対角線の2つの終点を形成している。2つの点Aおよび点Cは、上述の手順と同様に定められる。唯一、点Aおよび点Cが同じx-y面に位置していないということに留意されるべきである。なぜなら、そうでない場合には、2次元の矩形の移動領域が規定されるだけだからである。ここでも、点Aおよび点Cが、画像化されるべきサンプル領域内または画像化されるべきサンプル領域上に位置しているのは合理的である。
【0052】
2つの点Aおよび点Cを入力した後、顕微鏡システム100の計算ユニットは、直方体形状の移動ボリューム133’’を計算し、それをグラフィカルユーザインタフェースに表示する。計算ユニットはまた、少なくとも部分的に、ユーザインタフェースの構成部分であってよい、または別個に、例えば、ディスプレイ装置またはグラフィックカード内に設けられていてよい、または最終的にそれ自体が、制御装置140または顕微鏡システム100の別のコンポーネント内に配置されている、より包括的な計算ユニットの構成部分であってよい。点Aおよび点Cの座標を、(xA,yA,zA)もしくは(xC,yC,zC)で表すことができる。直方体形状の移動領域133’’は、x方向において、xAからxCまで延在し、y方向において、yCからyAまで延在し、z方向において、zAからzCまで延在する。
【0053】
直方体形状の移動領域133’’の規定後、画像生成を伴うスキャンが、
図1~
図5に基づいて既に上で説明したのと同じ様式で行われる。
【0054】
図7は同様に、画像化されるべきサンプル領域に相応する移動領域133’’’を定めるための択一的な手法を示している。このような場合、グラフィカルユーザインタフェース130は次のように構成されている。すなわち、グラフィカルユーザインタフェース130上に表示されている座標系132に、ユーザによって唯一の点Aが入力されることによって、空間格子もしくはボリュームアウトライン136が、点Aから開始して、座標系132に表示され、それによって移動ボリューム133’’’が規定されるように構成されている。
【0055】
図7に示されている実施例では、所定の寸法の直方体形状の移動ボリューム133’’’が、所定の箇所で、ここでは点Aから開始して、生成され、グラフィカルユーザインタフェース130においてディスプレイ131上に表示される。ユーザはここで、入力によって、提案された空間格子もしくはボリュームアウトライン136を確認することができ、これによって、このような空間格子136が直方体形状の移動ボリューム133’’’を決定する。ユーザが、
図5示された実施例に類似した手順で、空間格子136の修正を行うことができるように設定されていてもよい。空間格子136の外側または内側に位置し、新たな移動ボリュームの新たなエッジ点またはコーナ点として規定されるさらなる点(
図5における点Dに相応する)を入力することによってこれを行うことができる。同様に択一的に、空間格子136が、特定の箇所で、例えば、コーナ点でクリックされ、ドラッグによる既知のマウス制御によって拡大または縮小されてよい。
【0056】
択一または付加的に、表示されているボリュームアウトライン136が、空間格子として使用もしくは理解されてもよい。このような場合には、有利には、空間格子136において、画像化されるべき部分領域に相応するアプローチ位置が、格子点(図示されていない)として表示されてよい。このようにして、ユーザは、サンプル領域の画像化に使用される部分領域の配置に関する、迅速な俯瞰を得る。
【0057】
包括的で有利な実施形態では、座標系132に少なくとも1つの点A、点B、点Cまたは点Dを入力した後、入力された点がグラフィックで強調表示される。これは、例えば、色が付けられていてよい、またはより太い点または点滅する点によるものでよい。
【0058】
適切な移動ボリューム133’’’の規定後に、画像記録を伴うスキャンが、上述の実施例と同様に行われる。
【0059】
図8および
図9は、顕微鏡システム100の具体的な実施形態の例を示している。従来技術からそれ自体が知られているコンポーネントは、ここで詳細に説明されるべきではないので、顕微鏡システム100は極めて簡略化されて示されている。顕微鏡システム100は、画像生成装置110、移動装置120、制御装置140ならびにグラフィカルユーザインタフェース130を有している。制御装置140は、計算ユニットを含んでいてよい。しかし、計算ユニットが、顕微鏡システム100の別のコンポーネント内に配置されていてもよい。画像生成装置110は、
図8において、コンポーネント、すなわち顕微鏡対物レンズ112およびカメラ111に基づいて示されている。グースネックライト114および対物レンズ112の周りにリングに案内されるリングライト113は、照明に使用される。グースネックライト114およびリングライト113を選択的に個別にまたは組み合わせて作動させることができる。これによって、任意の照明方向からの、任意の照明角度での照明が可能になる。これは、サンプルもしくは観察される対象物の構造をより明確に画像化するために、特殊なトポロジを有するサンプルおよび観察される対象物の場合に有利である。
【0060】
このような実施例では、移動装置120は、実質的に、3つすべての空間方向において移動可能なx-y-z顕微鏡ステージを有している。したがって、対物レンズ112のz方向におけるシフトを省くことができる。
【0061】
サンプルをx-y面において移動させるため、ならびにz方向おいて移動することによってサンプルの部分領域に焦点を合わせるために、顕微鏡ステージ121が駆動制御される。サンプル自体は、顕微鏡ステージ121上のサンプルホルダ122上に配置されている。顕微鏡ステージ121は、制御装置140によって駆動制御される。図示されているように、制御装置140は、対物レンズ112、リングライト113、カメラ111およびグースネックライト114等の他のコンポーネントも駆動制御する。このようにして、照明ならびにカメラの所望されているパラメータを適切に調節することができる。スキャン領域の規定および画像生成を伴うその後のスキャンも、グラフィカルユーザインタフェース130と共に、制御装置140を介して制御される。このような実施例では、制御装置140は、グラフィカルユーザインタフェース130と無線で接続されており、適切な様式で、W-LAN接続141(英語でWiFi)が使用される。択一的に、当然、ケーブル接続も可能である。基本的に、W-LAN接続は、グラフィカルユーザインタフェース130が、顕微鏡システム100の残りのコンポーネントから空間的に分離されることを可能にする。このために、それは、例えばW-LANによって顕微鏡システム100と接続されているタブレットコンピュータのディスプレイ131上に示される。
【0062】
ディスプレイ131は、上で論じた実施例と同様に、グラフィカルユーザインタフェース130を示しており、ここには移動ボリュームを規定するための座標系が表示される。例えば、
図1~
図7に記載の表示が、ディスプレイ131上に表示される。
図8から見て取れるように、ディスプレイ131は、グラフィカルユーザインタフェース130に加えて、さらなる、より大きな表示領域137を示しており、ここには合理的に、目下、画像生成装置110の焦点に位置している部分領域が画像化される。これによって、ユーザにとって、サンプルにおける操縦が容易になり、ひいては画像化されるべきサンプル領域の識別が容易になる。このようにして、ユーザは、例えば、
図1~
図4の実施例に従って、関心対象のサンプル領域を識別し、相応する移動ボリューム133を規定することができる。グラフィカルユーザインタフェース130における移動ボリューム133の規定後、制御装置140は、移動装置120の駆動制御によってスキャンを制御し、画像生成装置110を駆動制御することによって、これに同期した画像生成を制御する。x-y面をスキャンした後、処理された画像は、例えば表示領域137に示される。全体的な、規定されたz領域がスキャンされるまで、同じことがさらなるx-y面に当てはまる。その後、画像化されたサンプル領域の3次元画像の計算を行うことができ、ここで同様に、表示領域137において、相応する3D表示が行われ得る。
【0063】
図9は、落射光照明および透過光照明の手法を備えた顕微鏡システム100のさらなる実施形態を概略的に示している。ここでも、そのような顕微鏡システムのそれ自体が既知のコンポーネントは単に短く言及されるべきである。顕微鏡システム100は、画像生成装置110、移動装置120、制御装置140ならびにグラフィカルユーザインタフェース130を有している。画像生成装置110は、重要なコンポーネントとして、z方向に移動可能な顕微鏡対物レンズ115ならびに詳細に示されていない偏向要素およびレンズおよび観察ビーム路118に配置されているカメラ111を含んでいる。対物レンズ側に配置された落射光照明装置は116で示されており、その光は、半透過性のビームスプリッタを介して対物レンズ115へ向けられる。
【0064】
生成された照明ビーム路は、図示されていない偏向要素および対物レンズ115を介して、サンプルに導かれる。逆に、サンプルの部分領域の焦点から発せられる光は、対物レンズ115および観察ビーム路118の形態の他の図示されていない光学要素によって、カメラ111に導かれ、そこで部分領域の画像が生成される。サンプル自体は、x-y顕微鏡ステージ123上のサンプルホルダ122上に配置されている。顕微鏡ステージ123のx-y位置調整およびz方向における対物レンズ115の焦点合わせ駆動が、ここで移動装置120として用いられる(方向x、y、zでの両矢印を参照)。
【0065】
さらに、透過光照明装置117が示されており、その光は、サンプルを通して照射され、その後、対物レンズ115に達する。透過光照明装置117は、サンプルホルダ122上のサンプルを照明する透過光照明ビーム路を生成するための、詳細には示されていないさらなるレンズを有しており、透過光は、対物レンズ115によって受容され、観察ビーム路118の形態でカメラ111へ導かれる。このようにして、サンプルを、ここに示されている顕微鏡システム100によって、落射光照明および/または透過光照明で観察および画像化することができる。相応する画像生成は制御装置140を介して駆動制御され、制御装置140は、(少なくとも)透過光照明装置117のコンポーネント、顕微鏡ステージ123、カメラ111、落射光照明装置116、対物レンズ115の焦点合わせ駆動を駆動制御する。さらに、制御装置140は、ディスプレイ131もしくはグラフィカルユーザインタフェース130と、図示の場合では、ケーブル接続されている。当然、
図8に関連して説明されたように、ここでも択一的に、W-LAN接続が可能である。
【0066】
ここでも、グラフィカルユーザインタフェース130は、移動ボリュームを規定するための座標系132を表示する。そのような移動ボリュームを規定するための相応する表示および相応する手順は、
図1~
図7の実施形態に相応していてよい。グラフィカルユーザインタフェース130に加えて、ディスプレイ131はここでも、より大きな表示領域137を有しており、その上に、生成された各画像を表示することができる。例えば、ここには関心対象のサンプル領域の識別時に部分領域の画像が画像化されてよく、これによって、移動ボリュームを規定するための適切な点の選択が容易になる。移動領域を規定した後、
図8に基づいて既に説明した手順で、画像生成を伴うスキャンが行われる。このために、例えば、対物レンズ115の焦点位置が固定されている場合、顕微鏡ステージ123は、画像化されるべきサンプル領域のx-y面の画像が得られるまで、x-y方向において所定のパターンに従って動かされる。これは同様に、表示領域137に表示可能である。次に、対物レンズ115のz位置を変更して、さらなるx-yスキャンが行われる。このような方法は、移動ボリュームのz領域全体が処理されるまで繰り返される。結果として得られた画像スタック(zスタック)から3次元サンプル画像を計算することができ、これは、例えば同様に、表示領域137上に3D画像として示される。
【符号の説明】
【0067】
100 顕微鏡システム
110 画像生成装置
111 カメラ
112 対物レンズ
113 リングライト
114 グースネックライト
115 対物レンズ
116 落射光照明装置
117 透過光照明装置
118 観察ビーム路
120 移動装置
121 x-y-z顕微鏡ステージ
122 サンプルホルダ
123 x-y顕微鏡ステージ
130 グラフィカルユーザインタフェース
131 ディスプレイ
132 座標系
133,133’,133’’,133’’’ 移動ボリューム、移動領域
134 矩形の移動領域
135 最大移動領域
136 空間格子
137 表示領域
140 制御装置
141 W-LAN接続
A,B,C,D 点