(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2023-10-30
(45)【発行日】2023-11-08
(54)【発明の名称】信号処理装置、信号処理方法およびプログラム
(51)【国際特許分類】
G01S 13/90 20060101AFI20231031BHJP
【FI】
G01S13/90 191
(21)【出願番号】P 2022545257
(86)(22)【出願日】2020-08-31
(86)【国際出願番号】 JP2020032893
(87)【国際公開番号】W WO2022044326
(87)【国際公開日】2022-03-03
【審査請求日】2023-02-06
(73)【特許権者】
【識別番号】000004237
【氏名又は名称】日本電気株式会社
(74)【代理人】
【識別番号】100106909
【氏名又は名称】棚井 澄雄
(74)【代理人】
【識別番号】100134544
【氏名又は名称】森 隆一郎
(74)【代理人】
【識別番号】100149548
【氏名又は名称】松沼 泰史
(74)【代理人】
【識別番号】100162868
【氏名又は名称】伊藤 英輔
(72)【発明者】
【氏名】山口 裕貴
(72)【発明者】
【氏名】田中 大地
【審査官】東 治企
(56)【参考文献】
【文献】米国特許出願公開第2018/0075319(US,A1)
【文献】牛腸 正則(GOCHO, Masanori) ほか,"マルチベースラインSAR解析における信号数推定(Estimation of Number of Signal Sources in Multi-Baseline SAR Image)",2019年電子情報通信学会通信ソサイエティ大会講演論文集( PROCEEDINGS OF THE 2019 IEICE COMMUNICATIONS S,日本,電子情報通信学会,2019年09月,B-2-12,p.160
【文献】BATU, Ozge et al.,"Hyper-parameter Selection in Advanced Synthetic Aperture Radar Imaging Algorithms",2008 IEEE 16th Signal Processing, Communication and Applications Conference,2008年,DOI: 10.1109/SIU.2008.4632659
【文献】XING, Shi-qi et al.,"Three-Dimensional Reconstruction of Man-Made Objects Using Polarimetric Tomographic SAR",IEEE Transactions on Geoscience and Remote Sensing,2013年06月,Vol.51, No.6,pp.3694-3705,DOI: 10.1109/TGRS.2012.2220145
【文献】Dong Feng et al.,"Holographic SAR Tomography 3-D Reconstruction Based on Iterative Adaptive Approach and Generalized Likelihood Ratio Test",IEEE Transactions on Geoscience and Remote Sensing,2020年05月22日,Vol.59, No.1,pp.305-315,DOI: 10.1109/TGRS.2020.2994201
(58)【調査した分野】(Int.Cl.,DB名)
G01S 13/90
IEEE Xplore
(57)【特許請求の範囲】
【請求項1】
反射体の位置に関する情報である位相参照点既知情報が得られている位相参照点におけるSAR画像群を用いて、合成開口レーダトモグラフィにおけるアレイ信号処理のためのハイパーパラメータの値を設定するパラメータ特定手段と、
前記パラメータ特定手段が設定したハイパーパラメータの値を用いた前記アレイ信号処理を用いてSARトモグラフィの画像処理を行うSARトモグラフィ処理手段と、
を備える信号処理装置。
【請求項2】
前記パラメータ特定手段は、
前記位相参照点における前記SAR画像群から得られる位相参照点データに基づいて、前記位相参照点における前記反射体の推定位置を分布で示す反射体分布ベクトルを推定するベクトル推定手段と、
前記位相参照点既知情報と、前記ベクトル推定手段が推定した反射体分布ベクトルとに基づいて、前記位相参照点における前記反射体の位置および個数を示す反射体位置モデルを特定するモデル特定手段と、
を備える請求項1に記載の信号処理装置。
【請求項3】
前記パラメータ特定手段は、
前記位相参照点データに基づいて、前記反射体分布ベクトルの初期値ベクトルを生成する初期値生成手段をさらに備え、
前記ベクトル推定手段は、前記位相参照点データおよび前記初期値ベクトルに基づいて、前記反射体分布ベクトルを推定する、
請求項2に記載の信号処理装置。
【請求項4】
前記モデル特定手段は、
前記ベクトル推定手段が推定した前記反射体分布ベクトルに基づいて、反射体位置を指定する反射体位置指定手段と、
指定された反射体位置と、位相参照点既知情報から得られる反射体位置とを比較して前記指定された反射体位置の妥当性を評価するモデル判定手段と、
を備える、請求項2または請求項3に記載の信号処理装置。
【請求項5】
前記モデル特定手段は、
前記ベクトル推定手段が推定した前記反射体分布ベクトルに基づいて、評価関数による評価で所定条件以上の高評価の反射体位置である最適反射体位置を特定する最適反射体位置特定手段と、
前記最適反射体位置特定手段が特定した最適反射体位置に基づいて、評価関数による評価で所定条件以上の高評価の反射体数である最適反射体数を特定する最適反射体数特定手段と、
を備える、請求項2から請求項4の何れか1項に記載の信号処理装置。
【請求項6】
前記モデル特定手段は、
前記ベクトル推定手段が推定した前記反射体分布ベクトルに基づいて前記反射体の位置を推定し、推定された前記反射体の位置をモデル関数による近似の度合いにより評価して、所定条件以上の高評価の反射体位置である最適反射体位置を特定する第2最適反射体位置特定手段
を備える、請求項2から請求項5の何れか1項に記載の信号処理装置。
【請求項7】
反射体の位置に関する情報である位相参照点既知情報が得られている位相参照点におけるSAR画像群を用いて、合成開口レーダトモグラフィにおけるアレイ信号処理のためのハイパーパラメータの値を設定することと、
設定されたハイパーパラメータの値を用いた前記アレイ信号処理を用いてSARトモグラフィの画像処理を行うことと、
を含む信号処理方法。
【請求項8】
コンピュータに、
反射体の位置に関する情報である位相参照点既知情報が得られている位相参照点におけるSAR画像群を用いて、合成開口レーダトモグラフィにおけるアレイ信号処理のためのハイパーパラメータの値を設定することと、
設定されたハイパーパラメータの値を用いた前記アレイ信号処理を用いてSARトモグラフィの画像処理を行うことと、
を実行させるためのプログラ
ム。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、信号処理装置、信号処理方法およびプログラムに関する。
【背景技術】
【0002】
合成開口レーダ(Synthetic Aperture Radar; SAR)は、アンテナを航空機または衛星などのプラットホームに搭載し、プラットホームの移動と信号処理技術とを利用することで見かけ上のアンテナ開口を合成し、高い解像度のレーダ画像を生成する技術である。
プラットホームの進行方向をアジマス(Azimuth)方向と称し、視線方向をレンジ(Range)方向と称する。アジマス方向およびレンジ方向の何れにも垂直な方向をエレベーション(Elevation)方向と称する。
【0003】
合成開口レーダトモグラフィ(SAR Tomography)は、合成開口の概念をエレベーション方向に拡張することで、地上構造物などの立体情報を取得する技術である。合成開口レーダトモグラフィでは、プラットホームが、エレベーション方向の位置をずらしながら、アジマス方向の移動を繰り返す。そして、合成開口レーダトモグラフィでは、アジマス方向の移動の繰り返しにより、エレベーション方向に異なる位置で合成開口レーダの場合と同様の計測を繰り返し、計測結果としてSAR画像群を取得する。合成開口トモグラフィでは、得られたSAR画像群に対して、プラットホームのエレベーション方向の位置のばらつきを仮想的なセンサアレイとしたアレイ信号処理を行い、エレベーション方向の感度を実現している。
例えば、非特許文献1には圧縮センシングを用いた合成開口レーダトモグラフィにおけるアレイ信号処理手法が記載されている。
【先行技術文献】
【非特許文献】
【0004】
【文献】Xiao Xiang Zhu、外1名、"Tomographic SAR inversion by L1-norm regularization-The compressive sensing approach."、IEEE transactions on Geoscience and Remote Sensing 48.10、2010年、pp. 3839-3846
【発明の概要】
【発明が解決しようとする課題】
【0005】
合成開口レーダトモグラフィにおけるアレイ信号処理アルゴリズムがハイパーパラメータを有する場合、ハイパーパラメータ値を自動的に設定できれば、合成開口レーダトモグラフィの担当者が人手でハイパーパラメータ値を設定する負担を軽減することができる。
【0006】
本発明の目的の一例は、上記の問題を解決することができる信号処理装置、信号処理方法およびプログラムを提供することである。
【課題を解決するための手段】
【0007】
本発明の第1の態様によれば、信号処理装置は、反射体の位置に関する情報である位相参照点既知情報が得られている位相参照点におけるSAR画像群を用いて、合成開口レーダトモグラフィにおけるアレイ信号処理のためのハイパーパラメータの値を設定するパラメータ特定手段と、前記パラメータ特定手段が設定したハイパーパラメータの値を用いた前記アレイ信号処理を用いてSARトモグラフィの画像処理を行うSARトモグラフィ処理手段と、を備える。
【0008】
本発明の第2の態様によれば、信号処理方法は、反射体の位置に関する情報である位相参照点既知情報が得られている位相参照点におけるSAR画像群を用いて、合成開口レーダトモグラフィにおけるアレイ信号処理のためのハイパーパラメータの値を設定することと、設定されたハイパーパラメータの値を用いた前記アレイ信号処理を用いてSARトモグラフィの画像処理を行うことと、を含む。
【0009】
本発明の第3の態様によれば、プログラムは、コンピュータに、反射体の位置に関する情報である位相参照点既知情報が得られている位相参照点におけるSAR画像群を用いて、合成開口レーダトモグラフィにおけるアレイ信号処理のためのハイパーパラメータの値を設定することと、設定されたハイパーパラメータの値を用いた前記アレイ信号処理を用いてSARトモグラフィの画像処理を行うことと、を実行させるためのプログラムである。
【発明の効果】
【0010】
上記した信号処理装置、信号処理方法およびプログラムによれば、合成開口レーダトモグラフィにおけるアレイ信号処理アルゴリズムがハイパーパラメータを有する場合に、ハイパーパラメータ値を自動的に設定することができる。
【図面の簡単な説明】
【0011】
【
図1】第1の実施形態に係る信号処理装置の構成例を示すブロック図である。
【
図2】第1の実施形態に係る合成開口レーダトモグラフィにおけるプラットホームの位置の例を示す図である。
【
図3】第1の実施形態に係るベクトル推定部の構成例を示すブロック図である。
【
図4】第1の実施形態に係るモデル特定部の構成例を示すブロック図である。
【
図5】第1の実施形態に係る信号処理装置がSARトモグラフィ3次元イメージング処理を行う手順の例を示すフローチャートである。
【
図6】第1の実施形態に係るベクトル推定部が、位相参照点におけるエレベーション方向の反射体分布ベクトルを推定する処理手順の例を示すフローチャートである。
【
図7】第2の実施形態に係る信号処理装置の構成例を示すブロック図である。
【
図8】第2の実施形態に係る第2モデル特定部の構成例を示すブロック図である。
【
図9】第2の実施形態に係る信号処理装置がSARトモグラフィ3次元イメージング処理を行う手順の例を示すフローチャートである。
【
図10】第2の実施形態に係る最適反射体位置特定部が反射体の個数の仮定ごとに最適反射体位置を特定する処理手順の例を示すフローチャートである。
【
図11】第2の実施形態に係る最適反射体数特定部が最適反射体数を特定する処理手順の例を示すフローチャートである。
【
図12】第3の実施形態に係る信号処理装置の構成例を示すブロック図である。
【
図13】第3の実施形態に係る第3モデル特定部の構成例を示すブロック図である。
【
図14】第3の実施形態に係る信号処理装置がSARトモグラフィ3次元イメージング処理を行う手順の例を示すフローチャートである。
【
図15】第3の実施形態に係る第2最適反射体位置特定部が、反射体の個数の仮定ごとの関数フィットによって最適反射体位置を特定する処理手順の例を示すフローチャートである。
【
図16】第4の実施形態に係る信号処理装置の構成例を示すブロック図である。
【
図17】第4の実施形態に係る第2ベクトル推定部の構成例を示すブロック図である。
【
図18】第4の実施形態に係る信号処理装置がSARトモグラフィ3次元イメージング処理を行う手順の例を示すフローチャートである。
【
図19】第4の実施形態に係る第2ベクトル推定部が初期値ベクトルを用いてエレベーション方向の反射体分布ベクトルを推定する処理の手順の例を示すフローチャートである。
【
図20】第5の実施形態に係る信号処理装置の構成例を示すブロック図である。
【
図21】第6の実施形態に係る信号処理方法における処理の手順の例を示す図である。
【
図22】少なくとも1つの実施形態に係るコンピュータの構成を示す概略ブロック図である。
【発明を実施するための形態】
【0012】
以下、本発明の実施形態を説明するが、以下の実施形態は請求の範囲にかかる発明を限定するものではない。また、実施形態の中で説明されている特徴の組み合わせの全てが発明の解決手段に必須であるとは限らない。
【0013】
<第1の実施形態>
(構成の説明)
図1は、第1の実施形態に係る信号処理装置の構成例を示すブロック図である。
図1に示す構成で、信号処理装置101は、パラメータ特定部201と、SARトモグラフィ処理部900とを備える。パラメータ特定部201は、ベクトル推定部210と、モデル特定部220とを備える。
【0014】
信号処理装置101は、合成開口レーダトモグラフィにおける受信信号として得られるSAR画像群に基づいて、反射体の立体データを算出する。ここでいう反射体は、レーダを反射する物であり、合成開口レーダトモグラフィにおいて位置推定対象として扱われる。
信号処理装置101は、例えば、ワークステーション(Workstation)またはパソコン(Personal Computer)等のコンピュータを用いて構成されていてもよい。信号処理装置101が、1つの装置として構成されていてもよいし、複数の装置の組み合わせにて構成されていてもよい。
【0015】
SARトモグラフィ処理部900は、合成開口レーダトモグラフィにおける受信信号(SAR画像群)にアレイ信号処理(Array Signal Processing)を適用して立体データを算出し出力する。SARトモグラフィ処理部900は、SARトモグラフィ処理手段の例に該当する。SARトモグラフィ処理部900が行う立体データの算出は、SARトモグラフィの画像処理の例に該当する。
【0016】
ここでいうアレイ信号処理は、センサアレイを用いて観測されるアレイ信号に対する処理である。合成開口レーダトモグラフィでは、レーダを搭載したプラットホームが移動しながらレーダによる計測を繰り返して得られるSAR画像群をアレイ信号として扱い、アレイ信号処理を適用する。合成開口レーダトモグラフィにより、レーダを反射する反射体の三次元の位置情報または形状情報が得られる。
【0017】
図2は、合成開口レーダトモグラフィにおけるプラットホームの位置の例を示す図である。SARトモグラフィ処理部900は、
図2に例示される計測で得られるデータを用いて立体データを算出する。パラメータ特定部201は、SARトモグラフィ処理部900が行うアレイ信号処理で用いられるハイパーパラメータの値を設定する。
【0018】
図2の例で、x軸はアジマス方向を示す。x軸は、
図2の手前側から奥側に向かう向きに設けられている。r軸はレンジ方向を示す。s軸はエレベーション方向を示す。
図2では、プラットホームの位置の例として位置B
n(nは、1≦n≦Nの整数)が示されている。Nは、計測回数を示す正の整数である。
図2に例示するように、プラットホームはエレベーション方向の位置をずらしながらアジマス方向の移動を繰り返し、レーダによる計測を繰り返し行う。
【0019】
レーダによる計測では、プラットホームは、レンジ方向に向けてレーダを照射し、反射波を受信する。
図2では、反射体の位置の例として位置P
0、P
1およびP
2が示されている。プラットホームは、これら反射体の各々からの反射波を受信する。合成開口レーダトモグラフィにおける受信信号(SAR画像群)は、式(1)のようにモデリングされる。
【0020】
【0021】
g
nは、n番目の計測による信号を示す。b
nは、n番目の計測におけるベースライン長を示す。γは、エレベーション方向の反射体分布を示す。sは、
図2の場合と同様、エレベーション方向の座標を示す。λは、計測波長を示す。r
0は、プラットホームから反射体までの距離を示す。jは、虚数単位を示す。πは、円周率を示す。
式(1)をエレベーション方向についてL個に区切ったグリッドに離散化すると、式(2)のように示される。
【0022】
【0023】
siは、エレベーション方向に区切ったグリッドのうちi番目のグリッドにおける座標を示す。式(2)をベクトル化してN回分の計測データを集約すると、式(3)のように示される。
【0024】
【0025】
ベクトルgは、計測値を示す、長さNの列ベクトルである。g=[g1、g2、…、gn]Tと表される。上付の「T」は、ベクトルまたは行列の転置を表す。
ベクトルγは、エレベーション方向の反射体分布ベクトルを示す、長さLの列ベクトルである。γ=[γ1、γ2、…、γL]Tと表される。ここでいう反射体分布ベクトルは、エレベーション方向にL個に区切ったグリッドそれぞれの場所で推定される反射体の反射率を分布で示すベクトルである。
式(3)の行列Rは、大きさN×L行列写像である。行列Rの成分rnlは、式(4)のように示される。
【0026】
【0027】
SARトモグラフィ処理部900は、合成開口レーダトモグラフィにおけるアレイ信号処理で、式(3)を画素ごとにベクトルγについて解くことでエレベーション方向のどの位置に反射体が存在するかを推定する。具体的には、SARトモグラフィ処理部900は、アレイ信号処理によってエレベーション方向の反射体分布ベクトルγを求める。
【0028】
ただし、SARトモグラフィ処理部900が、反射体分布を求める方向は、エレベーション方向に限定されず、いろいろな方向とすることができる。例えば、上記の式(2)における「r0」を「r0sinθ」に置き換えることができる。この場合のθは、アジマス方向およびレンジ方向の平面に対して、SARトモグラフィ処理部900が反射体分布ベクトルγを求める方向のなす角度を示す。
【0029】
θが90度の場合、SARトモグラフィ処理部900は、エレベーション方向の反射体分布ベクトルγを求める。一方、θがレーダの入射角である場合、すなわち、θが地表面の法線とレーダの視線方向(レンジ方向)とのなす角度である場合、SARトモグラフィ処理部900は、地表面に垂直な方向の反射体分布ベクトルγを求める。
【0030】
SARトモグラフィ処理部900が合成開口レーダトモグラフィおけるアレイ信号処理に用いる方法として、公知のいろいろな方法を用いることができる。例えば、SARトモグラフィ処理部900が、ビームフォーミング、または、Multiple Signal Classification (MUSIC)を用いてアレイ信号処理を行うようにしてもよいが、これらに限定されない。
【0031】
パラメータ特定部201は、SARトモグラフィ処理部900が合成開口レーダトモグラフィおけるアレイ信号処理に用いる方法におけるハイパーパラメータの値を設定する。ここでいうハイパーパラメータの意味はアレイ信号処理手法によって異なる。例えば、SARトモグラフィ処理部900がMUSICを用いる場合、1画素に含まれる反射体の個数がハイパーパラメータ値として設定される。一方、SARトモグラフィ処理部900が圧縮センシングを用いる場合、損失関数における正則化項の影響度合いを示す正則化パラメータがハイパーパラメータにあたる。
【0032】
パラメータ特定部201は、位相参照点データと位相参照点既知情報を入力とし、適切なハイパーパラメータ値を特定して出力する。
ここでいう位相参照点は、反射体が安定して観測される画素である。ここでいう画素は、アジマス方向およびレンジ方向の座標を、アジマス方向、レンジ方向それぞれに区分した1区画である。
【0033】
SARトモグラフィ処理部900は、画素ごとにアレイ信号処理を行って、画素ごとに、例えばエレベーション方向の反射体分布ベクトルγを求める。そして、SARトモグラフィ処理部900は、画素ごとの反射体分布ベクトルγに基づいて、三次元空間における反射体の立体データを算出する。
【0034】
位相参照点データは、SARトモグラフィにおける計測結果として得られるSAR画像群のうち、位相参照点の計測データである。位相参照点既知情報は、位相参照点における反射体の高度など、位相参照点における反射体の位置および個数を示す既知の情報である。パラメータ特定部201は、位相参照点既知情報を得られている位相参照点データを用いてハイパーパラメータ値を評価し、適切なハイパーパラメータ値を特定する。パラメータ特定部201が、1つの位相参照点における位相参照点データおよび位相参照点既知情報を用いるようにしてもよい。あるいは、パラメータ特定部201が、複数の位相参照点における位相参照点データおよび位相参照点既知情報を用いるようにしてもよい。
【0035】
位相参照点既知情報として、SARトモグラフィ処理部900が反射体分布ベクトルγを求める方向と同じ方向の情報を用いる。例えば、SARトモグラフィ処理部900が地表面に垂直な方向の反射体分布ベクトルγを求める場合、位相参照点既知情報として、反射体の高さおよび個数を示す情報など、地表面に垂直な方向に関する情報を用いる。
【0036】
ここでいう適切なハイパーパラメータ値は、アレイ信号処理に用いたときに、合成開口レーダトモグラフィにおける受信信号(SAR画像群)から、反射体の実際の位置を示す立体データを算出できるハイパーパラメータ値である。
具体的には、パラメータ特定部201は、位相参照点既知情報によって反射体の位置が示される位相参照点データに、ハイパーパラメータ値を用いたアレイ信号処理を適用する。そして、パラメータ特定部201は、アレイ信号処理の結果から算出される反射体の位置および個数と、位相参照点既知情報で示される反射体の位置および個数とが所定の条件以上に近い場合に、用いられたハイパーパラメータ値を適切なハイパーパラメータ値として扱う。
パラメータ特定部201は、パラメータ特定手段の例に該当する。
【0037】
ベクトル推定部210は、位相参照点データと、モデル特定部220からの判定結果とを入力として、位相参照点におけるアレイ信号処理を行い、位相参照点における反射体分布ベクトルγを算出する。ベクトル推定部210が算出する、位相参照点における反射体分布ベクトルγを、反射体分布ベクトル推定結果、あるいは単にベクトル推定結果とも称する。
ベクトル推定部210は、SARトモグラフィ処理部900の場合と同じ方向の反射体分布ベクトルγを求める。SARトモグラフィ処理部900について上述したように、ベクトル推定部210が反射体分布ベクトルγを求める方向は、エレベーション方向に限らずいろいろな方向とすることができる。例えば、ベクトル推定部210が、地表面に垂直な方向の反射体分布ベクトルγを求めるようにしてもよい。
ベクトル推定部210が反射体分布ベクトルγを求める方向を、反射体分布推定方向とも称する。
【0038】
図3は、ベクトル推定部210の構成例を示すブロック図である。
図3に示す構成で、ベクトル推定部210は、アレイ信号処理部211と、収束性判定部212とを備える。
アレイ信号処理部211と収束性判定部212との間でデータを出入力可能に構成される。
【0039】
アレイ信号処理部211は、位相参照点データと、モデル特定部220からの判定結果と、収束性判定部212からの収束性判定結果とを入力として、位相参照点におけるアレイ信号処理を行って、位相参照点における反射体分布ベクトルγを算出する。
【0040】
アレイ信号処理部211は、ベクトル推定部210の場合と同じ方向の反射体分布ベクトルγを算出する。以下に説明するように、アレイ信号処理部211が算出する反射体分布ベクトルγは、ベクトル推定部210が出力する反射体分布ベクトルγとしても用いられる。
アレイ信号処理部211による、位相参照点におけるアレイ信号処理を、信号推定とも称する。アレイ信号処理部211が算出する、位相参照点における反射体分布ベクトルγを、信号推定結果とも称する。
【0041】
アレイ信号処理部211は、信号推定結果を収束性判定部212に出力する。
ベクトル推定部210が出力するベクトル推定結果は、アレイ信号処理部211が出力する信号推定結果のうち、収束性判定部212が、信号推定結果が収束していると判定したときの信号推定結果である。
【0042】
アレイ信号処理部211は、収束性判定部212からの収束性判定結果が、信号推定結果が収束していることを示すまで、新たなハイパーパラメータ値を用いて信号推定を繰り返す。さらに、アレイ信号処理部211は、モデル特定部220からの判定結果が、推定される反射体の位置および個数と、位相参照点既知情報から得られる反射体の位置および個数とが一致していることを示すまで、新たなハイパーパラメータ値を用いて信号推定を繰り返す。
【0043】
収束性判定部212は、アレイ信号処理部211からの信号推定結果を入力として、信号推定結果が収束しているかを判定する。信号推定結果が収束していると判定した場合、収束性判定部212は、収束していることを示す収束性判定結果をアレイ信号処理部211に出力する。また、収束性判定部212は、信号推定結果が収束していると判定した場合、そのときの信号推定結果を、ベクトル推定結果としてモデル特定部220に出力する。
一方、信号推定結果が収束していないと判定した場合、収束性判定部212は、収束していないことを示す収束性判定結果をアレイ信号処理部211に出力する。この場合、ベクトル推定部210は、ベクトル推定結果の出力を行わない。
【0044】
収束性判定部212は、アレイ信号処理部211からの信号推定結果における、非ゼロ成分の個数を数えることで収束性を判定する。例えば、収束性判定部212は、非ゼロ成分の個数が推定信号の長さの10分の1未満の場合、信号推定結果は収束していると判断する。
【0045】
ここでいう推定信号の長さは、推定信号としての反射体分布ベクトルγの要素の個数である。非ゼロ成分は、推定信号としての反射体分布ベクトルγの要素のうち、値が0でない要素である。したがって、非ゼロ成分の個数が推定信号の長さの10分の1未満との条件は、推定信号としての反射体分布ベクトルγの要素のうち、値が0でない要素の個数が全要素数の10分の1以下であることである。
【0046】
ただし、収束性判定部212が、信号推定結果の収束性を判定する方法は、これに限定されない。収束性判定部212が、信号推定結果の収束性を判定する方法として、信号推定結果が反射体の立体的な位置を示す精度を評価可能ないろいろな方法を用いることができる。
【0047】
モデル特定部220は、位相参照点において反射体分布推定方向に存在する反射体の位置および反射体の個数をベクトル推定結果から特定し、位相参照点既知情報と比較する。モデル特定部220が特定する、位相参照点において反射体分布推定方向に存在する反射体の位置および反射体の個数を示すモデルを、反射体分布推定方向の反射体位置モデルとも称する。
【0048】
モデル特定部220は、上記の比較により、位相参照点既知情報と反射体分布推定方向の反射体位置モデルとが一致するかを判定する。位相参照点既知情報と反射体分布推定方向の反射体位置モデルとが一致するとは、位相参照点既知情報から得られる反射体の位置および個数と、反射体分布推定方向の反射体位置モデルから得られる反射体の位置および個数とが一致することである。ここでいう一致は、完全一致に限定されず所定の条件以上に近似していることであってもよい。
【0049】
位相参照点既知情報と反射体分布推定方向の反射体位置モデルとが一致すると判定した場合、モデル特定部220は、そのときのハイパーパラメータ値をSARトモグラフィ処理部900に出力し、一致を示す判定結果をベクトル推定部210に出力する。
【0050】
一方、相参照点既知情報と反射体分布推定方向の反射体位置モデルとが一致しないと判定した場合、モデル特定部220は、不一致を示す判定結果をベクトル推定部210に出力する。この場合、モデル特定部220は、ハイパーパラメータ値の出力は行わない。
【0051】
図4は、モデル特定部220の構成例を示すブロック図である。
図4に示す構成で、モデル特定部220は、反射体位置指定部221と、モデル判定部222とを備える。反射体位置指定部221とモデル判定部222との間でデータ出入力可能に構成されている。
【0052】
反射体位置指定部221は、ベクトル推定部210からのベクトル推定結果を入力として、反射体分布推定方向の反射体位置(反射体の位置)を指定して出力する。
具体的には、反射体位置指定部221は、ベクトル推定結果としての反射体分布ベクトルにて分布で示される、反射体分布推定方向の反射体の位置に基づいて、反射体の具体的な位置を決定する。例えば、反射体位置指定部221が、ベクトル推定結果において分布を示す値の絶対値が所定の閾値以上であり、かつ、その絶対値が極大となる位置を、反射体の位置として指定するようにしてもよい。
そして、反射体位置指定部221は、近い距離に決定された複数の位置を、所定の変換規則に基づいて1つの位置に纏める。複数の位置を1つの位置に纏める処理により、反射体の個数が決定される。
【0053】
モデル判定部222は、反射体位置指定部221が指定する反射体分布推定方向の反射体位置によって位相参照点既知情報が再現できているかを判定する。具体的には、モデル判定部222は、位相参照点既知情報と、反射体位置指定部221が指定する反射体位置とを入力とし、指定された反射体位置と位相参照点既知情報から得られる反射体の位置とが一致するかを判定する。上述したように、ここでの一致は、所定の条件以上に近似していることであってもよい。
【0054】
位相参照点既知情報と反射体分布推定方向の反射体位置モデルとが一致すると判定した場合、モデル判定部222は、そのときのハイパーパラメータ値を、特定された適切なハイパーパラメータ値としてSARトモグラフィ処理部900に出力する。また、モデル判定部222は、一致を示す判定結果をベクトル推定部210に出力する。
【0055】
一方、位相参照点既知情報と反射体分布推定方向の反射体位置モデルが一致しないと判定した場合、モデル判定部222は、不一致を示す判定結果をベクトル推定部210に出力する。この場合、モデル判定部222は、ハイパーパラメータ値の出力は行わない。
【0056】
モデル判定部222が、位相参照点既知情報とエレベーション方向の反射体位置モデルが一致しないと判定した場合、新たなハイパーパラメータ値にてベクトル推定部210によるベクトル推定およびモデル判定部222による判定を繰り返す。
具体的には、ベクトル推定部210がハイパーパラメータ値を更新し、新たなハイパーパラメータ値を用いてベクトル推定を行う。そして、モデル判定部222は、新たなハイパーパラメータ値によるベクトル推定結果について、位相参照点既知情報とエレベーション方向の反射体位置モデルが一致するかを判定する。
ベクトル推定部210に代えて、アレイ信号処理部211またはパラメータ特定部201がハイパーパラメータ値を更新するようにしてもよい。
【0057】
モデル判定部222が行う判定は、反射体位置指定部221が指定する反射体位置と、位相参照点既知情報から得られる反射体位置とを比較して、指定された反射体位置の妥当性を評価することであるといえる。
【0058】
(動作の説明)
次に、信号処理装置101の動作について説明する。
図5は、信号処理装置101がSARトモグラフィ3次元イメージング処理を行う手順の例を示すフローチャートである。
図5の処理で、ベクトル推定部210は、位相参照点データを入力として受け取り、位相参照点における反射体分布ベクトルを推定する(ステップS101)。
【0059】
図6は、ベクトル推定部210が、位相参照点における反射体分布ベクトルを推定する処理手順の例を示すフローチャートである。ベクトル推定部210は、
図5のステップS101で、
図6の処理を行う。
図6の処理で、アレイ信号処理部211は、設定されているハイパーパラメータ値と位相参照点データとを用いて位相参照点におけるアレイ信号処理を行い、信号推定結果としての反射体分布ベクトルγを収束性判定部212に出力する(ステップS111)。
【0060】
アレイ信号処理部211がステップS111の初回実行時に用いるハイパーパラメータの初期値は、予め設定されていてもよい。あるいは、アレイ信号処理部211が、ハイパーパラメータに所定の初期値を入力するようにしてもよい。アレイ信号処理部211に代えて、ベクトル推定部210、または、パラメータ特定部201が、ハイパーパラメータに所定の初期値を入力するようにしてもよい。
【0061】
収束性判定部212は、信号推定結果が収束しているかを判定する(ステップS112)。
収束していないと判定した場合(ステップS112:NO)、収束性判定部212は、収束していないとの収束性判定結果をアレイ信号処理部211に出力する(ステップS113)。
【0062】
アレイ信号処理部211は、収束性判定部212からの判定結果に応じて、ハイパーパラメータ値を更新する(ステップS114)。アレイ信号処理部211に代えて、ベクトル推定部210、または、パラメータ特定部201が、ハイパーパラメータ値を更新するようにしてもよい。
【0063】
ステップS114の後、処理がステップS111へ遷移する。この場合、アレイ信号処理部211は、信号推定結果が収束していると収束性判定部212が判定するまで、新たなハイパーパラメータ値を用いてステップS111における信号推定を繰り返す。
【0064】
一方、信号推定結果が収束していると判定した場合(ステップS112:YES)、収束性判定部212は、収束しているとの収束性判定結果をアレイ信号処理部211に出力し、ベクトル推定結果をモデル特定部220に出力する(ステップS115)。
ステップS115の後、ベクトル推定部210は、
図6の処理を終了する。この場合、処理が
図5のステップS101からステップS102へ遷移する。
【0065】
図5のステップS101の後、モデル特定部220は、ベクトル推定部210で推定されたベクトル推定結果と位相参照点既知情報を入力として、反射体分布推定方向の反射体位置モデルの特定を行う(ステップS102)。
具体的には、反射体位置指定部221が、ベクトル推定部210からのベクトル推定結果を受けて反射体位置の指定を行い、指定結果をモデル判定部222に出力する。例えば、反射体位置指定部221が、ベクトル推定結果のうち絶対値が極大または最大となる位置を反射体位置として指定するようにしてもよい。
【0066】
次に、モデル特定部220は、反射体位置指定部221で指定された反射体位置と、位相参照点既知情報が示す反射体位置とが一致するかを判定する(ステップS103)。
具体的には、モデル判定部222が、反射体位置指定部221で指定された反射体位置と、位相参照点既知情報とを入力として、反射体位置指定部221で指定された反射体位置が、位相参照点既知情報が示す反射体位置と一致するか判定する。この判定は、反射体位置指定部221で指定された反射体位置によって位相参照点既知情報が再現できているかの判定といえる。
【0067】
反射体位置が一致していないと判定した場合(ステップS103:NO)、モデル判定部222は、不一致を示す判定結果をベクトル推定部210に出力する(ステップS104)。モデル判定部222の判定結果を受けて、アレイ信号処理部211、ベクトル推定部210、または、パラメータ特定部201が、ハイパーパラメータ値を更新する(ステップS105)。
【0068】
ステップS105の後、処理がステップS101へ遷移する。この場合、ベクトル推定部210は、反射体位置が一致しているとモデル判定部222が判定するまで、新たなハイパーパラメータ値を用いてステップS101におけるベクトル推定を繰り返す。
【0069】
一方、反射体位置が一致していると判定した場合(ステップS103:YES)、モデル判定部222は、ベクトル推定部210に判定結果を出力し、SARトモグラフィ処理部900に特定された適切なハイパーパラメータ値を出力する(ステップS106)。
【0070】
SARトモグラフィ処理部900は、モデル判定部222からの適切なハイパーパラメータ値と干渉処理済みのSAR画像群とを入力として、画素ごとにアレイ信号処理を行い、SARトモグラフィによる立体データを出力する(ステップS107)。
ステップS107の後、信号処理装置101は、
図5の処理を終了する。
【0071】
(効果の説明)
以上のように、パラメータ特定部201は、反射体の位置に関する情報である位相参照点既知情報が得られている位相参照点におけるSAR画像群を用いて、合成開口レーダトモグラフィにおけるアレイ信号処理のためのハイパーパラメータの値を設定する。SARトモグラフィ処理部900は、パラメータ特定部201が設定したハイパーパラメータの値を用いたアレイ信号処理を用いてSARトモグラフィの画像処理を行う。
【0072】
信号処理装置101によれば、合成開口レーダトモグラフィにおけるアレイ信号処理アルゴリズムがハイパーパラメータを有する場合に、ハイパーパラメータ値を自動的に設定することができる。
特に、信号処理装置101では、パラメータ特定部201により、位相参照点の既知情報を再現することのできるハイパーパラメータ、すなわち適切なハイパーパラメータを推定することができる。位相参照点における適切なハイパーパラメータは、ほかの画素に対しても適切なハイパーパラメータと期待できる。
この点で、信号処理装置101では、SARトモグラフィ処理部900におけるアレイ信号処理の結果を大域的な最適解に収束させることができると期待される。
【0073】
ここで、ハイパーパラメータの値を人為的に調整する必要がある場合などにおいて、不適切な値を設定してしまうと、反射体分布ベクトル推定の結果が収束せずに本来の反射体分布を全く再現できないことが考えられる。または、不適切なハイパーパラメータ値を設定した場合、大域的な最適解でない局所解に収束してしまい本来の反射分布とは異なる位置に偽信号を検出てしまうことが考えられる。または、不適切なハイパーパラメータ値を設定した場合、適切な解に収束するまでに多くの計算コストが必要になることが考えられる。
【0074】
これに対し、パラメータ特定部201は、位相参照点既知情報を用いてメタパラメータ値の妥当性を評価し、妥当と評価されるメタパラメータ値を設定する。この点で、信号処理装置101では、上記のように、SARトモグラフィ処理部900におけるアレイ信号処理の結果を大域的な最適解に収束させることができると期待される。
【0075】
また、ベクトル推定部210は、位相参照点における受信信号から得られる位相参照点データに基づいて、位相参照点における反射体分布推定方向について反射体の推定位置を分布で示す反射体分布ベクトルを推定する。モデル特定部220は、位相参照点既知情報と、ベクトル推定部210が推定した反射体分布ベクトルとに基づいて、位相参照点における反射体の位置および個数を示す反射体位置モデルを特定する。
【0076】
このように、モデル特定部220が、位相参照点における反射体の位置および個数を示す反射体位置モデルを特定することで、ベクトル推定部210が反射体分布ベクトルの推定に用いたハイパーパラメータ値の妥当性を評価することができる。
【0077】
また、反射体位置指定部221は、ベクトル推定部210が推定した反射体分布ベクトルに基づいて、反射体分布推定方向の反射体位置を指定する。モデル判定部222は、指定された反射体位置と、位相参照点既知情報から得られる反射体位置とを比較して指定された反射体位置の妥当性を評価する。
このように、反射体位置指定部221が、反射体の位置を分布で示す反射体分布ベクトルに基づいて反射体の具体的な位置を指定することで、モデル判定部が、指定された位置と位相参照点既知情報から得られる位置とを比較してハイパーパラメータ値の妥当性を評価できる。
【0078】
<第2の実施形態>
(構成の説明)
図7は、第2の実施形態に係る信号処理装置の構成例を示すブロック図である。
図7に示す構成で、信号処理装置102は、第2パラメータ特定部202と、SARトモグラフィ処理部900とを備える。第2パラメータ特定部202は、ベクトル推定部210と、第2モデル特定部230とを備える。
【0079】
図7のベクトル推定部210およびSARトモグラフィ処理部900は、
図1のベクトル推定部210およびSARトモグラフィ処理部900と同様であり、同一の符号を付して、ここでは詳細な説明を省略する。信号処理装置102を、
図1に示す信号処理装置101と比較すると、パラメータ特定部201が第2パラメータ特定部202に置き換えられている。第2パラメータ特定部202を、
図1のパラメータ特定部201と比較すると、モデル特定部220が第2モデル特定部230に置き換えられている。
それ以外の点では、信号処理装置102は、信号処理装置101と同様である。
【0080】
第2パラメータ特定部202は、位相参照点データと位相参照点既知情報を入力とし、特定された適切なハイパーパラメータをSARトモグラフィ処理部900に出力する。
第2モデル特定部230は、ベクトル推定結果から反射体分布推定方向の反射体位置モデルを特定し、位相参照点既知情報と比較する。位相参照点既知情報と反射体分布推定方向の反射体位置モデルとが一致していると判定した場合、第2モデル特定部230は、ハイパーパラメータ値をSARトモグラフィ処理部900に出力し判定結果をベクトル推定部210に出力する。
【0081】
一方、位相参照点既知情報と反射体分布推定方向の反射体位置モデルとが一致していないと判定した場合、第2モデル特定部230は、判定結果をベクトル推定部210に出力する。この場合、第2モデル特定部230は、ハイパーパラメータ値の出力は行わない。
【0082】
図8は、第2モデル特定部230の構成例を示すブロック図である。
図8に示す構成で、第2モデル特定部230は、最適反射体位置特定部231と、最適反射体数特定部232と、モデル判定部222を備える。
図8のモデル判定部222は、
図4のモデル判定部222と同様であり、同一の符号を付して、ここでは詳細な説明を省略する。
【0083】
第2モデル特定部230を、
図4に示すモデル特定部220と比較すると、反射体位置指定部221が、最適反射体位置特定部231および最適反射体数特定部232に置き換えられている。
それ以外の点では、第2モデル特定部230は、モデル特定部220と同様である。
【0084】
最適反射体位置特定部231は、ベクトル推定結果を入力として、最適反射体位置を特定する。
ここでいう最適反射体位置は、評価関数を用いた評価が最も高くなる反射体位置である。あるいは、最適反射体位置は、評価関数による評価で所定条件以上の高評価の反射体位置であってもよい。
評価関数としては、例えば、評価関数の過小評価を防いでオーバーフィッティングを回避する役割を持つ罰金項が付いた対数尤度関数を用いることができる。この場合、評価関数値が小さいほど評価が高い。そこで、最適反射体位置特定部231が、評価関数値が最も小さくなる反射体位置を、最適な反射体位置として特定するようにしてもよい。
【0085】
最適反射体数特定部232は、最適反射体位置特定部231から出力された最適な反射体位置を入力として、最適な反射体数(反射体の個数)を特定する。
ここでいう最適な反射体数は、評価関数を用いた評価が最も高くなる反射体数である。あるいは、最適反射体数は、評価関数による評価で所定条件以上の高評価の反射体数であってもよい。
評価関数としては、例えば、罰金項付き対数尤度関数を用いることができる。この場合、最適反射体数特定部232は、評価関数値が最も小さくなる反射体数を、最適な反射体数として特定する。
【0086】
(動作の説明)
次に、信号処理装置102の動作について説明する。
図9は、信号処理装置102がSARトモグラフィ3次元イメージング処理を行う手順の例を示すフローチャートである。
図9のステップS201は、
図5のステップS101と同様である。
ステップS201の後、最適反射体位置特定部231は、反射体の個数の仮定ごとに最適反射体位置を特定する(ステップS202)。
【0087】
図10は、最適反射体位置特定部231が反射体の個数の仮定ごとに最適反射体位置を特定する処理手順の例を示すフローチャートである。最適反射体位置特定部231は、
図9のステップS202で
図10の処理を行う。
図10の処理で、最適反射体位置特定部231は、位相参照点における反射体の個数を示す変数kの値を0に設定する(ステップS211)。kは、0≦k≦k
maxの整数とする。k
maxは、位相参照点の画素内に含まれる反射体の個数として仮定する最大値を示す正の整数である。例えば、k
max=3であってもよいが、これに限定されない。
【0088】
次に、最適反射体位置特定部231は、反射体の個数をk個と仮定した場合の最適反射体位置を特定する(ステップS212)。上記のように、最適反射体位置特定部231は、評価関数を用いて最適反射体位置を特定する。例えば、最適反射体位置特定部231が、組み合わせ最適化を用いて最適反射体位置を特定するようにしてもよい。
【0089】
次に、最適反射体位置特定部231は、k=kmaxか判定する(ステップS213)。k=kmaxではないと判定した場合(ステップS213:NO)、最適反射体位置特定部231は、kの値を1だけ増加させる(ステップS214)。
ステップS214の後、処理がステップS212へ遷移する。これにより、最適反射体位置特定部231は、ステップS212で、反射体の個数が0個の場合、1個の場合、・・・、kmax個の場合のそれぞれについて、最適反射体位置を特定する。
【0090】
一方、ステップS213で、k=k
maxであると判定した場合(ステップS213:YES)、最適反射体位置特定部231は、それぞれのkの値に対する最適反射体位置を最適反射体数特定部232へ出力する(ステップS215)。
ステップS215の後、最適反射体位置特定部231は、
図10の処理を終了する。この場合、処理が
図9のステップS202からS203へ遷移する。
【0091】
図9のステップS202の後、最適反射体数特定部232は、最適反射体位置特定部231が特定した反射体の個数ごとの最適反射体位置に基づいて、最適反射体数を特定する。
【0092】
図11は、最適反射体数特定部232が最適反射体数を特定する処理手順の例を示すフローチャートである。最適反射体数特定部232は、
図9のステップS203で
図11の処理を行う。
図11の処理で、最適反射体数特定部232は、最適反射体位置特定部231がkの値ごとに特定した最適反射体位置を入力として受け取り、それぞれのkの値について、最適反射体位置に基づいて反射体分布ベクトルを算出する(ステップS221)。
【0093】
次に、最適反射体数特定部232は、それぞれのkの値について、算出した反射体分布ベクトルに対する評価関数値を算出する(ステップS222)。例えば、最適反射体数特定部232は、ベクトルの類似度を示す評価関数を用いて、それぞれのkの値について、算出した反射体分布ベクトルと、ベクトル推定部によるベクトル推定結果との類似度を示す評価関数値を算出する。
【0094】
次に、最適反射体数特定部232は、評価が最も高い反射体数を探索し、最適反射体数として出力する(ステップS223)。例えば、最適反射体数特定部232が評価関数として罰金項付き対数尤度関数を用いる場合、評価関数値が最小となる反射体数を最適反射体数として特定する。
ステップS223の後、最適反射体数特定部232は、
図11の処理を終了する。この場合、処理が
図9のステップS203からS204へ遷移する。
【0095】
図9のステップS203の後、モデル判定部222は、最適反射体数および最適反射体位置で示される反射体の位置が、位相参照点既知情報から得られる反射体の位置と一致するか判定する(ステップS204)。
具体的には、モデル判定部222は、最適反射体位置特定部231がkの値ごとに特定した最適反射体位置のうち、最適反射体数特定部232が特定した最適反射体数の場合の最適反射体位置を取得する。そして、モデル判定部222は、最適反射体数の場合の最適反射体位置と位相参照点既知情報から得られる反射体位置とが一致するか判定する。上述したように、ここでの一致は、所定の条件以上に近似していることであってもよい。
【0096】
反射体位置が一致していないと判定した場合(ステップS204:NO)、モデル判定部222は、不一致を示す判定結果をベクトル推定部210に出力する(ステップS205)。モデル判定部222の判定結果を受けて、アレイ信号処理部211、ベクトル推定部210、または、パラメータ特定部201が、ハイパーパラメータ値を更新する(ステップS205)。
【0097】
ステップS206の後、処理がステップS201へ遷移する。この場合、ベクトル推定部210は、反射体位置が一致しているとモデル判定部222が判定するまで、新たなハイパーパラメータ値を用いてステップS201におけるベクトル推定を繰り返す。
【0098】
一方、反射体位置が一致していると判定した場合(ステップS204:YES)、モデル判定部222は、ベクトル推定部210に判定結果を出力し、SARトモグラフィ処理部900に特定された適切なハイパーパラメータ値を出力する(ステップS207)。
SARトモグラフィ処理部900は、モデル判定部222からの適切なハイパーパラメータ値と干渉処理済みのSAR画像群とを入力として、画素ごとにアレイ信号処理を行い、SARトモグラフィによる立体データを出力する(ステップS208)。
ステップS208の後、信号処理装置102は、
図9の処理を終了する。
【0099】
(効果の説明)
以上のように、最適反射体位置特定部231は、ベクトル推定部210が推定した反射体分布ベクトルに基づいて、評価関数による評価で所定条件以上の高評価の反射体位置である最適反射体位置を特定する。最適反射体数特定部232は、最適反射体位置特定部231が特定した最適反射体位置に基づいて、評価関数による評価で所定条件以上の高評価の反射体数である最適反射体数を特定する。
【0100】
信号処理装置102によれば、評価関数を用いて反射体位置および反射体数を評価し、評価結果に基づいてハイパーパラメータ値を決定することができる。信号処理装置102によれば、この点で、反射体位置および反射体数高精度に評価でき、アレイ信号処理を高精度に行えるハイパーパラメータ値を決定できると期待される。
【0101】
<第3の実施形態>
(構成の説明)
図12は、第3の実施形態に係る信号処理装置の構成例を示すブロック図である。
図12に示す構成で、信号処理装置103は、第3パラメータ特定部203と、SARトモグラフィ処理部900とを備える。第3パラメータ特定部203は、ベクトル推定部210と、第3モデル特定部240とを備える。
【0102】
図12のベクトル推定部210およびSARトモグラフィ処理部900は、
図1のベクトル推定部210およびSARトモグラフィ処理部900と同様であり、同一の符号を付して、ここでは詳細な説明を省略する。信号処理装置103を、
図1に示す信号処理装置101と比較すると、パラメータ特定部201が第3パラメータ特定部203に置き換えられている。第3パラメータ特定部203を、
図1のパラメータ特定部201と比較すると、モデル特定部220が第3モデル特定部240に置き換えられている。
それ以外の点では、信号処理装置103は、信号処理装置101と同様である。
【0103】
第3パラメータ特定部203は、位相参照点データと位相参照点既知情報を入力とし、特定された適切なハイパーパラメータをSARトモグラフィ処理部900に出力する。
第3モデル特定部240は、ベクトル推定結果から反射体分布推定方向の反射体位置モデルを特定し、位相参照点既知情報と比較する。位相参照点既知情報と反射体分布推定方向の反射体位置モデルが一致していると判定した場合、第3モデル特定部240は、ハイパーパラメータ値をSARトモグラフィ処理部900に出力し判定結果をベクトル推定部210に出力する。
【0104】
一方、位相参照点既知情報と反射体分布推定方向の反射体位置モデルとが一致していないと判定した場合、第3モデル特定部240は、判定結果をベクトル推定部210に出力する。この場合、第3モデル特定部240は、ハイパーパラメータ値の出力は行わない。
【0105】
図13は、第3モデル特定部240の構成例を示すブロック図である。
図13に示す構成で、第3モデル特定部240は、第2最適反射体位置特定部241と、最適反射体数特定部232と、モデル判定部222とを備える。
図13の最適反射体数特定部232は、
図8の最適反射体数特定部232と同様であり、同一の符号を付して、ここでは詳細な説明を省略する。
図13のモデル判定部222は、
図4のモデル判定部222と同様であり、同一の符号を付して、ここでは詳細な説明を省略する。
【0106】
第3モデル特定部240を、
図8に示す第2モデル特定部230と比較すると、最適反射体位置特定部231が、第2最適反射体位置特定部241に置き換えられている。
それ以外の点では、第3モデル特定部240は、第2モデル特定部230と同様である。
【0107】
第2最適反射体位置特定部241は、ベクトル推定部210からのベクトル推定結果を入力とし、与えられるモデル関数を用いた関数フィット(曲線あてはめ、Curve Fitting)を行って、最適反射体位置を特定する。具体的には、第2最適反射体位置特定部241は、ベクトル推定結果から推定される反射体の位置を、モデル関数で近似して、近似の度合いによって反射体の位置を評価する。
【0108】
この場合、モデル関数と、近似の度合いを計算する関数との組み合わせが、第2の実施形態における評価関数の例に該当する。したがって、第2最適反射体位置特定部241が特定する、近似の度合いが最も高い反射体位置は、最適反射体位置の例に該当する。
第2最適反射体位置特定部241は、特定結果を最適反射体数特定部232に出力する。
【0109】
第2最適反射体位置特定部が関数フィットに用いるモデル関数として、例えば、ガウス関数またはシンク関数など、すべての実数で連続かつ微分可能な関数が挙げられるが、これらに限定されない。第2最適反射体位置特定部が関数フィットに用いるモデル関数が、実数の定義域の一部で不連続または微分不可能な関数であってもよい。
第2最適反射体位置特定部が、モデル関数によって反射体位置を近似する近似の度合いを算出する方法として、例えば最小二乗法など、線による点群の近似の精度を評価可能ないろいろな方法を用いることができる。
【0110】
(動作の説明)
次に、信号処理装置103の動作について説明する。
図14は、信号処理装置103がSARトモグラフィ3次元イメージング処理を行う手順の例を示すフローチャートである。
【0111】
図14で信号処理装置103が行う処理を、
図9で信号処理装置102が行う処理と比較すると、ステップS302における処理が、
図9のステップS202における処理と異なる。
それ以外の処理は、
図9の場合と同様である。すなわち、
図14のステップS301、303-308における処理は、
図9のステップS201、S203-S208における処理と同様である。
ステップS302で、第2最適反射体位置特定部241は、反射体の個数の仮定ごとの関数フィットによって最適反射体位置を特定する。
【0112】
図15は、第2最適反射体位置特定部241が、反射体の個数の仮定ごとの関数フィットによって最適反射体位置を特定する処理手順の例を示すフローチャートである。第2最適反射体位置特定部241は、
図14のステップS302で
図15の処理を行う。
【0113】
図15で第2最適反射体位置特定部241が行う処理を、
図10で最適反射体位置特定部231が行う処理と比較すると、ステップS312における処理が、
図10のステップS212における処理と異なる。
それ以外の処理は、
図10の場合と同様である。すなわち、
図15のステップS311、S313-S315における処理は、それぞれ、
図10のステップS211、S213-S215における処理と同様である。
ステップS312で、第2最適反射体位置特定部241は、反射体の個数をk個と仮定した場合の最適反射体位置を、関数フィットを用いて特定する。
【0114】
(効果の説明)
以上のように、第2最適反射体位置特定部241は、ベクトル推定部210が推定した反射体分布ベクトルに基づいて反射体の位置を推定し、推定された反射体の位置をモデル関数による近似の度合いにより評価して、所定条件以上の高評価の反射体位置である最適反射体位置を特定する。
【0115】
信号処理装置103によれば、関数フィットによって反射体位置および反射体数を評価し、評価結果に基づいてハイパーパラメータ値を決定することができる。信号処理装置103によれば、この点で、反射体位置および反射体数高精度に評価でき、アレイ信号処理を高精度に行えるハイパーパラメータ値を決定できると期待される。
また、信号処理装置103では、関数フィットを用いることで、信号処理装置102の場合よりも計算負荷が小さくて済むと期待される。
【0116】
<第4の実施形態>
(構成の説明)
図16は、第4の実施形態に係る信号処理装置の構成例を示すブロック図である。
図16に示す構成で、信号処理装置104は、第4パラメータ特定部204と、SARトモグラフィ処理部900とを備える。第4パラメータ特定部204は、第2ベクトル推定部250と、初期値生成部260と、モデル特定部220とを備える。
【0117】
図16のモデル特定部220およびSARトモグラフィ処理部900は、
図1のモデル特定部220およびSARトモグラフィ処理部900と同様であり、同一の符号を付して、ここでは詳細な説明を省略する。信号処理装置104を、
図1に示す信号処理装置101と比較すると、パラメータ特定部201が第4パラメータ特定部204に置き換えられている。第4パラメータ特定部204を、
図1のパラメータ特定部201と比較すると、ベクトル推定部210が第2ベクトル推定部250および初期値生成部260に置き換えられている。
それ以外の点では、信号処理装置104は、信号処理装置101と同様である。
【0118】
第4パラメータ特定部204は、位相参照点データと位相参照点既知情報とを入力とし、特定された適切なハイパーパラメータをSARトモグラフィ処理部900に出力する。
第2ベクトル推定部250は、初期値生成部260が生成する初期値ベクトルを用いて位相参照点におけるアレイ信号処理を行い、位相参照点における反射体分布ベクトルγを算出する。ベクトル推定部210について説明したのと同様、第2ベクトル推定部250は、SARトモグラフィ処理部900の場合と同じ方向の反射体分布ベクトルγを求める。
【0119】
図17は、第2ベクトル推定部250の構成例を示すブロック図である。
図17に示す構成で、第2ベクトル推定部250は、第2アレイ信号処理部251と、収束性判定部212とを備える。
図17の、収束性判定部212は、
図3の、収束性判定部212と同様であり、同一の符号を付して、ここでは詳細な説明を省略する。
【0120】
第2ベクトル推定部250を、
図3に示すベクトル推定部210と比較すると、アレイ信号処理部211が、第2アレイ信号処理部251に置き換えられている。
それ以外の点では、第2ベクトル推定部250は、ベクトル推定部210と同様である。
【0121】
初期値生成部260は、位相参照点データを入力として初期値ベクトルを生成し、第2ベクトル推定部250に出力する。初期値ベクトルの生成手段として、例えば、ビームフォーミングや特異値分解を用いた手法が挙げられる。
初期値生成部260は、位相参照点における反射体分布をある程度反映した初期値ベクトルを生成する。
【0122】
初期値生成部260は、第2ベクトル推定部250の場合と同じ方向の初期値ベクトルを生成する。例えば、第2ベクトル推定部250がエレベーション方向の反射体分布ベクトルγを求める場合、初期値生成部260は、エレベーション方向の反射体分布ベクトルを示す初期値ベクトルを生成する。第2ベクトル推定部250が地表面に垂直な方向の反射体分布ベクトルγを求める場合、初期値生成部260は、地表面に垂直な方向の反射体分布ベクトルを示す初期値ベクトルを生成する。
【0123】
「反射体分布をある程度反映した」との記載によって、反射体分布の情報を完全には得られていなくてもよいことを示している。
例えば、初期値生成部260が初期値ベクトルを生成する方法として、ビームフォーミングまたは特異値分解を用いるようにしてもよい。これらの方法を用いることで、初期値ベクトル生成のための計算コストが小さいという利点がある一方、エレベーション方向の解像度は比較的低い。
【0124】
初期値生成部260が、エレベーション方向の解像度が低い方法を用いて反射体分布ベクトルを推定する場合、エレベーション方向の距離が近い複数の反射体からの信号が混ざり合い、完全には分離できないことが考えられる。
この場合のように、初期値生成部260が生成する初期値ベクトルが、反射体の位置など反射体分布について正しい情報を示す一方、反射体分布の情報を完全には示していないものであってもよい。
【0125】
第2アレイ信号処理部251は、位相参照点データと、初期値生成部260からの初期値ベクトルと、モデル特定部220からの判定結果と、収束性判定部212からの収束性判定結果とを入力として、位相参照点におけるアレイ信号処理による信号推定を行い、信号推定結果を収束性判定部212に出力する。
【0126】
第4の実施形態を、第2の実施形態または第3の実施形態と組み合わせて実施してもよい。したがって、第4パラメータ特定部204におけるモデル特定部220を、第2の実施形態における第2モデル特定部230、または、第3の実施形態における第3モデル特定部240と置き換えてもよい。
【0127】
(動作の説明)
次に、信号処理装置104の動作について説明する。
図18は、信号処理装置104がSARトモグラフィ3次元イメージング処理を行う手順の例を示すフローチャートである。
【0128】
図18で信号処理装置104が行う処理を、
図5で信号処理装置101が行う処理と比較すると、ステップS401における処理が加わっている点で異なる。また、
図18のステップS402における処理が、
図5のステップS101における処理と異なる。
それ以外の処理は、
図5の場合と同様である。すなわち、
図18のステップS403-S408における処理は、
図5のステップS102-S107における処理と同様である。なお、
図18のステップS406の後、処理はステップS402へ遷移する。
【0129】
ステップS401で、初期値生成部260は、位相参照点データを受け取り、例えばビームフォーミングまたは特異値分解を用いて初期値ベクトルを生成する。
ステップS402で、第2ベクトル推定部250は、位相参照点データと初期値生成部260からの初期値ベクトルとを受け取り、初期値ベクトルを用いて反射体分布ベクトルを推定する。
【0130】
図19は、第2ベクトル推定部250が初期値ベクトルを用いて反射体分布ベクトルを推定する処理の手順の例を示すフローチャートである。
【0131】
図19で第2ベクトル推定部250が行う処理を、
図6でベクトル推定部210が行う処理と比較すると、ステップS411における処理が、
図6のステップS111における処理と異なる。
それ以外の処理は、
図6の場合と同様である。すなわち、
図19のステップS412-S415における処理は、
図6のステップS112-S115における処理と同様である。
【0132】
ステップS411で、第2アレイ信号処理部251は、初期値ベクトルを用いて信号推定を行い、信号推定結果としての反射体分布ベクトルγを収束性判定部212に出力する。
具体的には、第2アレイ信号処理部251は、設定されているハイパーパラメータ値と、位相参照点データと、反射体分布ベクトルの初期値とを用いて、位相参照点におけるアレイ信号処理を行う。
【0133】
ステップS411の2回目以降の実行では、第2アレイ信号処理部251は、ステップS414で更新されたハイパーパラメータ値を用いて、位相参照点におけるアレイ信号処理を行う。ステップS411の2回目以降の実行でも、第2アレイ信号処理部251が、一回目の実行の場合と同じ位相参照点データと、反射体分布ベクトルの初期値とを用いる。
何れの場合も、第2アレイ信号処理部251は、信号推定結果としての反射体分布ベクトルγを収束性判定部212に出力する。
【0134】
(効果の説明)
以上のように、初期値生成部260は、位相参照点における受信信号から得られる位相参照点データに基づいて、反射体分布ベクトルの初期値ベクトルを生成する。第2ベクトル推定手段は、位相参照点データおよび初期値ベクトルに基づいて、反射体分布ベクトルを推定する。
【0135】
初期値生成部260が生成する初期値ベクトルは、位相参照点における反射体分布をある程度反映している。これにより、第2アレイ信号処理部251では、第1の実施形態におけるアレイ信号処理部211よりもアレイ信号処理の繰り返し回数が少なくなるなど収束速度が速くなり、計算時間を短縮できると期待される。
【0136】
<第5の実施形態>
図20は、第5の実施形態に係る信号処理装置の構成例を示すブロック図である。
図20に示す構成で、信号処理装置610は、パラメータ特定部611と、SARトモグラフィ処理部612とを備える。
【0137】
かかる構成で、パラメータ特定部611は、反射体の位置に関する情報である位相参照点既知情報が得られている位相参照点におけるSAR画像群を用いて、合成開口レーダトモグラフィにおけるアレイ信号処理のためのハイパーパラメータの値を設定する。SARトモグラフィ処理部612は、パラメータ特定部611が設定したハイパーパラメータの値を用いたアレイ信号処理を用いてSARトモグラフィの画像処理を行う。
【0138】
信号処理装置610によれば、合成開口レーダトモグラフィにおけるアレイ信号処理アルゴリズムがハイパーパラメータを有する場合に、ハイパーパラメータ値を自動的に設定することができる。
特に、信号処理装置610では、パラメータ特定部611により、位相参照点の既知情報を再現することのできるハイパーパラメータ、すなわち適切なハイパーパラメータを推定することができる。位相参照点における適切なハイパーパラメータは、ほかの画素に対しても適切なハイパーパラメータと期待できる。
この点で、信号処理装置610では、SARトモグラフィ処理部612におけるアレイ信号処理の結果を大域的な最適解に収束させることができると期待される。
【0139】
上述したように、ハイパーパラメータの値を人為的に調整する必要がある場合などにおいて、不適切な値を設定してしまうと、反射体分布ベクトル推定の結果が収束せずに本来の反射体分布を全く再現できないことが考えられる。または、不適切なハイパーパラメータ値を設定した場合、大域的な最適解でない局所解に収束してしまい本来の反射分布とは異なる位置に偽信号を検出てしまうことが考えられる。または、不適切なハイパーパラメータ値を設定した場合、適切な解に収束するまでに多くの計算コストが必要になることが考えられる。
【0140】
これに対し、パラメータ特定部611は、位相参照点既知情報を用いてメタパラメータ値の妥当性を評価し、妥当と評価されるメタパラメータ値を設定する。この点で、信号処理装置610では、上記のように、SARトモグラフィ処理部612におけるアレイ信号処理の結果を大域的な最適解に収束させることができると期待される。
【0141】
<第6の実施形態>
図21は、第6の実施形態に係る信号処理方法における処理の手順の例を示す図である。
図21に示す信号処理方法は、パラメータを特定する工程(ステップS611)と、SARトモグラフィ処理を行う工程(ステップS612)とを含む。
【0142】
パラメータを特定する工程(ステップS611)では、反射体の位置に関する情報である位相参照点既知情報が得られている位相参照点におけるSAR画像群を用いて、合成開口レーダトモグラフィにおけるアレイ信号処理のためのハイパーパラメータの値を設定する。
SARトモグラフィ処理を行う工程(ステップS612)では、設定されたハイパーパラメータの値を用いたアレイ信号処理を用いてSARトモグラフィの画像処理を行う。
【0143】
図21に示される信号処理方法によれば、合成開口レーダトモグラフィにおけるアレイ信号処理アルゴリズムがハイパーパラメータを有する場合に、ハイパーパラメータ値を自動的に設定することができる。
特に、
図21に示される信号処理方法では、パラメータを特定する工程(ステップS611)により、位相参照点の既知情報を再現することのできるハイパーパラメータ、すなわち適切なハイパーパラメータを推定することができる。位相参照点における適切なハイパーパラメータは、ほかの画素に対しても適切なハイパーパラメータと期待できる。
この点で、
図21に示される信号処理方法では、SARトモグラフィ処理を行う工程(ステップS612)におけるアレイ信号処理の結果を大域的な最適解に収束させることができると期待される。
【0144】
上述したように、ハイパーパラメータの値を人為的に調整する必要がある場合などにおいて、不適切な値を設定してしまうと、反射体分布ベクトル推定の結果が収束せずに本来の反射体分布を全く再現できないことが考えられる。または、不適切なハイパーパラメータ値を設定した場合、大域的な最適解でない局所解に収束してしまい本来の反射分布とは異なる位置に偽信号を検出てしまうことが考えられる。または、不適切なハイパーパラメータ値を設定した場合、適切な解に収束するまでに多くの計算コストが必要になることが考えられる。
【0145】
これに対し、
図21に示される信号処理方法では、位相参照点既知情報を用いてメタパラメータ値の妥当性を評価し、妥当と評価されるメタパラメータ値を設定する。この点で、
図21に示される信号処理方法では、上記のように、SARトモグラフィ処理を行う工程(ステップS612)におけるアレイ信号処理の結果を大域的な最適解に収束させることができると期待される。
【0146】
なお、上記の各実施形態における各構成要素は、1つのハードウェア、または1つのソフトウェアで構成可能である。また、各構成要素は、複数のハードウェア、または複数のソフトウェアで構成可能である。また、各構成要素は、複数のハードウェア、または複数のソフトウェアでも構成可能である。また、各構成要素の一部がハードウェアで構成され、他部がソフトウェアで構成されてもよい。
【0147】
上記の各実施形態における各機能(各処理)は、CPU(Central Processing Unit)等のプロセッサやメモリ等を有するコンピュータで実現可能である。例えば、記憶装置(記憶媒体)に各実施形態における各方法(各処理)を実行するためのプログラムが格納される場合、各機能は、記憶装置に格納されたプログラムをCPUが実行することによって実現される。また、干渉処理済みのSAR画像群が記憶装置に格納されていてもよい。
【0148】
何れかの実施形態が、人工衛星または航空機等のプラットホームが用いられた合成開口レーダによるSARトモグラフィによる、地上構造物等の立体データの取得等の用途に適用されてもよい。
【0149】
図22は、少なくとも1つの実施形態に係るコンピュータの構成を示す概略ブロック図である。
図22に示す構成で、コンピュータ700は、CPU710と、主記憶装置720と、補助記憶装置730と、インタフェース740とを備える。
上記の信号処理装置101-104、および、610のうち何れか1つ以上が、コンピュータ700に実装されてもよい。その場合、上述した各処理部の動作は、プログラムの形式で補助記憶装置730に記憶されている。CPU710は、プログラムを補助記憶装置730から読み出して主記憶装置720に展開し、当該プログラムに従って上記処理を実行する。また、CPU710は、プログラムに従って、処理に用いられる記憶領域を主記憶装置720に確保する。各装置と他の装置との通信は、インタフェース740が通信機能を有し、CPU710の制御に従って通信を行うことで実行される。
【0150】
信号処理装置101がコンピュータ700に実装される場合、パラメータ特定部201、SARトモグラフィ処理部900、およびこれらの各部の動作は、プログラムの形式で補助記憶装置730に記憶されている。CPU710は、プログラムを補助記憶装置730から読み出して主記憶装置720に展開し、当該プログラムに従って上記処理を実行する。
また、CPU710は、プログラムに従って、信号処理装置101が用いる記憶領域を主記憶装置720に確保する。
【0151】
信号処理装置102がコンピュータ700に実装される場合、第2パラメータ特定部202、SARトモグラフィ処理部900、およびこれらの各部の動作は、プログラムの形式で補助記憶装置730に記憶されている。CPU710は、プログラムを補助記憶装置730から読み出して主記憶装置720に展開し、当該プログラムに従って上記処理を実行する。
また、CPU710は、プログラムに従って、信号処理装置102が用いる記憶領域を主記憶装置720に確保する。
【0152】
信号処理装置103がコンピュータ700に実装される場合、第3パラメータ特定部203、SARトモグラフィ処理部900、およびこれらの各部の動作は、プログラムの形式で補助記憶装置730に記憶されている。CPU710は、プログラムを補助記憶装置730から読み出して主記憶装置720に展開し、当該プログラムに従って上記処理を実行する。
また、CPU710は、プログラムに従って、信号処理装置103が用いる記憶領域を主記憶装置720に確保する。
【0153】
信号処理装置104がコンピュータ700に実装される場合、第4パラメータ特定部204、SARトモグラフィ処理部900、およびこれらの各部の動作は、プログラムの形式で補助記憶装置730に記憶されている。CPU710は、プログラムを補助記憶装置730から読み出して主記憶装置720に展開し、当該プログラムに従って上記処理を実行する。
また、CPU710は、プログラムに従って、信号処理装置104が用いる記憶領域を主記憶装置720に確保する。
【0154】
信号処理装置610がコンピュータ700に実装される場合、パラメータ特定部611およびSARトモグラフィ処理部612の動作は、プログラムの形式で補助記憶装置730に記憶されている。CPU710は、プログラムを補助記憶装置730から読み出して主記憶装置720に展開し、当該プログラムに従って上記処理を実行する。
また、CPU710は、プログラムに従って、信号処理装置610が用いる記憶領域を主記憶装置720に確保する。
【0155】
なお、信号処理装置101-104、および、610が行う処理の全部または一部を実行するためのプログラムをコンピュータ読み取り可能な記録媒体に記録して、この記録媒体に記録されたプログラムをコンピュータシステムに読み込ませ、実行することにより各部の処理を行ってもよい。なお、ここでいう「コンピュータシステム」とは、OSや周辺機器等のハードウェアを含むものとする。
また、「コンピュータ読み取り可能な記録媒体」とは、フレキシブルディスク、光磁気ディスク、ROM(Read Only Memory)、CD-ROM(Compact Disc Read Only Memory)等の可搬媒体、コンピュータシステムに内蔵されるハードディスク等の記憶装置のことをいう。また上記プログラムは、前述した機能の一部を実現するためのものであっても良く、さらに前述した機能をコンピュータシステムにすでに記録されているプログラムとの組み合わせで実現できるものであってもよい。
【0156】
なお、各合成開口レーダ解析手段は、ハードウェアにより実現されてもよい。例えば、信号処理装置101は、内部に
図1に示すような機能を実現するプログラムが組み込まれたLSI(Large Scale Integration)等のハードウェア部品が含まれる回路が実装されて構成されてもよい。
【0157】
また、各構成要素の一部または全部は、汎用の回路(circuitry)または専用の回路、プロセッサ等やこれらの組み合わせによって実現されてもよい。これらは、単一のチップによって構成されてもよいし、パスを介して接続される複数チップによって構成されてもよい。各構成要素の一部または全部は、上記した回路等とプログラムとの組み合わせによって実現されてもよい。
【0158】
各構成要素の一部または全部が、複数の情処理装置や回路などにより実現される場合には、複数の情報処理装置や回路などは集中配置されてもよいし、分散配置されてもよい。例えば、情報処理装置や回路等は、クライアントアンドサーバシステム、クラウドコンピューティングシステム等、各々が通信ネットワークを介して接続される形態として実現されてもよい。
【0159】
以上、この発明の実施形態について図面を参照して詳述してきたが、具体的な構成はこの実施形態に限られるものではなく、この発明の要旨を逸脱しない範囲の設計等も含まれる。
【産業上の利用可能性】
【0160】
本発明の実施形態は、信号処理装置、信号処理方法および記録媒体に適用してもよい。
【符号の説明】
【0161】
101、102、103、104、610 信号処理装置
201 611パラメータ特定部
202 第2パラメータ特定部
203 第3パラメータ特定部
204 第4パラメータ特定部
210 ベクトル推定部
211 アレイ信号処理部
212 収束性判定部
220 モデル特定部
221 反射体位置指定部
222 モデル判定部
230 第2モデル特定部
231 最適反射体位置特定部
232 最適反射体数特定部
240 第3モデル特定部
241 第2最適反射体位置特定部
250 第2ベクトル推定部
251 第2アレイ信号処理部
260 初期値生成部
612、900 SARトモグラフィ処理部