(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2023-11-01
(45)【発行日】2023-11-10
(54)【発明の名称】バッテリ管理装置
(51)【国際特許分類】
H01M 10/48 20060101AFI20231102BHJP
H02J 7/00 20060101ALI20231102BHJP
H02J 7/04 20060101ALI20231102BHJP
G01R 31/367 20190101ALI20231102BHJP
G01R 31/389 20190101ALI20231102BHJP
【FI】
H01M10/48 P
H01M10/48 301
H02J7/00 B
H02J7/00 P
H02J7/04 L
G01R31/367
G01R31/389
(21)【出願番号】P 2020034366
(22)【出願日】2020-02-28
【審査請求日】2022-07-12
(73)【特許権者】
【識別番号】000005108
【氏名又は名称】株式会社日立製作所
(74)【代理人】
【識別番号】110002365
【氏名又は名称】弁理士法人サンネクスト国際特許事務所
(72)【発明者】
【氏名】ミンツス フィリップ
(72)【発明者】
【氏名】井上 健士
(72)【発明者】
【氏名】マテ ファニー
(72)【発明者】
【氏名】中尾 亮平
【審査官】田中 慎太郎
(56)【参考文献】
【文献】国際公開第2019/230033(WO,A1)
【文献】特開2018-096953(JP,A)
【文献】特開2015-184217(JP,A)
【文献】特開2017-138128(JP,A)
【文献】米国特許出願公開第2019/0064276(US,A1)
【文献】特表2020-508442(JP,A)
【文献】国際公開第2019/050330(WO,A1)
(58)【調査した分野】(Int.Cl.,DB名)
H01M 10/48
H02J 7/00
H02J 7/04
G01R 31/367
G01R 31/389
(57)【特許請求の範囲】
【請求項1】
バッテリの電気回路モデルに基づき、前記バッテリに関する指標を算出するコントローラと、
前記バッテリに流れる電流であるバッテリ電流の時間変化量および前記バッテリの温度に基づき、可変ゲインを有するフィルタを用いて、前記電気回路モデルのパラメータを推定する演算部と
、
バッテリ電流に基づく入力と、バッテリ電圧に基づく出力と、前記コントローラによる前記指標の算出に使用される前記バッテリの状態指標と、を備える拡張カルマンフィルタと、を
備えるバッテリ管理装置。
【請求項2】
請求項1に記載のバッテリ管理装置において、
前記拡張カルマンフィルタは、少なくとも1つの内部抵抗、少なくとも1つの分極抵抗、および少なくとも1つのバッテリ分極時定数を有するバッテリ管理装置。
【請求項3】
請求項1に記載のバッテリ管理装置において、
前記拡張カルマンフィルタは、
プロセスノイズ共分散を前記バッテリ電流の時間変化量および前記バッテリの温度に基づき算出する共分散算出部をさらに備えるバッテリ管理装置。
【請求項4】
請求項3に記載のバッテリ管理装置において、
前記共分散算出部は、実験により得られたバトラーボルマー現象を反映する電流と温度のデータベースを反映するバッテリ管理装置。
【請求項5】
請求項3に記載のバッテリ管理装置において、
前記共分散算出部は、電流の変化が大きい場合には前記プロセスノイズ共分散を増加させるバッテリ管理装置。
【請求項6】
請求項3に記載のバッテリ管理装置において、
前記共分散算出部は、電流の変化が小さい場合には前記プロセスノイズ共分散を減少させるバッテリ管理装置。
【請求項7】
請求項3に記載のバッテリ管理装置において、
前記共分散算出部は、温度が高い場合には前記プロセスノイズ共分散を低い値とするバッテリ管理装置。
【請求項8】
請求項3に記載のバッテリ管理装置において、
前記共分散算出部は、温度が低い場合には前記プロセスノイズ共分散を高い値とするバッテリ管理装置。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、バッテリ管理装置に関する。
【背景技術】
【0002】
ハイブリッド電気自動車(HEV)、プラグインハイブリッド電気自動車(PHEV)、バッテリ電気自動車(BEV)などの電気自動車は、セルを複数束ねたバッテリパックをパワートレインシステムに組み込んでいる。バッテリパックの効率を最大化するためにバッテリ管理システムがセルの管理および制御を行う。バッテリ管理システムは、セルに残っている電力を示す指標であるSOC(State of Charge)、セルの劣化具合を示す指標であるSOH(State of Health)、セルに入力された電力量、およびセルから出力された電力量を監視する。これらの監視はセルを表す電気回路モデルに基づき算出される。
【0003】
電気回路モデルのパラメータは複雑である。1つの分極電圧分岐を備えるランドルの一次回路は、Ro、Rp、C、およびVpの4つのパラメータにより定義される。これらのパラメータは直接測定できないので、それらを算出する様々な手法が提案されている。これまでに知られているオンライン算出手法では、測定した電圧と電流を用いてリアルタイムにECMパラメータを推定する反復計算アルゴリズムとしてカルマンフィルタを利用していた。この手法の難しさは、SOCと温度だけでなく、セルの劣化やセルに流れる電流も含めたパラメータ間の複雑な依存関係にある。その一方で、温度変化がSOCや劣化に与える影響は軽微だが、高精度な算出のためには電流を考慮する必要がある。特許文献1には、バッテリ管理システムにおいてバッテリを流れる電流や電圧に基づき、カルマンフィルタのオンとオフとを切り替える構成が開示されている。
【先行技術文献】
【特許文献】
【0004】
【文献】米国公開公報US2014/0266059号
【発明の概要】
【発明が解決しようとする課題】
【0005】
本発明の第1の態様によるバッテリ管理装置は、バッテリの電気回路モデルに基づき、前記バッテリに関する指標を算出するコントローラと、前記バッテリに流れる電流であるバッテリ電流の時間変化量および前記バッテリの温度に基づき、可変ゲインを有するフィルタを用いて、前記電気回路モデルのパラメータを推定する演算部と、バッテリ電流に基づく入力と、バッテリ電圧に基づく出力と、前記コントローラによる前記指標の算出に使用される前記バッテリの状態指標と、を備える拡張カルマンフィルタと、を備える。
【課題を解決するための手段】
【0006】
本発明の第1の態様によるバッテリ管理装置は、バッテリの電気回路モデルに基づき、前記バッテリに関する指標を算出するコントローラと、前記バッテリに流れる電流であるバッテリ電流の時間変化量および前記バッテリの温度に基づき、可変ゲインを有するフィルタを用いて、前記電気回路モデルのパラメータを推定する演算部とを備える。
【発明の効果】
【0007】
本発明によれば、バッテリのパラメータを精度よく算出できる。
【図面の簡単な説明】
【0008】
【
図2】一次のランドル電気回路モデル200の一例を示す図
【発明を実施するための形態】
【0009】
―第1の実施の形態―
以下、
図1~
図7を参照して、バッテリシステムの第1の実施の形態を説明する。
【0010】
図1は、バッテリシステム100の構成図である。バッテリシステム100は、バッテリパック101と、上位コントローラ110と、バッテリ管理装置300と、インバータ120と、負荷107とを含む。バッテリシステム100はバッテリパック101に蓄えられた化学エネルギーを電気的エネルギーに変換して負荷107に入力する。バッテリシステム100はハイブリッド車の一部であってもよく、その場合には負荷107は車両の駆動軸に相当する。
【0011】
バッテリ管理装置300の目的は、バッテリパック101の状態を監視すること、および上位コントローラ110と通信することである。バッテリ管理装置300が監視するバッテリパック101の状態とは、SOCやSOHである。バッテリ管理装置300は、あらかじめ定められた時間ステップΔtごとにSOCやSOHを算出する。上位コントローラ110はバッテリパック101の出力を制御し、安全性を確保しながらインバータ120の効率を最大化するように制御する。バッテリ管理装置300は、電流計102、複数の小電圧計103、温度計104、および電圧計105がセンシングして得られた情報を取得する。なお小電圧計103の名称は、電圧計105と比較すれば測定する電圧が小さいことを示しているにすぎず、小電圧計103と電圧計105に機能的な相違はない。
【0012】
バッテリ管理装置300は、コントローラ391および拡張カルマンフィルタ392を含んで構成される。拡張カルマンフィルタ392は後述するパラメータを算出し、コントローラ391はそのパラメータを用いてSOCやSOHなどを算出する。コントローラ391によるSOCなどの算出には既知の手法が用いられるので、本実施の形態では特に説明しない。
【0013】
電流計102は、バッテリパック101に流れる電流を計測する。複数の小電圧計103のそれぞれは、バッテリパック101を構成する各セルの電圧を測定する。電圧計105は、バッテリパック101の両端の電圧を測定する。温度計104は、バッテリパック101の温度を測定する。
【0014】
図2は、一次のランドル電気回路モデル200の一例を示す図である。ランドル電気回路モデル200の閉回路電圧(CCV;closed-circuit voltage)206は、小電圧計103により測定される。閉回路電圧206は、それぞれのランドル電気回路モデル200における正極と負極との間の電気的なポテンシャルと定義される。閉回路電圧206は次の数式1により算出される。
【0015】
CCV=OCV(SOC)+I×RO+Vp(I,Rp,τ)・・・(数式1)
【0016】
ここで、数式1におけるOCVは開放電圧(OCV:Open Circuit Voltage)201である。開放電圧201は、電流が流れておらず、かつRC回路に分極電圧Vp202が残っていない場合における2つの端子間の電気的なポテンシャルである。数式1におけるR
Oは、
図2に符号203で示す直流内部抵抗である。数式1におけるR
pは、
図2に符号205で示す分極抵抗である。数式1におけるτはRC回路における時定数であり、R
pとC
pの積として算出される。ただしC
pは
図2に符号204で示す分極キャパシタである。なお時定数τは、バッテリパック101の分極抵抗Rpおよび分極キャパシタCpの積として算出されるので、「バッテリ分極時定数」τとも呼べる。
【0017】
なお以下では、符号を有する変数は、名称と符号の組合せ、変数と符号の組合せ、名称と変数と符号との組合せのいずれかで記載するが、いずれも同じ意味である。たとえば、分極抵抗205、Rp205、分極抵抗Rp205はいずれも同じ意味である。
【0018】
開放電圧207と電流Iは、前述の時間ステップΔtごとに小電圧計103と電流計102により測定される。開放電圧201はSOCを入力とするルックアップテーブルを用いて推定される。SOCは、イグニッションスイッチがオンにされた瞬間に小電圧計103が測定したセルの電圧を使うことで、同じルックアップテーブルから逆の順番により初期値として得られる。
【0019】
SOCは、クーロンカウント法を用いて所定の電流が流れるごとに更新される。さらに、OCV(SOC)=CCV-I
RO-Vp(I,Rp,τ)という等式が成り立つという仮定のもとでSOCはOCVを用いたルックアップテーブルにより得られてもよい。さらに、電流積分法と電圧推定法の重みづけ平均を用いることもできる。ただしECMのいくつかの変数、たとえばVp202やOCVは算出や測定が可能であるが、パラメータRo203、Rp205、およびCp204は測定できないので他の手法により推定する必要がある。
【0020】
バッテリ管理装置300が算出するSOCやSOHの精度はランドル電気回路モデル200に強く依存している。ランドル電気回路モデル200はこれらのパラメータに強い影響を与える。そのためRo203、Rp205、およびCp204の推定精度はバッテリ管理装置300全体に強い影響を与える。Ro203、Rp205、およびCp204のパラメータは全て、セルの温度およびSOCに非線形な関数である。さらに、これらのパラメータはバッテリパック101の劣化の影響も受ける。さらに、Ro203とRp205は電流Iの影響も受ける。これらが組み合わさってパラメータの推定は複雑になっている。
【0021】
図3は、拡張カルマンフィルタ392の構成図である。なお
図3では相関を示すためにコントローラ391も記載しているが、コントローラ391は拡張カルマンフィルタ392に含まれないので破線で記載している。拡張カルマンフィルタ392は、Ro203、Rp205、および時定数τの推定に用いられる。拡張カルマンフィルタ392は反復アルゴリズムであり、ノイズが含まれる傾向にあるシステムの動的モデル330およびセンサの測定結果301を利用して測定量のよりよい推定を得る。拡張カルマンフィルタは、時間幅ごとのシステムを線形化することにより、リチウムイオン電池セルのような非線形システムに適用できる。動的モデル330は、数式2に示す状態式および数式3に示す観測式により定義される。
【0022】
X-
k=f(Xk-1、uk)・・・(数式2)
【0023】
yke=H(Xk)・・・(数式3)
【0024】
数式2において、ukはk番目の時間ステップにおけるセンサ102が出力する電流値に基づくシステムへの入力302、X-
kはk番目の時間ステップにおける事前推定306である。数式3において、ykeはk番目の時間ステップにおけるバッテリ電圧を示すシステムの出力303である。数式3において、Xkは事後推定308である。状態式はたとえば次のように表される。
【0025】
【0026】
分極化を推定するための状態式の一部は電気回路モデル200を示す物理式から導かれる。
【0027】
【0028】
数式5において、I1は抵抗205に流れている電流を示す。ラプラス変換を施した後でs領域のVpが次のように表される。
【0029】
【0030】
数式6は、時間領域ではおおよそ次のように表される。
【0031】
Vpはランドル電気回路モデル200から抽出されるが、Ro203、Rp205、および時定数τが時間の経過とともにどのように変化するかを示す数式は存在しない。そのため、システムの動的モデル330の状態式である数式4は、3つのパラメータを特定する機能を含む。
図3に示す拡張カルマンフィルタ392を参照すると、事前推定306は直前の時間ステップにおける事後推定308に等しい。Ro203、Rp205、および時定数τは、カルマンゲイン算出部350において算出されるカルマンゲインに基づき更新部340により算出される。小電圧計103による測定に基づくy
km301と、推定したy
ke303の差は次のように表される。
【0032】
【0033】
数式8におけるカルマンゲインKkは次のように算出される。
【0034】
【0035】
【0036】
【0037】
ここで、Rkはk番目の時間ステップにおける観測ノイズ共分散309である。Ckはk番目の時間ステップにおける測定関数のヤコビアン、すなわち∂H(X)/∂Xである。P-
kは、事前に推定したk番目の時間ステップにおける共分散である。Pk-1は、事後推定によるk-1番目の時間ステップにおける共分散である。Qkは、共分散算出部304により算出された、k番目の時間ステップにおけるプロセスノイズ共分散305である。
【0038】
プロセスノイズ共分散Qk305および観測ノイズ共分散Rk309は、推定の不確かさを示す指標である。プロセスノイズ共分散Qk305および観測ノイズ共分散Rk309のそれぞれは、数式12および数式13のように算出される。
【0039】
【0040】
【0041】
ここで、w
kおよびv
kのそれぞれは、k番目の時間ステップにおけるプロセスおよび測定のノイズベクトルである。数式8~10によれば、プロセスノイズ共分散Qk305の値が小さければカルマンゲインが小さくなり、更新部340における更新が小さくなる。これとは反対に、プロセスノイズ共分散Qk305の値が大きければ
図3に示す拡張カルマンフィルタアルゴリズムが更新部340において推定する値が大きく変化する。なお特許文献1ではプロセスノイズ共分散は固定値であった。本実施の形態では、プロセスノイズ共分散305は温度と電流の両方により変化する。
【0042】
バッテリ管理装置300の構成は、分極抵抗205に影響を与える電流を説明するバトラーボルマー(Butler-Volmer)現象に着想を得ている。この相関は
図4に示されている。
図4は、通常相関410と正規化相関420とを示す図である。なお正規化相関420は、ルックアップテーブル420とも呼ばれる。正規化相関420は通常相関410に基づいて作成される。ルックアップテーブル420は、所定の電流値の場合に同一の値となるように、通常相関410を正規化したグラフである。
【0043】
本実施の形態では、この現象は電流と温度にのみ依存する。ただしこの現象がさらにSOCにも依存してもよい。符号411と符号422は低温状態に対応し、符号412および符号421は高温状態に対応する。これらすべてにおいて電流の影響は小さい。バトラーボルマー現象は次の式により表される。
【0044】
【0045】
ここで、I
0は交換電流を表し、R
SEIは固体電解質界面抵抗を表し、V
0は定数である。これらは全て温度とSOCに依存する。数式14に示したバトラーボルマー現象は、分極抵抗205にだけ適用されるわけではない。なぜならば、内部抵抗203は素材のパラメータであり電流値には影響されないからである。しかし、仮に測定の離散的な時間間隔が十分に長い場合は、測定したRoはRpの要素を含む。これは、
図5に示すナイキスト線図に示されているインピーダンス分光特性により説明できる。
【0046】
符号601の各点は、セルのインピーダンスを入力電流の異なる周波数ごとに複素数で示したものである。内部抵抗602は、高い周波数で測定され、
図2における符号203に相当する。符号603および604の実部は、Δt1およびΔt2における直流抵抗に相当する。ただしΔt1はΔt2よりも小さい。そのため、Ro
Δt1およびRO
Δt2には分極成分が含まれる。
【0047】
前述の時間ステップΔtは、100ms、すなわち10Hzのサンプリングレートでもよい。この場合は測定された内部抵抗203は分極要素RoΔ100msを含むので、バトラーボルマー現象をRo203およびRp205の推定に適用できる。また、時定数τに電流への依存性があるとしてもよい。
【0048】
本実施の形態では、プロセスノイズ共分散Qk305は抵抗による電流および温度を考慮して算出される。これらの説明に基づけば、拡張カルマンフィルタ392のプロセスノイズ共分散305は共分散算出部304において次のように算出される。まず、k番目の時間ステップにおいて、ルックアップテーブル420におけるあらかじめ定められたデータを用いて、k番目の時間ステップにおける電流測定値Ik423、k-1番目の時間ステップにおける電流測定値Ik-1425、k番目の時間ステップにおける温度測定値、正規化されたk番目の時間ステップにおける抵抗値Bk424、および正規化されたk-1番目の時間ステップにおける抵抗値Bk-1426が算出される。抵抗値Bkは、数式14に示した式を用いてk番目の時間ステップにおける電流および温度にしたがって算出される。
【0049】
抵抗値Bkの算出に用いられるVo,IoおよびR
SEIというパラメータの最適な値を見つけるために、
図4のルックアップテーブル420に示す異なる温度および電流の状態におけるパルス実験が使用される。各実験のためにRoを抽出すると、各温度におけるVo,IoおよびR
SEIというパラメータの組合せが数式14に対応するRoの値を突き合わせることで特定される。そして、抵抗値Bkの算出に用いられるVo,IoおよびR
SEIはフィッティングプロセスにより得られた値を用いて推定される。ルックアップテーブル420の作成にはRoがあればよいので、従来のマップを作成する方式に比べてバッテリ管理装置300の開発に要する時間を短縮することができる。
【0050】
Vo,IoおよびRSEIのパラメータを算出するためのルックアップテーブル400を作成するために、本実施の形態ではRp205および時定数τを必要としない。Roだけが必要なのであれば、非常に短いパルステストで十分である。そのため本実施の形態では、従来手法に比べて生産に必要な時間を短縮できる。
【0051】
なお、プロセスノイズ共分散Qk305における対角以外の成分は結果に大きな影響を与えず演算負荷を増やすだけなので、無視するためにゼロに設定されてもよい。本実施の形態では、対角成分のみが考慮される。この対角成分はノイズ共分散を表すベクトルパラメータであるVp,Ro,Rp,τを示す。プロセスノイズ共分散Qk305の算出は、共分散算出部304に次のように実装される。
【0052】
【0053】
すなわちプロセスノイズ共分散Qk305は、(2,2)成分、(3,3)成分、および(4,4)成分のみがゼロではなく、他はゼロである。ここで、RoaveおよびRpaveは拡張カルマンフィルタ392により出力された推定値307の移動平均値である。またαは、非常に小さい値を有する固定値である。
【0054】
まず、(2,2)成分、(3,3)成分の値について説明する。
図4(b)に示されているように、正規化されたRoはフィッティングに使用され、プロセスノイズ共分散は推定値の誤差の絶対値に相当する。Ro
aveと(B
k-B
k-1)との積、およびRp
aveと(B
k-B
k-1)のそれぞれは、実際の値とk-1番目の時間ステップにおける推定値との差におおよそ相当し、これは本実施の形態ではプロセスノイズと考えられている。数式12および数式13によればプロセスノイズ共分散Qkはプロセスノイズの二乗により構成されるので、これらの数式は二乗される。
【0055】
(1,1)成分および(4,4)成分の値を説明する。本実施の形態において注目している事項はRo203、Rp205、および時定数τの推定なので、Vpノイズはゼロに設定される。これは更新部340がVpの値を変更することなく拡張カルマンフィルタが数式7に従わせる。時定数τの推定が早期に変化してしまうことを防止するために、共分散は非常に小さい固定値である「α」に設定される。
【0056】
本実施の形態の原理は次のとおりである。電流の変化が少ない場合にはRo203およびRp205の更新を制限するために、換言すると値が大きく変化しないようにプロセスノイズ共分散を小さな値に設定する。これと同様に、電流が大きく変化する場合にはRo203およびRp205が真の値に早期に収束するようにプロセスノイズ共分散の値が高く設定される。電流の変化量に応じてプロセスノイズ共分散の値を変化させるのは、バトラーボルマー現象が理由である。本実施の形態の効果は、電気化学の視点から推定のふるまいを正すことができる点である。
【0057】
(動作例)
図6および
図7を参照して、プロセスノイズ共分散を適宜変更する本実施の形態のバッテリシステム100と、プロセスノイズ共分散を固定値とする比較例のシステムを比較する。なお比較例は、プロセスノイズ共分散を比較的小さな値とする比較例1と、比較的大きな値とする比較例2の2つとする。すなわちこの動作例では、合計3つのシステムの動作を説明する。いずれのシステムも正しくないRo203およびRp205の値により初期化され、ふるまいと推定の収束が有効に機能することを示す。
【0058】
図6は、動作例においてそれぞれのシステムに入力するパルス波の概要図である。
図7は、動作例におけるプロセスノイズ共分散Qk、Ro、およびRpの時系列変化を示す図である。
図7では、1段目にプロセスノイズ共分散Qk、2段目にRo、3段目にRpを示す。
図7に示す9つのグラフのうち、左の3つが比較例1、中央の3つが比較例2、右の3つが実施例を示す。なお
図7では作図の都合により縦軸を左端にのみ記載している。
【0059】
本実施の形態では、数式15に記載されているように、Ro203およびRp205に相当するプロセスノイズ共分散の値は一定値ではなく、
図7の1段目右に示すように時系列で変化している。その一方で、比較例1ではプロセスノイズ共分散は低い値に固定され、比較例2ではプロセスノイズ共分散は高い値に固定される。
【0060】
図7の2段目に示す符号521および
図7の3段目に示す符号531はパラメータの真の値を示している。
図7の2段目及び3段目では、プロセスノイズ共分散を適宜変更する本実施の形態では、収束の速さ及び安定性の両面で従来技術よりも優れていることが示されている。
図6に符号501に示すように電流が0Aから急激に増加すると、本実施の形態では数式15により算出されるプロセスノイズ共分散は符号513に示すように増加し、拡張カルマンフィルタ392が
図7の右側の2段目および3段目に示す推定値を大きく変化させることを可能とする。
【0061】
数式8により、更新部340において符号511に示すようにプロセスノイズ共分散305が小さい固定値に設定されていると、符号522および符号532に示すようにRo203およびRp205の推定値の収束は非常に遅くなる。高い電流が適用されると、符号502に示すようにそれは一定値になる。温度変化およびSOCの変化がないという仮定のもとでは、電流が一定なのでRo203およびRp205は一定値となる。
【0062】
比較例1では、プロセスノイズ共分散305が小さい固定値に設定されているので、符号522および符号532に示すように変化が非常に緩やかで真の値にまで到達しない。比較例2では、Roの推定値は符号523に示すように早期に収束するがオーバーシュートの傾向を有する。比較例2では、Rpの推定値は符号533に示すようにアンダーシュートの傾向がある。すなわち比較例2では両方の抵抗の推定が不正確になる。
【0063】
プロセスノイズ共分散305を可変とする本実施の形態では、電流の変化が小さい場合には数式15によりRo203およびRp205の変化を妨げるようにプロセスノイズ共分散305が小さい値に設定される。これにより電流値が一定の場合には推定が安定する。この動作例の結果を比較することで、従来の拡張カルマンフィルタに比べて本実施の形態による手法は効果が高いことを確認できた。
【0064】
上述した第1の実施の形態によれば、次の作用効果が得られる。
(1)バッテリ管理装置300は、
図2に示したバッテリの電気回路モデルに基づき、バッテリに関する指標、たとえばSOCやSOHなどを出力するコントローラ391と、電気回路モデルのパラメータを、可変ゲインを有するフィルタを用いてバッテリに流れる電流であるバッテリ電流の時間変化量およびセルの温度に基づき推定する更新部340とを備える。なお、更新部340がバッテリ電流の時間変化量を利用することは、数式15においてBkの階差を評価する点、および
図4においてBkが電流に対応する点に具体的に示されている。また更新部340がセルの温度を利用することは、
図4においてどの曲線を利用するかが温度によって決定される点に示されている。そのため
図7の動作例に示したように、バッテリ管理装置300はバッテリのパラメータを精度よく算出できる。
【0065】
(2)バッテリ管理装置300は、
図3に示すようにバッテリ電流に基づく入力u
k302と、バッテリ電圧に基づく出力y
ke303と、バッテリ管理システムの機能の計算に使用されるバッテリ管理システムの状態指標X
-
kと、を備える拡張カルマンフィルタ392を備える。
【0066】
(3)拡張カルマンフィルタ392は、
図2に示すように、少なくとも1つの内部抵抗Ro、少なくとも1つの分極抵抗Rp、および少なくとも1つのバッテリ分極時定数τを有する。
【0067】
(4)拡張カルマンフィルタ392は、プロセスノイズ共分散Qkをセルの電流の時間変化量およびセルの温度に基づき算出する共分散算出部304を備える。
【0068】
(5)共分散算出部304は、実験により得られたButler-Volmer現象を反映する電流と温度のデータベースであるルックアップテーブル420を反映する。ルックアップテーブル420は作成が容易なので、既知の手法であるたとえば温度ごとのOCVとSOCとの対応マップを作成する手法などに比べて、バッテリ管理装置300を作成するリードタイムが少なくてすむ。さらに既知の手法であるたとえば温度ごとのOCVとSOCとの対応マップを利用する方法に比べて、実行に必要とするメモリの容量が少なくて済む。
【0069】
(6)共分散算出部304は、電流の変化が大きい場合にはプロセスノイズ共分散Qkを増加させる。そのため、推定値が大きく変化することを許容し、真の値に収束する時間を短くすることができる。
【0070】
(7)共分散算出部304は、電流の変化が小さい場合にはプロセスノイズ共分散Qkを減少させる。そのため、推定値を安定させることができる。
【0071】
(8)共分散算出部304は、温度が高い場合にはプロセスノイズ共分散Qkを低い値とする。そのため、推定値を安定させることができる。
(9)共分散算出部304は、温度が低い場合にはプロセスノイズ共分散Qkを高い値とする。そのため、推定値が大きく変化することを許容し、真の値に収束する時間を短くすることができる。
【0072】
(変形例1)
プロセスノイズ共分散Qkを変化させるのは、SOCを変化させる他の入力手法でもよいし時間当たりの温度でもよい。
【0073】
(変形例2)
拡張カルマンフィルタ392の異なるパラメータ、たとえば観測ノイズ共分散309またはカルマンゲイン算出部350において算出されるカルマンゲインなどが、電流や温度の影響を受けて変更されてもよい。
【0074】
(変形例3)
運転パターンによる確認では、真の値が不明なので推定結果を新の値と直接比較することができない。推定したパラメータは、電圧値に基づくSOCの算出に用いられてもよい。拡張カルマンフィルタを用いずにルックアップテーブルを用いる従来手法と比較すれば、推定したパラメータを用いてSOCを算出することで精度が向上する。
【0075】
上述した各実施の形態および変形例において、機能ブロックの構成は一例に過ぎない。別々の機能ブロックとして示したいくつかの機能構成を一体に構成してもよいし、1つの機能ブロック図で表した構成を2以上の機能に分割してもよい。また各機能ブロックが有する機能の一部を他の機能ブロックが備える構成としてもよい。
【0076】
上述した各実施の形態および変形例は、それぞれ組み合わせてもよい。上記では、種々の実施の形態および変形例を説明したが、本発明はこれらの内容に限定されるものではない。本発明の技術的思想の範囲内で考えられるその他の態様も本発明の範囲内に含まれる。
【符号の説明】
【0077】
100…バッテリシステム
101…バッテリパック
102…電流計
103…小電圧計
104…温度計
105…電圧計
200…ランドル電気回路モデル
201…開放電圧
202、Vp…分極電圧
203、Ro…内部抵抗
204…分極キャパシタ
205、Rp…分極抵抗
206…閉回路電圧
207…開放電圧
300…バッテリ管理装置
304…共分散算出部
302、uk…入力
305、Qk…プロセスノイズ共分散
306…事前推定
307…推定値
308…事後推定
309…観測ノイズ共分散
330…動的モデル
340…更新部
350…カルマンゲイン算出部
391…コントローラ
392…拡張カルマンフィルタ
420…ルックアップテーブル
Kk…カルマンゲイン
τ…時定数