IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ 独立行政法人海上技術安全研究所の特許一覧

特許7378151船舶の実海域推進性能評価方法、実海域推進性能評価プログラム、及び実海域推進性能評価システム
<>
  • 特許-船舶の実海域推進性能評価方法、実海域推進性能評価プログラム、及び実海域推進性能評価システム 図1
  • 特許-船舶の実海域推進性能評価方法、実海域推進性能評価プログラム、及び実海域推進性能評価システム 図2
  • 特許-船舶の実海域推進性能評価方法、実海域推進性能評価プログラム、及び実海域推進性能評価システム 図3
  • 特許-船舶の実海域推進性能評価方法、実海域推進性能評価プログラム、及び実海域推進性能評価システム 図4
  • 特許-船舶の実海域推進性能評価方法、実海域推進性能評価プログラム、及び実海域推進性能評価システム 図5
  • 特許-船舶の実海域推進性能評価方法、実海域推進性能評価プログラム、及び実海域推進性能評価システム 図6
  • 特許-船舶の実海域推進性能評価方法、実海域推進性能評価プログラム、及び実海域推進性能評価システム 図7
  • 特許-船舶の実海域推進性能評価方法、実海域推進性能評価プログラム、及び実海域推進性能評価システム 図8
  • 特許-船舶の実海域推進性能評価方法、実海域推進性能評価プログラム、及び実海域推進性能評価システム 図9
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2023-11-02
(45)【発行日】2023-11-13
(54)【発明の名称】船舶の実海域推進性能評価方法、実海域推進性能評価プログラム、及び実海域推進性能評価システム
(51)【国際特許分類】
   B63B 49/00 20060101AFI20231106BHJP
   B63B 79/40 20200101ALI20231106BHJP
【FI】
B63B49/00 Z
B63B79/40
【請求項の数】 15
(21)【出願番号】P 2020519859
(86)(22)【出願日】2019-05-14
(86)【国際出願番号】 JP2019019144
(87)【国際公開番号】W WO2019221125
(87)【国際公開日】2019-11-21
【審査請求日】2022-04-20
(31)【優先権主張番号】P 2018093146
(32)【優先日】2018-05-14
(33)【優先権主張国・地域又は機関】JP
(31)【優先権主張番号】P 2018227939
(32)【優先日】2018-12-05
(33)【優先権主張国・地域又は機関】JP
(73)【特許権者】
【識別番号】501204525
【氏名又は名称】国立研究開発法人 海上・港湾・航空技術研究所
(74)【代理人】
【識別番号】100098545
【弁理士】
【氏名又は名称】阿部 伸一
(74)【代理人】
【識別番号】100189717
【弁理士】
【氏名又は名称】太田 貴章
(72)【発明者】
【氏名】辻本 勝
【審査官】福田 信成
(56)【参考文献】
【文献】特開2014-119356(JP,A)
【文献】特開2018-034585(JP,A)
【文献】特開2015-190970(JP,A)
【文献】特開2016-078685(JP,A)
【文献】特許第4934756(JP,B1)
(58)【調査した分野】(Int.Cl.,DB名)
B63B 49/00
B63B 79/40
(57)【特許請求の範囲】
【請求項1】
実海域における船舶の標準運航モデルを設定し、前記標準運航モデルに前記船舶の運航条件として航路及び載貨状態前記船舶の船体条件として船体に関する要目とを入力し、前記運航条件及び前記船体条件が入力された前記標準運航モデルと前記船体条件を予め検証された前記船舶の実海域性能計算方法に適用し、さらに前記航路により異なる気象海象条件を考慮して前記実海域性能計算方法で船体応答を計算し、前記船舶の前記実海域における推進性能を評価することを特徴とする船舶の実海域推進性能評価方法。
【請求項2】
前記標準運航モデルに前記運航条件として気象海象条件を入力し、前記気象海象条件が入力された前記標準運航モデルを用いて前記船舶の前記実海域における推進性能を評価することを特徴とする請求項1に記載の船舶の実海域推進性能評価方法。
【請求項3】
前記標準運航モデルを設定する標準運航モデル設定ステップと、前記運航条件としてさらに評価期間の設定を行うとともに、前記船体条件を入力する条件入力ステップと、前記航路により異なる気象海象による前記船体に働く外力条件、前記載貨状態により異なる前記船体の前記外力条件又は前記船体の駆動条件と、前記評価期間による前記外力条件の変化又は前記駆動条件の変化を前記実海域性能計算方法に適用して前記船体応答を計算する船体応答計算ステップと、前記船体応答の計算結果と主機関の運転状態に基づいて前記船舶の燃料消費に関する指標を導出する燃料消費指標導出ステップとを備え、前記船舶の前記実海域における推進性能を評価することを特徴とする請求項1又は請求項2に記載の船舶の実海域推進性能評価方法。
【請求項4】
前記航路により異なる前記気象海象は、選択した前記航路に対応した気象海象に対して発現確率を設定して用いることを特徴とする請求項3に記載の船舶の実海域推進性能評価方法。
【請求項5】
前記評価期間による前記外力条件又は前記駆動条件の変化として、前記評価期間により異なる前記船体又はプロペラの生物汚損を含む経年劣化率を用いることを特徴とする請求項3又は請求項4に記載の船舶の実海域推進性能評価方法。
【請求項6】
前記評価期間による前記駆動条件の変化として、前記評価期間により異なる前記船体を駆動する駆動系の劣化率を用いることを特徴とする請求項3から請求項5のいずれか1項に記載の船舶の実海域推進性能評価方法。
【請求項7】
前記主機関の運転状態は、前記載貨状態ごとに設定された前記駆動条件に基づくことを特徴とする請求項3から請求項6のいずれか1項に記載の船舶の実海域推進性能評価方法。
【請求項8】
前記条件入力ステップにおいて、前記主機関の運転状態に関連した前記主機関と調速手段の作動状態を設定することを特徴とする請求項から請求項のいずれか1項に記載の船舶の実海域推進性能評価方法。
【請求項9】
前記船舶の前記燃料消費に関する指標を導出するに当り、標準燃料消費率、又は前記条件入力ステップにおいて入力した燃料消費率を用いることを特徴とする請求項3から請求項8のいずれか1項に記載の船舶の実海域推進性能評価方法。
【請求項10】
前記燃料消費に関する指標として、前記船舶の長期間に亘る主機関総燃料消費量に基づくライフサイクル主機関燃費を導出することを特徴とする請求項3から請求項9のいずれか1項に記載の船舶の実海域推進性能評価方法。
【請求項11】
コンピュータに、請求項3から請求項10のうちの1項に記載の船舶の実海域推進性能評価方法における、前記条件入力ステップの前記入力を読み込ませ、前記船体応答計算ステップと前記燃料消費指標導出ステップを実行させ、さらに前記燃料消費に関する指標を出力する指標出力ステップを実行させることを特徴とする船舶の実海域推進性能評価プログラム。
【請求項12】
前記指標出力ステップにおいて、前記燃料消費に関する指標として、前記船舶の長期間に亘る主機関総燃料消費量に基づくライフサイクル主機関燃費を出力することを特徴とする請求項11に記載の船舶の実海域推進性能評価プログラム。
【請求項13】
前記指標出力ステップにおいて、前記燃料消費に関する指標とともに、少なくとも前記条件入力ステップにおいて入力した条件を併せて出力することを特徴とする請求項11又は請求項12に記載の船舶の実海域推進性能評価プログラム。
【請求項14】
実海域における船舶の標準運航モデルを設定する標準運航モデル設定手段と、運航条件として航路の選択、載貨状態の設定、及び評価期間の設定を行うとともに、船体に関する要目を含む船体条件を入力する条件入力手段と、前記航路により異なる気象海象による船体に働く外力条件、前記載貨状態により異なる前記船体の前記外力条件又は前記船体の駆動条件と、前記評価期間による前記外力条件の変化又は前記駆動条件の変化を実海域性能計算方法に適用して船体応答を計算する船体応答計算手段と、前記船体応答の計算結果と主機関の運転状態に基づいて前記船舶の燃料消費に関する指標を導出する燃料消費指標導出手段と、前記燃料消費に関する指標を出力する燃料消費指標出力手段とを備えたことを特徴とする船舶の実海域推進性能評価システム。
【請求項15】
前記燃料消費指標出力手段が、前記燃料消費に関する指標と、前記条件入力手段で入力された条件を併せて出力することを特徴とする請求項14に記載の船舶の実海域推進性能評価システム。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、実海域における船舶の推進性能を評価する船舶の実海域推進性能評価方法、実海域推進性能評価プログラム、及び実海域推進性能評価システムに関する。
【背景技術】
【0002】
船舶の推進性能評価は、模型船による平水中の水槽試験での推定や、比較的平穏な気象海象における海上試運転での確認により行われてきた。
しかし船舶は、波、風、海流、潮流等のある実海域を航行する。船舶の推進性能は、波や風によって低下し、また、時間(評価期間)によって変化する。そのため、推進性能評価と実運航における性能とに乖離が生じていた。
推進性能評価と実運航における性能との乖離を小さくするためには、実海域における推進性能を評価することが望ましい。しかし、実運航においては、波や風などの気象海象状態が常に変化する、航路ごとに気象海象条件が異なる、排水量・トリム・主機関回転数などが航海ごとに異なる、船舶で主に使用されるC重油は給油した燃料の性状にばらつきが大きい(密度で20%程度)、主機関の駆動条件や船体条件が時間とともに変化するなどといった問題があり、実海域における推進性能を評価する手段がなかった。
【0003】
ここで、特許文献1には、運航モニタリングシステムのデータに基づき、実海域での船体性能を推定して、実運航にフィードバックする船舶の運航支援システムが開示されている。
また、特許文献2には、航海情報ファイルの運行データ及び船舶固有の基本情報を用いて、各航海における船舶の性能評価を行う船舶の性能評価システムが開示されている。
また、特許文献3には、船舶が実海域において運航されている際に記録されたデータ群に基づいて、船舶の推進性能を解析する計算機システムが開示されている。
また、特許文献4には、燃料消費を最小限にするために、シップの性能を予測するシミュレーションモデル自体を作成させて、作成されたモデルを使用してシップの性能改善を図る方法が開示されている。
【先行技術文献】
【特許文献】
【0004】
【文献】特開2009-286230号公報
【文献】特開2007-296929号公報
【文献】特開2018-34585号公報
【文献】特表2015-526778号公報
【発明の概要】
【発明が解決しようとする課題】
【0005】
特許文献1は、実海域での船体性能を推定するために、個々の対象船舶に対して、運航モニタリングシステムで運航状態をリアルタイムにモニタリングするものであるから、対象船舶が運航する前に実海域における推進性能を評価することはできない。
また、特許文献2は、船舶の運航データを蓄積し、蓄積された運航データに基づいて船舶の推進性能を評価するものであるから、船舶が運航する前に実海域における推進性能を評価することはできない。
また、特許文献3は、船舶が実海域において運航されている際に記録されたデータ群に基づいて、船舶の推進性能を解析するものであるから、船舶が運航する前に実海域における推進性能を評価することはできない。
また、特許文献4は、シップの操作の間に船上のセンサを用いて収集した測定結果を用いて、モデル中で使用されることになる新たな動的入力データのセットを生成するものであるから、船舶が運航する前に実海域における推進性能を精度よく評価することはできない。
【0006】
そこで本発明は、実海域における船舶の推進性能を例えば運航前においても、同じ尺度で精度よく評価することができる船舶の実海域推進性能評価方法、実海域推進性能評価プログラム、及び実海域推進性能評価システムを提供することを目的とする。
【課題を解決するための手段】
【0007】
請求項1記載に対応した船舶の実海域推進性能評価方法においては、実海域における船舶の標準運航モデルを設定し、標準運航モデルに船舶の運航条件として航路及び載貨状態船舶の船体条件として船体に関する要目とを入力し、運航条件及び船体条件が入力された標準運航モデルと船体条件を予め検証された船舶の実海域性能計算方法に適用し、さらに航路により異なる気象海象条件を考慮して実海域性能計算方法で船体応答を計算し、船舶の実海域における推進性能を評価することを特徴とする。
請求項1に記載の本発明によれば、実海域における船舶の推進性能を例えば運航前においても評価することができる。また、予め検証された実海域性能計算方法を用いることで、船舶の実海域における推進性能を精度よく評価することができ、例えば複数の船舶を同じ条件下で同じ精度で評価し客観的に比較ができる。
【0008】
請求項2記載の本発明は、標準運航モデルに運航条件として気象海象条件を入力し、気象海象条件が入力された標準運航モデルを用いて船舶の実海域における推進性能を評価することを特徴とする。
請求項2に記載の本発明によれば、例えば運航条件としての航路に従った気象海象が組み込まれていない場合や、悪化が予想される気象海象を避けて航行するなどの運航ポリシーを持つ船舶が対象の場合には、任意の気象海象条件を入力することで、より実態に即した評価を行うことができる。
【0009】
請求項3記載の本発明は、標準運航モデルを設定する標準運航モデル設定ステップと、運航条件としてさらに評価期間の設定を行うとともに、船体条件を入力する条件入力ステップと、航路により異なる気象海象による船体に働く外力条件、載貨状態により異なる船体の外力条件又は船体の駆動条件と、評価期間による外力条件の変化又は駆動条件の変化を実海域性能計算方法に適用して船体応答を計算する船体応答計算ステップと、船体応答の計算結果と主機関の運転状態に基づいて船舶の燃料消費に関する指標を導出する燃料消費指標導出ステップとを備え、船舶の実海域における推進性能を評価することを特徴とする。
請求項3に記載の本発明によれば、実海域において船舶が遭遇する気象海象や、船舶の載貨状態により異なる船体の外力条件や駆動条件、またこれら船体の外力条件や駆動条件の経年変化が考慮された推進性能評価を行うことができるため、実海域における船舶の推進性能を例えば運航前においても精度よく評価することができる。また、船舶の実海域における推進性能を燃料消費に関する指標として精度よく評価することができ、例えば複数の船舶の燃費を同じ条件下で同じ精度で評価し客観的に比較ができる。
【0010】
請求項4記載の本発明は、航路により異なる気象海象は、選択した航路に対応した気象海象に対して発現確率を設定して用いることを特徴とする。
請求項4に記載の本発明によれば、気象海象の発現確率を設定することで、より実運航に近い条件下で推進性能を評価することができる。
【0011】
請求項5記載の本発明は、評価期間による外力条件又は駆動条件の変化として、評価期間により異なる船体又はプロペラの生物汚損を含む経年劣化率を用いることを特徴とする。
請求項5に記載の本発明によれば、生物汚損を含む経年劣化率を用いることで、生物汚損による船体やプロペラ等の経年劣化が条件に組み込まれ、より実運航に近い条件下で推進性能を評価することができる。
なお、生物汚損を含む経年劣化率には、船体やプロペラ等への生物付着の他、錆や瘤の発生、塗膜の劣化等による船体の摩擦抵抗増加係数やプロペラの推進力低下量等、生物汚損を含む経年劣化に関連したあらゆる経年劣化のパラメーター値を含むものとする。
【0012】
請求項6記載の本発明は、評価期間による駆動条件の変化として、評価期間により異なる船体を駆動する駆動系の劣化率を用いることを特徴とする。
請求項6に記載の本発明によれば、駆動系の劣化率を用いることで、駆動系の経年劣化が条件に組み込まれ、より実運航に近い条件下で推進性能を評価することができる。
なお、駆動系の劣化率には、主機関や給排気系、燃料供給系、動力伝達系、またプロペラ等の摩耗や損傷等、評価期間により異なる劣化率に関連したあらゆるパラメーター値を含むものとする。
【0013】
請求項7記載の本発明は、主機関の運転状態は、載貨状態ごとに設定された駆動条件に基づくことを特徴とする。
請求項7に記載の本発明によれば、載貨状態により異なる喫水の大小やトリムに等に起因する主機関の運転状態が駆動条件として設定できるため、主機関の運転状態をより実運航に近い条件とすることができる。
【0014】
請求項8記載の本発明は、条件入力ステップにおいて、主機関の運転状態に関連した主機関と調速手段の作動状態を設定することを特徴とする。
請求項8に記載の本発明によれば、実海域における主機関の運転状態に関連した主機関作動点等の主機関及び調速手段の作動状態を設定することで、より実運航に近い条件下で推進性能を評価することができる。
なお、調速手段としては、燃料を燃焼させる主機関にあっては、機械式ガバナーや電子ガバナー等が、また電力を使用する主機関にあってはインバータや電圧調整手段等が相当する。
【0015】
請求項9記載の本発明は、船舶の燃料消費に関する指標を導出するに当り、標準燃料消費率、又は条件入力ステップにおいて入力した燃料消費率を用いることを特徴とする。
請求項9に記載の本発明によれば、同じ条件での評価が可能であるため燃料性状による違いが評価に影響せず、船体性能のみによる評価ができる。また、標準燃料消費率とは異なる入力した燃料消費率でも評価をすることができる。
【0016】
請求項10記載の本発明は、燃料消費に関する指標として、船舶の長期間に亘る主機関総燃料消費量に基づくライフサイクル主機関燃費を導出することを特徴とする。
請求項10に記載の本発明によれば、船舶を数年から数十年単位という長期間に亘って運用した場合の推進性能を例えば運用開始前に適切に評価することができる。なお、ライフサイクルとしては、例えば就航から入渠までの期間でも、入渠から次の入渠までの期間でも、また複数回の入渠を想定した期間であってもよい。
【0017】
請求項11記載に対応した船舶の実海域推進性能評価プログラムにおいては、コンピュータに、船舶の実海域推進性能評価方法における、条件入力ステップの入力を読み込ませ、船体応答計算ステップと燃料消費指標導出ステップを実行させ、さらに燃料消費に関する指標を出力する指標出力ステップを実行させることを特徴とする。
請求項11に記載の本発明によれば、実海域において船舶が遭遇する気象海象や、船舶の載貨状態により異なる船体の外力条件や駆動条件、またこれら船体の外力条件や駆動条件の経年変化が考慮された推進性能評価を行うことができるため、実海域における船舶の推進性能を例えば運航前においても精度よく評価し、燃料消費に関する指標を出力するプログラムを提供することができる。また、船舶の実海域における推進性能を燃料消費に関する指標として精度よく評価することができ、例えば複数の船舶の燃費を同じ条件下で同じ精度で評価し客観的に比較ができる。
【0018】
請求書12記載の本発明は、指標出力ステップにおいて、燃料消費に関する指標として、船舶の長期間に亘る主機関総燃料消費量に基づくライフサイクル主機関燃費を出力することを特徴とする。
請求項12に記載の本発明によれば、船舶を数年から数十年単位という長期間に亘って運用した場合の推進性能を例えば運航前においても適切に評価することができる。
【0019】
請求書13記載の本発明は、指標出力ステップにおいて、燃料消費に関する指標とともに、少なくとも条件入力ステップにおいて入力した条件を併せて出力することを特徴とする。
請求項13に記載の本発明によれば、どのような条件を基に燃料消費に関する指標が導出されたのかを把握しやすくすることができる。
【0020】
請求項14記載に対応した船舶の実海域推進性能評価システムにおいては、実海域における船舶の標準運航モデルを設定する標準運航モデル設定手段と、運航条件として航路の選択、載貨状態の設定、及び評価期間の設定を行うとともに、船体に関する要目を含む船体条件を入力する条件入力手段と、航路により異なる気象海象による船体に働く外力条件、載貨状態により異なる船体の外力条件又は船体の駆動条件と、評価期間による外力条件の変化又は駆動条件の変化を実海域性能計算方法に適用して船体応答を計算する船体応答計算手段と、船体応答の計算結果と主機関の運転状態に基づいて船舶の燃料消費に関する指標を導出する燃料消費指標導出手段と、燃料消費に関する指標を出力する燃料消費指標出力手段とを備えたことを特徴とする。
請求項14に記載の本発明によれば、実海域において船舶が遭遇する気象海象や、船舶の載貨状態により異なる船体の外力条件や駆動条件、またこれら船体の外力条件や駆動条件の経年変化が考慮された推進性能評価を行うシステムを提供することができるため、実海域における船舶の推進性能を例えば運航前においても精度よく評価することができる。また、船舶の実海域における推進性能を燃料消費に関する指標として精度よく評価することができ、例えば複数の船舶の燃費を同じ条件下で同じ精度で評価し客観的に比較ができる。
【0021】
請求項15記載の本発明は、燃料消費指標出力手段が、燃料消費に関する指標と、条件入力手段で入力された条件を併せて出力することを特徴とする。
請求項15に記載の本発明によれば、どのような条件を基に燃料消費に関する指標が導出されたのかを把握しやすくすることができる。
【発明の効果】
【0022】
本発明の船舶の実海域推進性能評価方法によれば、実海域における船舶の推進性能を例えば運航前においても評価することができる。また、予め検証された実海域性能計算方法を用いることで、船舶の実海域における推進性能を精度よく評価することができ、例えば複数の船舶を同じ条件下で同じ精度で評価し客観的に比較ができる。
【0023】
また、標準運航モデルに運航条件として気象海象条件を入力し、気象海象条件が入力された標準運航モデルを用いて船舶の実海域における推進性能を評価する場合には、例えば運航条件としての航路に従った気象海象が組み込まれていない場合や、悪化が予想される気象海象を避けて航行するなどの運航ポリシーを持つ船舶が対象の場合には、任意の気象海象条件を入力することで、より実態に即した評価を行うことができる。
【0024】
また、標準運航モデルを設定する標準運航モデル設定ステップと、運航条件としてさらに評価期間の設定を行うとともに、船体条件を入力する条件入力ステップと、航路により異なる気象海象による船体に働く外力条件、載貨状態により異なる船体の外力条件又は船体の駆動条件と、評価期間による外力条件の変化又は駆動条件の変化を実海域性能計算方法に適用して船体応答を計算する船体応答計算ステップと、船体応答の計算結果と主機関の運転状態に基づいて船舶の燃料消費に関する指標を導出する燃料消費指標導出ステップとを備え、船舶の実海域における推進性能を評価する場合には、実海域において船舶が遭遇する気象海象や、船舶の載貨状態により異なる船体の外力条件や駆動条件、またこれら船体の外力条件や駆動条件の経年変化が考慮された推進性能評価を行うことができるため、実海域における船舶の推進性能を例えば運航前においても精度よく評価することができる。また、船舶の実海域における推進性能を燃料消費に関する指標として精度よく評価することができ、例えば複数の船舶の燃費を同じ条件下で同じ精度で評価し客観的に比較ができる。
【0025】
また、航路により異なる気象海象は、選択した航路に対応した気象海象に対して発現確率を設定して用いる場合には、気象海象の発現確率を設定することで、より実運航に近い条件下で推進性能を評価することができる。
【0026】
また、評価期間による外力条件又は駆動条件の変化として、評価期間により異なる船体又はプロペラの生物汚損を含む経年劣化率を用いる場合には、生物汚損を含む経年劣化率を用いることで、生物汚損による船体やプロペラ等の経年劣化が条件に組み込まれ、より実運航に近い条件下で推進性能を評価することができる。
【0027】
また、評価期間による駆動条件の変化として、評価期間により異なる船体を駆動する駆動系の劣化率を用いる場合には、駆動系の劣化率を用いることで、駆動系の経年劣化が条件に組み込まれ、より実運航に近い条件下で推進性能を評価することができる。
【0028】
また、主機関の運転状態は、載貨状態ごとに設定された駆動条件に基づく場合には、載貨状態により異なる喫水の大小やトリムに等に起因する主機関の運転状態が駆動条件として設定できるため、主機関の運転状態をより実運航に近い条件とすることができる。
【0029】
また、条件入力ステップにおいて、主機関の運転状態に関連した主機関と調速手段の作動状態を設定する場合には、実海域における主機関の運転状態に関連した主機関作動点等の主機関及び調速手段の作動状態を設定することで、より実運航に近い条件下で推進性能を評価することができる。
【0030】
また、船舶の燃料消費に関する指標を導出するに当り、標準燃料消費率、又は条件入力ステップにおいて入力した燃料消費率を用いる場合には、同じ条件での評価が可能であるため燃料性状による違いが評価に影響せず、船体性能のみによる評価ができる。また、標準燃料消費率とは異なる入力とした燃料消費率でも評価をすることができる。
【0031】
また、燃料消費に関する指標として、船舶の長期間に亘る主機関総燃料消費量に基づくライフサイクル主機関燃費を導出する場合には、船舶を数年から数十年単位という長期間に亘って運用した場合の推進性能を例えば運用開始前に適切に評価することができる。
【0032】
また、本発明の船舶の実海域推進性能評価プログラムによれば、実海域において船舶が遭遇する気象海象や、船舶の載貨状態により異なる船体の外力条件や駆動条件、またこれら船体の外力条件や駆動条件の経年変化が考慮された推進性能評価を行うことができるため、実海域における船舶の推進性能を例えば運航前においても精度よく評価し、燃料消費に関する指標を出力するプログラムを提供することができる。また、船舶の実海域における推進性能を燃料消費に関する指標として精度よく評価することができ、例えば複数の船舶の燃費を同じ条件下で同じ精度で評価し客観的に比較ができる。
【0033】
また、指標出力ステップにおいて、燃料消費に関する指標として、船舶の長期間に亘る主機関総燃料消費量に基づくライフサイクル主機関燃費を出力する場合には、船舶を数年から数十年単位という長期間に亘って運用した場合の推進性能を例えば運航前においても適切に評価することができる。
【0034】
また、指標出力ステップにおいて、燃料消費に関する指標とともに、少なくとも条件入力ステップにおいて入力した条件を併せて出力する場合には、どのような条件を基に燃料消費に関する指標が導出されたのかを把握しやすくすることができる。
【0035】
また、本発明の船舶の実海域推進性能評価システムによれば、実海域において船舶が遭遇する気象海象や、船舶の載貨状態により異なる船体の外力条件や駆動条件、またこれら船体の外力条件や駆動条件の経年変化が考慮された推進性能評価を行うシステムを提供することができるため、実海域における船舶の推進性能を例えば運航前においても精度よく評価することができる。また、船舶の実海域における推進性能を燃料消費に関する指標として精度よく評価することができ、例えば複数の船舶の燃費を同じ条件下で同じ精度で評価し客観的に比較ができる。
【0036】
また、燃料消費指標出力手段が、燃料消費に関する指標と、条件入力手段で入力された条件を併せて出力する場合には、どのような条件を基に燃料消費に関する指標が導出されたのかを把握しやすくすることができる。
【図面の簡単な説明】
【0037】
図1】本発明の一実施形態による実海域推進性能評価の概念図
図2】同フューエルインデックス制限における主機関回転数に対する主機関出力の特性の例を示す図
図3】同実海域推進性能評価システムのブロック図
図4】同実海域推進性能評価方法の簡易フロー図
図5】同実海域推進性能評価方法の詳細フロー図
図6】本発明の他の実施形態として、船舶の実海域性能提供システムの一例を示すブロック図
図7】同実海域性能提供システムの他の例を示すブロック図
図8】同実海域性能提供システムの更に他の例を示すブロック図
図9図8に示す実海域性能提供システムの利用フロー図
【発明を実施するための形態】
【0038】
以下に、本発明の実施形態による船舶の実海域推進性能評価方法、実海域推進性能評価プログラム、及び実海域推進性能評価システムについて説明する。
図1は、本実施形態による実海域推進性能評価方法の概念を示す実海域推進性能評価の概念図である。図1は、予め検証された船舶の実海域性能計算方法1を準備し、標準運航モデル2を用いて、船舶の実海域における推進性能を評価する実海域性能指標3を得るフローを示している。
なお、予め検証された船舶の実海域性能計算方法1とは、基本となる船舶の実海域性能計算方法の全体又は部分を、実海域で得られたデータ、実海域に即したシミュレーション手法、又は実海域における実船の推進性能等に基づいて、船舶の実海域における推進性能を評価する実海域性能指標3を導出するに相応しいレベルにまで予め計算方法として高度化し検証されたものを指す。
実海域性能指標3としては、燃料消費率4を適用することによりライフサイクル主機関燃費5を得ることができる。また、燃料消費率4を適用せずに、標準運航モデル2の標準燃料消費率としての設定条件に従って実海域性能計算方法1を用いて行った計算結果を実海域性能指標3として得ることもできる。
【0039】
実海域性能計算方法1は、例えば船体に働く外力としての平水中抵抗に、実海域で遭遇する気象海象により変化する外力要因としての波、風、海流、潮流等、また、気象海象に対応した船体の斜航、当舵等により変化する外力を加え、全抵抗を算出し、さらに自航要素にプロペラ特性を考慮して得たパワーカーブを用いることができる。実海域性能計算方法1の精度向上に当たっては、実運航している各種船舶から得られる実船モニタリング等を通じて取得した大小様々なデータや、実海域を模擬した実海域水槽での標準的な試験を通じて取得したデータ等を用いることができる。また、波浪中抵抗増加、波浪中自航要素、及び上部構造物の抵抗等の実海域での運航に影響を及ぼす要素の水槽試験技術や計算技術を通じた精度向上を反映することもできる。
このように、予め検証された実海域性能計算方法1は、実海域で得られた各種データから最適化された計算方法、実海域に適用して検証、評価したシミュレーション手法に基づいた計算方法、実海域での実際の推進性能と比較、評価して高度化した計算方法等を用いることができる。
また、実海域における実海域推進性能計算方法1の精度向上を図ることにより、客観的指標(ものさし)として、船舶の実海域における実力を評価できる。
【0040】
標準運航モデル2においては、船舶の運航する航路の設定、それに伴う気象海象の違いによる船体に働く外力条件、また、載貨状態の設定により異なる喫水の大小やトリムに起因する外力条件や駆動条件、往路、復路での船速等の設定により異なる駆動条件、これに連係した主機関作動モードの設定、また、評価期間の設定による就航期間の長短により異なってくる経年劣化に伴う外力条件や駆動条件の変化、また就航期間や入渠間隔により異なってくる海洋生物の付着による生物汚損に起因する外力条件や駆動条件の変化等を考慮して、実海域推進性能計算方法1に適用し、実海域性能指標3を得ることができる。
このことにより、個別の船舶、また複数の船舶について、実海域で運航した場合の実海域性能を客観的指標(ものさし)として、船舶の実海域における真の実力を評価でき、実海域での運航や、船舶の実海域での実力比較に利用することができる。
【0041】
図2は、フューエルインデックス制限における主機関回転数に対する主機関出力の特性の例を示す図である。
通常、船舶では、正味平均有効圧力、過負荷保護装置による主機関作動制限ラインを主機関作動の上限とした運転を行っているが、これに加え、フューエルインデックス(燃料指針、以下「FI」という)により、燃料投入量の上限を指定し、これを超えた場合は回転数を低下させる運転を実施している船舶もある。
FIは燃料投入量であり、主機関の連続最大出力(MCR)での値を100%としている。FIの上限を主機関回転数に対して指定することで、FIによる主機関作動制限ラインに従った主機関作動点を求めることができる。この例として主機関回転数(N)に対する主機関出力(BHP)の特性を図2に示す。図2において、横軸が主機関回転数(N)[rpm]、縦軸が主機関出力(BHP)[kW]である。この特性図は、実海域での特定の船舶を想定した実海域性能計算方法1に基づいて、その船舶のパワーカーブとして得ることができる。
なお、BFは実海域での風の強さを分類するための風速の尺度であるビューフォート風力階級であり、calmは海象平穏時で、風力階級上がるに従い相当風速は大きくなる。
【0042】
図3は、本実施形態による実海域推進性能評価システムのブロック図である。
実海域推進性能評価システムは、標準運航モデル設定手段10と、条件入力手段20と、船体応答計算手段30と、燃料消費指標導出手段40と、燃料消費指標出力手段50と、記憶手段60と、条件計算手段70を備える。
【0043】
標準運航モデル設定手段10を用いて標準運航モデル2を設定し、条件入力手段20を用いて運航条件として航路の選択、載貨状態の設定、及び評価期間の設定を行うとともに、船体条件を入力し、船体応答計算手段30を用いて航路により異なる気象海象による船体に働く外力条件、載貨状態により異なる船体の外力条件と船体の駆動条件の少なくとも1つ、及び評価期間による外力条件の変化と駆動条件の変化の少なくとも1つを実海域性能計算方法1に適用して船体応答を計算し、燃料消費指標導出手段40を用いて船体応答の計算結果と主機関の運転状態に基づいて実海域性能指標3として船舶の燃料消費に関する指標を導出することで、実海域において船舶が遭遇する気象海象や、船舶の載貨状態により異なる船体の外力条件や駆動条件、またこれら船体の外力条件や駆動条件の経年変化が考慮された推進性能評価を行うことができるため、実海域における船舶の推進性能を例えば運航前においても精度よく評価することができる。また、船舶の実海域における推進性能を燃料消費に関する指標として精度よく評価することができ、例えば複数の船舶の燃費を同じ条件下で同じ精度で評価し客観的に比較ができる。
なお、実海域における推進性能の評価は、運航前以外にも、運航中に次の航路を選択したり燃料を変更したりする判断や、運航後に導出した燃料消費に関する指標と、実際に消費した燃料量から計算した指標を比較して、航海を評価することや実海域性能計算方法1を評価すること等にも利用できる。また、実海域性能計算方法1を用いて船体応答を計算し、船舶の実海域の推進性能の評価だけに留めることもできる。
また、条件入力手段20は、後述のように利用者による任意の気象海象情報や、生物汚損率等の入力に共用することができる。
なお、航路の選択、載貨状態の設定、評価期間の設定、船体条件の入力は、選択と設定と入力を適宜、変更し得るものである。
【0044】
図4は、本実施形態による実海域推進性能評価方法の簡易フロー図である。
図5は、本実施形態による実海域推進性能評価方法の詳細フロー図である。
実海域推進性能評価システムは、実海域推進性能評価プログラムが組み込まれたコンピュータを備え、以下の手順で処理を実行する。
まず、標準運航モデル設定手段10により、コンピュータに実海域における船舶の標準運航モデル2を読み込ませモデルを設定する(標準運航モデル設定ステップS1)。標準運航モデル2は、実海域における船舶の推進性能を評価する際に用いる標準的な運航モデルである。
【0045】
標準運航モデル設定ステップS1の後、運航条件として航路の選択、載貨状態の設定、及び評価期間の設定と、船舶の船体条件の入力を利用者から受け付ける。
利用者は、条件入力手段20を用いて、条件入力ステップS2として、船体条件の入力(船体条件入力ステップS2-1)と、運航条件として航路の選択、載貨状態の設定、及び評価期間の設定(運航条件入力ステップS2-2)を行う。
運航条件入力ステップS2-2においては、航路を選択する航路選択ステップS2-2-1と、載貨状態を設定する載貨状態設定ステップS2-2-2と、評価期間を設定する評価期間設定ステップS2-2-3が行われる。これにより、標準運航モデル2に航路、載貨状態、及び評価期間が設定される。
なお、航路、載貨状態、及び評価期間の設定は、いずれか1つ、また2つの組み合わせも可能である。この場合は、設定されない条件は、固定的な条件が自動的に設定される。
また、条件入力ステップS2においては、載貨状態及び駆動条件ごとに主機関及び調速手段の作動状態の設定を利用者から受け付ける。利用者は、条件入力手段20を用いて、往路と復路のそれぞれについて、主機関の運転状態に関連した主機関及び調速手段の作動状態を設定する(作動状態設定ステップS2-3)。主機関及び調速手段の作動状態とは、例えば回転数一定、主機関出力一定、船速一定、又はフューエルインデックス制限、等である。実海域における主機関の運転状態に関連した主機関作動点等の主機関及び調速手段の作動状態を設定することで、より実運航に近い条件下で推進性能を評価することができる。
また、条件入力ステップS2においては、燃料消費率の入力を利用者から受け付ける。利用者は、条件入力手段20を用いて、任意の燃料消費率を入力する(燃料消費率入力ステップS2-4)。
【0046】
航路選択ステップS2-2-1においては、記憶手段60に記憶されている複数の航路の中から、単数又は複数の航路を利用者が選択する。航路の例としては、北太平洋航路、オーストラリア航路、又はヨーロッパ航路等が挙げられる。
航路選択ステップS2-2-1において航路が選択されると、選択した航路への気象海象の状態と発現確率の設定に確率標準気象海象情報を使用するか否かの選択を利用者から受け付ける(標準気象海象情報選択ステップS3)。気象海象の発現確率を設定することで、より実運航に近い条件下で推進性能を評価することができる。なお、気象海象の発現確率は、例えば航路に応じて統計値から頻度分布を設定する。
標準気象海象情報選択ステップS3において標準気象海象情報を使用することが選択された場合は、記憶手段60に記憶されている標準気象海象情報の長期統計データの中から、航路選択ステップS2-2-1において選択された航路に対応する長期統計データを抽出する(長期統計データ抽出ステップS4)。
そして、長期統計データ抽出ステップS4で抽出した長期統計データに基づき、気象海象の状態と、その気象海象の状態の発現確率を、航路選択ステップS2-2-1において選択された航路に設定する(気象海象及び発現確率設定ステップS6)。なお、発現確率は利用者が任意に設定することもできる。
一方、標準気象海象情報選択ステップS3において標準気象海象情報を使用しないことが選択された場合は、利用者から気象海象条件の入力を受け付ける。利用者は、条件入力手段20を用いて、任意の気象海象条件を入力する(気象海象条件入力ステップS5)。任意の気象海象条件が入力されると、気象海象及び発現確率設定ステップS6に移行する。
利用者は、標準気象海象情報を用いる方が簡便であるが、気象海象の悪化が予想される航路を避けて航行するなどの運航ポリシーを持つ船舶については、任意の気象海象情報を用いる方がより実態に即した評価を行える場合がある。
気象海象及び発現確率設定ステップS6において設定された航路ごとの気象海象の状態と発現確率のデータは、船体応答計算手段30へ送信される。
【0047】
載貨状態設定ステップS2-2-2においては、往路と復路のそれぞれについて、満載状態やバラスト状態等といった載貨状態を利用者が設定する。なお、寄港地ごとに載貨状態を変える等、往路と復路のそれぞれに複数の載貨状態を設定することも可能である。
載貨状態設定ステップS2-2-2において載貨状態が設定されると、載貨状態ごとの駆動条件の設定を利用者から受け付ける。載貨状態が設定されることにより、喫水が決まり、喫水に応じて変化する船体の外力条件が設定される。利用者は、条件入力手段20を用いて、主機関回転数、主機関出力、主機関トルク、及び速力のうち少なくとも一つを駆動条件として入力する(駆動条件設定ステップS7)。主機関の運転状態は、この載貨状態ごとに設定された駆動条件に基づく。載貨状態により異なる喫水の大小やトリムに等に起因する主機関の運転状態が駆動条件として設定できるため、主機関の運転状態をより実運航に近い条件とすることができる。なお、駆動条件は航海の途中で状況の変化に応じて変更する場合があることを想定し、一つの載貨状態に対して複数の駆動条件を設定することも可能である。これにより、様々な駆動条件下で推進性能を評価して比較することができる。また、載貨状態を一定として駆動条件だけを変えること、駆動条件を一定として載貨状態だけを変更することも可能である。
駆動条件設定ステップS7で設定された載貨状態ごとの駆動条件のデータは、船体応答計算手段30へ送信される。
【0048】
評価期間設定ステップS2-2-3においては、船舶の実海域における推進性能を評価する期間を利用者が設定する。評価期間は、船舶のライフサイクルであり、一般的には数年から数十年単位で設定するが、ライフサイクルとしては、例えば就航から入渠までの期間でも、入渠から次の入渠までの期間でも、また複数回の入渠を想定した期間であってもよい。
船舶は、就航後、例えば海洋生物付着や錆瘤等の発生、塗膜の劣化等により抵抗が増し、船体に働く外力条件が変化する。また、主機関の各部の摩耗や緩み等や給排気系、燃料供給系、動力伝達系、またプロペラ等の摩耗や損傷等により駆動条件が変化する。これらは、入渠してメンテナンスを受けることにより、回復できるものもあるが、経年劣化として回復できないものもある。評価期間設定ステップS2-3においては、これらを考慮した設定を行なう。
評価期間設定ステップS2-2-3において評価期間が設定されると、入渠間隔の設定、及び標準経年劣化率を使用するか否かの選択を利用者から受け付ける。
利用者は、条件入力手段20を用いて、入渠間隔の設定(入渠間隔設定ステップS8)と、標準経年劣化率を使用するか否かの選択(標準経年劣化率選択ステップS13)を行う。
【0049】
入渠間隔設定ステップS8においては、船舶をメンテナンスのために入渠させる間隔を利用者が設定する。
入渠間隔設定ステップS8において入渠間隔が設定されると、貝等の海洋生物が付着することによる船体等の汚損を推定する際に用いる生物汚損率の設定に標準生物汚損率を使用するか否かの選択を利用者から受け付ける(標準生物汚損率選択ステップS9)。
標準生物汚損率選択ステップS9において標準生物汚損率を使用することが選択された場合は、条件計算手段70が評価期間等に基づき標準生物汚損率を計算する(標準生物汚損率計算ステップS10)。
そして、計算により導出された標準生物汚損率を基に、船体及びプロペラのそれぞれについて、生物汚損率が設定される(生物汚損率設定ステップS12)。設定した評価期間における外力条件と駆動条件の変化の一つとして生物汚損率を設定することで、生物汚損による船体及びプロペラの経年劣化が条件に組み込まれ、より実運航に近い条件下で推進性能を評価することができる。なお、生物汚損率には、船体やプロペラ等への生物付着の他、錆や瘤の発生、塗膜の劣化等による船体の摩擦抵抗増加係数やプロペラの推進力低下量等、生物汚損を含む経年劣化に関連したあらゆる経年劣化のパラメーター値を含むものとする。
一方、標準生物汚損率選択ステップS9において標準生物汚損率を使用しないことが選択された場合は、生物汚損率の入力を利用者から受け付ける。利用者は、条件入力手段20を用いて、任意の生物汚損率を入力する(生物汚損率入力ステップS11)。任意の生物汚損率が入力されると、生物汚損率設定ステップS12に移行する。
利用者は、標準生物汚損率を用いる方が簡便であるが、メンテナンスの方法や海洋生物付着防止手段の有無等によって船体及びプロペラの汚損や回復の程度は変わるため、任意の生物汚損率を用いる方がより実態に即した評価を行える場合がある。なお、計算により得られた標準生物汚損率を利用者が補正することもできる。
生物汚損率設定ステップS12で設定された船体及びプロペラの生物汚損率のデータは、船体応答計算手段30へ送信される。
【0050】
標準経年劣化率選択ステップS13において標準経年劣化率を使用することが選択された場合は、条件計算手段70が標準経年劣化率を計算する(標準経年劣化率計算ステップS14)。
そして、計算により導出された標準経年劣化率を基に、船体、プロペラ、主機関、及び調速手段等のそれぞれについて経年劣化率が設定される(経年劣化率設定ステップS16)。設定した評価期間における外力条件と駆動条件の変化の一つとして船体及び駆動系の劣化率を設定することで、駆動系の経年劣化が条件に組み込まれ、より実運航に近い条件下で推進性能を評価することができる。
なお、調速手段としては、燃料を燃焼させる主機関にあっては、機械式ガバナーや電子ガバナー等が、また電力を使用する主機関にあってはインバータや電圧調整手段等が相当する。また、駆動系の劣化率には、主機関や給排気系、燃料供給系、動力伝達系、またプロペラ等の摩耗や損傷等、評価期間により異なる劣化率に関連したあらゆるパラメーター値を含むものとする。
一方、標準経年劣化率選択ステップS13において標準経年劣化率を使用しないことが選択された場合は、経年劣化率の入力を利用者から受け付ける。利用者は、条件入力手段20を用いて、任意の経年劣化率を入力する(経年劣化率入力ステップS15)。任意の経年劣化率が入力されると、経年劣化率設定ステップS16に移行する。
利用者は、標準経年劣化率を用いる方が簡便であるが、メンテナンスの方法や機器の性能等によって経年劣化の程度は変わるため、任意の経年劣化率を用いる方がより実態に即した評価を行える場合がある。なお、計算により得られた標準経年劣化率を利用者が補正することもできる。
経年劣化率設定ステップS16で設定された経年劣化率のデータのうち、船体、プロペラ、及び主機関の経年劣化率のデータは船体応答計算手段30へ送信され、燃料投入量に影響する調速手段の経年劣化率は燃料消費指標導出手段40へ送信される。
【0051】
船体応答計算手段30は、航路の気象海象の状態及び発現確率と、載貨状態ごとの駆動条件と、船体及びプロペラの生物汚損率と、船体、プロペラ、及び主機関等の経年劣化率のデータとに基づいて、載貨状態及び駆動条件ごと、評価期間ごと、気象海象ごとの船体応答を計算する(船体応答計算ステップS17)。
船体応答の計算においては、平水中抵抗、平水中自航要素、プロペラ単独特性、風圧力、波浪中定常力、波浪中自航要素、斜航流体力、及び舵力等の外力と、生物汚損率と、経年劣化率から、評価期間ごとに実海域中の主機関出力と主機関回転数と対水速力との関係を計算する。
船体応答計算手段30での計算においては、主機関の燃費率及び主機関作動特性は考慮していないため、主機関の燃費率及び主機関作動特性の影響を除いた船体応答を計算することができる。
また、船体応答計算に適用する実海域性能計算方法1は、実際の船舶にモニタリング機器を搭載して収集したデータや、模型船による水槽試験等の試験結果により得られたデータを基に予め検証された計算方法である。予め検証された実海域性能計算方法1を用いることで、船舶の実海域における推進性能を精度よく評価することができ、例えば複数の船舶を同じ条件下で同じ精度で評価し客観的に比較ができる。なお、予め検証された実海域性能計算方法1とは、実海域で得られた各種データから最適化された計算方法、実海域に適用して検証、評価したシミュレーション手法に基づいた計算方法、実海域での実際の推進性能と比較、評価して高度化した計算方法等の全てを含むものである。
【0052】
船体応答計算ステップS17の後、燃料消費率4の設定に標準燃料消費量を使用するか否かの選択を利用者から受け付ける(標準燃料消費率選択ステップS18)。
標準燃料消費率選択ステップS18において標準燃料消費率を使用することが選択された場合は、条件計算手段70が標準燃料消費率を計算する(標準燃料消費率計算ステップS19)。
そして、計算により導出された標準燃料消費率を基に、燃料消費率(SFC)4が設定される(燃料消費率設定ステップS20)。
一方、標準燃料消費率選択ステップS18において標準燃料消費率を使用しないことが選択された場合は、燃料消費率入力ステップS2-4で入力された任意の燃料消費率が読み込まれる。これにより、標準燃料消費率とは異なる任意の燃料消費率でも評価をすることができる。任意の燃料消費率が読み込まれると、燃料消費率設定ステップS20に移行する。
利用者は、標準燃料消費率を用いる方が簡便であるが、任意の燃料消費率を用いる方がより実態に即した評価を行える場合がある。なお、計算により得られた燃料消費率を利用者が補正することもできる。また、燃料消費率設定ステップS20において、例えばA重油、C重油、又はガス燃料といった燃料の種類ごとに燃料消費率4を設定したり、同じ種類の燃料であっても性状の差を考慮して燃料消費率4を複数設定したりする等、複数の燃料消費率4を設定することもできる。
燃料消費率設定ステップS20で設定された燃料消費率4のデータは、燃料消費指標導出手段40へ送信される。
船舶で主に使用されているC重油は、産地等によって性状にばらつきが大きく密度で20%程度の差が生じるため、推進性能を評価するための条件が均一でないという問題があるが、本実施形態のように船舶の燃料消費に関する指標を導出するに当り、標準燃料消費率又は任意の燃料消費率を用い、燃料消費率4を入力し設定することで、同じ条件での評価が可能であるため燃料性状による違いが評価に影響せず、船体性能のみによる評価ができる。なお、船体応答計算手段30による計算において主機関の燃費率及び主機関作動特性を考慮し、個船の実海域性能計算を行うことも可能である。
【0053】
燃料消費指標導出手段40は、設定された燃料消費率4と、調速手段等の経年劣化率とに基づいて、載貨状態及び駆動条件ごと、評価期間ごと、及び気象海象ごとの主機関回転数、主機関出力、主機関トルク、速力、燃料消費量、斜航角、及び舵角の計算を行い、実海域性能指標3として船舶の燃料消費に関する指標を導出する(燃料消費指標導出ステップS21)。
燃料消費に関する指標は、評価期間として設定した船舶の長期間に亘る主機関総燃料消費量及び総輸送距離、並びに総積載量などから計算される主機関燃費を示すライフサイクル主機関燃費5として導出することができる。ライフサイクル主機関燃費5として導出することにより、船舶を数年から数十年単位という長期間に亘って運用した場合の推進性能を例えば運用開始前に適切に評価することができる。なお、燃料消費に関する指標としては、ライフサイクル主機関燃費5以外に、評価期間における主機関総燃料消費量、総輸送距離、並びに総積載量などから計算される主機関燃費等を含むものとし、その単位等は何れの単位も選択できる。また、ライフサイクルとしては、例えば就航から入渠までの期間でも、入渠から次の入渠までの期間であっても、また複数回の入渠を想定した期間であってもよい。
【0054】
燃料消費指標出力手段50は、燃料消費指標導出ステップS21で導出された燃料消費に関する指標を画面や紙等に出力する(指標出力ステップS22)。
燃料消費指標出力手段50は、燃料消費に関する指標とともに、少なくとも条件入力ステップS2において入力した条件を併せて出力する。これにより、どのような条件を基に燃料消費に関する指標が導出されたのかを利用者が把握しやすくなる。
【0055】
このように、実海域における船舶の標準運航モデル2を設定し、標準運航モデル2に船舶の運航条件と船舶の船体条件を入力し、運航条件及び船体条件が入力された標準運航モデル2と船体条件を予め検証された船舶の実海域性能計算方法1に適用し、船舶の実海域における推進性能を評価することで、実海域における船舶の推進性能を例えば運航前においても精度よく評価することができる。
また、標準運航モデル2に運航条件として気象海象条件を入力し、気象海象条件が入力された標準運航モデル2を用いて船舶の実海域における推進性能を評価することで、例えば運航条件としての航路に従った気象海象が組み込まれていない場合や、悪化が予想される気象海象を避けて航行するなどの運航ポリシーを持つ船舶が対象の場合には、任意の気象海象条件を入力することで、より実態に即した評価を行うことができる。
【0056】
次に、本発明の他の実施形態として、船舶の実海域性能提供システムについて説明する。
本システムは、図1に示す実海域推進性能評価と同様に、予め検証された船舶の実海域性能計算方法1と標準運航モデル2を用いて、船舶の実海域における性能を評価する実海域性能指標3を得る。
実海域性能指標3としては、燃料消費率4を適用することにより、実海域性能指標3としてのライフサイクル主機関燃費5を得ることができる。また、燃料消費率4を適用せずに、標準運航モデル2の設定条件に従って実海域性能計算方法1を用いて行った計算結果を実海域性能指標3とともに得ることもできる。
【0057】
実海域性能計算方法1は、例えば、船体に働く外力としての平水中抵抗に、実海域で遭遇する気象海象により変化する外力要因としての波、風、海流、潮流等、また、気象海象に対応した船体の斜航、当舵等により変化する外力を加え、全抵抗を算出し、さらに自航要素にプロペラ特性を考慮して得たパワーカーブを用いることができる。
実海域性能計算方法1の精度は、実運航している各種船舶から得られる実船モニタリング等を通じて取得した様々なデータや、実海域を模擬した実海域水槽での標準的な試験を通じて取得したデータ等を用いて向上させることができる。また、波浪中抵抗増加、波浪中自航要素、及び上部構造物の抵抗等といった実海域での運航に影響を及ぼす要素を水槽試験技術や計算技術を通じてより正確に求め、実海域性能計算方法1に反映して精度を向上させることもできる。
このように、予め検証された実海域性能計算方法1には、実海域で得られた各種データから最適化された計算方法、実海域に適用して検証及び評価したシミュレーション手法に基づいた計算方法、又は実海域での実際の性能と比較及び評価して高度化した計算方法等を用いることができる。
また、実海域性能計算方法1の精度向上を図ることにより、船舶の実海域における実力を評価する際の客観的指標(ものさし)となる実海域性能指標3の信頼性が向上する。
【0058】
標準運航モデル2においては、船舶の航路の設定と、その航路によって異なる気象海象に応じた船体に働く外力条件、また、載貨状態の設定によって異なる喫水の大小やトリムに応じた外力条件や駆動条件、往路及び復路における船速等の設定に応じた駆動条件と、その駆動条件に連係した主機関作動モードの設定、また、評価期間の設定による就航期間の長短により異なる経年劣化に伴う外力条件や駆動条件の変化、就航期間や入渠間隔により異なる海洋生物の付着による生物汚損に起因する外力条件や駆動条件の変化等を考慮して、実海域性能計算方法1に適用し、実海域性能指標3を得ることができる。
このことにより、実海域で運航した場合の実海域性能指標3を客観的指標(ものさし)として船舶の実海域における真の実力を評価でき、個別の船舶についての実海域での運航や、複数の船舶についての実海域での実力比較に利用することができる。
【0059】
図6は、本実施形態による船舶の実海域性能提供システムの一例を示すブロック図である。
本例による船舶の実海域性能提供システムは、標準運航モデル設定手段110と、条件入力手段120と、実海域性能計算手段130と、燃料消費指標導出手段140と、燃料消費指標提供手段150を備える。本例における船舶の実海域性能提供システムは、主としてコンピュータとその周辺機器により構成される。
【0060】
標準運航モデル設定手段110は、標準運航モデル2の設定を行う機能を有する。標準運航モデル設定手段110は、記憶手段111と、条件計算手段112を有する。記憶手段111には、複数の航路や標準気象海象情報等といった標準運航モデル2の設定に必要な各種情報が記憶されている。また、条件計算手段112は、後述のように、標準生物汚損率や標準経年劣化率等の計算を行う。
条件入力手段120は、標準運航モデル2で使用する運航条件と船舶の船体条件の入力に用いられる。また、条件入力手段120は、後述のように利用者による任意の燃料消費率4や、気象海象条件、生物汚損率等の入力にも用いることができる。条件入力手段120は、例えばキーボードやタッチパネル等のような入力機器である。
実海域性能計算手段130は、実海域性能計算方法1を用い、運航条件が入力された標準運航モデル2と船体条件に従って、船舶の実海域性能計算を行う。
燃料消費指標導出手段140は、実海域性能計算手段130の計算結果に基づいて、実海域性能指標3として船舶の燃料消費に関する指標を導出する。
燃料消費指標提供手段150は、燃料消費指標導出手段140が導出した船舶の燃料消費に関する指標を利用者に提供する。
【0061】
燃料消費指標提供手段150は、燃料消費に関する指標として、主機関燃費、温室効果ガス排出指数、メンテナンス費、及び輸送効率指数のうちの少なくとも一つを利用者に提供することが好ましい。これにより、利用者は、船舶の実海域における性能を客観的に示す指標として、主機関燃費、温室効果ガス排出指数、メンテナンス費、又は輸送効率指数を得ることができる。なお、温室効果ガス排出指数は、例えば、設計時に1トンの貨物を1マイル運ぶ際に排出されるCOの量を示す値であるEEDI(Energy Efficiency Design Index)や、燃料使用量と航海距離を使い実運航で排出されるCOの量を示す値であるEEOI(Energy Efficiency Operational Indicator)とすることができ、また、輸送効率指数は、例えば、1年間での実貨物輸送量を使用して算定されるエネルギー効率を示す値であるAER(Annual Efficiency Ratio)とすることができる。主機関燃費、温室効果ガス排出指数、メンテナンス費、及び輸送効率指数は、いずれも評価期間を考慮した指数であることが特徴である。
また、燃料消費指標提供手段150は、条件入力手段120で入力された運航条件及び船体条件を利用者に提供することが好ましい。条件入力手段120で入力された条件を利用者に提供することで、利用者は、どのような条件を基に燃料消費に関する指標が導出されたのかを容易に把握することができる。
【0062】
図4及び図5に基づいて、本実施形態による船舶の実海域性能提供システムの処理フローについて説明する。
本システムは、実海域性能提供プログラムが組み込まれたコンピュータを備え、以下の手順で処理を実行する。
なお、実海域性能提供プログラムをコンピュータが処理の一環として読み込んで、以下の手順で処理を実行すること、また以下の手順における任意のステップを個別のプログラムとして別のコンピュータが実行したものを統合し処理を実行することも可能である。
まず、標準運航モデル設定手段110により、実海域における船舶の標準運航モデル2を読み込ませモデルを設定する(標準運航モデル設定ステップS1)。標準運航モデル2は、実海域における船舶の性能を評価する際に用いる標準的な運航モデルである。
【0063】
標準運航モデル設定手段110は、標準運航モデル設定ステップS1の後、標準運航モデル2で使用する運航条件と、船舶の船体条件の入力を利用者から受け付ける。
利用者は、条件入力手段120を用いて、条件入力ステップS2として、船体条件の入力(船体条件入力ステップS2-1)と、運航条件の入力(運航条件入力ステップS2-2)を行う。
船体条件入力ステップS2-1で入力される船体条件は、主要寸法や形状といった船体に関する要目である。
運航条件入力ステップS2-2は、航路を選択する航路選択ステップS2-2-1と、載貨状態を設定する載貨状態設定ステップS2-2-2と、評価期間を設定する評価期間設定ステップS2-2-3である。これにより、標準運航モデル2に航路、載貨状態、及び評価期間が設定される。このように、運航条件入力ステップS2-2において利用者が入力する運航条件は、航路、載貨状態、及び評価期間に関する条件であることが好ましい。これによって、より実運航に近い条件下で、船舶の実態に即した燃料消費に関する指標を導出することができる。なお、航路、載貨状態、及び評価期間の設定は、いずれか1つ、又は2つの組み合わせも可能である。この場合は、利用者によって設定されない条件については、予め記憶手段111に記憶されている固定的な条件が自動的に設定される。
また、条件入力ステップS2においては、載貨状態及び駆動条件ごとに主機関及び調速手段の作動状態の設定を利用者から受け付ける。利用者は、条件入力手段120を用いて、往路と復路のそれぞれについて、主機関作動モードとしての主機関の運転状態に関連した主機関及び調速手段の作動状態を設定する(作動状態設定ステップS2-3)。主機関及び調速手段の作動状態とは、例えば回転数一定、主機関出力一定、船速一定、又はフューエルインデックス制限、等である。実海域における主機関の運転状態に関連した主機関作動点等の主機関及び調速手段の作動状態を設定することで、より実運航に近い条件下で船舶の実海域性能を評価することができる。作動状態設定ステップS2-3で設定された主機関及び調速手段の作動状態のデータは、燃料消費指標導出手段140へ送信される。
また、条件入力ステップS2においては、燃料消費率の入力を利用者から受け付ける。利用者は、条件入力手段120を用いて、任意の燃料消費率を入力する(燃料消費率入力ステップS2-4)。
【0064】
航路選択ステップS2-2-1においては、記憶手段111に記憶されている複数の航路の中から、単数又は複数の航路を利用者が選択する。航路の例としては、北太平洋航路、オーストラリア航路、又はヨーロッパ航路等が挙げられる。
標準運航モデル設定手段110は、航路選択ステップS2-2-1において航路が選択されると、選択した航路への気象海象の状態と発現確率の設定に標準気象海象情報を使用するか否かの選択を利用者から受け付ける(標準気象海象情報選択ステップS3)。気象海象の発現確率を設定することで、より実運航に近い条件下で性能を評価することができる。なお、気象海象の発現確率は、例えば航路に応じて統計値から頻度分布を設定する。
標準運航モデル設定手段110は、標準気象海象情報選択ステップS3において航路ごとに設定された標準気象海象情報を使用することが選択された場合は、記憶手段111に記憶されている標準気象海象情報の長期統計データの中から、航路選択ステップS2-2-1において選択された航路に対応する長期統計データを抽出する(長期統計データ抽出ステップS4)。
そして、標準運航モデル設定手段110は、長期統計データ抽出ステップS4で抽出した長期統計データに基づき、気象海象の状態と、その気象海象の状態の発現確率を、航路選択ステップS2-2-1において選択された航路に設定する(気象海象及び発現確率設定ステップS6)。なお、発現確率は利用者が任意に設定することもできる。
一方、標準気象海象情報選択ステップS3において標準気象海象情報を使用しないことが選択された場合、標準運航モデル設定手段110は、利用者から運航条件として気象海象条件の入力を受け付ける。利用者は、条件入力手段120を用いて、任意の気象海象条件を入力する(気象海象条件入力ステップS5)。任意の気象海象条件が入力されると、気象海象及び発現確率設定ステップS6に移行する。
利用者は、標準気象海象情報を使用する方が簡便であるが、例えば運航条件としての航路に従った気象海象が組み込まれていない場合や、悪化が予想される気象海象を避けて航行するなどの運航ポリシーを持つ船舶が対象の場合には、任意の気象海象条件を用いる方がより実態に即した評価を行える場合がある。なお、悪化が予想される気象海象を避けて航行することには、航路を変更すること、船速を上げ気象海象の悪化前に通過すること、船速を下げ気象海象の悪化に遭遇しないようにすること、待機すること等を含む。
気象海象及び発現確率設定ステップS6において設定された航路ごとの気象海象の状態と発現確率のデータは、実海域性能計算手段130へ送信される。
【0065】
載貨状態設定ステップS2-2-2においては、往路と復路のそれぞれについて、満載状態やバラスト状態等といった載貨状態を利用者が設定する。なお、寄港地ごとに載貨状態を変える等、往路と復路のそれぞれに複数の載貨状態を設定することも可能である。
標準運航モデル設定手段110は、載貨状態設定ステップS2-2-2において載貨状態が設定されると、載貨状態ごとの駆動条件の設定を利用者から受け付ける。載貨状態が設定されることにより、喫水が決まり、喫水に応じて変化する船体の外力条件が設定される。利用者は、条件入力手段120を用いて、主機関回転数、主機関出力、主機関トルク、及び速力のうち少なくとも一つを駆動条件として入力する(駆動条件設定ステップS7)。主機関の運転状態は、この載貨状態ごとに設定された駆動条件に基づく。載貨状態により異なる喫水の大小やトリムに等に起因する主機関の運転状態が駆動条件として設定できるため、主機関の運転状態をより実運航に近い条件とすることができる。なお、駆動条件は航海の途中で状況の変化に応じて変更する場合があることを想定し、一つの載貨状態に対して複数の駆動条件を設定することも可能である。これにより、様々な駆動条件下で船舶の性能を評価して比較することができる。また、載貨状態を一定として駆動条件だけを変えること、駆動条件を一定として載貨状態だけを変更することも可能である。
駆動条件設定ステップS7で設定された載貨状態ごとの駆動条件のデータは、実海域性能計算手段130へ送信される。
【0066】
評価期間設定ステップS2-2-3においては、船舶の実海域における性能を評価する期間を利用者が設定する。評価期間は、船舶のライフサイクルであり、一般的には数年から数十年単位で設定するが、ライフサイクルとしては、例えば就航から入渠までの期間でも、入渠から次の入渠の期間でも、また複数回の入渠を想定した期間であってもよく、自由に設定ができる。
船舶は、就航後、例えば海洋生物付着や錆瘤等の発生、塗膜の劣化等により抵抗が増し、船体に働く外力条件が変化する。また、主機関の各部の摩耗や緩み等や給排気系、燃料供給系、動力伝達系、またプロペラ等の摩耗や損傷等により駆動条件や燃料噴射状態が変化する。これらは、入渠してメンテナンスを受けることにより、回復できるものもあるが、経年劣化として回復できないものもある。評価期間設定ステップS2-2-3においては、これらを考慮した設定を行なう。
標準運航モデル設定手段110は、評価期間設定ステップS2-2-3において評価期間が設定されると、入渠間隔の設定、及び標準経年劣化率を使用するか否かの選択を利用者から受け付ける。
利用者は、条件入力手段120を用いて、入渠間隔の設定(入渠間隔設定ステップS8)と、標準経年劣化率を使用するか否かの選択(標準経年劣化率選択ステップS13)を行う。
【0067】
入渠間隔設定ステップS8においては、船舶をメンテナンスのために入渠させる間隔を利用者が設定する。
標準運航モデル設定手段110は、入渠間隔設定ステップS8において入渠間隔が設定されると、貝等の海洋生物が付着することによる船体等の汚損を推定する際に用いる生物汚損率の設定に標準生物汚損率を使用するか否かの選択を利用者から受け付ける(標準生物汚損率選択ステップS9)。
標準生物汚損率選択ステップS9において標準生物汚損率を使用することが選択された場合は、条件計算手段112が評価期間等に基づき標準生物汚損率を計算する(標準生物汚損率計算ステップS10)。
そして、標準運航モデル設定手段110は、計算により導出された標準生物汚損率を基に、船体及びプロペラのそれぞれについて、生物汚損率を設定する(生物汚損率設定ステップS12)。設定した評価期間における外力条件と駆動条件の変化の一つとして生物汚損率を設定することで、生物汚損による船体及びプロペラの経年劣化が条件に組み込まれ、より実運航に近い条件下で船舶の性能を評価することができる。なお、生物汚損率には、船体やプロペラ等への生物付着の他、錆や瘤の発生、塗膜の劣化等による船体の摩擦抵抗増加係数やプロペラの推進力低下量等、生物汚損を含む経年変化に関連したあらゆる経年劣化のパラメーター値を含むものとする。
一方、標準生物汚損率選択ステップS9において標準生物汚損率を使用しないことが選択された場合、標準運航モデル設定手段110は、生物汚損率の入力を利用者から受け付ける。利用者は、条件入力手段120を用いて、任意の生物汚損率を入力する(生物汚損率入力ステップS11)。任意の生物汚損率が入力されると、生物汚損率設定ステップS12に移行する。
利用者は、標準生物汚損率を使用する方が簡便であるが、メンテナンスの方法や海洋生物付着防止手段の有無等によって船体及びプロペラの汚損や回復の程度は変わるため、任意の生物汚損率を用いる方がより実態に即した評価を行える場合がある。なお、計算により得られた標準生物汚損率を利用者が補正することもできる。
生物汚損率設定ステップS12で設定された船体及びプロペラの生物汚損率のデータは、実海域性能計算手段130へ送信される。
【0068】
また、標準経年劣化率選択ステップS13において標準経年劣化率を使用することが選択された場合は、条件計算手段112が標準経年劣化率を計算する(標準経年劣化率計算ステップS14)。
そして、標準運航モデル設定手段110は、計算により導出された標準経年劣化率を基に、船体、プロペラ、主機関、及び調速手段のそれぞれについて経年劣化率を設定する(経年劣化率設定ステップS16)。設定した評価期間における外力条件と駆動条件の変化の一つとして船体及び駆動系の劣化率を設定することで、駆動系の経年劣化が条件に組み込まれ、より実運航に近い条件下で船舶の性能を評価することができる。
なお、調速手段としては、燃料を燃焼させる主機関にあっては、機械式ガバナーや電子ガバナー等が、また電力を使用する主機関にあってはインバータや電圧調整手段等が相当する。また、駆動系の劣化率には、主機関や動力伝達系、給排気系、燃料供給系、またプロペラ等の摩耗や損傷等、評価期間により異なる劣化率に関連したあらゆるパラメーター値を含むものとする。
一方、標準経年劣化率選択ステップS13において標準経年劣化率を使用しないことが選択された場合、標準運航モデル設定手段110は、経年劣化率の入力を利用者から受け付ける。利用者は、条件入力手段120を用いて、任意の経年劣化率を入力する(経年劣化率入力ステップS15)。任意の経年劣化率が入力されると、経年劣化率設定ステップS16に移行する。
利用者は、標準経年劣化率を用いる方が簡便であるが、メンテナンスの方法や機器の性能等によって経年劣化の程度は変わるため、任意の経年劣化率を用いる方がより実態に即した評価を行える場合がある。なお、計算により得られた標準経年劣化率を利用者が補正することもできる。
経年劣化率設定ステップS16で設定された経年劣化率のデータのうち、船体、プロペラ、及び主機関の経年劣化率のデータは実海域性能計算手段130へ送信され、燃料投入量に影響する調速手段の経年劣化率は燃料消費指標導出手段140へ送信される。
【0069】
実海域性能計算手段130は、航路の気象海象の状態及び発現確率と、載貨状態ごとの駆動条件と、船体及びプロペラの生物汚損率と、船体、プロペラ、及び主機関の経年劣化率のデータとに基づいて、載貨状態及び駆動条件ごと、評価期間ごと、気象海象ごとの実海域性能として船体応答を計算する(船体応答計算ステップS17)。
船体応答の計算においては、平水中抵抗、平水中自航要素、プロペラ単独特性、風圧力、波浪中定常力、波浪中自航要素、斜航流体力、及び舵力等の外力と、生物汚損率と、経年劣化率から、評価期間ごとに実海域中の主機関出力と主機関回転数と対水速力との関係を計算する。
実海域性能計算手段130での計算においては、主機関の燃費率及び主機関作動特性は考慮していないため、主機関の燃費率及び主機関作動特性の影響を除いた船体応答を計算することができる。
【0070】
燃料消費指標導出手段140は、燃料消費率4の設定に標準燃料消費量を使用するか否かの選択を利用者から受け付ける(標準燃料消費率選択ステップS18)。
標準燃料消費率選択ステップS18において標準燃料消費率を使用することが選択された場合、燃料消費指標導出手段140は、標準燃料消費率を計算する(標準燃料消費率計算ステップS19)。なお、条件計算手段112が標準燃料消費率の計算も行えるようにしてもよい。
そして、計算により導出された標準燃料消費率を基に、燃料消費率(SFC)4が設定される(燃料消費率設定ステップS20)。
一方、標準燃料消費率選択ステップS18において標準燃料消費率を使用しないことが選択された場合、燃料消費率入力ステップS2-4で入力された任意の燃料消費率が読み込まれる。これにより、標準燃料消費率とは異なる任意の燃料消費率でも評価をすることができる。任意の燃料消費率が読み込まれると、燃料消費率設定ステップS20に移行する。
利用者は、標準燃料消費率を用いる方が簡便であるが、任意の燃料消費率を用いる方がより実態に即した評価を行える場合がある。なお、計算により得られた燃料消費率を利用者が補正することもできる。また、燃料消費率設定ステップS20において、例えばA重油、C重油、又はガス燃料といった燃料の種類ごとに燃料消費率4を設定したり、同じ種類の燃料であっても性状の差を考慮して燃料消費率4を複数設定したりする等、複数の燃料消費率4を設定することもできる。
船舶で主に使用されているC重油は、産地等によって性状にばらつきが大きく密度で20%程度の差が生じるため、船舶の実海域性能を評価するための条件が均一でないという問題があるが、本実施形態のように船舶の燃料消費に関する指標を導出するに当り、標準燃料消費率又は任意の燃料消費率を用い、燃料消費率4を入力とすることで、同じ条件での評価が可能であるため燃料性状による違いが評価に影響せず、船体性能のみによる評価ができる。なお、主機関の燃費率及び主機関作動特性を考慮し、個船の実海域性能計算を行うことも可能である。
【0071】
燃料消費指標導出手段140は、設定された燃料消費率4と、調速手段の経年劣化率とに基づいて、載貨状態及び駆動条件ごと、評価期間ごと、及び気象海象ごとの主機関回転数、主機関出力、主機関トルク、速力、燃料消費量、斜航角、及び舵角の計算を行い、実海域性能指標3として船舶の燃料消費に関する指標を導出する(燃料消費指標導出ステップS21)。
燃料消費に関する指標は、評価期間として設定した船舶の長期間に亘る主機関総燃料消費量及び総輸送距離、並びに総積載量などから計算される主機関燃費を示すライフサイクル主機関燃費5として導出することができる。ライフサイクル主機関燃費5として導出することにより、船舶を数年から数十年単位という長期間に亘って運用した場合の実海域性能を例えば運用開始前に適切に評価することができる。なお、燃料消費に関する指標としては、ライフサイクル主機関燃費5以外に、評価期間における主機関総燃料消費量、総輸送距離、並びに総積載量などから計算される主機関燃費等を含むものとし、その単位等は何れの単位も選択できる。また、ライフサイクルとしては、例えば就航から入渠までの期間でも、入渠から次の入渠までの期間であっても、また複数回の入渠を想定した期間であってもよい。
【0072】
燃料消費指標提供手段150は、燃料消費指標導出ステップS21で導出された燃料消費に関する指標を利用者に提供する(指標提供ステップS22)。
【0073】
このように、本システムは、実海域における船舶の標準運航モデル2を設定する標準運航モデル設定手段110と、標準運航モデル2で使用する運航条件と船舶の船体条件を入力する条件入力手段120と、運航条件が入力された標準運航モデル2と船体条件に従って船舶の実海域性能計算を行なう実海域性能計算手段130と、実海域性能計算手段130の計算結果に基づいて船舶の燃料消費に関する指標を導出する燃料消費指標導出手段140と、燃料消費に関する指標の導出結果を提供する燃料消費指標提供手段150とを備えることで、例えば運航する前の船舶についても、運航条件と船体条件に基づいて実海域における船舶の燃料消費に関する指標を精度よく導出して利用者に提供することができる。
なお、実海域性能の評価結果は、運航前における利用以外にも、運航中又は運航後にも利用可能である。例えば、運航中においては、次の航路の選択や、燃料変更の判断に利用することができる。また運航後においては、運航前に導出した燃料消費に関する指標と、実際に消費した燃料量から計算した指標を比較することによる航海の評価や、実海域性能計算方法1の評価等に利用できる。また、実際の運航には利用せず、船舶の実海域性能の評価だけに留めることもできる。
【0074】
図7は、本実施形態による船舶の実海域性能提供システムの他の例を示すブロック図である。なお、上記した例と同一機能部には同一符号を付して説明を省略する。
本例による船舶の実海域性能提供システムは、標準運航モデル設定手段110と、条件入力手段120と、実海域性能計算手段130と、燃料消費指標導出手段140と、燃料消費指標提供手段150と、条件取得手段160と、性能予測結果提供手段170を備える。本例における船舶の実海域性能提供システムは、主としてコンピュータとその周辺機器、通信回線又はネットワークにより構成される。
条件入力手段120と、標準運航モデル設定手段110、実海域性能計算手段130及び燃料消費指標導出手段140とは、特定の通信回線又はネットワークで接続されており、利用者は、運航条件及び船体条件を通信回線又はネットワークを介して入力する。また、燃料消費指標提供手段150は、利用者が使用する端末と通信回線又はネットワークで接続されており、燃料消費に関する指標の導出結果を通信回線又はネットワークを介して利用者に提供する。これにより、利用者が遠隔地にいる場合であっても、通信回線やネットワークを介して利用者からの条件入力を受け付け、入力された条件に基づいて導出した実海域における船舶の燃料消費に関する指標を利用者に提供することができる。また、同一の船舶を検討する利用者が離れた場所で複数いる場合でも、通信回線又はネットワークを介することにより、条件入力を分担したり、燃料消費に関する指標の導出結果を共有することができる。なお、通信回線とネットワークは併用することも可能である。また、燃料消費指標提供手段150が燃料指標を提供する意味は、利用者側から燃料消費指標提供手段150が記憶手段等に記憶している導出結果を確認に行く行為も含むものとする。また、利用者は就航している船舶自身であってもよい。
【0075】
標準運航モデル設定手段110は、船体条件として、未就航船の計画船体条件の入力を利用者から受け付けることができる。この場合、燃料消費指標提供手段150は、未就航船の燃料消費に関する指標の導出結果を利用者に提供する。
このように、本システムは、利用者から計画船体条件の入力を受け付け、入力された計画船体条件に基づいて導出した実海域における未就航船の燃料消費に関する指標を利用者に提供することができる。利用者は、提供された指標に基づき、未就航船の船体条件の見直し等を行うことができる。なお、未就航船とは、計画検討、設計検討又は建造中等の段階にある建造完了前の船舶をいう。また、計画船体条件とは、未就航船について計画されている船体条件をいう。
【0076】
また、標準運航モデル設定手段110が複数の未就航船の計画船体条件の入力を利用者から受け付けた場合、燃料消費指標提供手段150は、複数の未就航船の燃料消費に関する指標の導出結果を比較可能にして利用者に提供する。
このように、本システムは、利用者から複数の計画船体条件の入力を受け付け、入力された複数の計画船体条件に対応してそれぞれ導出した実海域における未就航船の燃料消費に関する指標を比較可能な形で利用者に提供することができる。これにより利用者は、未就航船の実海域性能を簡便に比較することができる。
【0077】
また、計画船体条件の入力を受け付ける場合、利用者が条件入力手段120を用いて入力した運航条件と計画船体条件は、性能予測手段155に設けられた条件取得手段160へも送信される。性能予測結果提供手段170は、条件取得手段160が取得した運航条件と計画船体条件に従った船舶の性能予測結果を利用者に提供すると共に、実海域性能計算手段130へ性能予測結果を送信する。なお、性能予測手段155は、条件取得手段160と性能予測結果提供手段170を有する。なお、性能予測手段155は、条件の取得と性能予測結果の提供だけの機能であっても、実際に性能予測を行なう機能を併せて持つものであってもよい。
ここで、船舶の性能予測結果とは、実海域性能計算方法1や標準運航モデル2を用いて燃料消費指標導出手段140にて導出する燃料消費に関する指標とは別の観点から船舶の性能を予測した結果であり、例えば、数値解析・シミュレーション手法である数値流体力学(CFD:Computational Fluid Dynamics)による計算や、実海域を模した水槽試験等により導出する。
このように、本システムは、未就航船について、実海域における燃料消費に関する指標と併せて、例えば、性能予測手段155にて実施する水槽試験や数値解析・シミュレーション手法等により得られた性能予測結果を利用者に提供することができる。これにより利用者は、未就航船の実海域性能をより多面的に評価することができる。また、性能予測結果を実海域性能計算手段130に用いて、実海域性能計算手段130の計算精度を高めることも可能である。
なお、性能予測手段155にて実施するCFDや水槽試験等をCFD計算機関や水槽試験機関として業として行なうこともできる。CFDや水槽試験等により船舶の性能予測結果を導出する場合は、当該CFDを行うCFD計算機関や水槽を保有する水槽試験機関に対しても、燃料消費に関する指標の導出結果を燃料消費指標提供手段150から提供することが好ましい。これにより、CFD計算機関や水槽試験機関は、燃料消費に関する指標の導出結果を船舶の性能予測の精度向上等に活用することが可能となる。
【0078】
図8は、本実施形態による船舶の実海域性能提供システムの更に他の例を示すブロック図である。なお、上記した例と同一機能部には同一符号を付して説明を省略する。
本例による船舶の実海域性能提供システムは、標準運航モデル設定手段110と、条件入力手段120と、実海域性能計算手段130と、燃料消費指標導出手段140と、燃料消費指標提供手段150と、条件取得手段160と、試運転結果提供手段180と、データ取得手段190として気象海象データ取得手段191及び運航データ取得手段192と、データ蓄積手段200と、標準運航モデル変更手段210を備える。本例における船舶の実海域性能提供システムは、主としてサーバとしてのコンピュータとその周辺機器、通信回線又はネットワークにより構成される。
標準運航モデル設定手段110、実海域性能計算手段130及び燃料消費指標導出手段140は、実海域性能の提供事業者である実海域性能提供者にサーバとして保有されている。条件入力手段120とサーバとは、通信回線又はネットワークで接続されている。サーバは、利用者から運航条件及び船体条件が入力されると、運航条件が入力された標準運航モデルと船体条件に従って燃料消費に関する指標を導出する。
また、燃料消費指標提供手段150は、利用者や利用者以外の第三者が使用する端末と通信回線又はネットワークで接続されており、燃料消費に関する指標の導出結果を通信回線又はネットワークを介して利用者や第三者に提供する。この場合の第三者への燃料消費に関する指標の導出結果等の情報提供は、利用者や利用者の相手先の了解を得た上で可能となる。
本例のように実海域性能提供者が標準運航モデル設定手段110と実海域性能計算手段130をサーバとして保有することで、利用者は外部のサーバから燃料消費に関する指標の導出結果を得ることができるので、機器の導入コストや管理コスト等を軽減することができる。また、燃料消費に関する指標の導出が実海域性能提供者によって一元的に行われるため、指標の導出精度を利用者に関わらず一定に保ちやすくなる。
また、燃料消費指標提供手段150は、利用者のみならず第三者にも対象船舶の実海域における船舶の燃料消費に関する指標を提供するため、第三者も通信回線やネットワークを介して提供を受けた指標に基づいて船舶の実海域性能を知ったり評価すること等を行うことができる。第三者は、例えば、導出された燃料消費に関する指標の認証を利用者のために行う認証機関や公的機関、船舶を船主から借り入れて運送を行う傭船事業者等である。また、利用者が船舶の設計を請け負う設計事業者である場合、利用者の相手先としての造船会社以外の発注者としての船主が第三者となる場合など様々なケースがあり得る。
なお、船舶の設計を請負う設計事業者が造船会社や船主等からの依頼を受けて、主体的に本システムを利用して、自らあるいは依頼主と情報を共有して燃料消費に関する指標の優れた船舶の設計行為を行うこともできる。また、設計事業者が造船会社や船主等からの依頼を受けて、船舶の一部の設計を請け負う場合には、その一部が関係しない運航条件や船体条件等を同一にして、一部を変更した場合の燃料消費に関する指標を得て船舶のその一部の設計を最適なものとすることもできる。
【0079】
また、燃料消費指標提供手段150は、実海域性能計算手段130の計算結果を利用者や第三者に提供する。燃料消費に関する指標と併せて、その指標を導出する基となる実海域性能計算手段130の計算結果を提供することで、利用者等は、船舶の運航形態の検討やメンテナンス周期の見直し、船体の見積もり、また実際のパワーカーブの確認等を行いやすくなる。なお、実海域性能計算手段130の計算結果は、燃料消費指標提供手段150を介さずに計算結果を提供する手段を別途設けて、提供することもできる。
なお、燃料消費指標提供手段150は、条件入力手段120で入力された運航条件及び船体条件も第三者へ提供することが好ましい。条件入力手段120で入力された条件を第三者にも提供することで、第三者は、どのような条件を基に燃料消費に関する指標が導出されたのかを容易に把握することができる。
【0080】
標準運航モデル設定手段110は、船体条件として、就航船の設計船体条件の入力を利用者から受け付けることができる。この場合、燃料消費指標提供手段150は、就航船の燃料消費に関する指標の導出結果を利用者に提供する。
このように、本システムは、利用者から設計船体条件の入力を受け付け、入力された設計船体条件に基づいて導出した実海域における就航船の燃料消費に関する指標を利用者に提供することができる。利用者は、提供された指標に基づき、航路の選択や、メンテナンス周期の検討等を行うことができる。なお、就航船とは、建造が完了した船舶をいい、実就航前の検査途上にある船舶も含む。また、設計船体条件とは、就航船について設計完了されている船体条件をいう。就航船は利用者としての船舶自身であってもよく、船舶をチャーターする場合や中古船の購入を検討する場合、航路に適した船舶を検討する場合等に本システムが利用できる。
【0081】
また、標準運航モデル設定手段110が複数の就航船の設計船体条件の入力を利用者から受け付けた場合、燃料消費指標提供手段150は、複数の就航船の燃料消費に関する指標の導出結果を比較可能にして利用者に提供する。
このように、本システムは、利用者から複数の設計船体条件の入力を受け付け、入力された複数の設計船体条件に対応してそれぞれ導出した実海域における就航船の燃料消費に関する指標を比較可能な形で利用者に提供することができる。これにより利用者は、就航船の実海域性能を簡便に比較することができる。
【0082】
また、設計船体条件の入力を受け付ける場合、利用者が条件入力手段120を用いて入力した運航条件と設計船体条件は、条件取得手段160へも送信される。試運転結果提供手段180は、条件取得手段160が取得した運航条件と設計船体条件に従った船舶の試運転結果を利用者に提供すると共に、実海域性能計算手段130へ試運転結果を送信する。この場合、条件取得手段160と試運転結果提供手段180が、試運転手段185に設けられている。
このように、本システムは、就航船について、実海域における燃料消費に関する指標と併せて、試運転手段185で得られた試運転結果を利用者に提供することができる。これにより利用者は、就航船の実海域性能をより多面的に評価することができる。また、試運転結果を実海域性能計算手段130に用いて、実海域性能計算手段130の計算精度を高めることも可能である。なお、試運転手段185は、条件の取得と試運転結果の提供だけの機能であっても、実際に試運転に伴うデータを取得する機能を併せて持つものであってもよい。
なお、船舶の海上や、機関、機器の陸上の試運転を利用者や第三者以外の試運転実施機関が業として行う場合は、試運転手段185である当該試運転実施機関に対しても、燃料消費に関する指標の導出結果を燃料消費指標提供手段150から提供することが好ましい。これにより、試運転実施機関は、燃料消費に関する指標の導出結果を試運転方法の改善等に活用することができる。
【0083】
気象海象データ取得手段191及び運航データ取得手段192は、例えば運航中の船舶に設けられる。気象海象データ取得手段191は、実海域における気象海象データを取得する。運航データ取得手段192は、実海域における船舶の運航データを取得する。運航データは、例えば、主機関回転数や主機関トルク、速力等である。取得した実海域における気象海象データや運航データは、実海域性能計算方法1の精度向上等に活用することができる。
なお、データ取得手段190は、運航データの取得や気象海象データ等の取得に限ったものでも、実際にデータ取得を行なうセンサ機能を併せて持つものであってもよい。
また、気象海象データ取得手段191が取得した気象海象データ、及び運航データ取得手段192が取得した運航データは、データ蓄積手段200に蓄積される。データ蓄積手段200は、例えばハードディスク等の記憶装置である。
なお、気象海象データや運航データは、特定の船舶の取得したデータであっても、不特定の船舶の取得したデータであってもよいが、気象海象データと運航データがセットで取得されたものであることが好ましい。また、気象海象データ取得手段191が取得した気象海象データ、及び運航データ取得手段192が取得した運航データは、航路ごとに条件入力手段120で運航条件や気象海象条件として入力することも可能である。例えば、船舶を運航する運航会社がデータを積み上げ、航路に対応した気象海象条件を入力する場合等に役立てることができる。
標準運航モデル変更手段210は、データ蓄積手段200に蓄積された気象海象データ及び運航データに基づいて、標準運航モデル2を変更する。変更した標準運航モデル2の内容は、記憶手段111に記憶される。このように、蓄積した気象海象データや運航データに基づき標準運航モデル2を改善して、燃料消費に関する指標をより精度よく導出して提供することが可能となる。標準運航モデル2を変更する場合は、実海域性能提供者は、一時的に本システムのサービスの提供を停止する。実海域性能提供者は、事前に本システムの停止を利用者に通知した上で停止する。また、実海域性能提供者は、標準運航モデル2の変更を予め検証してから標準運航モデル2の変更を行なう。なお、標準運航モデル2の変更は実海域性能提供者の判断の基に行なわれるが、標準運航モデル2の変更があったことは、変更時点や次の実海域性能提供の折に利用者等にも通知され、バージョン情報は燃料消費に関する指標の提供と併せて常に利用者に提供される。
【0084】
図9は、図8に示す船舶の実海域性能提供システム例の利用フロー図である。
図9において、左側は利用者、右側は実海域性能提供者を示している。利用者が使用する端末と、実海域性能提供者が保有するサーバ(標準運航モデル設定手段110、実海域性能計算手段130、燃料消費指標導出手段140)及び燃料消費指標提供手段150とは、通信回線又はネットワークで接続されている。
サーバは、アクセスキーを予め生成して管理している(アクセスキー管理ステップS30)。
利用者は、端末から本システムのサービス利用の申し込みを行う(サービス申込ステップS31)。サーバは、サービス利用の申し込みを受信すると、アクセスキーの選択を行い(アクセスキー選択ステップS32)、利用者にアクセスキーを発行する(アクセスキー発行ステップS33)。発行されたアクセスキーは利用者の端末に提示される(アクセスキー提示ステップS34)。
利用者は、本システムを利用する場合、入手済みのアクセスキーをサーバに送信する(アクセスキー送信ステップS35)。サーバは、受信したアクセスキーに基づき利用者の認証を行う(認証ステップS36)。認証が完了すると利用者は本システムの利用が可能となる。
認証ステップS36の後、利用者は、条件入力手段120を用いて、標準運航モデル2で使用する運航条件と船舶の船体条件を入力する(初期条件入力ステップS37)。サーバは、航路の選択や載貨状態の設定等を受け付け、標準気象海象情報や標準生物汚損率、標準経年劣化率等を使用するか否かを利用者に確認する(追加条件確認ステップS38)。利用者は、標準気象海象情報や標準生物汚損率、標準経年劣化率等を使用しないことを選択した場合は、入力手段120を用いて、任意の気象海象情報や生物汚損率、経年劣化率等を入力する(追加条件入力ステップS39)。
サーバにおいて、標準運航モデル設定手段110は、標準生物汚損率や標準経年劣化率等を使用することを利用者が選択した場合は、条件計算手段112を用いて、標準生物汚損率や標準経年劣化率を計算する(条件計算ステップS40)。そして、実海域性能計算手段130は、運航条件が入力された標準運航モデル2と船体条件に従って、船舶の実海域性能計算を行う(実海域性能計算ステップS41)。実海域性能計算手段130の計算結果は、利用者と燃料消費指標導出手段140に送信される。燃料消費指標導出手段140は、受信した計算結果に基づいて船舶の燃料消費に関する指標を計算する(燃料消費指標計算ステップS42)。
そして、燃料消費指標導出手段140が導出した船舶の燃料消費に関する指標は、燃料消費指標提供手段150から利用者へ提供される(燃料消費指標提供ステップS43)。
なお、認証方式は各種の認証方式が可能であるが、強固なセキュリティ環境を実現し、不正アクセスのリスクを低減する観点から、トリプル認証(IEEE802.1X認証、Web認証、MAC認証)等を用いることが好ましい。また、就航船の場合、利用者の認証には船名や船舶識別番号等を併用することもでき、船体条件として船名や船舶識別番号に連携された船体条件を用いることもできる。
【0085】
以上、本発明の望ましい実施の形態について説明したが、本発明はそれらに限定されるものではなく、特許請求の範囲、発明の詳細な説明及び添付図面の範囲内でさまざまに変形して実施することが可能であり、それらも本発明の範囲に属するということは言うまでもない。
【0086】
最後に、以上の説明に関して更に以下の付記を開示する。
なお、本発明は、その技術分野を船舶の実海域性能提供システムとすることもできる。また、その目的を実海域における船舶の推進性能を例えば運航前においても、同じ尺度で精度よく評価することができる船舶の実海域性能提供システムを提供することとすることもできる。
【0087】
(付記1)
実海域における船舶の標準運航モデルを設定する標準運航モデル設定手段と、前記標準運航モデルで使用する運航条件と前記船舶の船体条件を入力する条件入力手段と、前記運航条件が入力された前記標準運航モデルと前記船体条件に従って前記船舶の実海域性能計算を行なう実海域性能計算手段と、前記実海域性能計算手段の計算結果に基づいて前記船舶の燃料消費に関する指標を導出する燃料消費指標導出手段と、前記燃料消費に関する指標の導出結果を提供する燃料消費指標提供手段とを備えたことを特徴とする船舶の実海域性能提供システム。
上記構成によれば、例えば運航する前の船舶についても、運航条件と船体条件に基づいて実海域における船舶の燃料消費に関する指標を精度よく導出して提供することができる。
【0088】
(付記2)
前記条件入力手段で前記運航条件として気象海象条件を入力し、前記気象海象条件が入力された前記標準運航モデルを用いて前記実海域性能計算手段が前記船舶の実海域性能計算を行なうことを特徴とする付記1に記載の船舶の実海域性能提供システム。
上記構成によれば、例えば運航条件としての航路に従った気象海象が組み込まれていない場合や、悪化が予想される気象海象を避けて航行するなどの運航ポリシーを持つ船舶が対象の場合には、任意の気象海象条件を入力することで、より実態に即した評価を行うことができる。
【0089】
(付記3)
前記条件入力手段は、前記運航条件と前記船体条件を通信回線及びネットワークの少なくとも1つを介して利用者により入力し、燃料消費指標提供手段は、前記燃料消費に関する指標の導出結果を前記通信回線及び前記ネットワークの少なくとも1つを介して前記利用者に提供するものであることを特徴とする付記1又は付記2に記載の船舶の実海域性能提供システム。
上記構成によれば、利用者が遠隔地にいる場合であっても、通信回線やネットワークを介して利用者からの条件入力を受け付け、入力された条件に基づいて導出した実海域における船舶の燃料消費に関する指標を利用者に提供することができる。
【0090】
(付記4)
前記船体条件として、未就航船の計画船体条件を入力し、前記未就航船の前記燃料消費に関する指標の導出結果を提供することを特徴とする付記3に記載の船舶の実海域性能提供システム。
上記構成によれば、利用者から計画船体条件の入力を受け付け、入力された計画船体条件に基づいて導出した実海域における未就航船の燃料消費に関する指標を利用者に提供することができる。なお、未就航船とは、計画検討、設計検討又は建造中等の段階にある建造完了前の船舶をいう。また、計画船体条件とは、未就航船について計画されている船体条件をいう。
【0091】
(付記5)
複数の前記未就航船の前記計画船体条件を入力し、複数の前記未就航船の前記燃料消費に関する指標の導出結果を比較可能にして提供することを特徴とする付記4に記載の船舶の実海域性能提供システム。
上記構成によれば、利用者から複数の計画船体条件の入力を受け付け、入力された複数の計画船体条件に対応してそれぞれ導出した実海域における未就航船の燃料消費に関する指標を比較可能な形で利用者に提供することができる。
【0092】
(付記6)
前記運航条件と前記船体条件として入力された前記計画船体条件を取得する条件取得手段と、前記運航条件と前記計画船体条件に従った前記船舶の性能予測結果を提供する性能予測結果提供手段を備えたことを特徴とする付記4又は付記5に記載の船舶の実海域性能提供システム。
上記構成によれば、未就航船について、実海域における燃料消費に関する指標と併せて、例えば水槽試験や数値解析・シミュレーション手法等により得られた性能予測結果を利用者に提供することができる。また、性能予測結果を実海域性能計算手段に用いて、実海域性能計算手段の計算精度を高めることも可能である。
【0093】
(付記7)
前記船体条件として、就航船の設計船体条件を入力し、前記就航船の前記燃料消費に関する指標の導出結果を提供することを特徴とする付記3に記載の船舶の実海域性能提供システム。
上記構成によれば、利用者から設計船体条件の入力を受け付け、入力された設計船体条件に基づいて導出した実海域における就航船の燃料消費に関する指標を利用者に提供することができる。なお、就航船とは、建造が完了した船舶をいい、実就航前の検査途上にある船舶も含む。また、設計船体条件とは、就航船について設計完了されている船体条件をいう。
【0094】
(付記8)
複数の前記就航船の前記設計船体条件を入力し、複数の前記就航船の前記燃料消費に関する指標の導出結果を比較可能にして提供することを特徴とする付記7に記載の船舶の実海域性能提供システム。
上記構成によれば、利用者から複数の設計船体条件の入力を受け付け、入力された複数の設計船体条件に対応してそれぞれ導出した実海域における就航船の燃料消費に関する指標を比較可能な形で利用者に提供することができる。
【0095】
(付記9)
前記運航条件と前記船体条件として入力された前記設計船体条件を取得する条件取得手段と、前記運航条件と前記設計船体条件に従った前記船舶の試運転結果を提供する試運転結果提供手段を備えたことを特徴とする付記7又は付記8に記載の船舶の実海域性能提供システム。
上記構成によれば、就航船について、実海域における燃料消費に関する指標と併せて、試運転結果を利用者に提供することができる。また、試運転結果を実海域性能計算手段に用いて、実海域性能計算手段の計算精度を高めることも可能である。
【0096】
(付記10)
前記燃料消費指標提供手段は、前記燃料消費に関する指標の導出結果を前記通信回線及び前記ネットワークの少なくとも1つを介して前記利用者以外の第三者に提供するものであることを特徴とする付記3に記載の船舶の実海域性能提供システム。
上記構成によれば、利用者のみならず第三者にも対象船舶の実海域における船舶の燃料消費に関する指標を提供することで、第三者も通信回線やネットワークを介して提供を受けた指標に基づいて船舶の実海域性能を知ったり評価すること等を行うことができる。
【0097】
(付記11)
実海域性能提供者が、前記標準運航モデル設定手段と前記実海域性能計算手段とをサーバとして保有し、前記サーバを利用した前記燃料消費に関する指標の導出結果を提供することを特徴とする付記3から付記10のいずれか1つに記載の船舶の実海域性能提供システム。
上記構成によれば、利用者は外部のサーバから燃料消費に関する指標の導出結果を得ることができるので、機器の導入コストや管理コスト等を軽減することができる。また、実海域性能提供者が、燃料消費指標導出手段もサーバとして保有して燃料消費に関する指標の導出結果を提供することも可能である。
【0098】
(付記12)
前記条件入力手段で入力する複数の前記運航条件は、航路、載貨状態、及び評価期間に関する条件であることを特徴とする付記1から付記11のいずれか1つに記載の船舶の実海域性能提供システム。
上記構成によれば、より実運航に近い条件下で、船舶の実態に即した燃料消費に関する指標を導出して提供することができる。
【0099】
(付記13)
前記実海域における気象海象データを取得する気象海象データ取得手段及び前記実海域における前記船舶の運航データを取得する運航データ取得手段の少なくとも1つを備え、取得した前記気象海象データ及び前記運航データの少なくとも1つを蓄積するデータ蓄積手段と、蓄積した前記気象海象データ及び前記運航データの少なくとも1つに基づいて、前記標準運航モデルを変更する標準運航モデル変更手段をさらに備えたことを特徴とする付記1から付記12のいずれか1つに記載の船舶の実海域性能提供システム。
上記構成によれば、実海域における気象海象データや運航データを取得することで、実海域性能計算方法の精度向上等に活用することが可能となる。また、蓄積した気象海象データや運航データに基づき標準運航モデルを改善して、燃料消費に関する指標をより精度よく導出して提供することが可能となる。
【0100】
(付記14)
前記燃料消費指標提供手段は、前記燃料消費に関する指標として、主機関燃費、温室効果ガス排出指数、メンテナンス費、及び輸送効率指数のうちの少なくとも一つを提供することを特徴とする付記1から付記13のいずれか1つに記載の船舶の実海域性能提供システム。
上記構成によれば、船舶の実海域における性能を客観的に示す指標として、主機関燃費、温室効果ガス排出指数、メンテナンス費、又は輸送効率指数を提供することができる。
【0101】
(付記15)
前記燃料消費指標提供手段は、前記実海域性能計算手段の前記計算結果、又は前記条件入力手段で入力された前記運航条件及び前記船体条件、の少なくとも一方を提供することを特徴とする付記1から付記14のいずれか1つに記載の船舶の実海域性能提供システム。
上記構成によれば、燃料消費に関する指標と併せて、その指標を導出する基になる実海域性能計算手段の計算結果を利用者等に提供することができる。これにより、利用者等は、船舶の運航形態の検討やメンテナンス周期の見直し、また、実際のパワーカーブの確認等を行いやすくなる。また、条件入力手段で入力された条件を利用者等に提供することができる。これにより、利用者等は、どのような条件を基に燃料消費に関する指標が導出されたのかを容易に把握することができる。
【0102】
以上の説明は、本開示による典型的な実施形態を含むものである。これらの例は、説明のためのものであり、限定するためのものではない。本開示が、本明細書に明示的に記述され描かれた形態と異なる形態で実施されてもよく、特許請求の範囲と一致する様々な修正、最適化及び変形が、当業者によって実現され得る。
【産業上の利用可能性】
【0103】
本発明の船舶の実海域推進性能評価方法、実海域推進性能評価プログラム、及び実海域推進性能評価システムを用いることで、船舶の運航前においても実海域における推進性能を適切に評価することができる。
また、本発明の船舶の実海域性能提供システムを用いることで、例えば運航前においても実海域における船舶の性能を適切に評価することができる。
【符号の説明】
【0104】
1 実海域性能計算方法
2 標準運航モデル
4 燃料消費率
5 ライフサイクル主機関燃費
10 標準運航モデル設定手段
20 条件入力手段
30 船体応答計算手段
40 燃料消費指標導出手段
50 燃料消費指標出力手段
S1 標準運航モデル設定ステップ
S2 条件入力ステップ
S17 船体応答計算ステップ
S21 燃料消費指標導出ステップ
S22 指標出力ステップ
図1
図2
図3
図4
図5
図6
図7
図8
図9